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Chapter 1

Differentiation

Our study of the Lebesgue integral naturally leads one to the consideration of the relationship
between differentiation and integration. Starting with the fundamental theorem of calculus, we
will derive the integration by parts formula, using which we derive the Taylor approximation
of differentiable functions. We work immediately with arbitrary euclidean spaces; the added
generality actually facilitates our analysis and simplifies the proofs of some important results,
as we will see below.

1.1 The Trace Norm on Rm×n

Because we define the derivative of an arbitrary function as an m×n matrix, it will be useful to
furnish a norm on the real vector space of all real m×n matrices. Specifically, we will be using
the trace norm ‖·‖ : Rm×n→ R+ defined as

‖A‖= tr(A′A)
1
2

for any A ∈ Rm×n. It is very easy to see that ‖A‖2 is simply the sum of the squares of all the
entries of A, and it follows that

‖A‖=

 m∑
i=1

n∑
j=1

A2
ij

 1
2

≤
m∑
i=1

n∑
j=1
|Aij |.

We will now show that ‖·‖ possesses the properties that a matrix norm such as the operator
norm should possess.

Recall that, for any n ∈N+, defining Sn×n as the set of all symmetric n×n matrices, Sn×n is
a linear subspace of the real vector space Rn×n: this can be seen easily, since the zero n×n
matrix is symmetric and, for any a ∈ R and A,B ∈ Sn×n, (aA+B)′ = aA′+B′ = aA+B and
thus aA+B ∈ Sn×n.
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In addition, the operation 〈·, ·〉 : Sn×n×Sn×n→ R defined as

〈A,B〉= tr(A′B)

for any A,B ∈ Sn×n is an inner product defined on Sn×n:

1) Linearity in First Argument
For any a ∈ R and A,B,C ∈ Sn×n,

〈aA+B,C〉= tr((aA+B)′C) = tr(a ·A′C+B′C) = a · tr(A′C) + tr(B′C) = a · 〈A,C〉+ 〈B,C〉,

so that 〈·, ·〉 is linear in its first argument.

2) Conjugate Symmetry
For any A,B ∈ Sn×n,

〈A,B〉= tr(A′B) = tr(BA′) = tr(B′A) = 〈B,A〉,

where we used both the commutativity property of the trace operation and the symmetry
of A and B.

3) Positive Definiteness
For any A ∈ Sn×n,

〈A,A〉= tr(A′A) = tr(A2).

Letting A = PDP ′ be the eigendecomposition of A (which exists because A is real and
symmetric), A= O if and only if all the diagonal entries of D are 0. Lettng µ1, · · · ,µn be
the diagonal entries of D, since A2 = PD2P ′ and tr(A2) = tr(D2), we can see that

〈A,A〉= tr(D2) =
n∑
i=1

µ2
i ≥ 0,

where the inequality holds as an equality if and only if µ1 = · · ·= µn = 0, or D=O. There-
fore, 〈A,A〉> 0 if A 6=O.

We have just shown that (Sn×n,〈·, ·〉) is a real inner product space; denote by ‖·‖tr the norm
induced by 〈·, ·〉. Since

‖A‖tr = (〈A,A〉)
1
2 = tr(A′A)

1
2

for any A ∈ Sn×n, we can see that ‖·‖tr equals the trace norm ‖·‖ on Sn×n.
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By the Cauchy-Schwarz inequality,

∣∣tr(A′B)
∣∣= |〈A,B〉| ≤ ‖A‖tr‖B‖tr

for any A,B ∈ Sn×n.
In particular, for any positive semidefinite A∈Sn×n, letting A=PDP ′ be its eigendecomposition
and µ1, · · · ,µn be the diagonal entries of D (the eigenvalues of A), µ1, · · · ,µn ≥ 0. Therefore,

‖A‖tr = tr(A2)
1
2 =

(
n∑
i=1

µ2
i

) 1
2

≤
n∑
i=1

µi = tr(A),

which tells us that the trace norm of a positive semidefinite matrix is majorized by its trace.

Returning to the general setting of the space of all real m×n matrices Rm×n, we can now see
that the trace norm ‖·‖ on Rm×n has the following properties:

1) Positive Definiteness
Let A ∈ Rm×n. Suppose that ‖A‖= 0. Then,

0 = tr(A′A) =
m∑
i=1

n∑
j=1

A2
ij ,

so that Aij = 0 for any 1 ≤ i ≤ m, 1 ≤ j ≤ n. It follows that A = O. It is obvious that
‖A‖= 0 if A=O.

2) Absolute Homogeneity
Let a ∈ R and A ∈ Rm×n. Then,

‖aA‖= tr(a2A′A)
1
2 = |a| · tr(A′A)

1
2 = |a| · ‖A‖.

3) Triangle Inequality
Let A,B ∈ Rm×n;

‖A+B‖2 = tr((A+B)′(A+B)) = tr(A′A) + tr(B′B) + tr(B′A) + tr(A′B).

Letting the (i, j)th entry of A,B be denoted Aij ,Bij for any 1 ≤ i ≤m, 1 ≤ j ≤ n, note
that

tr(B′A) = tr(A′B) =
n∑
j=1

m∑
i=1

AijBij ,
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and by the Cauchy-Schwarz inequality,

m∑
i=1

AijBij ≤
m∑
i=1
|AijBij | ≤

(
m∑
i=1

A2
ij

) 1
2
(

m∑
i=1

B2
ij

) 1
2

for any 1≤ j ≤ n, so that another application of the Cauchy-Schwarz inequality yields

n∑
j=1

m∑
i=1

AijBij ≤
n∑
j=1

(
m∑
i=1

A2
ij

) 1
2
(

m∑
i=1

B2
ij

) 1
2

≤

 n∑
j=1

m∑
i=1

A2
ij

 1
2
 n∑
j=1

m∑
i=1

B2
ij

 1
2

= ‖A‖‖B‖.

Therefore,

‖A+B‖2 = tr(A′A) + tr(B′B) + tr(B′A) + tr(A′B)

≤ ‖A‖2 +‖B‖2 + 2 · ‖A‖‖B‖= (‖A‖+‖B‖)2 .

We have now shown that ‖·‖ is a norm on Rm×n. Therefore, we can induce a metric d on
Rm×n by defining

d(A,B) = ‖A−B‖

for any A,B ∈ Rm×n.
The following are more useful properties of the trace norm:

Theorem 8.1 (Properties of the Trace Norm)
Let ‖·‖ be the trace norm. Then, the following hold true:

i) For any A ∈ Rm×n and B ∈ Rn×p, ‖AB‖ ≤ ‖A‖‖B‖.

ii) For any x ∈ Rn, |x|= ‖x‖.

iii) The set Ωo of all invertible matrices on Rn×n is an open subset of Rn×n with respect to
the metric induced by ‖·‖.

iv) The function f : Ωo→Ωo defined as f(A) =A−1 for any A ∈Ωo is continuous with respect
to the metric induced by ‖·‖.
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Proof) i) For any A ∈ Rm×n and B ∈ Rn×p,

‖AB‖2 = tr(B′A′AB) = tr((A′A)(BB′))

= 〈A′A,BB′〉 (A′A,BB′ are n×n symmetric matrices)

≤
∥∥A′A∥∥tr ·∥∥BB′∥∥tr (The Cauchy-Schwarz Inequality)

≤ tr(A′A) · tr(BB′) (A′A,BB′ are positive semidefinite)

= ‖A‖2 · ‖B‖2.

ii) Let x be an n-dimensional real valued vector whose euclidean norm is |x|. Then,
‖x‖ is well-defined as the norm of the n×1 matrix x. It is easy to see that

‖x‖2 = tr(x′x) = |x|2.

By implication, for some A ∈ Rm×n and x ∈ Rn,

|Ax|= ‖Ax‖ ≤ ‖A‖ · ‖x‖= ‖A‖ · |x|.

iii) Choose any A ∈ Ωo. Because A−1 6= O,
∥∥A−1∥∥ > 0. Let B ∈ Rn×n be an element

in the open ball B(A,1/
∥∥A−1∥∥) around A, that is,

‖A−B‖< 1
‖A−1‖

.

Choose any x ∈ Rn, and suppose that x 6= 0. Then,

|x|=
∣∣∣A−1Ax

∣∣∣≤ ∥∥∥A−1
∥∥∥ · |Ax−Bx+Bx|

≤
∥∥∥A−1

∥∥∥ · (‖A−B‖|x|+ |Bx|) .
Because |x|> 0, we have

∥∥∥A−1
∥∥∥ · ‖A−B‖|x|< |x|,

so that

|x|< |x|+ |Bx|,

which implies |Bx|> 0, or Bx 6= 0. By contraposition, if Bx= 0, then x= 0. This
tells us that the null space of B consists only of the zero vector 0, and as such
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that B is an invertible matrix.
This holds for any B ∈B(A,1/‖A‖), so B(A,1/‖A‖)⊂ Ωo. This in turn holds for
any A ∈ Ωo, so Ωo is open with respect to the metric induced by the trace norm.

iv) Define f : Ωo→ Ωo as

f(A) =A−1 for any A ∈ Rn×n.

Choose any A ∈ Ωo, and B ∈ Rn×n such that ‖A−B‖ < δ. Then, B ∈ Ωo by the
above result, and because

∥∥A−1∥∥ · ‖A−B‖< 1,
∥∥∥B−1

∥∥∥=
∥∥∥A−1AB−1

∥∥∥≤ ∥∥∥A−1
∥∥∥ ·∥∥∥(A−B)B−1 + In

∥∥∥
≤
∥∥∥A−1

∥∥∥ · ‖A−B‖ ·∥∥∥B−1
∥∥∥+
√
n ·
∥∥∥A−1

∥∥∥
implies

∥∥∥B−1
∥∥∥≤ √

n ·
∥∥A−1∥∥

1−‖A−1‖ · ‖A−B‖
.

It then follows that

‖f(A)−f(B)‖=
∥∥∥A−1 (A−B)B−1

∥∥∥≤ ‖A−B‖ ·∥∥∥A−1
∥∥∥ ·∥∥∥B−1

∥∥∥
≤
√
n ·
∥∥A−1∥∥ · ‖A−B‖

1−‖A−1‖ · ‖A−B‖
.

The right hand side goes to 0 as ‖A−B‖ → 0, so it follows that ‖f(A)−f(B)‖
also goes to 0 as ‖A−B‖→ 0. This shows us that f is a continuous function on Ωo.

Q.E.D.
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1.2 Differentiation on Euclidean Spaces

Let E be an open subset of Rn, and f : E→ Rm. The derivative of f at x ∈ E is defined as the
m×n matrix A such that

lim
h→0

|f(x+h)−f(x)−Ah|
|h|

= 0.

Note that the fraction above is well-defined for h close to 0 because E is an open subset containing
x, so that we can find a neighborhood around x contained in E. If such an A exists, we say
that f is differentiable at x. If f is differentiable at every point in E, then we say that it is
differentiable on E.

We first show that the derivative A of f at some point x is unique:

Lemma 1.2 (Uniqueness of the Derivative)
Let E be an open subset of Rn, and suppose A1,A2 ∈ Rm×n are derivatives of f : E → Rm at
some x ∈ E. Then, A1 =A2.

Proof) By definition, A1,A2 ∈ Rm×n are two matrices satisfying

lim
h→0

|f(x+h)−f(x)−Aih|
|h|

= 0

for i= 1,2, then for any non-zero h ∈ Rn that is small enough so that x+h ∈ E,

|(A1−A2)h|= |f(x+h)−f(x)−A2h− (f(x+h)−f(x)0A1h)|

≤ |f(x+h)−f(x)−A2h|+ |f(x+h)−f(x)0A1h|,

so that

|(A1−A2)h|
|h|

≤ |f(x+h)−f(x)−A1h|
|h|

+ |f(x+h)−f(x)−A2h|
|h|

.

Taking h→ 0 on both sides shows us that

lim
h→0

|(A1−A2)h|
|h|

= 0.

By definition, for any ε > 0 there exists a δ > 0 such that

|(A1−A2)h| ≤ ε · |h|

for any h ∈ Rn such that |h|< δ. Fixing some non-zero x ∈ Rn, this shows us that, for
any t > 0 such that t < δ

|x| , since |t ·x|< δ, we have

|(A1−A2)(tx)|= |t||(A1−A2)x| ≤ ε · |tx|= |t| · ε|x|.

9



Dividing both sides by |t| yields

|(A1−A2)x| ≤ ε · |x|;

this holds for any ε > 0, so |(A1−A2)x|= 0, that is, A1 =A2.

Q.E.D.

The unique derivative A ∈ Rm×n of f at x is denoted by f ′(x) ∈ Rm×n. One of the most
convenient implications of differentiability is that f is continuous at any point at which it is
differentiable:

Lemma 1.3 (Differentiability implies Continuity)
Let E be an open subset of Rn, and suppose f : E→ Rm is differentiable at some x ∈ E. Then,
f is continuous at x.

Proof) Suppose f is differentiable at x ∈ E. Let A ∈ Rm×n be the derivative of f , and choose
some ε > 0. Let η > 0 be chosen small enough so that η2 +‖A‖ ·η < ε.

By definition, there exists a δ > 0 satisfying

|f(x+h)−f(x)−Ah| ≤ η · |h|

for any h ∈ Rn such that |h|< δ. Note that, for any h ∈ Rn such that |h|< δ,

|f(x+h)−f(x)|− |Ah| ≤ |f(x+h)−f(x)−Ah| ≤ η · |h|,

and by implication,

|f(x+h)−f(x)| ≤ ε · |h|+ |Ah| ≤ η · |h|+‖A‖ · |h|.

Therefore, for any y ∈ Rn such that |x−y|<min(δ,η), we can now see that

|f(y)−f(x)|= |f(x+ (y−x))−f(x)| ≤ (η+‖A‖) |x−y|< η2 +η · ‖A‖< ε.

This holds for any ε > 0, so by definition f is continuous at x.

Q.E.D.

Consider a differentiable function f : E→ Rm. While this ensures the continuity of f on E,
it does not ensure the continuity of the mapping f ′ :E→ Rm×n with respect to the trace norm
on Rm×n. If this is also the case, that is, if f ′ is a continuous function as well, then we say that
f is continuously differentiable on E, and we denote f ∈ C1(E).
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The simplest case we can study is the differentiation of T ∈ L(Rn,Rm), that is, linear trans-
formations from Rn into Rm. In this case, we can write

T (x) =Ax

for any x ∈Rn, where A ∈Rm×n is the matrix representation of T with respect to the standard
basis. Since

|T (x+h)−T (x)−Ah|
|h|

= 0

for any x,h ∈ Rn by the linearity of T , we can see that the derivative of T at any x is exactly
equal to the matrix representation A. In this case, the derivative is continuous everywhere on
Rn, so we can see that any linear transformation is also continuously differentiable on Rn.

We can prove that the chain rule holds in this more general situation:

Theorem 1.4 (Chain Rule)
Let E be an open subset of Rn, and f :E→Rm a function that is differentiable at some x0 ∈E.
In addition, let V be some open subset of Rm containing the image f(E), and g : V → Rp a
function differentiable at f(x0) ∈ V . Then, defining F = g ◦f :E→ Rp, F is differentiable at x0

with derivative equal to

F ′(x0) = g′(f(x0))f ′(x0) ∈ Rp×n.

Proof) Denote y0 = f(x0) ∈ V , A= f ′(x0) and B = g′(y0). Then, defining

u(h) = f(x0 +h)−f(x0)−Ah

v(k) = g(y0 +k)−g(y0)−Bk

for any h ∈ Rn and k ∈ Rm for which the above functions are well-defined. Since E is
open, there exists a neighborhood U of 0 such that x0 +U ∈ E. Define the function
K : U → Rm as

K(h) = f(x0 +h)−f(x0)

11



for any h ∈ U . Note that, for any h ∈ U ,

F (x0 +h)−F (x0)− (BA)h= g(f(x0 +h))−g(y0)− (BA)h

= g (y0 + (f(x0 +h)−f(x0))−g(y0)

−B((f(x0 +h)−f(x0)) +B (f(x0 +h)−f(x0)−Ah)

= (g(y0 +K(h))−g(y0)−B ·K(h)) +B (f(x0 +h)−f(x0)−Ah)

= v(K(h)) +B ·u(h),

so that

|F (x0 +h)−F (x0)− (BA)h| ≤ |v(K(h))|+‖B‖ · |u(h)|.

We want to bound the right hand side above by |h| times a small positive number ε > 0.
To this end, choose some ε > 0, and let α > 0 be chosen small enough so that

α2 + (‖A‖+‖B‖)α < ε.

By the differentiability of g at y0, for any ε > 0, there exists a δ > 0 such that

|v(k)| ≤ α · |k|

for any k ∈ Rm such that |k|< δ.

Furthermore, by the differentiability of f at x0, there exists an η > 0 such that

|u(h)| ≤ α · |h|

for any h ∈ Rn such that |h|< η.

Finally, since the differentiability of f at x0 implies continuity of f at x0,

lim
h→0

K(h) = 0

and we can take η > 0 small enough so that

|K(h)|< δ

also holds for any h ∈ Rn such that |h|< η.
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Putting these results together, for any h ∈ Rn such that |h|< η,

|u(h)| ≤ α · |h|,

and since we have |K(h)|< δ, we also can conclude that

|v(K(h))| ≤ α · |K(h)|.

Using the fact that

|K(h)|= |u(h) +Ah| ≤ |u(h)|+‖A‖ · |h|

for any h ∈ U , we can see that

|v(K(h))| ≤ ε · |K(h)| ≤ α(|u(h)|+‖A‖ · |h|)

≤ α2 · |h|+α‖A‖ · |h|.

In other words, |h|< η for any h ∈ U implies

|F (x0 +h)−F (x0)− (BA)h| ≤ |v(K(h))|+‖B‖ · |u(h)|

≤
(
α2 +α · ‖A‖

)
· |h|+α‖B‖ · |h|

=
[
α2 + (‖A‖+‖B‖)α

]
· |h| ≤ ε · |h|.

This holds for any ε > 0, so

lim
h→0

|F (x0 +h)−F (x0)− (BA)h|
|h|

= 0,

and by definition F ′(x0) =BA.

Q.E.D.

1.2.1 Partial Differentiation

We now introduce a way to very easily characterize the derivative of a multivariate function
using derivatives with respect to each coordinate. Let E = {e1, · · · ,en} be the standard bases of
Rn. Let E be an open subset of Rn and f = (f1, · · · ,fm) a function from E into Rm. We say
that the ith coordinate function fi :E→ R of f is partially differentiable at x ∈E with respect
to the jth coordinate if the limit

∂fi
∂xj

(x) = lim
t→0

fi(x+ t ·ej)−f(x)
t

13



exists; we call the limit the partial derivative of fi with respect to the jth coordinate at x.
Note that (Djfi)(x) := ∂fi

∂xj
(x) is essentially the (univariate) derivative of the mapping t 7→

fi(x1, · · · ,xj−1, t,xj+1, · · · ,xn) at xj . If all mn partial derivatives of f at x exist, then we can
collect them into the Jacobian

J(x) =


(D1f1)(x) · · · (Dnf1)(x)

... . . . ...
(D1fm)(x) · · · (Dnfm)(x)

 ∈ Rm×n.

Partial differentiability does not ensure differentiability; it does not even ensure continuity. How-
ever, the converse does hold true, that is, differentiability implies partial differentiability.

Theorem 1.5 (Differentiability implies Partial Differentiability)
Let E be an open subset of Rn, and f :E→Rm a function on E. If f is differentiable at x ∈E,
then it is partially differentiable at x ∈ E and the derivative f ′(x) is exactly the Jacobian of f
at x, that is,

f ′(x) =


(D1f1)(x) · · · (Dnf1)(x)

... . . . ...
(D1fm)(x) · · · (Dnfm)(x)

 .

Proof) Let {e1, · · · ,en} and {u1, · · · ,um} be the standard bases of Rn and Rm. Suppose that f
is differentiable at x, and denote A = f ′(x). Choose any 1 ≤ i ≤m and 1 ≤ j ≤ n. By
definition, for any ε > 0 there exists a δ > 0 such that

|f(x+h)−f(x)−Ah| ≤ ε · |h|

for any h ∈Rn such that |h|< δ. Chooseing t > 0 such that |t|< δ, since |t ·ej |= |t|< δ,
it follows that

|f(x+ t ·ej)−f(x)− t ·Aej | ≤ ε · |t|.

The ith element of the vector Aej , which is equal to the jth column of A, is exactly
the (i, j)th element of A. The definition of the euclidean norm on Rm now tells us that

|fi(x+ t ·ej)−fi(x)− t ·A(i, j)| ≤ |f(x+ t ·ej)−f(x)− t ·Aej | ≤ ε · |t|,

or equivalently,∣∣∣∣fi(x+ t ·ej)−fi(x)
t

−A(i, j)
∣∣∣∣= ∣∣∣∣fi(x+ t ·ej)−fi(x)− t ·A(i, j)

t

∣∣∣∣≤ ε

14



for any t > 0 such that |t|< δ. This holds for any ε > 0, so we have

A(i, j) = lim
t→0

fi(x+ t ·ej)−fi(x)
t

.

This holds for any 1 ≤ i ≤ m and 1 ≤ j ≤ n, so by definition each A(i, j) is the jth
partial derivative of fi at x, that is,

A(i, j) = (Djfi)(x).

Q.E.D.

Of interest is the case where f is a real-valued function. If E is an open subset of Rn and
f :E→R is differentiable at x, the theorem above tells us that the partial derivatives of f exist
and satisfy

f ′(x) =
(
∂f
∂x1

(x) · · · ∂f
∂xn

(x)
)
.

The transpose of this 1× n row vector is called the gradient of f at x, and is denoted by
∇f(x) ∈ Rn.

1.2.2 Directional Derivatives

Let (a,b) be an open interval on the real line, E an open subset of Rn, f : E→ R a real-valued
function, and γ : (a,b)→ E a function representing a parametric curve on the set E. Suppose
γ and f are both differentiable on their domains, and define the function g = f ◦γ : (a,b)→ R.
The chain rule tells us that

g′(t) = f ′(γ(t))γ′(t)

for any t ∈ (a,b), where g′(t) is real because f ′(γ(t)) ∈R1×n and γ′(t) ∈Rn×1. Furthermore, the
preceding theorem implies

f ′(x) =
(
∂f
∂x1

(x) · · · ∂f
∂xn

(x)
)

= ∇f(x)′

for any x ∈ E, so the derivative of g at t can be written as

g′(t) = ∇f(γ(t))′γ′(t) = 〈∇f(γ(t)),γ′(t)〉,

where 〈·, ·〉 is the standard inner product on Rn.
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We are especially interested in the case where γ : (−δ,δ)→ E is defined as

γ(t) = x+ t ·u

for some x ∈ E and a unit vector u ∈ Rn, where δ > 0 is chosen so that γ(t) takes values in E

for any t ∈ (−δ,δ). Defining g as above, note that

g(t)−g(0)
t

= f(x+ t ·u)−f(x)
t

for any 0< |t|< δ, while the derivative of g at 0 is given by

g′(0) = ∇f(γ(0))′γ′(0) = ∇f(x)′u.

It follows that

∇f(x)′u= lim
t→0

f(x+ t ·u)−f(x)
t

by the definition of the derivative; we call this quantity the directional derivative of f at x in the
direction of u, and is denoted by (Duf)(x). Heuristically, (Duf)(x) represents the infinitesimal
amount by which f increases from x in the direction of u.

Using the fact that the directional derivative is an inner product on Rn,

(Duf)(x) = 〈∇f(x),u〉= |∇f(x)| · |u| · cos(θ) = |∇f(x)| · cos(θ),

where θ is the angle between the vectors ∇f(x) and u. Since the cosine function achieves its
maximum when θ = 0, that (Duf)(x) equals |∇f(x)| · cos(θ) implies that f grows the fastest
from x in the direction of ∇f(x). In other words, the gradient of f at x is proportional to the
direction in which f grows the fastest.

1.2.3 The Mean Value Theorem

We now introduce a class of theorems that have widespread applicability, especially when it
comes to the approximation of functions by polynomials. We first focus on univariate functions,
and then extend it to multivariate functions via the process above.

Let (E,τ) be a topological space. A real-valued function f :E→ R is said to achieve a local
maximum (minimum) at x ∈E if there exists a neighborhood U around x such that f(x)≥ f(y)
(f(x)≤ f(y)) for any y ∈ U . f achieves a strict local maximum (minimum) at x if the preceding
inequalities are strict.

Returning to the specific setting of euclidean spaces, let (a,b) be an open interval on the real
line and f : (a,b)→R a real valued function. The first theorem, Rolle’s theorem, shows us that,
if f is differentiable, then its derivative should equal 0 at any local extremum.
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Lemma 1.6 (Rolle’s Theorem)
Let f : [a,b]→ R achieve a local maximum (minimum) at x ∈ (a,b). If f is differentiable at x,
then f ′(x) = 0.

Proof) Suppose that x∈ (a,b) is local maximum of f (the case for local minima follow similarly)
and that f is differentiable at x. Then, there exists a δ > 0 such that f(x) ≥ f(y) for
any y ∈ (x− δ,x+ δ). For any h ∈ R such that 0< h < δ, this tells us that

f(x+h)−f(x)
h

≥ 0,

while if −δ < h < 0, then

f(x+h)−f(x)
h

≤ 0,

where the inequality is flipped because h is negative in this case. Let {hn}n∈N+ be a
sequence of positive numbers in (0, δ) converging to 0. Then,

f ′(x) = lim
n→∞

f(x+hn)−f(x)
hn

≥ 0.

Similarly, if {hn}n∈N+ be a sequence of negative numbers in (−δ,0) converging to 0,
then

f ′(x) = lim
n→∞

f(x+hn)−f(x)
hn

≤ 0.

This shows us that f ′(x) = 0.

Q.E.D.

The mean value theorem now follows easily from Rolle’s theorem.
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Theorem 1.7 (Mean Value Theorem)
Let f : [a,b]→ R be a continuous function that is differentiable on (a,b). Then, there is a point
x ∈ (a,b) such that

f(b)−f(a) = f ′(x)(b−a).

Proof) Define the function g : [a,b]→ R as

g(x) = (f(b)−f(a))x−f(x)(b−a)

for any x∈ [a,b]. Then, g is continuous on [a,b] and differentiable on (a,b) with derivative
equal to

g′(x) = f(b)−f(a)−f ′(x)(b−a)

for any x ∈ (a,b). In addition,

g(b) = (f(b)−f(a))b−f(b)(b−a) = f(b)a−f(a)b= (f(b)−f(a))a−f(a)(b−a) = g(a).

We want to find an x ∈ (a,b) such that g′(x) = 0; this can be done by finiding a local
maximum/minimum of g on (a,b), and then applying Rolle’s theorem.

If g is a constant function on [a,b], then g′(x) = 0 for any x ∈ (a,b), so the claim holds
trivially. Suppose now that there exists an x∈ (a,b) such that g(x)> g(a) = g(b).. Since
g is a continuous function on the compact interval [a,b], by the extreme value theorem
there exists an x∗ ∈ [a,b] such that g(x∗) = maxx∈[a,b] g(x). By assumption, x∗ ∈ (a,b),
and thus by Rolle’s theorem, we have g′(x∗) = 0. On the ther hand, if there exists an
x∈ (a,b) such that g(x)< g(a) = g(b), we repeat the same argument with the minimum
instead of the maximum.

Q.E.D.

The mean value theorem can be seen as an approximation of a differentiable function using
a linear function, since for a differentiable function f : R→ R, it states that

f(x)≈ f(x0) +f ′(x0)x

for any two points x,x0 ∈ R if x0 and x are close to one another. In this context, the Tay-
lor expansion of a univariate function can be seen as the approximation of a function with a
polynomial of an aribtrary degree.

We can formulate multivariate versions of Rolle’s theorem and the mean value theorem by
making use of the chain rule and gradients. These are stated below:
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Theorem 1.8 (Multivariate Mean Value Theorem)
Let E be an open set in Rn and f :E→R a real-valued function on E. The following hold true:

i) If x ∈ E is a local extremum of f and f is differentiable at x, then ∇f(x) = 0.

ii) Suppose E is convex and that f is differentiable on E. For any x,y ∈ E, there exists a
t0 ∈ (0,1) such that

f(x)−f(y) = ∇f(t0 ·x+ (1− t0) ·y)′(x−y).

Proof) i) Let d denote the euclidean metric on Rn. Let x ∈ E be a local maximum of f ,
and assume that f is differentiable at x. It follows that there exists a δ > 0 such
that, for any point y ∈E in Bd(x,δ), we have f(y)≤ f(x). Choose any unit vector
u ∈ Rn and define γ : (−δ,δ)→ E as

γ(t) = x+ t ·u

for any t∈ (−δ,δ). Let g= f ◦γ : (−δ,δ)→R. Note that g achieves a local maximum
at 0 since for any t ∈ (−δ,δ), γ(t) is contained in Bd(x,δ) and therefore

g(t) = f(γ(t))≤ f(x) = g(0).

By Rolle’s theorem,

0 = g′(0) = ∇f(x)′u.

This holds for any unit vector u and therefore any standard basis vector in Rn, so
we can see that ∇f(x) = 0.

ii) Let f be differentiable on E, and choose distinct x,y ∈ E. Define γ : [0,1]→ E as

γ(t) = t ·x+ (1− t) ·y

for any t ∈ [0,1], and define g = f ◦ γ : [0,1]→ R. Note that γ takes values in E

because E is assumed to be convex. Since f is continuous on E by differentiability
and γ is continuous on [0,1], g is continuous on [0,1], and for any t ∈ (0,1),

g′(t) = ∇f(t ·x+ (1− t) ·y)′(x−y),

so that g is differentiable on (0,1). By the mean value theorem, there exists a
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t∗ ∈ (0,1) such that

g(1)−g(0) = g′(t∗).

Using the definition of g, we can see that

f(x)−f(y) = f(γ(1))−f(γ(0)) = ∇f(γ(t∗))′(x−y) = ∇f(t∗ ·x+ (1− t∗) ·y)′(x−y).

Q.E.D.

Although the mean value theorem does not hold for vector-valued functions, a weaker version
of the theorem in which the equality is given as an inequality remains true:

Theorem 1.9 (Mean Value Inequality for Vector-valued Functions)
Let E be a convex open set in Rn and f :E→Rm a differentiable function on E such that there
exists an M > 0 such that

∥∥f ′(x)
∥∥≤M

for any x ∈ E. Then

|f(x)−f(y)| ≤M |x−y|

for any x,y ∈ E.

Proof) Choose any x,y ∈E. If f(x) = f(y), then the result is trivial, so we assume f(x) 6= f(y).
Define γ : [0,1]→ E as

γ(t) = t ·x+ (1− t) ·y

for any t ∈ [0,1], where γ once again takes values in E thanks to the convexity of E.
Defining g = f ◦γ : [0,1]→Rm, note that g is continuous on [0,1] due to the continuity
of f and γ, and that

g′(t) = f ′(γ(t)) ·γ′(t) = f ′(y+ t(x−y)) · (x−y)

for any t ∈ (0,1). It follows that

∣∣g′(t)∣∣≤ ∥∥f ′(y+ t(x−y))
∥∥ · |x−y| ≤M · |x−y|

for any t ∈ (0,1).
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Now define ϕ : [0,1]→ R as

ϕ(t) = (g(1)−g(0))′ g(t)

for any t ∈ [0,1]. Then, ϕ is continuous on [0,1] and differentiable on (0,1) with deriva-
tive

ϕ′(t) = (g(1)−g(0))′ g′(t)

for any t ∈ (0,1). Thus, by the mean value theorem, there exists some t∗ ∈ (0,1) such
that

ϕ(1)−ϕ(0) = |g(1)−g(0)|2

= ϕ′(t∗) = (g(1)−g(0))′ g′(t∗).

It follows that

|g(1)−g(0)|2 =
∣∣∣(g(1)−g(0))′ g′(t∗)

∣∣∣≤ |g(1)−g(0)| ·
∣∣g′(t∗)∣∣.

g(1)−g(0) = f(x)−f(y) 6= 0, so dividing both sides by |g(1)−g(0)| yields

|f(x)−f(y)| ≤
∣∣g′(t∗)∣∣≤M |x−y|.

Q.E.D.

The mean value theorem also proves crucial to show that a close relationship holds between
differentiability and partial differentiability. Specifically, if all partial derivatives exist and are
continuous, then a function is continuously differentiable.

Theorem 1.10 (Characterization of Continuous Differentiability)
Let E be an open set in Rn and f :E→ Rm a function on E. The partial derivatives (Djfi)(x)
exist for any x ∈E, 1≤ i≤m and 1≤ j ≤ n, and the mappings x 7→Djfi are continuous, if and
only if f is continuously differentiable on E.

Proof) Suppose that f is continuously differentiable. Then, by theorem 1.5, for any x ∈E the
partial derivative (Djfi)(x) exists and equals the (i, j)th element of the matrix f ′(x).
Therefore,

∥∥f ′(x)−f ′(y)
∥∥=

 m∑
i=1

n∑
j=1
|(Djfi)(x)− (Djfi)(y)|2

 1
2

for any x,y ∈E. The continuity of f now implies the continuity of each partial deriva-
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tives. Djfi on E.

Conversely, suppose that the partial derivatives Djfi exist and are continuous on E.
Fix any x ∈ E and denote

A=


(D1f1)(x) · · · (Dnf1)(x)

... . . . ...
(D1fm)(x) · · · (Dnfm)(x)

 .

By the openness of E and the continuity of the functions Djfi : E→ R, for any ε > 0
there exists a δ > 0 such that Bd(x,δ)⊂ E and

|(Djfi)(x)− (Djfi)(x)|< ε

nm

for any y ∈ Bd(x,δ) and 1 ≤ i ≤m, 1 ≤ j ≤ n. Choose any h ∈ Rn such that |h| < δ;
then, letting {e1, · · · ,en} be the standard basis of Rn, define

vk = (h1, · · · ,hk,0, · · · ,0)

for 0 ≤ k ≤ n; |vk| ≤ |h| < δ, so each x+ vk is contained in the open ball Bd(x,δ).
Furthermore, the ball Bd(x,δ) is convex, so for any 1≤ k ≤ n, the convex combination
of x+vk and x+vk−1 lie inside Bd(x,δ)⊂ E.

Fix 1≤ i≤m. For any 1≤ k ≤ n, suppose hk > 0 and define the mapping g : [0,hk]→R
as

g(t) = fi(x+vk−1 + t ·ek)

for any t ∈ [0,1]. By definition,

g′(t) = lim
s→0

fi((x+vk−1 + t ·ek) +s ·ek)−fi(x+vk−1 + t ·ek)
s

= (Dkfi)(x+vk−1 + t ·ek)

for any t ∈ [0,1], so g is differentiable on [0,1] and thus continuous on [0,1]. By the
mean value theorem, there then exists some θk ∈ (0,hk) such that

fi(x+vk)−fi(x+vk−1) = g(hk)−g(0) = (Dkfi)(x+vk−1 +θk ·ek) ·hk.

If hk < 0, we can construct g : [hk,0]→ R and find θk ∈ (hk,0) satisfying the above
equation in the same manner. Finally, if hk = 0, then we can put θk = 0 and the above
equation will still be satisfied. Since

x+vk−1 +θk ·ek ∈Bd(x,δ),
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from what we derived earlier

|(Dkfi)(x+vk−1 +θk ·ek)− (Dkfi)(x)|< ε

nm
.

This holds for any 1≤ k ≤ n, so based on the telescoping sum

fi(x+h)−fi(x) =
n∑
k=1

(fi(x+vk)−fi(x+vk−1)) ,

we have∣∣∣∣∣fi(x+h)−fi(x)−
n∑
k=1

(Dkfi)(x) ·hk

∣∣∣∣∣≤
n∑
k=1
|fi(x+vk)−fi(x+vk−1)− (Dkfi)(x) ·hk|

≤
n∑
i=1
|(Dkfi)(x+vk−1 +θk ·ek)− (Dkfi(x)| · |hk|

≤ ε

m
· |h|.

This in turn holds for any 1≤ i≤m, so we have

|f(x+h)−f(x)−Ah| ≤
m∑
i=1

∣∣∣∣∣fi(x+h)−fi(x)−
n∑
k=1

(Dkfi)(x) ·hk

∣∣∣∣∣
≤ ε · |h|.

In other words, for any non-zero h ∈ Rn with |h|< δ,

|f(x+h)−f(x)−Ah|
|h|

≤ ε.

Such a δ > 0 exists for any ε > 0, so by definition f is differentiable at x with derivative
equal to A, the Jacobian of f at x. Since each entry of the mapping f ′ : E → Rm×n,
being a partial derivative, is continuous on E, f ′ is itself continuous with respect to the
trace norm. Therefore, f ∈ C1(E).

Q.E.D.
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1.2.4 Higher Order Derivatives

Let E be an open subset of Rn, and f : E → R a real valued function on E. In what came
before we introduced the concepts of the partial derivatives of f , denoted D1f, · · · ,Dnf :E→R.
The preceding theorem showed, using the mean value theorem, that the function f is continu-
ously differentiable if and only if these partial derivatives exist and are continuous. Using this
characterization of continuous differentiability, we can define a new class of twice continuously
differentiable functions as functions f : E→ R such that each partial derivative Djf : E→ R is
partially differentiable with continuous partial derivatives. These class of functions is denoted
C2(E), and the partial derivatives of Djf are denoted

Dijf = ∂

∂xi
(Djf) = ∂2f

∂xi∂xj

for any 1 ≤ i, j ≤ n. We usually collect these second order partial derivatives into the Hessian
H : E→ Rn×n defined as

H(x) =


(D11f)(x) · · · (D1nf)(x)

... . . . ...
(Dn1f)(x) · · · (Dnnf)(x)


for any x ∈ E.

Of course, there is no reason to stop at twice continuous differentiability. In general, for any
k ≥ 2, we say that f : E → R is continuously differentiable k times, or in Ck(E), if its partial
derivatives D1f, · · · ,Dkf : E→ R are continuously differentiable k−1 times, or D1f, · · · ,Dkf ∈
Ck−1(E). In this case, there exist continuous functions Di1,··· ,ikf : E→ R defined as

(Di1,··· ,ikf)(x) = ∂

∂xi1
· · · ∂

∂xik
f(x) = ∂kf(x)

∂xi1 · · ·∂xik

for any x ∈ E and 1≤ i1, · · · , ik ≤ n.
Usually, we cannot interchange the order of partial differentiation. That is, it is generally

not the case that

Dijf =Djif

for any 1≤ i 6= j ≤ n, given that the partial derivatives exist for some f : E→ R. However, this
does hold given that the function f is continuously differentiable, or that the partial derivatives
above are continuous. We prove this result below:

Theorem 1.11 (Young’s Theorem)
Let E be an open set in Rn and f :E→Rm a function on E. Suppose that f is twice continuously
differentiable, that is, f ∈ C2(E). Then, for any 1≤ i, j ≤ n and x ∈ E,

(Dijf)(x) = (Djif)(x).
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Proof) Choose any 1≤ i 6= j ≤ n and x ∈ E. By assumption, Djif is continuous at x, so that,
for any ε > 0, there exists a δ > 0 such that

|(Djif)(x)− (Djif)(y)|< ε

for any y ∈ Rn such that |x−y|< δ. Let {e1, · · · ,en} be the standard basis of Rn, and
choose some h,k 6= 0 such that |h|, |k|< δ

2 , and define

∆(h,k) = f(x+h ·ej +k ·ei)−f(x+h ·ej)−f(x+k ·ei) +f(x).

Then, by applying the mean value theorem in a similar manner to what we did in
theorem 1.10, there exists a θ between 0 and k such that

[f(x+h ·ej +k ·ei)−f(x+h ·ej)]− [f(x+k ·ei) +f(x)]

= k · [(Dif)(x+h ·ej +θ ·ei)− (Dif)(x+θ ·ei)] ,

where we first see the expression on the left hand side as a univariate function with
respect to the coefficient of ei. Subsequently, the mean value theorem tells us once again
that there exists some t between 0 and h such that

(Dif)(x+h ·ej +θ ·ei)− (Dif)(x+θ ·ei) = h · (Djif)(x+ t ·ej +θ ·ei),

this time viewing the expression on the left as a univariate function with respect to the
coefficient of ej . Putting these results together, we can see that

∆(h,k) = hk · (Djif)(x+ t ·ej +θ ·ei)

for some t between 0 and h and θ between 0 and k. Since

|(x+ t ·ej +θ ·ei)−x| ≤ |t|+ |θ| ≤ |h|+ |k|< δ,

by our initial continuity result we have∣∣∣∣∆(h,k)
hk

− (Djif)(x)
∣∣∣∣= |(Djif)(x)− (Djif)(x+ t ·ej +θ ·ei)|< ε.

Since this holds for any non-zero h such that |h|< δ
2 , and

lim
h→0

∆(h,k)
hk

= 1
k

[
lim
h→0

f(x+h ·ej +k ·ei)−f(x+k ·ei)
h

− lim
h→0

f(x+h ·ej)−f(x)
h

]

= (Djf)(x+k ·ei)− (Djf)(x)
k

,
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taking h→ 0 on both sides of the above inequality shows us that∣∣∣∣(Djf)(x+k ·ei)− (Djf)(x)
k

− (Djif)(x)
∣∣∣∣≤ ε.

This in turn holds for any k 6= 0 such that |k|< δ
2 , so taking k→ 0 on both sides shows

us that

|(Dijf)(x)− (Djif)(x)| ≤ ε.

Finally, our choice of ε > 0 was arbitrary, so it must be the case that (Dijf)(x) =
(Djif)(x).

Q.E.D.

In light of Young’s theorem, we can see that, given any f ∈ C2(E), the Hessian H :E→Rn×n

is symmetric matrix valued. This means that each H(x) can be orthogonally diagonalized, among
other useful properties. Furthermore, the results above for second order partial derivatives can
be extended to partial derivatives of any order, since they can always be viewed as functions
obtained by repeatedly taking second order partial derivatives.

Continuous differentiation us especially useful in the case of univariate functions. Let E be an
open subset of the real line, and f :E→R a real-valued function. By definition, for any k ≥ 2, f
is kth order continuously differentiable if f ′ :E→R is k−1th order continuously differentiable;
the kth order derivative of f is denoted

f (k) = d

dx
f (k−1),

where we adopt the convention that f (0) = f . Since (total) derivatives and partial derivatives
coincide for univariate functions, f ∈Ck(E) if and only if f (1), · · · ,f (k) all exist and are continuous
on E.

Higher order derivatives of univariate functions appear most often when dealing with Tay-
lor’s theorem, a higher order generalization of the mean value theorem. It states that any kth
order continuously differentiable function on the real line can be approximated by a kth order
polynomial, where the remainder converges to 0 exponentially fast. We prove the theorem once
we introduce the fundamental theorem of calculus, which allows us to move flexibly between
differentiation and integration.
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1.3 Differentiation and Integration

In chapter 4, we introduced and studied some properties of the Lebesgue integral on euclidean
space. However, we did not study how to actually evaluate these integrals aside from the method
of approximation via simple functions, as in the definition of the abstract integral. The funda-
mental theorem of calculus, which relates Lebesgue integration on the real line to differentiation
of functions on the real line, furnishes a simple and straightforward way to evaluate integrals
using derivatives.

1.3.1 The Fundamental Theorem of Calculus

There are two version of the FTC, both of which we present below. They can actually be viewed
as applications of the mean value theorem, which once again testifies to its importance.

Theorem 1.12 (Fundamental Theorem of Calculus)
Let L be the collection of all Lebesgue measurable subsets of R, and λ the Lebesgue measure
on the real line. Then, the following hold true:

i) (First FTC)
Let f : (a,b)→R be a Lebesgue measurable function that is integrable with respect to the
Lebesgue measure, where (a,b) is allowed to be the entire real line. Define the antiderivative
F : (a,b)→ R of f as

F (x) =
∫ x

a
f(t)dt :=

∫
R

(
f · I(a,x)

)
dλ

for any x ∈ (a,b). If f is continuous at some x ∈ (a,b), then F is differentiable at x with
derivative equal to f(x).

In particular, if f is continuous on (a,b), then F is continuously differentiable on (a,b).

ii) (Second FTC)
Let F : (a,b)→ R be a function that is continuously differentiable on the interval (a,b),
which is allowed to be the entire real line, with derivative f : (a,b)→ R. Then, for any
distinct x,y ∈ (a,b),

F (y)−F (x) =
∫ y

x
f(t)dt.

Proof) i) Let f and F be defined as in the claim of the theorem. Suppose f is continuous at
x ∈ (a,b). Then, for any ε > 0, there exists a δ > 0 such that (x− δ,x+ δ)⊂ (a,b)
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and

|f(x)−f(y)|< ε

for any y ∈ R such that |x−y| < δ. Now choose any h ∈ R such that |h| < δ. If
h > 0, then

|F (x+h)−F (x)−f(x)h|=
∣∣∣∣∫

R

(
f · I(a,x+h)

)
dλ−

∫
R

(
f · I(a,x)

)
dλ−

∫
R

(
f(x) · I[x,x+h)

)
dλ

∣∣∣∣
=
∣∣∣∣∣
∫ x+h

x
(f(t)−f(x))dt

∣∣∣∣∣
≤
∫ x+h

x
|f(t)−f(x)|dt

≤ λ([x,x+h)) · ε= ε ·h,

where the last inequality follows because

|f(x)−f(t)|< ε

for any t ∈ (x,x+h)⊂ (x,x+ δ).
Likewise, if h < 0, then

|F (x+h)−F (x)−f(x)h|=
∣∣∣∣∫

R

(
f · I(a,x+h)

)
dλ−

∫
R

(
f · I(a,x)

)
dλ+

∫
R

(
f(x) · I[x+h,x)

)
dλ

∣∣∣∣
=
∣∣∣∣∫ x

x+h
(f(x)−f(t))dt

∣∣∣∣
≤
∫ x

x+h
|f(t)−f(x)|dt

≤ λ([x+h,x)) · ε= ε · |h|,

where the last inequality follows for the same reason as above.
Thus, in any case,

|F (x+h)−F (x)−f(x)h|
|h|

≤ ε

for any 0 < |h|< δ. Such a δ > 0 exists for any ε > 0, so by definition F is differ-
entiable at x with derivative equal to f(x).

ii) Let F : (a,b)→R be a continuously differentiable function on (a,b) with derivative
f : (a,b)→ R. f is a continuous function and thus Lebesgue measurable. Choose
some x,y ∈ (a,b), and assume initially that x< y, so that [x,y]⊂ (a,b). f is contin-
uous on the compact interval [x,y], so by the extreme value theorem, it is bounded
on this interval. This, together with the fact that the Lebesgue measure is finite on
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[x,y], implies that f is Lebesgue integrable on [x,y], or equivalently, the function
f · I[x,y] is Lebesgue integrable.
We can therefore define the antiderivative G : [x,y]→ R as

G(z) =
∫ z

x
f(t)dt

for any z ∈ [x,y]. For any z ∈ (x,y), the continuity of f at z and the first FTC imply
that G′(z) = f(z). It follows that F ′(z) =G′(z) for any z ∈ [x,y]. Furthermore, we
can see that G is continuous even at the endpoints x and y because

G(0) = 0 = lim
z↓x

∫ z

x
f(t)dt

by the dominated convergence theorem (each f ·I(x,z) is dominated by the Lebesgue
integrable function f on (a,b)), and similarly for G(1).

Defining H = F −G on [x,y], H is continuous on [x,y] and differentiable on (x,y).
Therefore, by the mean value theorem, there exists a z ∈ (x,y) such that

H(y)−H(x) =H ′(z)(y−x) =
(
F ′(z)−G′(z)

)
(y−x) = 0.

Since H(y) = F (y)−G(y) and H(x) = F (x)−G(x), it follows that

F (y)−F (x) =G(y)−G(x).

By the definition of G as the antiderivative of f , we now have

F (y)−F (x) =G(y)−G(x) =
∫ y

a
f(t)dt−

∫ x

a
f(t)dt=

∫ y

x
f(t)dt.

If, on the other hand, y < x, then the same process with x and y interchanged tells
us that

F (x)−F (y) =
∫ x

y
f(t)dt.

Then, multiplying both sides by -1 yields the desired result.

Q.E.D.

Corollary to Theorem 1.12 (Integration by Parts)
For any continuously differentiable functions f,g : (a,b)→ R on the interval (a,b), which is
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allowed to be the entire real line, for any distinct x,y ∈ (a,b), we have∫ y

x
f ′(t)g(t)dt= f(y)g(y)−f(x)g(x)−

∫ y

x
f(t)g′(t)dt.

Proof) This follows easily from the second FTC. Define F : (a,b)→ R as

F (x) = f(x)g(x)

for any x ∈ (a,b). Then, by the product rule of differentiation,

F ′(x) = f ′(x)g(x) +f(x)g′(x)

for any x ∈ (a,b), where F ′ is a continuous function because of the continuity of f,g
and their derivatives. It follows from the second FTC that, for any distinct x,y ∈ (a,b),

f(y)g(y)−f(x)g(x) = F (y)−F (x) =
∫ y

x
F ′(t)dt=

∫ y

x
f ′(t)g(t)dt+

∫ y

x
f(t)g′(t)dt

by the linearity of integration. Note that each integrand on the right hand side is inte-
grable due to the fact that they are continuous functions on the compact interval [x,y]
(or [y,x]) and thus bounded on this interval by the extreme value theorem, along with
the fact that the Lebesgue measure is finite on compact intervals.

Q.E.D.

The assumptions of the second FTC can be weakened to allow for a non-continuously differ-
entiable F , but we omit it here for the sake of simplicity.

1.3.2 Taylor’s Theorem

The integration of parts formula above is especially important, since it allows us to prove Tay-
lor’s theorem, which we state below:

Theorem 1.13 (Taylor’s Theorem: Lagrange Remainder)
Let f : (a,b)→ R be a function that is k+ 1th order continuously differentiable for some k ∈ N.
Then, for any distinct x,y ∈ (a,b),

f(y) =
k∑
i=0

f (i)(x)
i! (y−x)i+Rk(y,x),
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where

Rk(y,x) =
∫ y

x

f (k+1)(t)
k! (y− t)kdt.

This is called the Lagrange form of the remainder.

Proof) Note first that the integral involved with the formulation of the remainder term Rk(y,x)
is well-defined. This is because the mapping t 7→ f (k+1)(t)(y− t)k is continuous on the
compact interval [x,y] (or [y,x] if y < x), so that it is bounded by the extreme value
theorem. The Lebesgue measure is finite on [x,y], so this mapping is Lebesgue inte-
grable on [x,y].

We can now proceed by induction on the order k of continuous differentiability to show
that the theorem holds. Fix any distinct x,y ∈ (a,b). If k = 0, then f is continuously
differentiable once, and the result follows immediately from the second FTC:

f(y) = f(x) +
∫ y

x
f(t)dt︸ ︷︷ ︸

R0(y,x)

.

Now suppose that the theorem holds for some k ≥ 0, and choose some f ∈ C(k+2)(E).
Since any k+ 2th order continuously differentiable function is also k+ 1th order con-
tinuously differentiable, by the inductive hypothesis we have

f(y) =
k∑
i=0

f (i)(x)
i! (y−x)i+

∫ y

x

f (k+1)(t)
k! (y− t)kdt.

The remainder Rk+1(y,x) is defined as

Rk+1(y,x) = f(y)−
k+1∑
i=0

f (i)(x)
i! (y−x)i

=
∫ y

x

f (k+1)(t)
k! (y− t)kdt− f

(k+1)(x)
(k+ 1)! (y−x)k+1.

Define the functions F : (a,b)→ R and G : (a,b)→ R as

F (t) = f (k+1)(t) and G(t) = (y− t)k+1

(k+ 1)!

for any t∈ (a,b). Then, F and G are both continuously differentiable functions on (a,b),
so that, by the integration by parts formula,

F (y)G(y)−F (x)G(x)−
∫ y

x
F (t)G′(t)dt=

∫ y

x
F ′(t)G(t)dt.
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Using the definitions of F and G, this equation basically tells us that

Rk+1(y,x) =−f
(k+1)(x)
(k+ 1)! (y−x)k+1 +

∫ y

x

f (k+1)(t)
k! (y− t)kdt

=
∫ y

x

f (k+2)(t)
(k+ 1)! (y− t)k+1dt.

Therefore,

f(y) =
k+1∑
i=0

f (i)(x)
i! (y−x)i+

∫ y

x

f (k+2)(t)
(k+ 1)! (y− t)k+1dt︸ ︷︷ ︸

Rk+1(y,x)

,

and the general result follows by induction.

Q.E.D.

Using the basic formula for Taylor’s theorem, we can derive alternate forms of the remainder
Rk(y,x). Particularly useful is the Peano form of the remainder, which can be used to formulate
stochastic version of the theorem, among other applications.

Theorem 1.14 (Taylor’s Theorem: Peano Remainder)
Let f : (a,b)→ R be a function that is k+ 1th order continuously differentiable for some k ∈ N.
Then, for any distinct x,y ∈ (a,b),

f(y) =
k∑
i=0

f (i)(x)
i! (y−x)i+Rk(y,x),

where

Rk(y,x) = f (k+1)(x0)
(k+ 1)! (y−x)k+1

for some convex combination x0 of x and y. This is called the Peano form of the remainder.

Proof) For any k+1th order continuously differentiable function f : (a,b)→R, Taylor’s theorem
with the Lagrange remainder tells us that, for any distinct x,y ∈ (a,b),

f(y) =
k∑
i=0

f (i)(x)
i! (y−x)i+

∫ y

x

f (k+1)(t)
k! (y− t)kdt.

We need only show that there exists a convex combination x0 of x and y such that

∫ y

x

f (k+1)(t)
k! (y− t)kdt= f (k+1)(x0)

(k+ 1)! (y−x)k+1
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to complete the proof. Letting x < y without loss of generality, we start by noting that
f (k+1) is a continuous function on the compact interval [x,y]. As such, by the extreme
value theorem, there exist −∞<m<M <+∞ such that

m≤ f (k+1) ≤M

on the interval [x,y]. It follows that

m
(y− t)k
k! ≤ f (k+1)(t)

k! (y− t)k ≤M (y− t)k
k!

for any t ∈ [x,y], and integrating both sides with respect to the Lebesgue measure over
[x,y] shows us that

m · (y−x)k+1

(k+ 1)! ≤
∫ y

x

f (k+1)(t)
k! (y− t)kdt≤M · (y−x)k+1

(k+ 1)! ,

since
∫ y
x

(y−t)k
k! dt= (y−x)k+1

(k+1)! . Now we consider two cases:

– One of the inequalities holds as an equality
Suppose without loss of generality that

∫ y

x

f (k+1)(t)
k! (y− t)kdt=M · (y−x)k+1

(k+ 1)! .

Then, since there exists an x∗ ∈ [x,y] such that f (k+1)(x∗) = M by the extreme
value theorem, we have

∫ y

x

f (k+1)(t)
k! (y− t)kdt= f (k+1)(x∗) · (y−x)k+1

(k+ 1)! ,

which is our desired result.

– Both inequalities hold strictly
In this case, defining

c=
(∫ y

x

f (k+1)(t)
k! (y− t)kdt

)
(k+ 1)!

(y−x)k+1 ,

we have m< c<M . By the extreme value theorem, there exist x∗,x∗ ∈ [x,y] such
that

f (k+1)(x∗) =M and f (k+1)(x∗) =m.

f (k+1) is continuous on the compact interval with endpoints equal to x∗ and x∗,
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and

f (k+1)(x∗) =m< c <M = f (k+1)(x∗),

so by the intermediate value theorem, there exists an x0 between x∗ and x∗, and
therefore between x and y, such that

f (k+1)(x0) = c=
(∫ y

x

f (k+1)(t)
k! (y− t)kdt

)
(k+ 1)!

(y−x)k+1 ,

which is our desired result.

Q.E.D.

The Peano form of the remainder reveals that the remainder Rk(y,x) converges to 0 expo-
nentially fast, since

|Rk(y,x)| ≤

∣∣∣maxt∈[x,y] f
(k+1)(t)

∣∣∣
(k+ 1)! |y−x|k+1.

In other words, we can denote

Rk(y,x) = o(|y−x|k)

as y−x→ 0, or

Rk(y,x) =O(|y−x|k+1)

in little and big O notation.
Finally, we can make use of the chain rule and easily prove the multivariate analogue of

Taylor’s theorem.

Theorem 1.15 (Multivariate version of Taylor’s Theorem)
Let E be a convex open subset of Rn, and f :E→ R an m+1 times continuously differentiable
function for some m ∈ N. Then,

f(x+h) =
m∑
k=0

1
k!

 n∑
j1=1
· · ·

n∑
jk=1

∂kf(x)
∂xj1 · · ·∂xjk

hj1 · · ·hjk

+Rm(x,h),
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where

Rm(x,h) = 1
(m+ 1)!

n∑
j1=1
· · ·

n∑
jm+1=1

∂m+1f(x+ t0 ·h)
∂xj1 · · ·∂xjk

hj1 · · ·hjm+1 (Peano Form)

= 1
m!

n∑
j1=1
· · ·

n∑
jm+1=1

∫ 1

0

(
∂m+1f(x+ t ·h)
∂xj1 · · ·∂xjk

hj1 · · ·hjm+1

)
dt (Lagrange Form)

for some t0 ∈ [0,1]. In addition, Rm(x,h) = o(|h|m) =O(|h|m+1) as h→ 0.

Proof) Choose any x ∈E, and h ∈ Rn such that x+h ∈E. By the openness of E, there exists
a δ > 0 such that x− δ ·h,x+h+ δ ·h ∈ E. Define γ : (−δ,1 + δ)→ E as

γ(t) = x+ t ·h

for any t ∈ (−δ,1+δ), where γ takes values in E because E is convex. Define g = f ◦γ :
(−δ,1 + δ)→ R, and recall that, by the chain rule,

g′(t) = ∇f(γ(t))′h=
n∑
i=1

(Dif)(γ(t))hi

for any t∈ (−δ,1+δ). Suppose that, for some 1≤ k <m+1, g is kth order continuously
differentiable and

g(k)(t) =
n∑

j1=1
· · ·

n∑
jk=1

(Dj1···jkf)(γ(t))
(

k∏
i=1

hji

)

for any t ∈ (−δ,1 + δ). Then, since f is k+ 1 times continuously differentiable, for any
1≤ j1, · · · , jk ≤ n,

∂

∂xi
(Dj1···jkf) =Dij1···jkf

exists and is continuous for any 1≤ i≤ n. It follows from the chain rule again that

d

dt
(Dj1···jkf)(γ(t)) =

n∑
i=1

(Dij1···jkf)(γ(t)) ·hi,

so

g(k+1)(t) = d

dt
g(k)(t) =

n∑
i=1

n∑
j1=1
· · ·

n∑
jk=1

(Dij1···jkf)(γ(t))(hi×hj1×·· ·×hjk) .

By induction, g is m+1th order continuously differentiable and, for any 1≤ k ≤m+1,

g(k)(t) =
n∑

j1=1
· · ·

n∑
jk=1

(Dj1···jkf)(γ(t))
(

k∏
i=1

hji

)
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for any t ∈ (−δ,1 + δ).

Now, by Taylor’s theorem for univariate functions, since 0,1 ∈ (−δ,1 + δ),

g(1) =
m∑
k=0

g(k)(0)
k! +Rm(1,0),

where

Rm(1,0) = g(m+1)(t0)
(m+ 1)! =

∫ 1

0

g(m+1)(t)
m! dt

for some t0 ∈ [0,1]. Substituting the values of g and its derivatives that we found above,
we can now see that

f(x+h) =
m∑
k=0

1
k!

 n∑
j1=1
· · ·

n∑
jk=1

(Dj1···jkf)(x)
(

k∏
i=1

hji

)+Rm(x,h),

where

Rm(x,h) = 1
(m+ 1)!

n∑
j1=1
· · ·

n∑
jm+1=1

(Dj1···jm+1f)(x+ t0 ·h)
(
m+1∏
i=1

hji

)

= 1
m!

n∑
j1=1
· · ·

n∑
jm+1=1

∫ 1

0
(Dj1···jm+1f)(x+ t ·h)

(
m+1∏
i=1

hji

)
dt.

This completes the proof.

Q.E.D.

A special case of interest is when f is twice continuously differentiable. Then, the multivariate
version of Taylor’s theorem with the Peano remainder can be written as

f(x+h) = f(x) +∇f(x)′h+ 1
2h
′(∇2f)(x+ t0 ·h)h,

for some t0 ∈ [0,1], where ∇2f : E → Rn×n is the Hessian of f . Furthermore, if f is thrice
continuously differentiable, then

f(x+h) = f(x) +∇f(x)′h+ 1
2h
′(∇2f)(x)h+R2(x,h),

where R2(x,h) = o(|h|2) as h→ 0, although we do not have as neat a form for the remainder as
we did above.
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1.3.3 Interchanging the Order of Differentiation and Integration

There is also another closely related result that allows us to interchange the order of integration
and partial differentiation. This result, known as the Leibniz integral rule, can be proven through
the use of the dominated convergence theorem, as we show below.

Theorem 1.16 (Leibniz Integral Rule)
Let L be the collection of all Lebesgue measurable subsets of R, λ the Lebesgue measure on
the real line, and J ∈ L an open subset of the real line. Let (E,E ,µ) be a measure space, and
suppose that f : E×J → R is a function such that:

i) For any t ∈ J , the section ft : E→ R is a µ-integrable function.

ii) For any x ∈E, the section fx : J →R is differentiable with the derivative at t ∈ J denoted
df(x,t)
dt .

iii) There exists a µ-integrable non-negative function θ ∈ E+ such that∣∣∣∣df(x,t)
dt

∣∣∣∣≤ θ(x)

for any t ∈ J and x ∈ E.

Then, the mapping x 7→ df(x,t)
dt is µ-integrable for each t∈ J , while the mapping t 7→

∫
E f(x,t)dµ(x)

is differentiable on J . Furthermore, the derivative at each t ∈ J is given as

d

dt

∫
E
f(x,t)dµ(x) =

∫
E

df(x,t)
dt

dµ(x).

Proof) For any t ∈ J , define the function gt : E→ R as

gt(x) = df(x,t)
dt

for any x ∈E. gt is then a E-measurable function because it is the limit of the sequence
{gn,t}n∈N+ of E-measurable functions defined as

gn,t(x) = f(x,t+ 1/n)−f(x,t)
1/n

for any x ∈ E and n ∈N+. Furthermore, it is µ-integrable because∫
E
|gt|dµ≤

∫
E
θdµ <+∞

by the monotinicty of integration and the fact that gt is dominated by the µ-integrable
non-negative function θ.
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Now define the function G : J → R as

G(t) =
∫
E
f(x,t)dµ(x)

for any t ∈ J . The proof will be completed if we can show that G is differentiable for
any t ∈ J with derivative equal to

∫
E gtdµ. To this end, fix some t ∈ J .

For any non-zero h ∈ R such that t+h ∈ J and any convex combination of t and t+h

is contained in J (such a h exists because J is open),

G(t+h)−G(t)
h

=
∫
E

f(x,t+h)−f(x,t)
h

dµ(x)

by the linearity of integration. Fixing x∈E, because the section fx of f is differentiable
on the closed interval with endpoints t, t+h and thus continuous on that interval, by
the mean value theorem there exists a t0 between t and t+h such that

f(x,t+h)−f(x,t) = df(x,t0)
dt

·h= gt0(x) ·h.

gt0 is dominated by θ, so by implication∣∣∣∣f(x,t+h)−f(x,t)
h

∣∣∣∣≤ |gt0(x)| ≤ θ(x)

This holds for any x ∈ E, and

lim
h→0

f(x,t+h)−f(x,t)
h

= df(x,t)
dt

= gt(x)

for any x ∈ E as well. Therefore, by the dominated convergence theorem,

lim
h→0

G(t+h)−G(t)
h

= lim
h→0

∫
E

f(x,t+h)−f(x,t)
h

dµ(x)

=
∫
E

(
lim
h→0

f(x,t+h)−f(x,t)
h

)
dµ(x) =

∫
E
gtdµ.

This holds for any t ∈ J , so the proof is complete.

Q.E.D.
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1.4 The Banach Fixed Point Theorem

Here we take a brief detour to prove and study some applications of the Banach fixed point
theorem. This theorem will be instrumental in the proofs of the inverse and implicit function
theorems, which will be proven in the next section, but it is also of independent interest, with
applications ranging from dynamic optimization to differential equations.

Banach’s fixed point theorem, or the contraction mapping principle, is about finding a fixed
point of a certain class of functions called contraction mappings. Let (E,d) be a metric space.
Then, a function f : E→ E is said to be a contraction or contraction mapping if there exists a
0≤ β < 1 such that

d(f(x),f(y))≤ β ·d(x,y)

for any x,y ∈ E. Note that any contraction is Lipschitz continuous with Lipschitz constant β.
Geometrically, a contraction contracts as it goes through a sequence of points in E. This fact can
be exploited to algorithmically find a unique fixed point of f , that is, a point x ∈ E satisfying
f(x) = x. This is the content of Banach’s fixed point theorem.

Theorem 1.17 (Banach Fixed Point Theorem)
Let (E,d) be a metric space, and ϕ : E → E a contraction mapping. Then, ϕ admits at most
one fixed point. If, in addition, (E,d) is complete, then ϕ has a unique fixed point.

Proof) Let 0 ≤ β < 1 be the Lipschitz constant associated with the contraction ϕ. To see
uniqueness, suppose x1,x2 ∈ E are fixed points of ϕ. Then,

d(x1,x2) = d(ϕ(x1),ϕ(x2))≤ β ·d(x1,x2).

It follows that

(1−β) ·d(x1,x2)≤ 0,

and because 1−β > 0, this implies that d(x1,x2) = 0, or x1 = x2. Thus, ϕ admits at
most one fixed point on E.

Now suppose (E,d) is a complete metric space. We can then construct an algorithm
to find x∗ starting from an arbitrary point on E. Choose any x0 ∈E. Then, define the
sequence {xn}n∈N+ as

xn = ϕ(xn−1)

for any n ∈N+. It follows that, for any n ∈N+,

d(xn+1,xn) = d(ϕ(xn),ϕ(xn−1))≤ β ·d(xn,xn−1).
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Continuing on with this recursion, we have

d(xn+1,xn)≤ βn ·d(x1,x0).

Therefore, for any m,n ∈N+ such that n <m,

d(xm,xn)≤
m−1∑
i=n

d(xi+1xi)≤
(
m−1∑
i=n

βi
)
d(x1,x0).

The series ∑∞k=1β
k converges to β

1−β because |β| < 1, so it follows from the Cauchy
criterion for the convergence of series that

lim
m,n→∞

d(xm,xn) = 0.

This shows us that {xn}n∈N+ is a Cauchy sequence in (E,d), and by the completeness
of this metric space, there exists an x∗ ∈ E such that

lim
n→∞

xn = x∗

in the metric d. It turns out that this limit x∗ is the fixed point; by the continuity of ϕ,

ϕ(x∗) = lim
n→∞

ϕ(xn) = lim
n→∞

xn+1 = x∗.

Note that we reached this fixed point x∗ by starting from an arbitrary point in E and
then recursively obtaining function values under ϕ. This is what is meant by a contrac-
tion “contracting” to a single point.

Q.E.D.
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1.4.1 Blackwell’s Sufficient Conditions

In practice, we often want to find contraction mappings on some complete metric space to apply
the fixed point theorem. We dedicate this small section to the following theorem, which furnishes
some simple sufficient conditions a functional defined on bounded function spaces can satisfy to
become a contraction mapping:

Theorem 1.18 (Blackwell Sufficient Conditions for a Contraction)
Let (E,d) be a metric space, B(E,R) the set of all bounded functions taking values in R, and
‖·‖C the supremum norm on B(E,R). Consider a mapping T :B(E,R)→B(E,R). Suppose

i) (Monotonicity)
T [f ]≤ T [g] for any f,g ∈B(E,R) and f ≤ g.

ii) (Discounting)
There exists a β ∈ (0,1) such that

T [f + c]≤ T [f ] +β · c

for any f ∈B(E,R) and c≥ 0.

Then, T is a contraction mapping on B(E,R).

Proof) Let f,g ∈B(E,R). Then,

f(x) = g(x) + (f(x)−g(x))≤ g(x) +‖f −g‖C

for any x ∈E, so we have f ≤ g+‖f −g‖C . Similarly, we can see that g ≤ f +‖f −g‖C .
We can now see that

T [f ]≤ T [g+‖f −g‖C ] (Monotonicity)

≤ T [g] +β · ‖f −g‖C , (Discounting)

and likewise,

T [g]≤ T [f ] +β · ‖f −g‖C .

Together, these tell us that

|T [f ]−T [g]| ≤ β · ‖f −g‖C ,

and since β ∈ (0,1), T is a contraction mapping on B(E,R).

Q.E.D.
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1.4.2 Application to Differential Equations

Banach’s fixed point theorem is useful precisely because it can be applied to arbitrary complete
metric spaces, instead of only euclidean spaces as in the case of Brouwer’s and Kakutani’s fixed
point theorems (which we will study shortly). We often search for fixed points on metric spaces
other than euclidean spaces, most notably L1 spaces or continuous function spaces, and in these
cases Banach’s theorem proves most useful.

The main economic applicaiton of the theorem is in dynamic programming, which we will
analyze in a separate document dedicated to macroeconomics. Here, we present another famous
application of the theorem to the theory of ordinary differential equations.

Let U ×I be an open rectangle in the set Rn×R, and f : U ×I → R a function. We are
interested in the first-order ODE

y′1(t) = f(y1(t), · · · ,yn(t), t)
...

y′n(t) = f(y1(t), · · · ,yn(t), t),

written compactly as y′(t) = f(y(t), t), where y : I → Rn is a differentiable function. We are
specifically concerned with the Initial Value Problem (IVP), which is the problem of finding, for
any (y0, t0) ∈ U ×I, a δ > 0 and a differentiable function y : (t0− δ, t0 + δ)→ Rn asuch that

• y(t0) = y0,

• (y(t), t) ∈ U ×I for any t ∈ (t0− δ, t0 + δ), and

• y′(t) = f(y(t), t) for any t ∈ (t0− δ, t0 + δ).

The next theorem furnishes sufficient conditions for the existence of such a (local) solution to
the IVP:

Theorem 1.19 (Picard-Lindelof Theorem)
Let U ×I be an open rectangle on Rn×R, and f : U ×I → Rn a function such that:

i) f is continuous on U ×I, and

ii) f is Lipschitz with respect to the first n arguments with Lipschitz constant independent
of the last argument, that is, there exists an L > 0 such that

|f(y,t)−f(z, t)| ≤ L|y−z|

for any (y,t),(z, t) ∈ U ×I.

Then, for any set of initial values (y0, t0) ∈ U ×I, there exists a δ > 0 and a unique solution
y : (t0− δ, t0 + δ)→ Rn to the IVP y′ = f(y,t).
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Proof) Fix (y0, t0) ∈ U ×I. Since U and I are open subsets of Rn and R, there exists an
r ∈ (0,1) such that the closed balls Bdn(y0, r) and Bd(t0, r) are contained in U and I.
In particular,

R=Bdn(y0, r)×Bd(t0, r)

is a compact subset of Rn+1, so that the continuity of f implies, together with the
extreme value theorem, that there exists an M > 0 such that

|f(y,t)| ≤M

for any (y,t) ∈R. Define

δ = min
(
r

2L,
r

M
,r

)
> 0.

We claim that this is exactly the window δ over t0 that we are looking for.

Define Iδ = (t0− δ, t0 + δ)⊂ I, and let

E = {y : Iδ→ Rn | y is continuous, y(t) ∈Bd(t0, r) ∀t ∈ Iδ}.

Note that E is a subset of the set Cb(Iδ,Rn) of bounded and continuous functions from
Iδ to Rn. Letting ‖·‖C be the supremum norm on Cb(Iδ,Rn) and dC the metric induced
by this norm, recall that (Cb(Iδ,Rn),‖·‖C) is a Banach space, that is, a complete normed
vector space (for a proof, refer to chapter 6 of the probability theory text). Since E is
a closed suset of Cb(Iδ,Rn), the restriction of this function space to E is also a Banach
space.

So far, we have seen that (E,dC) is a complete metric space. To apply Banach’s fixed
point theorem, we now must construct a contraction mapping on E. To this end, define
T : E→ Cb(Iδ,Rn) as

T [y](t) = y0 +
∫ t

t0
f(y(s),s)ds

for any t ∈ Iδ and y ∈ E. Note that the function T [y] is well-defined because the con-
tinuity of f and y imply the continuity and therefore Lebesgue measurability of the
mapping s 7→ f(y(s),s), f is bounded on R by the extreme value theorem, and the
Lebesgue measure is finite on the interval Iδ. In addition, by the second fundamental
theorem of calculus, T [y] is continuously differentiable on Iδ with derivative equal to
f(y(t), t) for any t ∈ Iδ. Thus, T [y] is also continuous on Iδ. Finally, for any t ∈ Iδ, since
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y ∈ E and (y(s),s) ∈R for any s ∈ Iδ, we have

|T [y](t)−y0| ≤
∣∣∣∣∫ t

t0
f(y(s),s)ds

∣∣∣∣≤M · |t− t0|<M · δ ≤ r,

so that T [y](t) ∈ Bdn(y0, r). This shows us that T [y] ∈ E for any y ∈ E, so that T is a
mapping form E into E.

To show that T is a contraction mapping on E, choose any ϕ,y ∈E and note that, for
any t ∈ Iδ such that t≥ t0,

|T [y](t)−T [ϕ](t)|=
∣∣∣∣∫ t

t0
f(ϕ(s),s)ds−

∫ t

t0
f(y(s),s)ds

∣∣∣∣
≤
∫ t

t0
|f(ϕ(s),s)−f(y(s),s)|ds

≤ L ·
∫ t

t0
|ϕ(s)−y(s)|ds

≤ L(t− t0) · ‖ϕ−y‖C

≤ Lδ · ‖ϕ−y‖C ≤
1
2 · ‖ϕ−y‖C .

For t < t0, we can reach the same conclusion by switching t and t0, so it follows that

‖T [y]−T [ϕ]‖C = sup
t∈Iδ
|T [y](t)−T [ϕ](t)| ≤ 1

2 · ‖ϕ−y‖C .

This holds for any y,ϕ ∈ E, so T is a contraction mapping on E.

Now, the Banach fixed point theorem tells us that there exists a unique y∗ ∈ E such
that

y∗ = T [y∗].

Notice how we constructed T . Differentiating both sides of the definition of T for some
y ∈ E by t shows that

y′(t) = f(y(t), t) for any t ∈ Iδ, and y(t0) = y0,

if and only if T [y] = y on Iδ.

In other words, y ∈ E is a solution to the IVP if and only if it is a fixed point for T .
Therefore, the preceding result shows that we have found a unique solution y∗ ∈ E to
our IVP.

Q.E.D.
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The above theorem only furnished sufficient conditions for the existence of local solution;
note that the locality of the solution was baked into the design due to the fact that we require the
operation T to be a contraction. The next result shows a similar existence result, this time for
global solutions, under stronger conditions by similarly utilizing the Banach fixed point theorem.

Theorem 1.20 (Caratheodory’s Theorem for Global Existence)
Let g : Rn× [0,+∞)→ Rn be a function that satisfies the following conditions:

i) g is continuous on Rn× [0,+∞).

ii) There exists a function m : [0,+∞)→ R+ such that

|g(y,t)| ≤m(t)

for any (y,t) ∈ Rn× [0,+∞), where
∫∞

0 m(t)dt <+∞.

iii) There exists a function M : [0,+∞)→ R+ such that

|g(y,t)−g(x,t)| ≤M(t) · |y−x|

for any (x,t),(y,t) ∈ Rn× [0,+∞), where
∫∞
0 M(t)dt <+∞.

Then, for any initial value y0 ∈ Rn, there exists a unique solution y : [0,+∞)→ Rn to the IVP
y′ = g(y,t).

Proof) By assumption, ∫ ∞
0

M(t)dt,
∫ ∞

0
m(t)dt <+∞,

so there exists a δ > 0 such that∫ t+δ

t
M(s)ds,

∫ t+δ

t
m(s)ds < 1

for any t ∈ [0,+∞) by the Cauchy criterion for convergence. To show that there exists
a solution to the differential equation of interest, we rely on successive applications of
Banach’s fixed point theorem, as in the Picard-Lindelof theorem.

Pick any y0 ∈ Rn, and define t0 = 0 and

ti = δ · i for any i ∈ N+.

45



Suppose, for some i ≥ 0, that we have constructed functions y(0), · · · ,y(i) such that
y(0) = y0 and y(j) : [tj−1, tj ]→Rn for 1≤ j ≤ i. We now construct y(i+1) : [ti, ti+1]→Rn.

Define the set Ci = C([ti, ti+1],Rn), and define the operator Ti : Ci→Ci as

Ti[y](t) = y(i)(ti) +
∫ t

ti

g(y(s),s)ds

for any y ∈ Ci and t ∈ [ti, ti+1]. We first check that Ti[y] is well-defined for any y ∈ Ci.
Initially, we note that the integral on the right hand side is well-defined because g

is continuous on Rn × [0,+∞) and the mapping s 7→ (y(s),s) is measurable by the
continuity of y. Letting ‖·‖C,i be the supremum norm on Ci, we can now see that

∫ t

ti

|g(y(s),s)|ds≤
∫ ti+1

ti

m(s)ds < 1

for any t ∈ [ti, ti+1], where the strict inequality follows because ti+1− ti < δ by design.
This shows us that Ti[y] exists and takes values in Rn. Furthermore, Ti[y] is contained
in Ci because it is differentiable (by the fundamental theorem of calculus and the con-
tinuity of the integrand) and thus continuous on [ti, ti+1].

Now we show that Ti is a contraction mapping on Ci with respect to the suprmum norm
‖·‖C,i. For any y,x ∈ Ci and t ∈ [ti, ti+1], note that

|Ti[x](t)−Ti[y](t)| ≤
∫ t

ti

|g(x(s),s)−g(y(s),s)|ds

≤
∫ ti+1

ti

M(s)|x(s)−y(s)|ds

≤
(∫ ti+1

ti

M(s)ds
)
‖x−y‖C,i.

Taking the supremum over t ∈ [ti, ti+1] then shows us that

‖Ti[x]−Ti[y]‖ ≤
(∫ ti+1

ti

M(s)ds
)
‖x−y‖C,i.

The coefficient
∫ ti+1
ti M(s)ds lies in [0,1), so the operator Ti is a contraction mapping

on Ci. Ci, being the collection of real vector valued continuous functions over a bounded
interval, is a Banach space under the supremum norm ‖·‖C,i, so we can apply the Banach
fixed point theorem to conclude that there exists a unique y(i+1) ∈ Ci such that

Ti[y(i+1)] = y(i+1).
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By the definition of Ti, for any t ∈ [ti, ti+1] we have

y(i+1)(t) =
∫ t

ti

g(y(i+1)(s),s)ds+y(i)(ti).

The continuity of g tells us that the mapping s 7→ g(y(i+1)(s),s) is a continuous function
on [ti, ti+1], so by applying the fundamental theorem of calculus to each component, we
can see that y(i+1) is differentiable on [ti, ti+1] with derivative equal to

d

dt
y(i+1)(t) = g(y(i+1)(t), t)

for any t∈ [ti, ti+1], where the derivative is a right- or left- derivative if t= ti or t= ti+1.

Having constructed the sequence {y(i)}i∈N of real continuously differentiable functions,
each defined on the interval [ti, ti+1], we define y : [0,+∞)→ Rn as

y(t) = y(i+1)(t) if t ∈ [ti, ti+1]

for any i ∈ N. Note that y is well-defined because

y(ti) := y(i)(ti) = y(i+1)(ti)

for any i ∈ N by design. Choose any t ∈ [0,+∞) that lies in the interior of one of these
intervals, say, t ∈ (ti, ti+1) for some i ∈ N. Then,

y′(t) = d

dt
y(i+1)(t) = g(y(i+1)(t), t) = g(y(t), t).

Meanwhile, for any i ∈ N,

lim
h↓0

y(ti+h)−y(ti)
h

= lim
h↓0

y(i+1)(ti+h)−y(i+1)(ti)
h

= d

dt
y(i+1)(ti) = g(y(ti), ti)

and

lim
h↑0

y(ti+h)−y(ti)
h

= lim
h↑0

y(i)(ti+h)−y(i)(ti)
h

= d

dt
y(i)(ti) = g(y(ti), ti),

we can conclude that

y′(ti) = g(y(ti), ti).

Thus, for any t ∈ [0,+∞), we have

y′(t) = g(y(t), t).

The uniqueness of y follows by noting how each segment of y is unique on the given
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interval of time.

Q.E.D.

Comparing the conditions of Caratheodory’s theorem to those of the Picard-Lindelof theo-
rem, we can immediately see that the latter are much weaker, requiring only simple Lipschitz
continuity in the first argumetn. This is a luxury that the former cannot afford, since absolutely
summable bounds and Lipschitz constants are necessary in the presence of non-compact domains
and infinite time horizons.
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1.5 The Inverse and Implicit Function Theorems

In this section we study two theorems of central importance to optimization theory. The inverse
function theorem gives sufficient conditions for a restriction of a function to be invertible with
a continuously differentiable inverse. The implicit function theorem, meanwhile, shows us how
to restrict an implicit function so that each argument of the function can be expressed as a
continuous differentiable function of the other arguments.

Theorem 1.21 (Inverse Function Theorem)
Let E be an open subset of Rn and f : E→ Rn a function that is C1(E). Suppose f(a) = b for
some a ∈E and b ∈Rn, and that the derivative f ′(a) of f at a is invertible. Then, the following
hold true:

i) There exist open sets U ⊂ E and V ⊂ Rn such that a ∈ U , b ∈ V , and the restriction of f
to U is a bijection onto V .

ii) There exists a continuously differentiable function g : V → U such that f(g(y)) = y and
g(f(x)) = x for any y ∈ V and x ∈ U , with

g′(y) = f ′(g(y))−1

for any y ∈ V .

Proof) We proceed in steps.

Step 1: Finding U

Denote A = f ′(a), and let ε = 1
2‖A−1‖ . By continuous differentiability, there exists an

open ball U around a such that

∥∥f ′(x)−A
∥∥< ε

for any x ∈ U . We define f |U as the restriction of f to U .

We first show that f |U is an injective mapping. For any y ∈ Rn, define the function
ϕy : U → Rn as

ϕy(x) = x+A−1(y−f(x))

for any x ∈ U . Note that ϕy is differentiable on U with derivative

ϕ′y(x) = In−A−1f ′(x) =A−1 (A−f ′(x)
)
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for any x ∈ U , so we can see that
∣∣∣ϕ′y(x)

∣∣∣≤ ∥∥∥A−1
∥∥∥ ·∥∥A−f ′(x)

∥∥< 1
2

for any x ∈ U by what we established above. Since U is convex and open, by the mean
value inequality for vector valued functions,

|ϕy(x1)−ϕy(x2)| ≤ 1
2 |x1−x2|

for any x1,x2 ∈ U .

Step 2: Constructing the Function g

Suppose that y = f |U (x1) = f |U (x2) for some x1,x2 ∈ U . Then,

|x1−x2|= |ϕy(x1)−ϕy(x2)| ≤ 1
2 |x1−x2|,

which implies x1 = x2. This shows us that f is injective on U .

Now define V = f(U). Then, f |U : U → V is both injective and surjective, so that it
admits an inverse g : V → U , which by definition satisfies g(f(x)) = x and f(g(y)) = y

for any x ∈ U and y ∈ V .

Step 3: Showing the Openness of V

To show that V is open, we can show that, for any point in V , there exists a neighbor-
hood around that point that is contained in V . Choose some y0 ∈ V . Since y0 ∈ f(U),
there exists an x0 ∈ U such that f(x0) = y0. Since U is an open set, there exists an
r > 0 such that the closed ball B̄(x0, r) is contained in U .

Suppose |y−y0|< ε · r. Then,

|ϕy(x0)−x0|=
∣∣∣x0 +A−1(y−f(x0))−x0

∣∣∣
≤
∥∥∥A−1

∥∥∥ · |y−f(x0)|=
∥∥∥A−1

∥∥∥ · |y−y0|<
1
2r.

On the other hand, if x ∈ B̄(x0, r)⊂ U , then

|ϕy(x)−x0| ≤ |ϕy(x)−ϕy(x0)|+ |ϕy(x0)−x0|

<
1
2 |x−x0|+

1
2r ≤ r,
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since ϕy is a contraction on U , so it follows that ϕy(x) ∈ B̄(x0, r). Thus, the restriction
of ϕy to the closed set B̄(x0, r) also maps into B̄(x0, r), so that it becomes a contraction
mapping. Since a closed subset of the metric space Rn, which is complete under the
euclidean metric, is also complete under the euclidean metric, by the Banach fixed point
theorem there exists a unique x∗ ∈ B̄(x0, r)⊂ U such that

ϕy(x∗) = x∗,

or equivalently, y = f(x∗). What we have done is shown that, for any y in the open
ball B(y0, ε · r), there exists an x ∈ U such that y = f(x) ⊂ f(U) = V . Therefore,
B(y0, ε · r) ⊂ V , and since our choice of y0 ∈ V was arbitrary, this shows that V is
an open subset of Rn.

Step 4: Proving the Differentiability of g

It remains to show that g is continuously differentiable on V with derivative equal to
the inverse of the corresponding derivative of f . Choose some y ∈ V and non-zero k ∈Rn

such that y+ k ∈ V . Defining x = g(y) and z(k) = g(y+ k), by the definition of g we
have y = f(x) and y+k = f(z(k)). Letting h(k) = z(k)−x ∈ Rn, we can write

y = f(x), y+k = f(x+h(k)).

Note that h(k) 6= 0 if k 6= 0, since h(k) = 0 implies z(k) = x and therefore that y =
f(x) = f(z(k)) = y+k, a contradiction.

Now we have

|ϕy(x+h(k))−ϕy(x)|=
∣∣∣h+A−1(y−f(x+h(k)))

∣∣∣= ∣∣∣h(k)−A−1k
∣∣∣

≤ 1
2 |h(k)|

by the fact that ϕy is a contraction on U . In other words,

|h(k)|−
∥∥∥A−1

∥∥∥ · |k| ≤ |h(k)|−
∥∥∥A−1k

∥∥∥≤ ∣∣∣h(k)−A−1k
∣∣∣≤ 1

2 |h(k)|,

or, rearranging terms,

|h(k)| ≤ 2
∥∥∥A−1

∥∥∥ · |k|= 1
ε
· |k|.

It follows that

lim
k→0

h(k) = 0.
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Recall that, if B is a matrix such that ‖A−B‖< 1
‖A−1‖ , then B is also invertible. Since

∥∥f ′(x)−A
∥∥< ε= 1

2‖A−1‖
<

1
‖A−1‖

,

we can see that f ′(x) = f ′(g(y)) is invertible; denote B = f ′(g(y))−1. Then,

g(y+k)−g(y)−Bk = h(k)−Bk,

and since k = f(z(k))−y = f(x+h(k))−f(x), we can see that

g(y+k)−g(y)−Bk = (BB−1)h(k)−B [f(x+h(k))−f(x)]

=−B
[
f(x+h(k))−f(x)−B−1h(k)

]
,

where B−1 = f ′(x). As such,

|g(y+k)−g(y)−Bk|
|k|

≤ ‖B‖ ·
∣∣f(x+h(k))−f(x)−B−1h(k)

∣∣
|k|

≤ ‖B‖
ε

(∣∣f(x+h(k))−f(x)−B−1h(k)
∣∣

|h(k)|

)
.

Taking k→ 0 on both sides of the equation yields

lim
k→0

|g(y+k)−g(y)−Bk|
|k|

= 0,

and as such

g′(y) =B = f ′(g(y))−1.

This holds for any y ∈ V , so g is differentiable on V .

Step 5: Proving Continuous Differentiability of g

To show that g is actually continuously differentiable, we need only note that g′ =
G◦ f ′ ◦ g : V → Rn×n, where G : Ωo→ Ωo is the inverse matrix mapping. We saw that
one of the properties of the trace norm is that G is continuous, f ′ is continuous by
the assumption that f ∈ C1(E), and g is continuous on V because it is differentiable at
every point of V . Continuity is preserved across compositions, so it follows that g′ is
also a continuous mapping. This proves that g ∈ C1(V ).

Q.E.D.
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The primary use of the inverse function theorem is to prove the implicit function theorem.
Before moving onto the implicit function theorem, we first introduce some new notation.

We denote any point in Rn+m by the pair (x,y), where x ∈ Rn and y ∈ Rm; we eschew the
usual column vector representation for notational simplicity. Any matrix A ∈ Rm×(n+m) can
be partitioned as A = (Ax,Ay), where Ax ∈ Rm×n and Ay ∈ Rm×m. It follows that, for any
(x,y) ∈ Rn+m, we can write

A(x,y) =Ax ·x+Ay ·y ∈ Rm×1.

Below, we state and prove the implicit function theorem:

Theorem 1.22 (Implicit Function Theorem)
Let E be an open subset of Rn+m and f :E→Rm a function that is C1(E). Suppose f(a,b) = 0
for some (a,b) ∈ E and, letting

f ′(a,b) =


(D1f1)(a,b) · · · (Dnf1)(a,b) (Dn+1f1)(a,b) · · · (Dn+mf1)(a,b)

... . . . ...
... . . . ...

(D1fm)(a,b) · · · (Dnfm)(a,b) (Dn+1fm)(a,b) · · · (Dn+mfm)(a,b)


with

f ′(a,b)x =


(D1f1)(a,b) · · · (Dnf1)(a,b)

... . . . ...
(D1fm)(a,b) · · · (Dnfm)(a,b)



f ′(a,b)y =


(Dn+1f1)(a,b) · · · (Dn+mf1)(a,b)

... . . . ...
(Dn+1fm)(a,b) · · · (Dn+mfm)(a,b)

 ,

assume that f ′(a,b)y is invertible. Then, there exist open sets U ⊂ Rn+m containing (a,b), an
open set W ⊂ Rn containing a, and a unique function g :W → Rm such that

(x,g(x)) ∈ U and f(x,g(x)) = 0

for any x ∈W . In addition, g is continuously differentiable on W and

g′(a) =−
(
f ′(a,b)y

)−1
f ′(a,b)x

=−


(Dn+1f1)(a,b) · · · (Dn+mf1)(a,b)

... . . . ...
(Dn+1fm)(a,b) · · · (Dn+mfm)(a,b)


−1

(D1f1)(a,b) · · · (Dnf1)(a,b)
... . . . ...

(D1fm)(a,b) · · · (Dnfm)(a,b)

 .
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Proof) Define A = f ′(a,b), Ax = f ′(a,b)x and Ay = f ′(a,b)y. The theorem follows almost im-
mediately from the inverse function theorem. We once again proceed in steps.

Step 1: Transforming f into F : E→ Rn+m

Define F : E→ Rn+m as

F (x,y) = (x,f(x,y))

for any (x,y) ∈ E. Then,

F ′(x,y) =

 In On×m

f ′(x,y)x︸ ︷︷ ︸
m×n

f ′(x,y)y︸ ︷︷ ︸
m×m


at each point on E. As such,

∥∥F ′(x1,y1)−F ′(x2,y2)
∥∥=

∥∥∥∥∥∥
 On×(n+m)

f ′(x1,y1)−f ′(x2,y2)

∥∥∥∥∥∥=
∥∥f ′(x1,y1)−f ′(x2,y2)

∥∥
for any (x1,y1),(x2,y2) ∈ E; since f ′ is continuous by assumption, so is F ′, making
F ∈ C1(E). Finally,

det
(
F ′(a,b)

)
= det

 In On×m

Ax Ay

= det(Ay) 6= 0

with F (a,b) = (a,f(a,b)) = (a,0).

Step 2: Applying the Inverse Function Theorem to construct U and W

Applying the inverse function theorem to F , we can see that:

i) There exist open sets U ⊂ E and V ⊂ Rn+m such that (a,b) ∈ U , (a,0) ∈ V , and
the restriction of F to U is a bijection onto V .

ii) There exists a continuously differentiable function G : V → U that is the inverse
of F restricted to U , and

G′(x,y) = F ′(G(x,y))−1

for any (x,y) ∈ V .
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We define W as

W = {x ∈ Rn | (x,0) ∈ V }.

For any x ∈ Rn, (x,0) ∈ V and, by the openness of V , there exists an ε > 0 such that
Bn+m((x,0), ε)⊂ V . Now consider the ball Bn(x,ε) around x. For any z ∈Bn(x,ε),

|(x,0)− (z,0)|= |x−z|< ε,

so (z,0) ∈Bn+m((x,0), ε)⊂ V . It follows that Bn(x,ε)⊂W , and since we can find such
an ε > 0 for any x ∈W , W is an open subset of Rn.

Step 3: Finding the function g

Choose any x ∈W . Then, (x,0) ∈ V , and since F restricted to U is surjective onto V ,
there exists an (z,y) ∈ U such that

F (z,y) = (z,f(z,y)) = (x,0),

so that z = x and f(x,y) = 0. In addition, F restricted to U is injective as well, so this
y ∈ Rm is the unique vector such that (x,y) ∈ U and f(x,y) = 0; denote y = gx.

The preceding holds for any x ∈ W , so we can define the function g : W → Rm as
g(x) = gx for any x ∈W . Then, from what we saw just now, g is the unique function
such that, for any x ∈W ,

(x,g(x)) ∈ U and f(x,g(x)) = 0.

Step 4: Continuous Differentiability of g

It remains to prove the continuous differentiability of g. For any x∈W , since F (x,g(x)) =
(x,0), by design

G(x,0) = (x,g(x)).

Let G2 collect the lower m functions of G; then, for any 1≤ i≤m, this tells us that

Gn+i(x,0) = gi(x),
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so that, for any t 6= 0 and 1≤ j ≤ n,

gi(x+ t ·ej)−g(x)
t

= Gn+i(x+ t ·ej ,0)−Gn+i(x,0)
t

.

Taking t→ 0 on both sides shows us that

(Djgi)(x) = (DjGn+i)(x,0)

for any x ∈W ; the partial derivatives of gi exist. Since G is continuously differentiable
on V by the inverse function theorem, it has continuous partial derivatives, and as such
Djgi is continuous on W as well. This holds for any 1≤ j ≤ n and 1≤ i≤m, so by the
characterization of continuous differentiability, g ∈ C1(W ).

Step 5: Obtaining g′(a)

We can now easily obtain the derivative of g at a. The inverse function theorem tells
us that

G′(a,0) = F ′(G(a,0 ))−1 = F ′(a,g(a))−1

=

 In On×m

Ax Ay

−1

=

 In On×m

−A−1
y Ax Im

 .
By the differentiabiltiy of g, the derivative of g at a is given as exactly the matrix

g′(a) =


(D1g1)(a) · · · (Dng1)(a)

... . . . ...
(D1gm)(a) · · · (Dngm)(a)

=


(D1Gn+1)(a,0) · · · (DnGn+1)(a,0)

... . . . ...
(D1Gm)(a,0) · · · (DnGm)(a,0)

 .

This exactly the lower left m×n block of G′(a,0), so we have

g′(a) =−A−1
y Ax,

which is exactly what we claim.

Q.E.D.
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Of special interest is the case where m= 1. Suppose E is a subset of Rn+1, and let f :E→R
be continuously differentiable on E. Consider the level curve L = {(x,y) ∈ E | f(x,y) = 0}. For
any point (a,b) ∈Rn+1 on the level curve L such that ∂f

∂y (a,b) 6= 0, the implicit function theorem
tells us that there exist an open set U ⊂Rn+1 around (a,b), an open set W ⊂Rn around a, and
a unique function g :W → R such that

(x,g(x)) ∈ U and f(x,g(x)) = 0,

or more succinctly, (x,g(x)) ∈ L∩U . Furthermore, it tells us that this g is continuously differ-
entiable on W , and that

g′(a) =− 1
∂f
∂y (a,b)

(
∂f
∂x1

(a,b) · · · ∂f
∂xn

(a,b).
)
.

In other words, the gradient of g at a is given as

∇g(a) =


−
(
∂f
∂x1

(a,b)
)
/
(
∂f
∂y (a,b)

)
...

−
(
∂f
∂xn

(a,b)
)
/
(
∂f
∂y (a,b)

)
 .
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Chapter 2

Convex Analysis

2.1 Separating Hyperplane Theorems

These class of theorems, used in proofs of duality in microeconomics, furnish sufficient conditions
for two convex sets to be (strictly) separated.

First consider a finite-dimensional euclidean space Rn. A hyperplane on Rn is a vector space
of dimensional n− 1; the following result characterizes hyperplanes on finite dimensional eu-
clidean spaces:

Lemma 2.1 (Characterization of Hyperplanes)
A subset H of Rn is a hyperplane on H if and only if there exists a non-zero v ∈ Rn such that

H = {x ∈ Rn | v′x= 0}.

Proof) Suppose H is a hyperplane on Rn. Then, it has dimension n−1, so there exists a basis
{v1, · · · ,vn−1} ⊂Rn of H that is orthogonal with respect to the standard inner product
on Rn. We can extend this basis to an orthogonal basis {v1, · · · ,vn−1,v} of Rn. Define

H ′ = {x ∈ Rn | v′x= 0}.

Then, for any x ∈H, because x=∑n−1
i=1 aivi for some a1, · · · ,an ∈ R,

v′x=
n−1∑
i=1

ai
(
v′vi

)
= 0,

since v is orthogonal to v1, · · · ,vn−1. Thus, x ∈ H ′ and we have H ⊂ H ′. Likewise,
if x ∈ H ′, then v′x = 0, and because {v1, · · · ,vn−1,v} is a basis of Rn, there exist
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a1, · · · ,an−1,a ∈ R such that

x=
n−1∑
i=1

aivi+av.

It follows that

v′x= a · (v′v) = 0,

so it must be the case that a= 0 and thus x ∈H. Therefore,

H =H ′ = {x ∈ Rn | v′x= 0}.

Conversely, suppose that

H = {x ∈ Rn | v′x= 0}

for some non-zero v ∈ Rn. Then, defining T : Rn→ R as

T (x) = v′x

for any x ∈ Rn, T is a linear transformation from Rn to R, and H is the null space of
T . Since the range of T is R itself (v is non-zero), by the dimension theorem it follows
that rank(T ) = 1 and

rank(T ) +nullity(T ) = dim(Rn) = n.

Thus, the nullity of T is n−1, and because the nullity of T is exactly the dimension of
H, H is a hyperplane on Rn.
Q.E.D.

For any non-zero v ∈ Rn, define the hyperplane

H = {x ∈ Rn | v′x= 0}.

For any a ∈ R, there exists an x0 ∈ Rn such that v′x0 = a, and as such, the space

H ′ = {x ∈ Rn | v′x= a}

is a translation H+x0 of H. We call spaces like H ′, which are translations of hyperplanes, affine
hyperplanes on Rn.

We will be focusing on the separation of convex sets in euclidean spaces, so it will be useful
to give below some properties of convex sets in Rn.
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Lemma 2.2 (Properties of Convex Sets in Rn)
Let A,B be non-empty convex sets in Rn. Then, the following hold true:

i) For any a ∈ R, the linear combination of A and B defined as

C = aA+B = {a ·x+y ∈ Rn | x ∈A,y ∈B}

is a non-empty convex subset of Rn.

ii) The closure A of A is a convex subset of Rn.

Proof) i) Choose any λ ∈ [0,1] and a ·x1 +y1,a ·x2 +y2 ∈ C. Then,

λ · (a ·x1 +y1) + (1−λ) · (a ·x2 +y2)

= a(λ ·x1 + (1−λ) ·x2) + (λ ·y1 + (1−λ) ·y2) .

Since λ ·x1 +(1−λ) ·x2 ∈A and λ ·y1 +(1−λ) ·y2 ∈B by the convexity of A and
B, we can see that

λ · (a ·x1 +y1) + (1−λ) · (a ·x2 +y2) ∈ C

as well. This shows that C is convex.

ii) Let x,y ∈A and choose some λ ∈ [0,1]. There then exist sequences {xk}k∈N+ and
{yk}k∈N+ of points in A that converge to x and y. For any k ∈ N+, λ ·xk + (1−
λ) ·yk ∈A by the convexity of A. Thus,

λ ·x+ (1−λ) ·y = lim
k→∞

(λ ·xk + (1−λ) ·yk) ∈A,

and A is a convex set.

Q.E.D.
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2.1.1 Basic Separation on Hilbert Spaces

Separating hyperplanes tell us that, given two convex subsets of a finite-dimensional euclidean
space, there exists an affine hyperplane that separates them. In what follows, we present a more
generalized version for closed convex sets in Hilbert space.

We first state the basic separation theorem:

Theorem 2.3 (Basic Separation Theorem)
Let (H,〈·, ·〉) be a Hilbert space over the real field, and ‖·‖ the norm on H induced by the inner
product 〈·, ·〉. Let W be a nonempty closed convex subset of H, and x∈H a point not contained
in W .

Then, there exists a non-zero v ∈H and c ∈ R such that

〈v,x〉> c > 〈v,y〉

for any y ∈A.

Proof) By the Hilbert projection theorem, there exists a y∗ ∈W such that

‖x−y∗‖= inf
y∈W
‖x−y‖.

If ‖x−y∗‖ = 0, then x = y∗, which contradicts the fact that x /∈W , so it must be the
case that ‖x−y∗‖> 0.

Define v = x− y∗ and c = 〈v,x〉−〈v,y∗〉
2 ∈ R. Since ‖v‖ > 0, v is non-zero, and we can

immediately see that

0< ‖v‖2 = 〈v,x−y∗〉= 〈v,x〉−〈v,y∗〉,

so that we have 〈v,x〉> c> 〈v,y∗〉. It remains to show that the inequality holds for any
y ∈A.

For any y ∈A, by the definition of y∗, we have

0< ‖x−y∗‖= inf
z∈W
‖x−z‖ ≤ ‖x−y‖.

For any k ∈N+, define

zk = k−1
k

y∗+ 1
k
y.
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Since W is a convex set and y∗,y ∈W , it follows that zk ∈W as well. We now find that

‖v‖2 = ‖x−y∗‖2 ≤ ‖x−zk‖2 = 〈x−zk,x−zk〉

= 〈v+ 1
k

(y∗−y),v+ 1
k

(y∗−y)〉

= ‖v‖2 + 2 · 1
k
〈v,y∗−y〉+ 1

k2 ‖y
∗−y‖2.

Therefore,

2 · 1
k
〈v,y∗−y〉+ 1

k2 ‖y
∗−y‖2 ≥ 0,

and multiplying both sides by k yields

2 · 〈v,y∗−y〉+ 1
k
‖y∗−y‖2 ≥ 0.

Taking k→∞ on both sides, we finally obtain the inequality

2 · 〈v,y∗−y〉 ≥ 0,

or equivalently, 〈v,y∗〉 ≥ 〈v,y〉. Therefore, for any y ∈W ,

〈v,x〉> c > 〈v,y∗〉 ≥ 〈v,y〉.

Q.E.D.

The basic separation theorem can be used to give a characterization of any closed convex set
in a Hilbert space. Let (H,〈·, ·〉) be the real Hilbert space given above, and W a closed convex
subset of H. The support function µW :H → (−∞,+∞] of W is defined as

µW (x) = sup
y∈W
〈x,y〉

for any x ∈H; µW does not take −∞ as a value because the set {〈x,y〉 | y ∈W} is a non-empty
subset of R for any x ∈H.

Define the set

W ′ = {y ∈H | 〈x,y〉 ≤ µW (x) ∀x ∈H}.

Then, W ⊂W ′, since if y ∈W , then

〈x,y〉 ≤ sup
z∈W
〈x,z〉= µW (x)

for any x ∈ H by definition. Conversely, suppose that y ∈W c. Then, by the basic separation
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theorem, there exists a non-zero v ∈H and a c ∈ R such that

〈v,y〉> c > 〈v,z〉

for any z ∈W . It follows that

〈v,y〉> c≥ sup
z∈W
〈v,z〉= µW (v),

so that y /∈W ′. It follows that W c ⊂ (W ′)c, and therefore

W =W ′ = {y ∈H | 〈x,y〉 ≤ µW (x) ∀x ∈H}.

This is the dual representation of W . It can be seen from this representation that the support
function µW contains all the information on W ; given µW , we are able to recover W , and vice
versa.

If H = Rn and 〈·, ·〉 is the standard inner product on Rn, then the support function for W
would be defined as

µW (x) = sup
y∈W

x′y,

and the dual representation of W would be

W = {y ∈ Rn | x′y ≤ µW (x) ∀x ∈ Rn}.
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2.1.2 Farkas’ Lemma

Another application of the basic separation theorem is in Farkas’ lemma, which gives sufficient
and necessary conditions for the solvability of a system of linear inequalities. The statement and
proof are given below:

Theorem 2.4 (Farkas’ Lemma)
Let A ∈ Rm×n and b ∈ Rm. Then,

1. Either: Ax= b has a solution x ∈ Rn+

2. Or: There exists a p ∈ Rm such that A′p≥ 0 and p′b < 0.

Proof) Necessity is simple. Suppose that there exists some x∈Rn+ such that Ax= b, and assume
that there exists a p ∈ Rm such that A′p ≥ 0 and p′b < 0. Then, pre-multiplication by
p′ yields

0≤ p′Ax= p′b < 0,

where p′Ax≥ 0 because all the elements of A′p and x are non-negative. This is a con-
tradiction, so there cannot exist such a p ∈ Rm.

Now suppose that the system Ax = b has no solution on Rm+ . Letting v1, · · · ,vn ∈ Rm

be the columns of A, define the set

C = {Ax | x ∈ Rn+}=
{ n∑
i=1

ai ·vi | a1, · · · ,an ≥ 0
}
.

In the terminology used in convex analysis, C is the conic hull of the vectors v1, · · · ,vn,
that is, the set of all conic combinations of these vectors. It is clearly convex; for any
λ ∈ [0,1] and Ax,Ay ∈ C,

λ ·Ax+ (1−λ) ·Ay =A(λcdotx+ (1−λ) ·y) ∈ C,

since Rn+ is convex. C is also closed; that a conic hull of a finite set is closed is a
well-known result that is tedious to prove, to we simply assume it here. As such, C is
a closed, convex and non-empty (it contains the zero vector) subset of Rm such that
b /∈ C.

Rm can be viewed as a Hilbert space under the standard inner product on Rm, so the
basic separation theorem tells us that there exists a non-zero p ∈ Rm and c ∈ R such
that

p′b < c < p′Ax

for any x∈Rn+. We will now show that p satisfies the conditions of the theorem. Putting
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x= 0 shows us that p′b < c < 0, which proves the second condition. For the first condi-
tion, define y=A′p∈Rn and suppose yi< 0 for some 1≤ i≤n. Then, letting {e1, · · · ,en}
be the standard basis of Rn, there exists an M > 0 such that M ·yi < c < 0. Therefore,
putting x=M ·ei ∈ Rn+ in the above inequality reveals that

c < p′Ax= y′x=M ·y′ei =M ·yi < c,

a contradiction. It follows that y =A′p ∈ Rn+, or equivalently, A′p≥ 0.

Q.E.D.

Farkas’ lemma has many alternative formulations, some arguably more convenient to use
than others; we state some of them below as a corollary.

Corlloray to Theorem 2.4 (Alternative Formluations of Farkas’ Lemma)
Let A ∈ Rm×n and b ∈ Rm. The following hold true:

i) Either Ax ≤ b admits a solution x ∈ Rn+, or there exists a p ∈ Rm+ such that A′p ≥ 0 and
p′b < 0.

ii) Either Ax ≤ b admits a solution x ∈ Rn, or there exists a p ∈ Rm+ such that A′p = 0 and
p′b < 0.

Proof) i) The statement that Ax≤ b admits a solution x∈Rn+ is equivalent to claiming that
there exists a solution (x,z) ∈ Rn+m

+ to the equation

(
A Im

)x
z

= b.

By Farkas’ lemma, there either exists a solution x ∈Rn+ to Ax≤ b, or there exists
a p ∈ Rm such that A′p

p

≥ 0, and p′b < 0.

This shows us that the existence of a p ∈ Rm+ satisfying A′p≥ 0 and p′b < 0.

ii) The statement that Ax≤ b admits a solution x∈Rn is equivalent to claiming that
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there exists a solution (u,v) ∈ R2n
+ to the equation

(
A −A

)u
v

≤ b.
By i), there either exists a solution x∈Rn to Ax≤ b, or there exists a p∈Rm+ such
that  A′p

−A′p

≥ 0, and p′b < 0.

This shows us that the existence of a p ∈ Rm+ such that A′p= 0 and p′b < 0.

Q.E.D.

Farkas’ lemma can also be used to show prove the Fredholm alternative, which provides two
mutually exclusive and exhaustive cases when solving a sysetem of linear equations.

Corlloray to Theorem 2.4 (Fredholm Alternative)
Let A ∈ Rm×n and b ∈ Rm. Then,

1. Either: Ax= b has a solution x ∈ Rn

2. Or: There exists a p ∈ Rm such that A′p= 0 and p′b 6= 0.

Proof) The statement that Ax = b has a solution x ∈ Rn is equivalent to claiming that there
exists a solution (u,v) ∈ R2n

+ to the system

(
A −A

)u
v

= b.

Thus, by Farkas’ lemma, either there exists a solution x ∈Rn to Ax= b, or there exists
a p ∈ Rm such that  A′p

−A′p

≥ 0 and p′b < 0.

This implies the existence of a p ∈ Rm such that A′p= 0 and p′b 6= 0.

Q.E.D.
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2.1.3 Separation Results on Euclidean Spaces

We can apply the basic separation theorem to derive separation results on euclidean space. We
start with the strict separation theorem:

Theorem 2.5 (Strict Separation Theorem)
Let A,B be disjoint nonempty closed convex subsets of Rn, and suppose at least one of them is
compact. Then, there exists a non-zero v ∈ Rn and a c ∈ R such that

v′x > c > v′y

for any x ∈A and y ∈B.

Proof) Suppose, without loss of generality, that A is compact. Define the function f : A→
[0,+∞) as

f(x) = d(x,B)

for any x ∈ A. Since f is a continuous function on the compact set A, there exists an
x∗ ∈A such that

f(x∗) = min
x∈A

f(x).

Since A and B are disjoint, and x∗ ∈A, it follows that x∗ /∈B. By the basic separation
theorem, there exists a y∗ ∈A such that

f(x∗) = d(x∗,B) = |x∗−y∗|,

and for the non-zero vector v = x∗−y∗ ∈ Rn and c= v′x∗−v′y∗
2 ∈ R, we have

v′x∗ > c > v′y

for any y ∈B. It remains to be seen that v′x > c for any x ∈A.

For any x ∈A and k ∈N+, define

zk = k−1
k

x∗+ 1
k
x;

by the convexity of A, zk ∈A. Furthermore, by our choice of x∗,

|zk−y∗|2 ≥ d(zk,B)2 = f(zk)2 ≥ f(x∗)2 = |x∗−y∗|2 = |v|2 > 0.
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Since

|v|2 ≤ |zk−y∗|2 = (zk−x∗+v)′(zk−x∗+v)

= |zk−x∗|2 + 2v′(zk−x∗) + |v|2,

we have the inequality

0≤ |zk−x∗|2 + 2v′(zk−x∗).

Note that, by construction,

zk−x∗ = 1
k

(x−x∗) ;

therefore,

0≤ 1
k2 |x−x

∗|2 + 21
k
v′(x−x∗),

and multiplying both sides by k yields

0≤ 1
k
|x−x∗|2 + 2v′(x−x∗).

Taking k→∞ finally reveals that v′x≥ v′x∗ > c, and because this holds for any x ∈A,
we have

v′x > c > v′y

for any x ∈A and y ∈B.
Q.E.D.

The next result formulates a result analogous to the basic separation theorem for boundary
points.
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Theorem 2.6 (Supporting Hyperplane Theorem for Closed Sets)
Let A be a nonempty closed convex subset of Rn, and x ∈ A a point on the boundary of A.
Then, there exists a non-zero vector v ∈ Rn such that v′x≥ v′y for any y ∈A.

Proof) Choose any x ∈ ∂A. For any k ∈ N+, the 1
k -ball B(x,1/k) around x contains a point

that is not in A; let this point be xk ∈ Rn. Since xk is a point that is not contained in
the closed and convex set A, by the basic separation theorem there exists a non-zero
vk ∈ Rn such that v′kxk ≥ v′ky for any y ∈ A. Suppose that vk is normalized to a unit
vector (simply divide both sides of the inequality by |vk|).

It follows that {xk}k∈N+ is a sequence converging to x and {vk}k∈N+ a sequence of
vectors in Rn taking values on the unit circle T in Rn. Since T is compact, there exists
a convergent subsequence of {vk}k∈N+ with limit v ∈ T ; for notational brevity, assume
that {vk}k∈N+ itself converges to v. Note that v is non-zero because it is a unit vector.
For any y ∈A,

v′kxk ≤ v′ky

for any k ∈N+. Taking k→∞ on both sides yields

v′x≤ v′y.

This holds for any y ∈A, so the proof is complete.
Q.E.D.

Putting together the supporting hyperplane theorem for closed sets and the basic separation
theorem, we can obtain the following result:

Theorem 2.7 (Separation of Interior and Boundary)
Let A be a closed convex subset of Rn with nonempty interior, and x ∈ A a point not in the
interior Ao of A. Then, there exists a non-zero vector v ∈Rn such that v′x > v′y for any y ∈Ao.

Proof) Since x /∈Ao, either x ∈ ∂A or x /∈A. In either case, since A is a nonempty closed con-
vex subset of Rn, there exists a non-zero vector v ∈Rn such that v′x≥ v′y for any y ∈A.

Choose any y ∈Ao and suppose, for the sake of contradiction, that v′x= v′y. Intuitively,
this results in a contradiction because we can take an open ball around y contained in
A, and there must exist some points in this ball that lie on either side of the hyperplane
H = {w ∈ Rn | v′w = v′x}. We now formalize this intuition.

By the definition of an interior point, there exists an ε > 0 such that B(y,ε)⊂A. Define

z = y+
(
v

|v|

)
· ε2 ∈ Rn.
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Then,

|z−y|= ε

2 < ε,

and

v′z = v′y+ |v| · ε2 = v′x+ |v| · ε2 > v′x.

The first inequality tells us that z ∈ B(y,ε) ⊂ A, while the second inequality contra-
dicts the fact that v′x≥ v′w for any w ∈A. Therefore, it must be the case that v′x> v′y.

Q.E.D.

The supporting hyperplane theorem for closed sets can be extended to arbitrary convex
subsets of Rn by utilizing a useful property of convex sets. Note that, for any A⊂ Rn,

∂A=A\Ao ⊂A\Ao = ∂A,

since the interior Ao of the closure A contains the interior Ao of A. In general, the reverse in-
clusion does not hold, but for convex sets with non-empty interior, it does; this is the content
of the lemma below.

Lemma 2.8 If A is a convex subset of Rn, then Ao = A
o, that is, A and A have the same

interior.

Proof) Ao is clearly contained in Ao because A⊂A. If Ao is empty, then so is Ao, and the claim
holds trivially. Suppose that Ao is non-empty. We must prove that Ao is contained in
Ao. To do so, we make use of convex hulls and the basic separation theorem; for more
on convex hulls, consult the section on convex functions.

The intuition of the proof is to first construct a box Ω around a point x in the interior
of A that is contained in A. Since each vertex in that box is a point in the closure of A,
we can slightly perturb each of them to obtain a new box Ω′ containing x with vertices
in A. The convexity of A shows us that this box Ω′ is contained in A. Finally, we show
that some open ball around x is contained in Ω′ and therefore in A, from which we can
conclude that x is also in the interior of A. To do so, we assume that some point y in
this ball is not conatined in Ω′; since Ω′ is the convex hull generated by the perturbed
vertices of Ω, it is a non-empty closed convex set, so we can use the basic separation
theorem to find a hyperplane separating y and Ω′. However, since the radius of this ball
is taken to be the shortest distance between x and each of the perturbed distances, at
least one vertex of Ω′ must necessarily lie on each side of the hyperplane separating the
ball and Ω′, which results in a contradiction.
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Step 1: Constructing the Box Ω

Choose any x ∈ Ao. By the definition of an interior point, there exists an ε > 0 such
that the open ball B(x,ε) is contained in A. Letting {e1, · · · ,en} be the standard basis
of Rn, let E collects the 2n vertices of the box with edges of length 2·ε

n and centered at
x, that is, the box

Ω =
n∏
i=1

[
x− ε

n
,x+ ε

n

]
.

Each v ∈ E has the form

v = x+ ε

n

n∑
i=1

si ·ei

for some s1, · · · ,sn ∈ {−1,1}; we collect these signs in the n-dimensional vector s(v).
Note that Ω is actually the convex hull generated by E = {v(1), · · · ,v(2n)}, that is,

Ω =
{ 2n∑
i=1

λi ·v(i) | λ1, · · · ,λ2n ∈ R+,
2n∑
i=1

λi = 1
}
.

For any y ∈Ω, there exist λ1, · · · ,λ2n ∈R+ such that ∑2n
i=1λi = 1 and y =∑2n

i=1λi ·v(i).
For any 1≤ i≤ n,

∣∣∣x−v(i)
∣∣∣< ε,

so it follows that

|x−y| ≤
2n∑
i=1

λi ·
∣∣∣x−v(i)

∣∣∣< ε,

so that Ω⊂B(x,ε).

Step 2: Constructing the Box Ω′ and an Open Ball around x

Since each point in B(x,ε), including the vertices collected in E, are points in A,
the ε/n-neighborhood of these vertices contains a point in A; that is, we can find
u(1), · · · ,u(2n) ∈A such that

∣∣∣u(i)−v(i)
∣∣∣< ε

n
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for 1≤ i≤ 2n. Since

v(i) = x+ ε

n

(
In ·s(v(i))

)
,

for any 1≤ j ≤ n,

u
(i)
j

> xj if s(v(i))j = 1

< xj if s(v(i))j =−1
.

Let Ω′ be the convex hull generated by E′ = {u(1), · · · ,u(2n)}. Since E′ is a subset of
the convex set A, the convex hull Ω′ that it generates is also a subset of A. Define

δ = min
1≤i≤2n,1≤j≤n

∣∣∣u(i)
j −xj

∣∣∣> 0,

and choose some y ∈ B(x,δ); we will show that y ∈ Ω′, which will demonstrate that
B(x,δ)⊂ Ω′ ⊂A and thus that x is an interior point of A.

Step 3: Using the Basic Separation Theorem

Suppose that y /∈Ω′. Ω′ is a non-empty, closed and convex set, so by the basic separation
theorem, there exists a non-zero vector v ∈ Rn such that

〈v,y〉> 〈v,z〉

for any z ∈ Ω′. By implication, 〈v,y−u(i)〉 > 0 for any 1 ≤ i ≤ 2n. Choose 1 ≤ i ≤ 2n

such that

s(v(i))j = 1 if vj ≥ 0

s(v(i))j =−1 if vj < 0.

Then, note that, if vj ≥ 0, then s(v(i)) = 1 and thus u(i)
j > xj . Since

yj−xj ≤ |yj−xj |< δ ≤ u(i)
j −xj ,

we can see that yj−u(i)
j < 0, so that vj(yj−u(i)

j )≤ 0. On the other hand, if vj < 0, then
s(v(i)) =−1 and u

(i)
j < xj . It follows that

xj−yj ≤ |yj−xj |< δ ≤ xj−u(i)
j ,
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so that yj−u(i)
j > 0 and vj(yj−u(i)

j )< 0. Therefore,

〈v,y−u(i)〉=
n∑
j=1

vi(yj−u(i)
j )≤ 0,

which contradicts the fact that 〈v,y−u(i)〉> 0. In other words, y ∈Ω′, which completes
the proof.

Q.E.D.

We can now present a version of the supporting hyperplane theorem that does not require
the closedness assumption.

Theorem 2.9 (Supporting Hyperplane Theorem)
Let A be a non-empty convex subset of Rn, and x ∈ A a point on the boundary of A. Then,
there exists a non-zero vector v ∈ Rn such that v′x≥ v′y for any y ∈A.

Proof) This follows easily from the supporting hyperplane theorem for closed sets. Letting A
be the closure of A, since A is convex ∂A = ∂A by the preceding lemma. Therefore,
x ∈ ∂A= ∂A; x is a point on the boundary of the non-empty, closed and convex set A.
By the supporting hyperplane theorem for closed sets, there exists a non-zero v ∈ Rn

such that

v′x≥ v′y

for any y ∈A, and therefore for any y ∈A.

Q.E.D.

The general supporting hyperplane theorem now allows us to prove a version of the separat-
ing hyperplane theorem for general disjoint convex sets.

Theorem 2.10 (Separating Hyperplane Theorem)
Let A,B be non-empty disjoint convex subsets of Rn. Then, there exists a non-zero vector v ∈Rn

and c ∈ R such that

v′x≤ c≤ v′y

for any x ∈A and y ∈B.
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Proof) Define the set C =A−B; since A and B are non-empty convex sets, so is C. Note that
0 /∈ C, since if it were an element of C, then there would exist x ∈ A and y ∈ B such
that x = y, which contradicts the assumption that A and B are disjoint. We consider
two cases.

Initially, suppose that 0 /∈C. Since C is a non-empty closed and convex subset, and 0 is
some point outside C, the basic separation theorem tells us that there exists a non-zero
v ∈ Rn such that v′z > 0 for any z ∈ C. Since C ⊂ C, it follows that v′x ≥ v′y for any
x ∈A and y ∈B.

On the other hand, suppose 0 ∈ C. In this case, 0 ∈ ∂C, so that, by the supporting
hyperplane theorem, there exists a non-zero v ∈ Rn such that v′z ≥ 0 for any z ∈ C,
that is, v′x≥ v′y for any x ∈A and y ∈B.

In any case, we have seen that there must exist a non-zero v ∈ Rn such that

v′x≥ v′y for any x ∈A,y ∈B.

Define

cA = inf
x∈A

v′x, and cB = sup
y∈B

v′y.

These values exist in R because A,B are non-empty and the mappings x 7→ v′x on A

and y 7→ v′y on B are bounded below and above, respectively. Choose any y ∈B. Then,
since v′x≥ v′y for any x ∈A, we have

cA = inf
x∈A

v′x≥ v′y.

This in turn holds for an y ∈B, so we have

cA ≥ sup
y∈B

v′y = cB.

Therefore, taking c= cA+cB
2 , for any x ∈A and y ∈B we have

v′x≥ c≥ v′y.

Q.E.D.
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2.2 Convex Functions

In this section we derive some results concerning convex functions. Let E be a non-empty convex
subset of the euclidean space Rn, and f :E→R a real-valued function. We say that f is a convex
function if, for any λ ∈ [0,1] and x,y ∈ E,

f(λ ·x+ (1−λ) ·y)≤ λ ·f(x) + (1−λ) ·f(y).

We say f is strictly convex if the inequality above holds as a strict inequality for λ ∈ (0,1) and
distinct x,y ∈ E. The defining property above can be extended in a natural manner.

Lemma 2.11 Let E be a convex subset of Rn, and f : E→ R a convex function. Then, for
any x1, · · · ,xk ∈ E and λ1, · · · ,λk ∈ R+ such that ∑k

i=1λi = 1,

k∑
i=1

λi ·xi ∈ E

and

f

(
k∑
i=1

λi ·xi

)
≤

k∑
i=1

λi ·f(xi).

Proof) We proceed by induction. We know that the claim holds for k = 2 by the definition of
a convex set and a convex function.

Now suppose that the claim holds for some k ≥ 2. Choose any x1, · · · ,xk+1 ∈ E and
λ1, · · · ,λk+1 ∈R+ such that ∑k+1

i=1 λi = 1. Note that there must exist a 1≤ i≤ k+1 such
that λi < 1; assume without loss of generality that λk+1 < 1. Then, defining γi = λi

1−λk+1

for any 1≤ i≤ k, each γi ≥ 0 with sum

k∑
i=1

γi =
∑k
i=1λi

1−λk+1
= 1.

By the inductive hypothesis,

y =
k∑
i=1

γi ·xi ∈ E

and

f(y)≤
k∑
i=1

γi ·f(xi).
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Since

z :=
k+1∑
i=1

λi ·xi = (1−λk+1) ·y+λk+1 ·xk+1,

where y,xk+1 ∈ E, by the definition of a convex set z ∈ E. Furthermore,

f

(
k+1∑
i=1

λi ·xi

)
= f((1−λk+1) ·y+λk+1 ·xk+1)

≤ (1−λk+1) ·f(y) +λk+1 ·f(xk+1)≤
k+1∑
i=1

λi ·f(xi).

The claim now follows by induction.

Q.E.D.

The set

C =
{ k∑
i=1

λi ·xi | λ1, · · · ,λk ∈ R,
k∑
i=1

λi = 1
}

is called the convex hull generated the set {x1, · · · ,xk}; we have just shown that any convex set
E contains the convex hull generated by finite sets of vectors in E.

2.2.1 Continuity of Convex Functions

It is useful to work with convex functions because they possess certain desirable properties.
One of these properties is continuity. We already showed that convex functions defined on an
open interval in the real line is continuous. Here we extend that result to show convex functions
defined on any arbitrary convex set of euclidean space is also continuous. We start by proving
an auxiliary lemma.

Lemma 2.12 Let E be a convex open subset of Rn, and f :E→R a convex function. Suppose
f is locally bounded, that is, for any x ∈E there exists a neighborhood U of x and some M > 0
such that |f(y)| ≤M for any y ∈ U . Then, f is continuous on E.

Proof) We actually show a stronger result that f is locally Lipschitz at any point on E,
that is, for any x0 ∈ E there exists a neighborhood U of x0 and an L ≥ 0 such that
|f(x)−f(y)|<L · |x−y| for any x,y ∈U . Suppose that f is not locally Lipschitz at some
point x0 ∈ E. Since f is locally bounded at x0, there exists an ε > 0 and M > 0 such
that the open ball B(x0, ε) is contained in E (by the openness of E) and |f(x)| ≤M
for any x ∈ B(x0, ε). f is not locally Lipschitz at x0, so 4M

ε > 0 cannot be a Lipschitz
constant for f on any neighborhood of x0; therefore, there exist x,y ∈ B(x0, ε/2) such
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that

f(y)−f(x) = |f(x)−f(y)| ≥ 4M
ε
· |x−y|;

where we assume f(x)≤ f(y) without loss of generality.

Define the point z = y+ ε
2|x−y| · (y−x), so that |z−y|= ε

2 . Choosing δ = ε
2|x−y| , define

γ : [−δ,δ]→ Rn as

γ(t) = t ·x+ (1− t) ·y = y+ t(x−y)

for any t ∈ [−δ,δ]; for any t ∈ [−δ,δ], γ(t) ∈B(x0, ε), since

|γ(t)−x0| ≤ |x0−y|+ |t||x−y| ≤ |x0−y|+
ε

2 < ε.

This means that γ takes values in E, so that we can define the function g = f ◦ γ :
[−δ,δ]→ R. Note that g is a convex function on [−δ,δ]; for any λ ∈ [0,1] and t1, t2 ∈
[−δ,δ],

g(λ · t1 + (1−λ) · t2) = f (y+ (λ · t1 + (1−λ) · t2) · (x−y))

= f (λ · (y+ t1(x−y)) + (1−λ) · (y+ t2(x−y)))

≤ λ ·f(y+ t1(x−y)) + (1−λ) ·f(y+ t2(x−y))

= λ ·g(t1) + (1−λ) ·g(t2).

Since

g(1) = f(γ(1)) = f(x),

g(0) = f(γ(0)) = f(y),

g(−δ) = f(γ(−δ)) = f(z),

the property of convex functions on the real line shows us that

f(x)−f(y)≥ f(y)−f(z)
δ

= f(z)−f(y)
ε

2|x−y|
.

Multiplying − ε
2|x−y| on both sides now reveals

f(z)−f(y)≥ f(y)−f(x)
|x−y|

· ε2 >
4M
ε
· ε2 = 2M.

However, since z,y ∈B(x0, ε),

|f(z)−f(y)| ≤ |f(z)|+ |f(y)| ≤ 2M
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by the local boundedness condition. This is a contradiction, so f should be locally Lip-
schitz at x0. This holds for any x0 ∈ E, so it follows that f is continuous on E.

Q.E.D.

The continuity of convex functions will be established as soon as we show that any convex
function is locally bounded at each point in its domain. This is exactly what we establish below.

Theorem 2.13 (Local Boundedness and Continuity of Convex Functions)
Let E be a convex open subset of Rn, and f : E → R a convex function. Then, f is locally
bounded at each point x0 ∈ E, and therefore continuous on E.

Proof) Choose any x0 ∈ E. We will construct an open set U containing x0 on which f is
bounded. Since E is open, there exists an ε > 0 such that the ball B(x0,2ε) ⊂ E.
Letting {e1, · · · ,en} be the standard basis of Rn, we define

V =
{ n∑
i=1

[λi · (x0 + ε ·ei) +γi · (x0− ε ·ei)] | λ1, · · · ,λn,γ1, · · · ,γn ∈ R+,
n∑
i=1

(λi+γi) = 1
}
.

Heuristically, V is the convex hull generated by the vertices of the rotated box with
side of length 2ε and center at x0. Since x0 is the center of U (this can be seen by
choosing λi = γi = 1

2n for any 1 ≤ i ≤ n), there exists a δ > 0 such that B(x0, δ) ⊂ V .
We now define

U =B(x0, δ).

We will show that f is bounded on U .

First we show that f is upper bounded on U . For any x∈U , there exist strictly positive
values λ1, · · · ,λn,γ1, · · · ,γn satisfying

n∑
i=1

(λi+γi) = 1

such that

x=
n∑
i=1

[λi · (x0 + ε ·ei) +γi · (x0− ε ·ei)] ,
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so by the convexity of f ,

f(x)≤
n∑
i=1

[λi ·f(x0 + ε ·ei) +γi ·f(x0− ε ·ei)]

≤ max
1≤i≤n

|f(x0± ε ·ei)|=M <+∞,

where M is finite because it is the maximum of a finite number of positive elements.

To show that f is lower bounded on U , choose some x ∈ U and note that

|(2x0−x)−x0|= |x0−x|< δ,

so that 2x0−x ∈ U as well. Since x0 = 1
2x+ 1

2(2x0−x), by convexity we have

f(x0)≤ 1
2f(x) + 1

2f(2x0−x),

which through rearrangement becomes

f(x)≥ 2 ·f(x0)−f(2 ·x0−x).

Since 2 ·x0−x ∈ U , the above result shows us that f(2 ·x0−x) is bounded above by
M , which in turn implies

f(x)≥ 2 ·f(x0)−M.

We have shown that there exists an M > 0 such that, for any x ∈ U ,

2f(x0)−M ≤ f(x)<M.

Thus, f is bounded on the open neighborhood U .

We can construct such a U for any x0 ∈ E, so it follows that f is locally bounded on
each point of E, and in light of the preeding lemma, f is continuous on E.

Q.E.D.
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2.2.2 Subdifferentials and Directional Derivatives

Consider a convex open subset E of Rn. The subdifferential of f at x ∈ E is defined as

∂f(x) = {v ∈ Rn | f(z)≥ f(x) +v′(z−x) ∀z ∈ E},

and elements of ∂f(x) are called subgradients of f at x.
Our goal is to show that f is differentiable at some x ∈E if and only if ∂f(x) is a singleton,

and that this single element equals the gradient of f at x. We first show that ∂f(x) is non-empty
for any x ∈ E.

Theorem 2.14 (Non-emptiness of Subdifferential)
Let E be a non-empty open and convex subset of Rn and f : E → R some convex function on
E. Then, the subgradient ∂f(x) of f is non-empty for any x ∈ Eo.

Proof) Define the epigraph of f as

epi(f) = {(x,q) ∈ E×R | f(x)≤ q},

and denote by epi(f) the closure of the epigraph.

epi(f) is a convex set; for any (x1, q1),(x2, q2)∈ epi(f) and α∈ [0,1], αx1 +(1−α)x2 ∈E
by the convexity of E, and

f(αx1 + (1−α)x2)≤ α ·f(x1) + (1−α) ·f(x2)≤ αq1 + (1−α)q2,

so that (αx1 + (1−α)x2,αq1 + (1−α)q2) ∈ epi(f).

For any x ∈E, (x,f(x)) is contained in the boundary ∂epi(f) of the epigraph. Clearly,

(x,f(x)) ∈ epi(f)⊂ epi(f).

Suppose that (x,f(x)) is contained in the interior epi(f)o of the epigraph. Then, there
exists an ε > 0 such that (y,q) ∈ epi(f) for any (y,q) ∈B((x,f(x)), ε). Choosing

q = f(x)− ε

2 < f(x),

since (x,q) ∈ B((x,f(x)), ε), we must have (x,q) ∈ epi(f); but this is a contradiction,
since q < f(x). Thus, (x,f(x)) /∈ epi(f)o, and we can conclude that

(x,f(x)) ∈ epi(f)\∂epi(f) = ∂epi(f).

Now choose any x ∈ E. We have seen that (x,f(x)) is a boundary point of the non-

80



empty convex set epi(f). Therefore, by the supporting hyperplane theorem for convex
(not necessarily closed) sets, there exists a non-zero vector (v,a) ∈ Rn+1 such that

v′x+a ·f(x)≤ v′z+a ·f(z)

for any z ∈ E, which holds since (z,f(z)) ∈ epi(f) for each z ∈ E. Rearringing terms
shows us that a ·f(z)≥ a ·f(x) +v′(x−z) for any z ∈ E. We now show that a 6= 0.

Suppose a= 0. Then, v would have to be non-zero, since (v,a) ∈Rn+1 is non-zero, and
we have

v′(x−z)≤ 0

for any z ∈E. Because x∈E and E is open, there exists an ε > 0 such that B(x,ε)⊂E.
Assuming vi > 0 for some 1≤ i≤ n without loss of generality, define

z = x− ε ·ei,

where ei is the ith standard basis vector in Rn. Then, z ∈ B(x,ε), so that z ∈ E, and
we have v′z = v′x− ε ·vi < v′x, which contradicts our assumption that v′x≤ v′z for any
z ∈ E. Therefore, it must be the case that a 6= 0, and defining v̂ =− v

a ∈ Rn,

f(z)≥ f(x) + v̂′(z−x)

for any z ∈ E. By definition, v̂ ∈ ∂f(x).

Q.E.D.

We are immediately able to obtain a convenient characterization of convex functions. Key
to this characterizations are affine functions on Rn. We say that a function h : Rn→Rm is affine
if there exist A ∈ Rm×n and a ∈ Rm such that

h(x) =Ax+a

for any x ∈ Rn. Note that, if a= 0, then h is simply linear; the presence of the intercept a that
shifts this linear transformation is some direction is what makes this function affine. We can
actually study affinity in a more abstract setting, like we did with linearity, by utilizing the
concept of affine combinations. In that setting, it turns out that any affine transformation can
be expressed as the sum of a linear transformation plus an intercept.

Theorem 2.15 (Characterization of Convex Functions)
Let E be a non-empty open convex subset of Rn and f :E→R some convex function on E. Let
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Wf be the collection of all real-valued affine functions h on Rn such that h(x) ≤ f(x) for any
x ∈ E. Then, for any x ∈ E,

f(x) = sup
h∈Wf

h(x),

where the supremum is pointwise.

Proof) Choose any x ∈ E. By definition, for any h ∈Wf , we have f(x)≥ h(x), so that

f(x)≥ sup
h∈Wf

h(x).

On the other hand, let v ∈ ∂f(x), where ∂f(x) is non-empty by the preceding theorem.
Then, by definition

f(z)≥ f(x) +v′(z−x)

for any z ∈ E. Defining the affine function φ : Rn→ R as

φ(z) = v′z+ (f(x)−v′x)

for any z ∈ Rn, we can easily see that

f(x) = φ(x) and f(z)≥ φ(z)

for any z ∈ E such that z 6= x. This tells us that φ ∈Wf , and that

f(x) = φ(x)≤ sup
h∈Wf

h(x).

Therefore, we may conclude that

f(x) = sup
h∈Wf

h(x).

Q.E.D.

The functions collected in Wf are referred to as the affine minorants of f .

Given a non-empty open convex subset E of Rn and a convex function f : E→ R, the right
directional derivative of f at x ∈ E in the direction y ∈ Rn is defined as

f ′(x;y) = lim
λ↓0

f(x+λy)−f(x)
λ

,
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granted the limit exists. Note that the value f(x+λy) is well-defined for small λ because E is
open. Fortunately, the following lemma shows that this limit always exists:

Theorem 2.16 (Existence of Right Directional Derivatives)
Let E be a non-empty open convex subset of Rn and f : E → R some convex function on E.
Then, for any x ∈ E, y ∈ Rn and 0< λ1 < λ2 such that x+λ2y ∈ E,

f(x+λ1y)−f(x)
λ1

≤ f(x+λ2y)−f(x)
λ2

.

By implication, the mapping

λ 7→ f(x+λy)−f(x)
λ

is increasing, so that the right directional derivative of f at x in the direction y exists in
[−∞,+∞). In addition, the mapping y 7→ f ′(x; ·) is real-valued and convex on Rn.

Proof) Let x ∈E, y ∈Rn and 0< λ1 < λ2 be chosen as above. Defining t= λ1
λ2
∈ (0,1), the fact

that x+λ2y and x are contained in E implies that

f ((1− t)x+ t(x+λ2y))≤ (1− t)f(x) + t ·f(x+λ2y)

by the convexity of f . Since (1− t)x+ t(x+λ2y) = x+λ1y, we can see that

f(x+λ1y)−f(x)≤ λ1 ·
f(x+λ2y)−f(x)

λ2
,

so that we have the desired inequality.

Define g : Rn→ [−∞,+∞) as

g(y) = f ′(x;y)

for any y ∈ Rn. From the previous theorem, we can see that there exists a subgradient
v ∈ ∂f(x) of f , since x ∈ Eo; by definition,

f(z)≥ f(x) +v′(z−x)

for any z ∈ E. Choose any y ∈ Rn, and note that, for small enough λ > 0, x+λy ∈ E
and therefore

f(x+λy)≥ f(x) +λ
(
v′y
)
.

83



Rearranging terms yields

f(x+λy)−f(x)
λ

≥ v′y.

Now sending λ ↓ 0 on both sides yields

f ′(x;y) = g(y)≥ v′y >−∞,

so that g(y) ∈ R. It can also be seen that this holds for any v ∈ ∂f(x), so

g(y)≥ sup
v∈∂f(x)

v′y.

It remains to be seen that g is convex. Choose any y1,y2 ∈ Rn and α ∈ [0,1]. For any
λ > 0,

f(x+λ(αy1 + (1−α)y2))−f(x)
λ

= f(α(x+λy1) + (1−α)(x+λy2))−f(x)
λ

≤ αf(x+λy1) + (1−α)f(x+λy2)−f(x)
λ

= α · f(x+λy1)−f(x)
λ

+ (1−α)f(x+λy2)−f(x)
λ

by the convexity of f , so taking λ ↓ 0 on both sides yields

f ′(x;αy1 + (1−α)y2)≤ αf ′(x;y1) + (1−α)f ′(x;y2).

This shows us that g is convex.

Q.E.D.

Right directional derivatives are useful because of their peculiar relationship to the subgra-
dients of a convex function:

Theorem 2.17 (Characterization of RDDs with Subgradients)
Let E be a non-empty open convex subset of Rn and f : E → R some convex function on E.
Then, for any x ∈ E and y ∈ Rn,

f ′(x;y) = sup
v∈∂f(x)

v′y.

Proof) Define g : Rn → R as g(y) = f ′(x;y) for any y ∈ Rn and let Wg be the set of affine
minorants of the convex function g. We first show that every h∈Wg is a linear function.

84



Choose any h ∈Wg, and let there exist v ∈ Rn and c ∈ R such that

h(y) = v′y+ c

for all y ∈ Rn. By definition,

g(y)≥ h(y) = v′y+ c

for any y ∈ Rn. Since g(0) = 0, we immediately have c≤ 0.

Note that, for any y ∈ Rn, t > 0 and λ > 0,

f(x+λ(ty))−f(x)
λ

= t · f(x+ (tλ)y)−f(x)
tλ

,

so that, taking λ ↓ 0, we have the equality

f ′(x; ty) = t ·f ′(x;y).

It follows that

t(v′y) + c= v′(ty) + c≤ g(ty) = t ·g(y),

and dividing both sides by t yields

v′y+ c

t
≤ g(y).

Taking t→∞ on both sides, we are left with the expression

v′y ≤ g(y),

and because this holds for any y ∈ Rn,

h(y) = v′y− c≤ v′y ≤ g(y)

for any y ∈ Rn. Therefore, for any h ∈Wg, there exists a linear function φ such that
h≤ φ≤ g on Rn. Since

g(y) = sup
h∈Wg

h(y)

for any y ∈ Rn, defining WL
g as the collection of all linear minorants of g on Rn, we

must have

g(y) = sup
φ∈WL

g

φ(y).

for any y ∈ Rn.
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Choose any φ ∈WL
g ; there exists a v ∈Rn such that φ(y) = v′y and φ(y)≤ g(y) for any

y ∈ Rn. For any z ∈ E, defining y = z−x ∈ Rn,

f(z)−f(x) = f(x+y)−f(x)≥ f ′(x;y) = g(y)≥ φ(y) = v′y = v′(z−x),

where the first inequality holds because f ′(x;y) is the infimum of

f(x+λy)−f(x)
λ

with respect to λ> 0. Therefore, v ∈ ∂f(x) by definition, and this holds for any φ∈WL
g ,

meaning that

f ′(x;y) = g(y) = sup
φ∈WL

g

φ(y) = sup
v∈∂f(x)

v′y,

as desired.

Q.E.D.
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2.2.3 Convex Functions and Differentiability

We are ready to prove the main result of this section:

Theorem 2.18 (Differentiability of Convex Functions)
Let E be a non-empty open convex subset of Rn and f :E→R some convex function on E. f is
differentiable at some x ∈E if and only if ∂f(x) is a singleton. In this case, the gradient ∇f(x)
of f at x is is the only element in ∂f(x).

Proof) Necessity

Suppose that f is differentiable at x. Then,

∇f(x)′y = f ′(x;y) = sup
v∈∂f(x)

v′y

for any y ∈Rn, where the first equality follows from the chain rule and the second from
the prevous theorem. For any v ∈ ∂f(x),

f(z)−f(x)≥ v′(z−x)

for any z ∈ E by definition, so fixing z ∈ E, we have

f(z)−f(x)≥ sup
v∈∂f(x)

v′(z−x) = ∇f(x)′(z−x).

It follows that ∇f(x) ∈ ∂f(x) as well, so that, for any y ∈ Rn,

∇f(x)′y = max
v∈∂f(x)

v′y.

Suppose v ∈ ∂f(x) is a subgradient of f at x that is distinct form ∇f(x). Then,

∇f(x)′y ≥ v′y

for any y ∈ Rn, which implies that ∇f(x) = v. Therefore,

∂f(x) = {∇f(x)},

that is, the subdifferential of f at x consists only of the gradient of f at x.

Sufficiency

Conversely, suppose that the subdifferential of f at x consists of a single vector x∗ ∈Rn.
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The previous theorem immediately tells us that

f ′(x;y) = sup
v∈∂f(x)

v′y = x∗′y

for any y ∈ Rn. Defining g : Rn→ R as

g(y) = f(x+y)−f(x)−x∗′y

for any y ∈ Rn, note that g(0) = 0 and

g(λy)
λ

= f(x+λy)−f(x)
λ

−x∗′y

for any λ > 0. Taking λ ↓ 0 on both sides, by definition

g′(0;y) = f ′(x;y)−x∗′y = 0;

this holds for any y ∈ Rn.

Now fix λ > 0, and define the mapping hλ : Rn→ R as

hλ(y) = g(λy)
λ

for any y ∈ Rn. hλ has the following properties:

– Positivity
For any y ∈ Rn,

hλ(y) = f(x+λy)−f(x)
λ

−x∗′y ≥ f ′(x;y)−x∗′y = 0,

where the inequality follows because f(x+λy)−f(x)
λ is decreasing in λ.

– Convergence to 0
For any y ∈ Rn, hλ(y)→ 0 as λ ↓ 0.

– Convexity
hλ is convex; for any y1,y2 ∈ Rn and α ∈ [0,1],

hλ(αy1 + (1−α)y2) = g(α(λy1) + (1−α)(λy2))
λ

= f(α(x+λy1) + (1−α)(x+λy2))−f(x)
λ

−x∗′ (αy1 + (1−α)y2)

≤ α
(
f(x+λy1)−f(x)

λ
−x∗′y1

)
+ (1−α)

(
f(x+λy2)−f(x)

λ
−x∗′y2

)
= αhλ(y1) + (1−α)hλ(y2).
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Choose any ε > 0. Let B be the unit ball in Rn centered at the origin, and ∆ a convex
hull that contains B generated by the finite set {a1, · · · ,an+1} ⊂ Rn. Then, for any
u ∈B, there exist γi, · · · ,γn+1 ∈ [0,1] such that

u=
n+1∑
i=1

γi ·ai and
n+1∑
i=1

λi = 1.

It follows then that

0≤ g(λu)
λ

= hλ(u)≤
n+1∑
i=1

γi ·hλ(ai)

≤ max
1≤i≤n+1

hλ(ai).

This holds for any u ∈B, so we have

0≤ sup
u∈B

g(λu)
λ
≤ max

1≤i≤n+1
hλ(ai).

Each hλ(ai) goes to 0 as λ ↓ 0, so

lim
h↓0

(
max

1≤i≤n+1
hλ(ai)

)
= 0

as well. By implication, there exists a δ > 0 such that, for any 0< λ < δ,

0≤ sup
u∈B

g(λu)
λ
≤ max

1≤i≤n+1
hλ(ai)< ε

for any u ∈B.

Therefore, for any non-zero y ∈ Rn such that 0< |y|< δ, we have∣∣∣∣g(y)
|y|

∣∣∣∣= g(y)
|y|

= g(|y| ·u)
|y|

< ε,

since u= y
|y| ∈B. Here, δ depends only on ε, so by definition,

lim
|y|→0

∣∣∣∣g(y)
|y|

∣∣∣∣= 0.

In other words,

lim
|y|→0

|f(x+y)−f(x)−x∗′y|
|y|

= 0,

and as such, f is differentiable at x with gradient

∇f(x) = x∗.
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Q.E.D.

Differentiable convex functions can be characterized in terms of their derivatives as follows:

Theorem 2.19 (Properties of Differentiable Convex Functions)
Let E be a non-empty open convex subset of Rn and f : E → R a function on E. Then, the
following hold true:

i) (First Order Characterization)
Let f be continuously differentiable. Then, f is convex if and only if, for any distinct
x,y ∈ E,

f(y)−f(x)≥∇f(x)′(y−x).

Likewise, f is strictly convex if and only if, for any distinct x,y ∈ E, the above inequality
holds strictly.

ii) (Second Order Characterization)
Let f be twice continuously differentiable. Then, f is convex if and only if the Hessian
matrix ∇2f(x) is postive semidefinite (definite) for any x ∈ E.

If ∇2f(x) is positive definite for any x ∈ E, then f is strictly convex, but the converse
does not hold.

Proof) First Order Characterization

Suppose that f is convex. For any x ∈E, since f is differentiable, the previous theorem
shows us that the subdifferential ∂f(x) is a singleton consisting only of the gradient
∇f(x). By definition of the subdifferential, for any y ∈ E we have

f(y)≥ f(x) +∇f(x)′(y−x).

Now let f be strictly convex, and choose any distinct x,y ∈E. As we saw in the section
on direcional derivatives,

lim
λ↓0

f(x+λ(y−x))−f(x)
λ

= ∇f(x)′(y−x).

and since the mapping λ 7→ f(x+λ(y−x))−f(x)
λ is increasing,

lim
λ↓0

f(x+λ(y−x))−f(x)
λ

= inf
λ∈(0,1)

f(x+λ(y−x))−f(x)
λ

.
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Putting the two together, we can see that

∇f(x)′(y−x) = inf
λ∈(0,1)

f(x+λ(y−x))−f(x)
λ

≤ f(x+ 0.5(y−x))−f(x)
0.5

= 2 ·
(
f

(1
2y+ 1

2x
)
−f(x)

)

< 2 ·
(1

2f(y)− 1
2f(x)

)
= f(y)−f(x),

where the strict inequality follows by strict convexity. It follows that

f(y)> f(x) +∇f(x)′(y−x).

Conversely, suppose that

f(y)−f(x)≥∇f(x)′(y−x)

for any distinct x,y ∈ E. Then, for any distinct x,y ∈ E and λ ∈ (0,1),

f(y)−f(λ ·y+ (1−λ) ·x)≥ (1−λ) ·∇f(λ ·y+ (1−λ) ·x)′(y−x)

f(x)−f(λ ·y+ (1−λ) ·x)≥−λ ·∇f(λ ·y+ (1−λ) ·x)′(y−x).

Multiplying λ to the first inequality and (1− λ) to the second inequality and then
summing up yields

λ ·f(y) + (1−λ) ·f(x)−f(λ ·y+ (1−λ) ·x)

≥ λ(1−λ) ·∇f(x+λ · (y−x))′(y−x)−λ(1−λ) ·∇f(x+λ · (y−x))′(y−x) = 0,

so that

f(λ ·y+ (1−λ) ·x)≤ λ ·f(y) + (1−λ) ·f(x).

This holds for any distinct x,y ∈E and λ∈ (0,1), so by definition f is convex. For strict
convexity, just replace all the above inequalities with strict inequalities.

Second Order Characterization
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If f is convex, then by the first order characterization, it satisfies

f(y)≥ f(x) +∇f(x)′(y−x)

for any distinct x,y ∈ E. We will show that ∇2f(x) is positive semidefinite for any
x ∈ E in this case.

Choose any x ∈E and non-zero vector u ∈Rn. By the openness of E, x+ t ·u ∈E for t
in a small enough neighborhood U of 0. Define the function γ : U → R as

γ(t) = ∇f(x+ t ·u)′u=
n∑
j=1

(Djf)(x+ t ·u)uj .

Then, for any t ∈ U ,

γ′(t) =
n∑
j=1

(
n∑
i=1

(Dijf)(x+ t ·u)ui
)
uj

=
n∑
i=1

n∑
j=1

(Dijf)(x+ t ·u)uiuj = u′
[
∇2f(x+ t ·u)

]
u.

It follows that γ′(0) = u′
[
∇2f(x)

]
u.

We now show that γ is increasing on U . For any t1, t2 ∈ U , note that

f(x+ t2 ·u)≥ f(x+ t1 ·u) + (t2− t1) ·γ(t1)

f(x+ t1 ·u)≥ f(x+ t2 ·u)− (t2− t1) ·γ(t2),

so that

γ(t1)≤ f(x+ t2 ·u)−f(x+ t1 ·u)
t2− t1

≤ γ(t2).

Therefore,

γ(t)−γ(0)
t

≥ 0

for any non-zero t ∈ U . It follows that

u′
[
∇2f(x)

]
u= γ′(0) = lim

t→0

γ(t)−γ(0)
t

≥ 0.

This shows us that ∇2f(x) is positive semidefinite.

Conversely, suppose that ∇2f(x) is positive semidefinite for any x ∈ E. Then, by the
multivariate version of Taylor’s theorem, for any distinct x,y ∈E, there exists a t∈ [0,1]
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such that

f(y) = f(x) +∇f(x)′(y−x) + 1
2(y−x)′

[
∇2f(t ·x+ (1− t) ·y)

]
(y−x).

By positive semidefiniteness,

f(y)−f(x)−∇f(x)′(y−x)≥ 0.

This holds for any distinct x,y ∈E, so by the first order characterization, f is convex.

If ∇2f(x) is positive definite for any x ∈E, then we can infer that f is strictly convex
by replacing the inequality above with a strict inequality.

Q.E.D.

We can show that the converse of the second order characterization for strictly convex func-
tions does not hold via a simple counterexample. Consider the function f : R→ R defined as
f(x) = x4 for any x ∈ R. Then, f is strictly convex on R, since it is the composition of two
strictly convex functions (both equal to the quadratic function), but its second derivative at 0
is f ′′(0) = 0.
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2.3 Quasiconcave Functions

A class of functions that are related, but distinct, compared to convex functions is the class of
quasiconcave functions. These kinds of functions are useful because they help simplify optimiza-
tion problems, as we show in the next chapter.

Let E be an open convex subset of Rn. A function f : E→ R is said to be quasiconcave if,
for any a ∈ R, the upper contour set

Ua = {x ∈ E | f(x)≥ a}

is convex. We say that f is strictly quasiconcave if every upper contour set is strictly convex,
that is, for any λ ∈ (0,1) and distinct x,y ∈ Ua,

f(λx+ (1−λ)y)> a.

The following is a popular characterization of (strictly) quasiconcave functions:

Theorem 2.20 (Characterization of Quasiconcave Functions)
Let E be a non-empty open convex subset of Rn and f :E→R a function on E. f is quasiconcave
if and only if, for any λ ∈ (0,1) and distinct x,y ∈ E,

f(λx+ (1−λ)y)≥min(f(x),f(y)).

f is strictly quasiconcave if and only if the above inequality holds as a strict inequality.

Proof) Suppose f is quasiconcave. Choose any λ ∈ (0,1) and distinct x,y ∈E; let f(x)≤ f(y)
without loss of generality. Then,

x,y ∈ Uf(x) = {z ∈ E | f(z)≥ f(x)},

where the upper contour set Uf(x) is convex by definition. It follows that λx+(1−λ)y ∈
Uf(x), that is,

f(λx+ (1−λ)y)≥ f(x) = min(f(x),f(y)).

It is easy to see that the inequality above becomes a strict inequality if f is strictly
quasiconcave.

Conversely, suppose that, for any λ ∈ (0,1) and distinct x,y ∈ E,

f(λx+ (1−λ)y)≥min(f(x),f(y)).

Choose any a ∈ R. If f(x) < a for any x ∈ E, then Ua = ∅ and Ua is trivially convex.
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Suppose that there exists some x∈E such that f(x)≥ a. In this case, Ua is non-empty,
and for any distinct x,y ∈ E and λ ∈ (0,1), we can see that

f(λx+ (1−λ)y)≥min(f(x),f(y))≥ a

because f(x)≥ a and f(y)≥ a by definition. This shows us that λx+(1−λ)y ∈Ua, and
therefore that Ua is convex. As such, the upper contour set for any a∈R is convex, and
by definition f is quasiconcave.

If the inequality

f(λx+ (1−λ)y)≥min(f(x),f(y))

holds strictly, then it is easy to see that

f(λx+ (1−λ)y)>min(f(x),f(y))≥ a

for any λ ∈ (0,1) and distinct x,y ∈ Ua, so that, by definition, f becomes strictly qua-
siconcave.

Q.E.D.

Analogously to convex functions, differentiable quasiconcave functions have convenient prop-
erties involving their first derivatives:

Theorem 2.21 (Proprties of Differentiable Quasiconcave Functions)
Let E be a non-empty open convex subset of Rn and f : E → R a continuously differentiable
and quasiconcave function on E. Then, for any distinct x,y ∈ E such that f(y)≥ f(x),

∇f(x)′(y−x)≥ 0.

If f is instead strictly quasiconcave, then for any distinct x,y ∈ E such that f(y) ≥ f(x), the
above inequality holds strictly.

Proof) Suppose f is continuously differentiable and quasiconcave. Choose any x,y ∈ E such
that f(y)≥ f(x). For any λ ∈ (0,1), we have

f(x+λ(y−x)) = f((1−λ)x+λ ·y)≥ f(x),

so that

f(x+λ(y−x))−f(x)
λ

≥ 0.
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Sending λ→ 0 now shows us that

∇f(x)′(y−x)≥ 0.

Because this holds for any y ∈ Uf(x), geometrically we can think of ∇f(x) as a vector
orthogonal to a hyperplane that separates the convex sets Uf(x) and the point f(x) on
its boundary. An alternate way to phrase this result is that

∇f(x)′y ≥∇f(x)′x

for any y ∈ Uf(x).

Now suppose that f is strictly quasiconcave. Then, because f is quasiconcave, the above
inequality continues to hold. Suppose that the inequality holds as an equality, that is,

∇f(x)′(y−x) = 0.

Intuitively, if ∇f(x)′(y−x) = 0, this means that y is on this separating hyperplane, and
as such, so are all the convex combinations of x and y. Strict quasiconcavity essentially
tells us that any non-trivial convex combination of points x,y in the upper contour
set Uf(x) is contained in the interior of the set; therefore, there should exist an open
ball around the midpoint of x and y contained entirely in Uf(x). However, an open ball
centered on a point on a hyperplane necessarily contains points on either side of the
hyperplane, which results in a contradiction.

Now we formalize this intuition. Define the midpoint of x and y as

z = 1
2x+ 1

2y.

By strict quasiconcavity,

f(z)> f(x),

and by the continuity of f , there exists a δ > 0 such that

|f(w)−f(z)|< f(z)−f(x),

and in particular,

f(w)> f(x)

for any w ∈ E such that |w−z| < δ. In other words, the δ-ball B(z,δ) around z is

96



completely contained in the upper contour set Uf(x). However, z lies on the hyerplane

V = {w ∈ Rn |∇f(x)′w = ∇f(x)′x};

to see this, note that

∇f(x)′z = ∇f(x)′
(
x+ 1

2(y−x)
)

= ∇f(x)′x+ 1
2
(
∇f(x)′(y−x)

)
= ∇f(x)′x,

since ∇f(x)′(y−x) = 0 by assumption. In other words, B(z,δ) is an open ball centered
around a point on the hyperplane V .

It remains to show that B(z,δ) contains a point on the side of the hyperplane that
does not contain Uf(x). To do so, we first note that the gradient ∇f(x) points in the
direction of Uf(x) because ∇f(x) is the direction in which f grows the fastest. As such,
to find our desired point, we need only move in the opposite direction of ∇f(x) from
z. Thus, we define

zε = z− ε ·∇f(x),

where

ε= δ

2(|∇f(x)|+ 1) > 0.

Then,

|z−zε|= ε · |∇f(x)| ≤ δ

2 < δ,

so that zε ∈B(z,δ). At the same time,

∇f(x)′zε = ∇f(x)′z− ε · |f(x)|2 = ∇f(x)′x− ε · |f(x)|2 <∇f(x)′x.

This contradicts the fact that, since zε ∈B(z,δ)⊂ Uf(x), we must have

∇f(x)′zε ≥∇f(x)′x.

It follows that we must have

∇f(x)′(y−x)> 0

for any y ∈ Uf(x) that is distinct from x.

Q.E.D.
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Chapter 3

Static Optimization

3.1 Unconstrained Optimization

Here we deal with problems of the form

max
x∈E

f(x)

for some open subset E of Rn and function f : E → R. We saw with Rolle’s theorem and the
multivariate mean value theorem that, if f is differentiable at some local extremum x∗, one of the
necessary conditions is that the gradient ∇f(x∗) of f at x∗ must be equal to 0. This leads one
to naturally wonder if there exists a set of sufficient conditions involving this gradient condition
that guarantees some point x∗ is a local extremum of f on E. It turns out that Taylor’s theorem
furnishes us with a simple set of sufficient conditions based only on the first two derivatives of
a function.

We first deal with the problem of finding global optimizers, since this turns out to be easier
than finiding sufficient conditions for local optimizers. The formal statement and proof are given
below:

Theorem 3.1 (Necessary and Sufficient Conditions for Unconstrained Global Max-
imization)
Let E be a convex open subset of Rn and f :E→Rn a twice continuously differentiable function
on E. Consider the unconstrained optimization problem

max
x∈E

f(x).

Then, the following hold true:

i) (First Order Necessary Conditions for Global Maximization)
If x∗ ∈ E is a global maximum of f on E, then ∇f(x∗) = 0.

ii) (Second Order Sufficient Conditions for Global Maximization)
Let ∇2f(x) be the Hessian matrix of f at x ∈ E. If ∇f(x∗) = 0 and the Hessian ∇2f(x)
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is negative definite for any x ∈ E, then x∗ is a strict global maximum of f on E.

Proof) Again, the necessary condition follows from theorem 1.8 because any global maximum
is also a local maximum. As such, we once again focus on the second order conditions.

Suppose that ∇f(x∗) = 0 and let ∇2f(x) be negative definite for any x ∈ E. Choose
any x ∈ E such that x 6= x∗. Then, by the multivariate version of Taylor’s theorem,
there exists a t0 ∈ [0,1] such that

f(x) = f(x∗) +∇f(x∗)′(x−x∗) + 1
2(x−x∗)′

[
∇2f(t0 ·x+ (1− t0) ·x∗)

]
(x−x∗)

= f(x∗) + 1
2(x−x∗)′

[
∇2f(t0 ·x+ (1− t0) ·x∗)

]
(x−x∗).

By the negative definiteness of ∇2f(t0 ·x+ (1− t0) ·x∗) and the fact that x−x∗ 6= 0,

f(x)−f(x∗) = 1
2(x−x∗)′

[
∇2f(t0 ·x+ (1− t0) ·x∗)

]
(x−x∗)< 0,

so that f(x)< f(x∗). This holds for any x ∈ E such that x 6= x∗, so by definition x∗ is
a global maximizer of f .

Q.E.D.

Corollary to Theorem 3.1 (Necessary and Sufficient Conditions for Unconstrained
Global Minimization)
Let E be a convex open subset of Rn and f :E→Rn a twice continuously differentiable function
on E. Consider the unconstrained optimization problem

min
x∈E

f(x).

Then, the following hold true:

i) (First Order Necessary Conditions for Global Minimization)
If x∗ ∈ E is a global minimum of f on E, then ∇f(x∗) = 0.

ii) (Second Order Sufficient Conditions for Global Minimization)
Let ∇2f(x) be the Hessian matrix of f at x ∈ E. If ∇f(x∗) = 0 and the Hessian ∇2f(x)
is positive definite for any x ∈ E, then x∗ is a strict global minimum of f on E.

Proof) The problem of minimizing f over E is equivalent to maximizing −f over E. Thus, the
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first order necessary conditions hold without modification, while

∇2f(x) =−∇2(−f)(x)

for any x ∈ E, so that the negative definiteness of the Hessian must become positive
definiteness.

Q.E.D.

Similar conditions can be furnished for unconstrained local optimization. This time, we re-
quire only the negative/positive definiteness of the Hessian matrix at the local extremum, and
we can drop the convexity requirement for the domain.

Theorem 3.2 (Necessary and Sufficient Conditions for Unconstrained Local Max-
imization)
Let E be an open subset of Rn and f : E→ Rn a twice continuously differentiable function on
E. Consider the unconstrained optimization problem

max
x∈E

f(x).

Then, the following hold true:

i) (First Order Necessary Conditions for Local Maximization)
If x∗ ∈ E is a local maximum of f on E, then ∇f(x∗) = 0.

ii) (Second Order Sufficient Conditions for Local Maximization)
Let ∇2f(x) be the Hessian matrix of f at x ∈E. If ∇f(x∗) = 0 and the Hessian ∇2f(x∗)
is negative definite for some x∗ ∈ E, then x∗ is a strict local maximum of f on E.

Proof) The first order necessary conditions follow from theorem 1.8, the multivariate mean
value theorem, so it remains to prove that the second order conditions are actually
sufficient for a strict local maximum.

Let x∗ ∈ E satisfy ∇f(x∗) = 0 and assume ∇2f(x∗) is negative definite. Since E is
open, there exists an η > 0 such that the open ball B(x∗,η) is contained in E; note that
this open ball is convex.

By the multivariate version of Taylor’s theorem, for any x ∈ B(x∗,η) there exists a
t0 ∈ [0,1] such that

f(x) = f(x∗) +∇f(x∗)′(x−x∗) + 1
2(x−x∗)′

[
∇2f(t0 ·x+ (1− t0) ·x∗)

]
(x−x∗),
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so that, in light of the fact that ∇f(x∗) = 0, we have

f(x)−f(x∗) = 1
2(x−x∗)′

[
∇2f(t0 ·x+ (1− t0) ·x∗)

]
(x−x∗).

The proof here is now complicated by the fact that the Hessian is only known to be
negative definite at x∗, not t0 ·x+ (1− t0) ·x∗. We overcome this wrinkle by using the
fact that, for values of x close to x∗, the Hessian at x is also close to the Hessian at x∗

and thus negative definite.

Formally, we proceed via a proof by contradiction. Suppose that x∗ is not a strict local
maximizer of f . Then, there exists a point in every neighborhood of x∗ distinct from
x∗ whose value under f is at least as large as f(x∗). In particular, any k ∈N+, there
exists an xk in the open ball B(x∗,η/k) not equal to x∗ such that f(xk) ≥ f(x∗). As
such, there exists a corresponding sequence {tk}k∈N+ in [0,1] such that

f(xk)−f(x∗) = 1
2(xk−x∗)′

[
∇2f(tk ·xk + (1− tk) ·x∗)

]
(xk−x∗)≥ 0.

Since

|x∗−xk|<
η

k

for any k ∈N+, the sequence {xk}k∈N+ converges to x∗. Defining x̃k = tk ·xk+(1− tk) ·
x∗ = x∗+ tk(xk−x∗) for any k ∈N+, it follows that x̃k→ x∗ as k→∞ as well. Because
the twice continuous differentiability of f implies that the Hessian ∇2f is continuous
on E, this implies that

lim
k→∞

∥∥∥∇2f(x̃k)−∇2f(x∗)
∥∥∥= 0.

Let sk = xk−x∗
|xk−x∗| for any k ∈N+. Then, the above inequality can be rewritten as

|xk−x∗|2

2
(
s′k

[
∇2f(x̃k)

]
sk
)
≥ 0

for any k ∈N+. Since {sk}k∈N+ is a sequence taking values in the unit disk S = {z ∈
Rn | |z| = 1}, which is compact and thus bounded by the Heine-Borel theorem, by
the Bolzano-Weierstrass theorem we can conclude that {sk}k∈N+ admits a convergent
sequence with limit s ∈ S. For notational simplicity, assume that {sk}k∈N+ is itself this
subsequence. Therefore,

lim
k→∞

s′k

[
∇2f(x̃k)

]
sk = s′

[
∇2f(x∗)

]
s < 0,

where the last equality holds by the negative definiteness of ∇2f(x∗) and the fact that
s 6= 0. It follows from the definition of convergence that there exists an N ∈ N+ such
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that
∣∣∣s′k [∇2f(x̃k)

]
sk−s′

[
∇2f(x∗)

]
s
∣∣∣<−s′ [∇2f(x∗)

]
s,

and in particular

s′k

[
∇2f(x̃k)

]
sk < 0

for any k ≥N . Since |xN −x∗|> 0 by the distinctness of xk and x∗, this implies that

|xN −x∗|2

2
(
s′N

[
∇2f(x̃N )

]
sN
)
< 0,

which contradicts our initial assumption. Thus, x∗ is a strict local maximizer of f .

Q.E.D.

Corollary to Theorem 3.2 (Necessary and Sufficient Conditions for Unconstrained
Local Minimization)
Let E be an open subset of Rn and f : E→ Rn a twice continuously differentiable function on
E. Consider the unconstrained optimization problem

min
x∈E

f(x).

Then, the following hold true:

i) (First Order Necessary Conditions for Local Minimization)
If x∗ ∈ E is a local minimum of f on E, then ∇f(x∗) = 0.

ii) (Second Order Sufficient Conditions for Local Minimization)
Let ∇2f(x) be the Hessian matrix of f at x ∈E. If ∇f(x∗) = 0 and the Hessian ∇2f(x∗)
is postive definite for some x∗ ∈ E, then x∗ is a strict local minimum of f on E.

Proof) Again, we change the problem to one of maximizing −f . Then, the first order neces-
sary conditions are unchanged, and we require a positive definite ∇2f(x∗) instead of a
negative definite Hessian at x∗.

Q.E.D.
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3.2 Constrained Optimization

Now we move onto optimization problems of the following form:

max
x∈E

f(x)

subject to g1(x)≥ 0, · · · ,gk(x)≥ 0,

where f,g1, · · · ,gk are real valued functions defined on an open subset E of Rn. We say that
x∗ ∈E is a local maximizer (minimizer) of f subject to the constraints g1(x)≥ 0, · · · ,gk(x)≥ 0 if
there exists a δ > 0 such that, for any x∈B(x∗, δ) such that g1(x)≥ 0, · · · ,gk(x)≥ 0, f(x)≤ f(x∗)
(f(x)≥ f(x∗)). We first present the Karusch-Kuhn-Tucker (KKT) theorem, which provides first
order necessary conditions for a point on E to be a local maximum to the constrained optimiza-
tion problems with inequality constraints.

Theorem 3.3 (KKT First Order Conditions for Constrained Maximization)
Let E be an open subset of Rn and f,g1, · · · ,gk : E → Rn continuously differentiable functions
on E. Suppose x∗ ∈ E is a local maximum of the constrained optimization problem

max
x∈E

f(x)

subject to g1(x)≥ 0, · · · ,gk(x)≥ 0.

Suppose that the first m ≤ k constraints are binding at x∗, that is, g1(x∗) = 0, · · · ,gm(x∗) =
0,gm+1(x∗) > 0, · · · ,gk(x∗) > 0, and that the gradients ∇g1(x∗), · · · ,∇gm(x∗) ∈ Rn are linearly
independent. Then, the following first order conditions hold:

i) (Stationarity)
There exist λ∗1, · · · ,λ∗k ∈ R such that

∇f(x∗) +
k∑
i=1

λ∗i∇g(x∗) = 0.

ii) (Primal Feasibility)
For any 1≤ i≤ k, gi(x∗)≥ 0.

iii) (Dual Feasibility)
For any 1≤ i≤ k, λ∗i ≥ 0.

iv) (Complementary Slackness)
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For any 1≤ i≤ k,

λ∗i ·gi(x∗) = 0.

Proof) The proof is long, complicated and oftentimes not very intuitive, so we present here
some intuition for the proof before delving into the details. Focusing on the simplest
case of only one biniding inequality constraint, what we want to do is to show that the
gradients of the objective function f and the constraint g at the maximum is inversely
proportional to each other, so that they go in opposite directions.

To this end, we think of vectors “tangent” to the constraint set at x∗. What we mean
by these are the directions of entry of curves that enter the constraint set through x∗,
where g(x∗) = 0. Let v be one such vector. Then, it should either be orthogonal to the
gradient ∇g(x∗), in which case v are tangent in the original sense of the word, so that
the curve move across the surface of the constraint set, or it should point roughly in
the direction of ∇g(x∗), so that the value of g increases from 0 and the constraint is
satisfied, that is, so that the curve enters into the interior of the constraint set. This
condition can be written as ∇g(x∗)′v ≥ 0. On the other hand, the gradient ∇f(x∗),
which represents the direction in which f grows the fastest, should point away from any
vector v tangent to the constraint set. This is because moving roughly in the direction
of v means returning to the constraint set, on which f cannot be increased beyond
f(x∗). This condition is written as ∇f(x∗)′v ≤ 0.

In short, the gradient ∇f(x∗) should not point in the same direction as any vector v
entering the constraint set through x∗, and that v should instead point in the direction
of the constraint set, or ∇g(x∗). Thus, any vector whose angle with ∇g(x∗) is acute
should form an obtuse angle with ∇f(x∗) and vice versa, which reveals that ∇g(x∗)
and ∇f(x∗) should ultimately point in the opposite direction.

In the proof sketch above there are three main steps. First, we need to show that any
tangent vector v actually does point roughly in the direction of ∇g(x∗) in the sense that
∇g(x∗)′v ≥ 0. Similarly, we need to show that any tangent vector v should point away
from ∇f(x∗) in the sense that ∇f(x∗)′v ≤ 0. Finally, we must prove that these con-
ditions imply the stationarity condition, that is, the inverse proportionality of ∇g(x∗)
and ∇f(x∗). The proof below is accordingly split into parts corresponding to these
three steps.

Step 0: Notations and Preliminary Definitions
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Since x∗ is a local maximum for the constrained maximization problem above, by
definition there exists a δ > 0 such that f(x)≤ f(x∗) for any x ∈B(x∗, δ) that satisfies
the inequality constraints. By assumption, only the first m constraints are binding at
x∗. This implies that we can view x∗ as a local maximum of the problem

max
x∈E

f(x)

subject to g1(x)≥ 0, · · · ,gm(x)≥ 0,

that is, we can ignore the non-binding constraints. To see this, note that, because
gm+1, · · · ,gk are continuous functions that are all positive at x∗, there exists an 0<η < δ
such that, onB(x∗,η), gm+1(x)> 0, · · · ,gk(x)> 0. As such, for any x∈B(x∗,η) such that
g1(x)≥ 0, · · · ,gm(x)≥ 0, because x is contained in B(x∗, δ), we must have f(x)≤ f(x∗).

Given the above modification of the problem, define the function g : E → Rm as g =
(g1, · · · ,gm). By the continuous differentiability of g1, · · · ,gm, g is continuously differen-
tiable. The set of all points in the neighborhood B(x∗,η) that satisfy the constraints is
denoted by

L= {x ∈B(x∗,η) | g(x)≥ 0};

notice how L becomes the level surface of all points satisfying g(x) = 0 if the constraints
are equalities. Now we can say that f(x)≤ f(x∗) for any x ∈ L. In addition, L is non-
empty because x∗ ∈ L by assumption.

Define the set T as the set of all v ∈ Rn for which there exist a neighborhood U of 0
and a continuously differentiable function γ : U → Rn such that:

– γ(t) ∈B(x∗,η) for any t ∈ U

– γ(t) ∈ L for any t≥ 0

– γ(0) = x∗

– γ′(0) = v.

T is our set of all directions of entry of continuously differentiable curves that enter L
through x∗.

Define the matrix

A= g′(x∗) =


∇g1(x∗)′

...
∇gm(x∗)′

 ∈ Rm×n,
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which by assumption has linearly independent rows. By implication, m ≤ n, and we
define

N = {x ∈ Rn |Ax≥ 0}.

N is our set of all vectors that point roughly in the same direction as the gradient of g
at x∗.

Step 1: Tangent vectors point in the direction of g′(x∗)

Our goal in this section is to show that T =N .

T ⊂N follows easily. Suppose that v ∈ T , so that there exists some neighborhood U of
0 and continuously differentiable curve γ : U → B(x∗,η) on L for any t ≥ 0 such that
γ(0) = x∗ and γ′(0) = v. Since g(γ(t)) ≥ 0 for any t ≥ 0, note that, for any t > 0 and
1≤ i≤m,

gi(γ(t))−gi(γ(0))
t

= gi(γ(t))−gi(x∗)
t

= gi(γ(t))
t

≥ 0

because x∗ satisfies the first m constraints as equalities. Therefore, taking t ↓ 0 shows
us, by the chain rule, that

0≤ lim
t↓0

gi(γ(t))
t

= ∇gi(x∗)′γ′(0) = ∇gi(x∗)′v.

This holds for any 1≤ i≤m, so Av ≥ 0 and v ∈N .

Proving the reverse inclusion is trickier, and requires the use of the implicit function
theorem. The rows of A comprise a linearly independent subset of Rn. There exist
vectors z1, · · · ,zn−m in Rn such that {∇g1(x∗), · · · ,∇gm(x∗),z1, · · · ,zn−m} becomes a
basis of Rn; let the matrix

B =


A︸︷︷︸
m×n

Z︸︷︷︸
(n−m)×n


be the non-singular n×n matrix constructed by putting its rows equal to the above
basis.

Now choose some v ∈N , so that Av ≥ 0. We define the function G : R×B(x∗,η)→ R
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as follows:

G(t,x) =

 g(x)− t ·Av
Z(x−x∗− t ·v)


for any (t,x) ∈ R×B(x∗,η). Being the Cartesian product of open sets, R×B(x∗,η)
is an open subset of R1+n, and G is continuously differentiable on R×B(x∗,η) with
derivative

G′(t,x) =

−Av g′(x)
−Zv Z


for any (t,x) ∈R×B(x∗,η). In addition, G(0,x∗) = 0, and the rightmost n×n block of
the derivative

G′(0,x∗) =

−Av A

−Zv Z


is simply B and therefore invertible. By the implicit function theorem, there then
exist an open set U ⊂ R1+n containing (0,x∗), an open set W ⊂ R containing 0, and a
continuously differentiable mapping γ :W → Rn satisfying

(t,γ(t)) ∈ U ⊂ R×B(x∗,η) and G(t,γ(t)) = 0

for any t ∈W , with γ(0) = x∗. Since this means that

G(t,γ(t)) =

 g(γ(t))− t ·Av
Z (γ(t)−x∗− t ·v)

= 0,

we have g(γ(t)) = t ·Av ≥ 0 for any t ∈W such that t ≥ 0, so that γ(t) ∈ L for any
non-negative t ∈W . Finally,

γ′(0) =−B−1

−Av
−Zv

= v.

Therefore, we have found a neighborhood W around 0 and a continuously differentiable
function γ :W →Rn such that γ(t) ∈ L for any t≥ 0, γ(0) = x∗ and γ′(0) = v. By defi-
nition, v ∈ T , and this proves that N ⊂ T .

Step 2: Tangent vectors point away from ∇f(x∗)

Here we formulate the result for vectors in N , because the previous step revealed that
N = T . Let v ∈N , and let γ :U →B(x∗,η) be the associated continuously differentiable
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curves such that γ(t) ∈ L for any t≥ 0, γ(0) = x∗ and γ′(0) = v. Define k : U → R as

k(t) = f(γ(t))

for any t ∈ U . Then, by the chain rule, k is continuously differentiable on U with
derivative

k′(t) = ∇f(γ(t))′γ′(t)

for any t ∈ U . In addition, for any t≥ 0, since γ(t) satisfies the constraints,

f(γ(t))≤ f(x∗) = f(γ(0)).

It follows that

k(t)−k(0)
t

= f(γ(t))−f(γ(0))
t

≤ 0

for any t > 0, so that

0≥ lim
t↓0

k(t)−k(0)
t

= k′(0) = ∇f(x∗)′v.

Therefore, we have established that ∇f(x∗)′v ≤ 0 for any v ∈N .

Step 3: Completion of the Proof

Proving the remainder of the KKT theorem reduces to a simple application of Farkas’
lemma. Farkas’ lemma tells us that:

1. Either: The system A′λ=−∇f(x∗) has a solution λ ∈ Rm+ , or

2. Or: There exists some v ∈ Rn such that Av ≥ 0 and −∇f(x∗)′v < 0.

Suppose there exists a v ∈ Rn such that Av ≥ 0 and −∇f(x∗)′v < 0. Then, v ∈ T ,
which implies v ∈N . By the result we showed earlier, we must have −∇f(x∗)′v ≥ 0, a
contradiction. Therefore, there must exist some λ∗ = (λ∗1, · · · ,λ∗m) ∈ Rm+ such that

−∇f(x∗) =A′λ∗ =
m∑
i=1

λ∗i ·∇gi(x∗),

or, by rearranging terms,

∇f(x∗) +
m∑
i=1

λ∗i ·∇gi(x∗) = 0.

We have therefore proved stationarity and dual feasbility. The complementary slackness

108



condition follows by putting λ∗i = 0 for m+ 1≤ i≤ k. Then,

λ∗i ·gi(x∗) = 0

for any 1≤ i≤ k, and

∇f(x∗) +
k∑
i=1

λ∗i ·∇gi(x∗) = 0.

Q.E.D.

Corollary to Theorem 3.3 (KKT First Order Conditions for Constrained Mini-
mization)
Let E be an open subset of Rn and f,g1, · · · ,gk : E → Rn continuously differentiable functions
on E. Suppose x∗ ∈ E is a local maximum of the constrained optimization problem

min
x∈E

f(x)

subject to g1(x)≤ 0, · · · ,gk(x)≤ 0.

Suppose that the first m ≤ k constraints are binding at x∗, that is, g1(x∗) = 0, · · · ,gm(x∗) =
0,gm+1(x∗) < 0, · · · ,gk(x∗) < 0, and that the gradients ∇g1(x∗), · · · ,∇gm(x∗) ∈ Rn are linearly
independent. Then, the following first order conditions hold:

i) (Stationarity)
There exist λ∗1, · · · ,λ∗k ∈ R such that

∇f(x∗) +
k∑
i=1

λ∗i∇g(x∗) = 0.

ii) (Primal Feasibility)
For any 1≤ i≤ k, gi(x∗)≤ 0.

iii) (Dual Feasibility)
For any 1≤ i≤ k, λ∗i ≥ 0.

iv) (Complementary Slackness)
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For any 1≤ i≤ k,

λ∗i ·gi(x∗) = 0.

Proof) Once again we re-formulate the problem as one in which we maximize −f subject
to −g1(x) ≥ 0, · · · ,−gk(x) ≥ 0. Then, by the preceding theorem, if x∗ is a local maxi-
mizer of this problem (thus a local minimizer of the original problem), then there exist
λ∗1, · · · ,λ∗k ≥ 0 such that

λ∗i gi(x∗) = 0

for 1≤ i≤ k and

−∇f(x∗)−
k∑
i=1

λ∗i ·∇g(x
∗) = 0.

The last equation can be expressed as

∇f(x∗) +
k∑
i=1

λ∗i ·∇g(x
∗) = 0,

so we can see that the KKT conditions above are satisfied. Note how the direction of
the inequalities in the inequality constraints must be reversed for us to obtain the same
KKT conditions as in the maximization case.

Q.E.D.

The values λ∗1, · · · ,λ∗k ≥ 0 derived above are called the Lagrange multipliers for the associated
constrained optimization problem, and the requirement that the gradients of the binding con-
straints at x∗ must be linearly independent is called the Non-degenerate Constraint Qualification
(NDCQ). There are also other kinds of constraint qualifications that allow the above conditions
to be derived as necessary conditions of local optimization.

What the KKT theorem tells us is that, given any constrained maximization problem

max
x∈E

f(x)

subject to g1(x)≥ 0, · · · ,gk(x)≥ 0,

we can transform it into one in which we “maximize” the Lagrangian function defined as

L(x,λ) = f(x) +
k∑
i=1

λi ·gi(x)
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for any x ∈ E and λ ∈ Rk+. This is because, given a local maximizer x∗ ∈ E and associated
Lagrange multipliers λ∗ ∈ Rk+, the first order necessary conditions for the unconstrained maxi-
mization of the Lagrangian are

∂L(x∗,λ∗)
∂x

= ∇f(x∗) +
k∑
i=1

λ∗i ·∇gi(x∗) = 0,

which are exactly the KKT stationarity conditions derived above.
As with unconstrained optimization, we can provide second order sufficient conditions for

local maximization in terms of the Hessian of the objective function. We state and prove the
formal statement below:

Theorem 3.4 (KKT Second Order Conditions for Constrained Local Maximiza-
tion)
Let E be an open subset of Rn and f,g1, · · · ,gk :E→Rn twice continuously differentiable func-
tions on E. Suppose x∗ ∈ E satisfies the following conditions:

i) There exist λ∗1, · · · ,λ∗k ∈ R such that

∇f(x∗) +
k∑
i=1

λ∗i∇g(x∗) = 0.

ii) g1(x∗) = 0, · · · ,gl(x∗) = 0,gl+1(x∗)> 0, · · · ,gk(x∗)> 0.

iii) For any 1≤ i≤ k, λ∗i ≥ 0 and λ∗i ·gi(x∗) = 0.

iv) Defining the set N ⊂ Rn as

N = {v ∈ Rn | ∀1≤ i≤ l, ∇gi(x∗)′v ≥ 0},

for any non-zero v ∈N

v′
[
∇2f(x∗) +

m∑
i=1

λ∗i ·
(
∇2gi(x∗)

)]
v < 0.

Then, x∗ is a strict local maximizer of the problem

max
x∈E

f(x)

subject to g1(x)≥ 0, · · · ,gk(x)≥ 0.

Proof) The proof proceeds in a very similar fashion to the proof of the second order sufficient
conditions for unconstrained maximization.
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Define the function F : E→ R as

F (x) = f(x) +
k∑
i=1

λ∗i ·gi(x)

for any x ∈E. Then, note that the sufficient conditions above require that ∇F (x∗) = 0
and

v′
[
∇2F (x∗)

]
v < 0

for any v ∈ N . These are exactly the conditions for x∗ to be a strict local maximum
of the unconstrained maximization problem with objective function F , except for the
weaker requirement that ∇2F (x∗) only has to be negative definite for vectors v ∈ N .
Thus, we can proceed in much the same way.

Since E is open, there exists an open ball B(x∗,η) centered in x∗ such that B(x∗,η)⊂E.
Note that this ball is both open and convex, so that for any x∈B(x∗,η), the multivariate
version of Taylor’s theorem applied to F tells us that

F (x) = F (x∗) +∇F (x∗)′(x−x∗) + 1
2(x−x∗)′

[
∇2F (x̃)

]
(x−x∗)

= F (x∗) + 1
2(x−x∗)′

[
∇2F (x̃)

]
(x−x∗)

for some convex combination x̃ of x and x∗, where we used the fact that ∇F (x∗) = 0.
Using the fact that λ∗i ·g1(x∗) = 0 for any 1≤ i≤ k, we can write the above as

f(x)−f(x∗) =−
k∑
i=1

λ∗i ·gi(x) + 1
2(x−x∗)′

[
∇2F (x̃)

]
(x−x∗).

As we did earlier, suppose that x∗ is not a strict local maximum of the constrained
optimization problem above. Then, for any m ∈ N+ there exists an xm ∈ B(x∗,η/m)
distinct from x∗ such that g1(xm) ≥ 0, · · · ,gk(xm) ≥ 0 and f(xm) ≥ f(x∗). Let x̃m be
the convex combination of xm and x∗ that satisfies the equation

f(xm)−f(x∗) =−
k∑
i=1

λ∗i ·gi(xm) + 1
2(xm−x∗)′

[
∇2F (x̃m)

]
(xm−x∗)

for any m ∈N+. Since the left hand side is non-negative,

1
2(xm−x∗)′

[
∇2F (x̃m)

]
(xm−x∗)≥

k∑
i=1

λ∗i ·gi(xm),
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and since λ∗i ≥ 0 and gi(xm)≥ 0 for 1≤ i≤ k, we have

1
2(xm−x∗)′

[
∇2F (x̃m)

]
(xm−x∗)≥ 0.

It remains to show that this results in a contradiction.

By design, xm→ x∗ as m→∞, so x̃m→ x∗ as m→∞ as well. The continuous differ-
entiability of f and each of the constraint functions g1, · · · ,gk now implies that

lim
m→∞

∥∥∥∇2F (x̃m)−∇2F (x∗)
∥∥∥= 0

as well. For any m ∈N+, define vm = xm−x∗
|xm−x∗| ; we can now write

|xm−x∗|2

2 v′m

[
∇2F (x̃m)

]
vm ≥ 0.

Since {vm}m∈N+ is a sequence of vectors in the unit disk on Rn, which is compact,
by the Heine-Borel and Bolzano-Weierstrass theorems there exists a convergent sub-
seuqnece of {vm}m∈N+ ; for notational simplicity, take this subsequence to be {vm}m∈N+

itself. Denote the limit of this subsequence as v ∈Rn, and by the closedness of the unit
disk, |v|= 1.

We will now show that ∇gi(x∗)′v ≥ 0 for 1≤ i≤ l. Note that, for any m ∈N+, we can
write

gi(xm) = gi(x∗+ (xm−x∗)) = gi(x∗+ |xm−x∗| ·vm).

By the multivariate mean value theorem, there exists a tm ∈ [0,1] such that

gi(xm)−gi(x∗) = |xm−x∗| ·
[
∇gi(x∗+ tm · |xm−x∗|vm)′vm

]
,

or

gi(xm)−gi(x∗)
|xm−x∗|

= ∇gi(x∗+ tm · |xm−x∗|vm)′vm.

Since {tm}m∈N+ takes values in the compact set [0,1], by the Heine-Borel and Bolzano-
Weierstrass theorems again, there exists a subsequence of {tm}m∈N+ that converges
to some point t ∈ [0,1]; once again, we let this subsequence be {tm}m∈N+ itself. It is
important not to let the notational simplicity fool us; the sequences we discuss and the
limits we take going forward run along two nested subsequences of N+.

Taking m→∞ on both sides, we can now see, by the continuity of the gradient of gi,
that

lim
m→∞

gi(xm)−gi(x∗)
|xm−x∗|

= ∇gi(x∗)′v.
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On the other hand, for any m ∈N+, we know

gi(xm)−gi(x∗)
|xm−x∗|

= gi(xm)
|xm−x∗|

≥ 0

because xm satisfies the constraints and gi(x∗) = 0 for the first l binding constraints.
Putting these two observations together, we obtain the inequality

∇gi(x∗)′v = lim
m→∞

gi(xm)−gi(x∗)
|xm−x∗|

≥ 0.

This shows us that v ∈N , and by assumption,

v′
[
∇2F (x∗)

]
v < 0.

Since v′m
[
∇2F (x̃m)

]
vm→ v′

[
∇2F (x∗)

]
v as m→∞, there exists an N0 ∈N+ such that

∣∣∣v′m [∇2F (x̃m)
]
vm−v′

[
∇2F (x∗)

]
v
∣∣∣<−v′ [∇2F (x∗)

]
v,

and in particular,

v′m

[
∇2F (x̃m)

]
vm < 0,

for any m≥N0. Since |xm−x∗|> 0 for any m ∈N+, we now have

|xm−x∗|2

2 v′m

[
∇2F (x̃m)

]
vm < 0

for any m ≥ N0, which contradicts the result derived above. Therefore, x∗ is a strict
local maximizer of the constrained optimization problem at hand.

Q.E.D.

Corollary to Theorem 3.4 (KKT Second Order Conditions for Constrained Local
Minimization)
Let E be an open subset of Rn and f,g1, · · · ,gk : E → Rn twice continuously differentiable
functions on E. Suppose x∗ ∈ E satisfies the following conditions:

i) There exist λ∗1, · · · ,λ∗k ∈ R such that

∇f(x∗) +
k∑
i=1

λ∗i∇g(x∗) = 0.

ii) g1(x∗) = 0, · · · ,gl(x∗) = 0,gl+1(x∗)< 0, · · · ,gk(x∗)< 0.
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iii) For any 1≤ i≤ k, λ∗i ≥ 0 and λ∗i ·gi(x∗) = 0.

iv) Defining the set N ⊂ Rn as

N = {v ∈ Rn | ∀1≤ i≤ l, ∇gi(x∗)′v ≤ 0},

for any non-zero v ∈N

v′
[
∇2f(x∗) +

m∑
i=1

λ∗i ·
(
∇2gi(x∗)

)]
v < 0.

Then, x∗ is a strict local minimizer of the problem

max
x∈E

f(x)

subject to g1(x)≤ 0, · · · ,gk(x)≤ 0.

Proof) Suppose the above conditions hold. Reformulating the conditions in terms of −f and
−g1, · · · ,−gk, what we know is that there exist λ∗1, · · · ,λ∗k ≥ 0 such that

−∇f(x∗)−
k∑
i=1

λ∗i∇g(x∗) = 0

and

v′
[
−∇2f(x∗)−

m∑
i=1

λ∗i ·
(
∇2gi(x∗)

)]
v < 0

for any v ∈Rn such that −∇gi(x∗)′v≥ 0 for 1≤ i≤ l, and that x∗ also satisfies −gi(x∗)≥
0 for 1 ≤ i ≤ k, where the first l constraints are binding and the rest non-binding. By
the preceding theorem x∗ is a strict local maximizer of the problem

max
x∈E

−f(x)

subject to −g1(x)≥ 0, · · · ,−gk(x)≥ 0.

This essentially means that x∗ is a strict local minimizer of the original minimization
problem.

Q.E.D.
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Of special interest is the case where the objective function is strictly quasiconcave. In this
case, the first order conditions are also sufficient.

Theorem 3.5 (Sufficiency of KKT First Order Conditions under Quasiconcavity)
Let E be an open convex subset of Rn and f,g1, · · · ,gk : E → Rn continuously differentiable
functions on E. Suppose f is a strictly quasiconcave function and g1, · · · ,gk concave functions.
Let the first m≤ k constraints be binding and the rest non-binding at some x∗ ∈E, and assume
that ∇g1(x∗), · · · ,∇gm(x∗)∈Rn are linearly independent. Then, x∗ ∈E is a strict global solution
to the problem

max
x∈E

f(x)

subject to g1(x)≥ 0, · · · ,gk(x)≥ 0

if and only if there exist λ∗1, · · · ,λ∗k ≥ 0 such that

∇f(x∗) +
k∑
i=1

λ∗i ·∇gi(x∗) = 0,

where λ∗i ·gi(x∗) = 0 for any 1≤ i≤ k.

Proof) These are just the KKT conditions, so necessity follows from theorem 3.3 and the fact
that any strict global maximizer is also a strict local maximizer.

To show sufficiency, suppose that x∗ ∈E satisfies the KKT conditions, but that it is not
a strict global maximizer. There then exists an x̂ ∈E such that g1(x̂)≥ 0, · · · ,gk(x̂)≥ 0
and f(x̂)> f(x∗). By the strict quasiconcavity of f , this implies that

∇f(x∗)′(x̂−x∗)> 0.

By the stationarity condition,

∇f(x∗) =−
k∑
i=1

λ∗i ·∇gi(x∗) =−
m∑
i=1

λ∗i ·∇gi(x∗),

where we used complementary slackness to justify the second equality, and therefore
we have

m∑
i=1

λ∗i ·∇gi(x∗)′ (x̂−x∗)< 0.

Since each gi is concave (−gi is convex), by the first order characterization of convex
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functions we have

gi(x̂)−gi(x∗)≤∇gi(x∗)′(x̂−x∗)

for 1≤ i≤m. Since gi(x∗) = 0 for any 1≤ i≤m, this tells us that

∇gi(x∗)′(x̂−x∗)≥ gi(x̂)≥ 0

for each 1 ≤ i ≤m. This result, combined with the dual feasibility condition λ∗i ≥ 0,
shows us that

0>
m∑
i=1

λ∗i ·∇gi(x∗)′ (x̂−x∗)≥ 0,

a contradiction. Therefore, x∗ is the strict global solution to the constrained maximiza-
tion problem in question.

Q.E.D.
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3.3 The Envelope Theorem

Often the functions involved in a constrained optimization problem involve parameters of inter-
est. Think, for example, of income and commodity prices in a utility maximization problem. In
this case, we want to find out how our objective function responds to changes in these param-
eters. The envelope theorem provides a useful simplification of this problem that reduces total
derivatives to partial derivatives.

Theorem 3.6 (The Envelope Theorem)
Let E be an open subset of Rn, Θ an open subset of Rm, and f,g1, · · · ,gk :E×Θ→Rn that are
continuously differentiable on E×Θ. Let the function x∗ : Θ→ E be defined so that x∗(θ) is a
global solution to the problem

max
x∈E

f(x,θ)

subject to g1(x,θ)≥ 0, · · · ,gk(x,θ)≥ 0

for any θ ∈Θ. Assume that the NDCQs are satisfied at each x∗(θ), and let λ∗ : Θ→Rk be defined
so that, for any θ ∈Θ, λ∗(θ) are the set of Lagrange multipliers corresponding to the maximizer
x∗(θ). Suppose x∗ and λ∗ are both differentiable at some θ0 ∈Θ.

Then, the value function V : Θ→ R defined as

V (θ) = f(x∗(θ),θ)

for any θ ∈Θ is differentiable at θ0 with gradient

∇V (θ0) = ∇θf(x∗(θ0),θ0) +
k∑
i=1

λ∗i (θ0) ·∇θg(x∗(θ0),θ0).

Proof) The notations ∇xf(x,θ) and ∇θf(x,θ) be defined as

∇xf(x,θ) =


∂f(x,θ))
∂x1...

∂f(x,θ))
∂xn

 , ∇θf(x,θ) =


∂f(x,θ))
∂θ1...

∂f(x,θ))
∂θn


for any (x,θ) ∈ E×Θ. We define ∇xgi(x,θ) and ∇θgi(x,θ) in the same manner for
1≤ i≤ k.

By definition, V (θ) = f(x∗(θ),θ) for any θ ∈ Θ. By the differentiability of f on E×Θ
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and x∗ at θ0, V is differentiable at θ0 with derivative given as

V ′(θ0) =
(
∇xf(x∗(θ0),θ0)′ ∇θf(x∗(θ0),θ0)′

)Dx∗(θ0)
Im


= ∇xf(x∗(θ0),θ0)′Dx∗(θ0) +∇θf(x∗(θ0),θ0)′,

where

Dx∗(θ0) =


(D1x

∗
1)(θ0) · · · (Dmx

∗
1)(θ0)

... . . . ...
(D1x

∗
n)(θ0) · · · (Dmx

∗
n)(θ0)

=


∇x∗1(θ0)′

...
∇x∗n(θ0)′

 .

It follows that

∇V (θ0) =
n∑
j=1

∂f(x∗(θ0),θ0)
∂xj

∇x∗j (θ0) +∇θf(x∗(θ0),θ0).

For any θ ∈Θ, by the stationarity condition,

∇xf(x∗(θ),θ) +
k∑
i=1

λ∗i (θ) ·∇xgi(x∗(θ),θ) = 0,

by the primal feasibility condition, gi(x∗(θ),θ) ≥ 0 for 1 ≤ i ≤ k, and by the comple-
mentary slackeness condition,

λ∗i (θ) ·gi(x∗(θ),θ) = 0

for 1≤ i≤ k. Since

k∑
i=1

λ∗i (θ) ·gi(x∗(θ),θ) = 0

on Θ, differentiating both sides by θ at θ0 yields

0 =
k∑
i=1

∇λ∗i (θ0) ·gi(x∗(θ0),θ0)

+
k∑
i=1

λ∗i (θ0)

 n∑
j=1

∂gi(x∗(θ0),θ0)
∂xj

∇x∗j (θ0) +∇θgi(x∗(θ0),θ0)

 .
For any 1≤ i≤ k, if the ith constraint is binding under θ0, then gi(x∗(θ0),θ0) = 0 and
therefore

∇λ∗i (θ0) ·gi(x∗(θ0),θ0) = 0.
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On the ohter hand, if the ith constraint is not binding under θ0, then gi(x∗(θ0),θ0)> 0.
The differentiability of x∗ at θ and the differentiability of gi on E×Θ indicates that
the mapping θ 7→ gi(x∗(θ),θ) is continuous at θ0. By implication, there exists a δ > 0
such that

|gi(x∗(θ),θ)−gi(x∗(θ0),θ0)|< gi(x∗(θ0),θ0),

and in particular

gi(x∗(θ),θ)> 0,

for any θ ∈Θ such that |θ0−θ|< δ. Thus, gi(x∗(θ),θ)> 0 in the neighborhood B(θ0, δ)
around θ0, and by complementary slackness, λ∗i (θ) = 0 on this neighborhood as well. It
follows that ∇λ∗i (θ0) = 0, from which we have

∇λ∗i (θ0) ·gi(x∗(θ0),θ0) = 0.

We have just shown that

k∑
i=1

∇λ∗i (θ0) ·gi(x∗(θ0),θ0) = 0,

so it follows that

k∑
i=1

λ∗i (θ0) ·∇θgi(x∗(θ0),θ0) =−
k∑
i=1

λ∗i (θ0)

 n∑
j=1

∂gi(x∗(θ0),θ0)
∂xj

∇x∗j (θ0)



=−
n∑
j=1

[
k∑
i=1

λ∗i (θ0) · ∂gi(x
∗(θ0),θ0)
∂xj

]
∇x∗j (θ0).

By the stationarity condition, for any 1≤ j ≤ n

∂f(x∗(θ0),θ0)
∂xj

+
k∑
i=1

λ∗i (θ0) · ∂gi(x
∗(θ0),θ0)
∂xj

= 0,

so we have

k∑
i=1

λ∗i (θ0) ·∇θgi(x∗(θ0),θ0) =
n∑
j=1

∂f(x∗(θ0),θ0)
∂xj

·∇x∗j (θ0).

Finally, substituting this result into the original formula for ∇V (θ0) yields

∇V (θ0) = ∇θf(x∗(θ0),θ0) +
k∑
i=1

λ∗i (θ0) ·∇θg(x∗(θ0),θ0).
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Q.E.D.
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Chapter 4

Correspondences and Fixed Point
Theorems

In this chapter we deal with two seemingly unrelated topics. First, we study the topological
properties of correspondences, or set-valued functions. Correspondences are powerful tools in
economics because most constraint sets can be represented as a correspondence depending on
some parameter value, and fortunately, Berge’s maximum theorem shows that optimization
problems involving correspondences produce well-behaved maximizer and value functions under
the right conditions.

On the other hand we have fixed point theorems, which are results in algebraic topology that
show well-behaved functions from some space to itself admit points on their domian at which
the value of the function is exactly that point. Our objective in studying fixed point theorems
is Kakutani’s fixed point theorem, which is a piece of mathematic machinery used, among other
things, to establish the existence of Nash equilibria and general equilibria.

4.1 Correspondences

Let E and F be arbitrary sets. A correspondence Γ : E→ F from E into F is a function from
E into the power set 2F of F . In this sense, correspondences can be thought of as set-valued
functions; note the contrast with measures, which are defined on collections of subsets but take
real or complex values. The graph Gr(Γ) of Γ is a set in E×F defined as

Gr(Γ) = {(x,y) ∈ E×F | x ∈ E,y ∈ Γ(x)}.

The image of a set U ⊂ X under Γ is defined in the usual way, as the union of the sets Γ(x)
for x ∈ U . Formally, we write Γ(U) =⋃

x∈U Γ(x) for the image of U under Γ. Note that we need
not impose any topological or measure-theoretical structure on the sets E and F in order for a
correspondence to be well-defined. This greatly contributes to the generality of correspondences.

Like functions, correspondences can also be continuous. There are two related concepts of

122



continuity: upper and lower hemicontinuity. The intuition for the two concepts of continuity is
simple. Consider a function f : E→ F . f is continuous at some point x if, for any open set V
in F containing f(x), there exists a neighborhood U around x contained in the inverse image
f−1(V ). With a correspondence Γ :E→ F , the starting point is the same; we want to say that Γ
is continuous at x if, for any open set V containing Γ(x), there exists a neighborhood U around
x such that the image of U under Γ is contained in V .

It is here that we encounter a slight complication; what does it mean for Γ(x), or the image
of U under Γ, to be contained in V ? We can think of two distinct notions of containment. First,
we can require the set Γ(x) ⊂ V to be a subset of V , in accordance with the usual notion of
the containment of sets. On the other hand, we may require Γ(x) to only intersect V at some
point in F ; these two notions of containment coincide when Γ is singleton valued, that is, when
Γ is basically a function. If we define containment as set containment, then Γ is continuous
at x if, for any open set V such that Γ(x) ⊂ V , there exists a neighborhood U of x such that
Γ(U) =⋃

y∈U Γ(y)⊂ V . If we require only intersection for containment, then Γ is continuous at
x if, for any open set V such that Γ(x)∩V 6= ∅, there exists a neighborhood U of x such that
Γ(y)∩V 6= ∅ for any y ∈ U . The former is the concept of upper hemicontinuity, and the latter
defines lower hemicontinuity.

In the section below, we formally introduce the two hemicontinuity concepts, and study their
useful sequential characterizations.

4.1.1 Upper and Lower Hemicontinuity

Now we formally introduce the two hemicontinuity concepts. Let (E,τ) and (F,s) be topological
spaces. The correspondence Γ : E→ F is said to be upper hemicontinuous at x ∈ E if:

∀V ∈ s s.t. Γ(x)⊂ V, ∃ a neighborhood U ∈ τ of x s.t. Γ(U) =
⋃
y∈U

Γ(y)⊂ V.

Likewise, we say that Γ is lower hemicontinuous at x ∈ E if:

∀V ∈ s s.t. Γ(x)∩V 6= ∅, ∃ a neighborhood U ∈ τ of x s.t. Γ(y)∩V 6= ∅ ∀y ∈ U.

Γ is continuous at x ∈ E if and only if it is both lower and upper hemicontinuous at x. The
concepts of continuity introduced so far can be extended to the entire set E if they hold for any
x ∈ E. If Γ(x) = ∅, then Γ is trivially lower hemicontinuous at x.

The following result provides a characterization of hemicontinuity in terms of sequences and
elucidates the relationship between the hemicontinuity of correspondences and the topological
properties of their graphs.
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Theorem 4.1 (Characterization of Hemicontinuity)
Let (E,d),(F,ρ) be metric spaces and τ,s the corresponding metric topologies. Suppose Γ :E→F

is a nonempty-valued correspondence on E The following hold true:

i) (Characterization of UHC for Closed-valued Correspondences)
Suppose Γ(x) is closed for some x ∈ E. If Γ is upper hemicontinuous at x, then for any
sequence {xn}n∈N+ converging to x and a sequence {yn}n∈N+ converging to some point
y ∈ F such that yn ∈ Γ(xn) for any n ∈N+, we have y ∈ Γ(x).

If F is compact, then the converse also holds true.

ii) (Characterization of UHC for Compact-valued Correspondences)
Suppose Γ(x) is compact for some x ∈ E. Then, Γ is upper hemicontinuous at x if and
only if, for any sequence {xn}n∈N+ converging to x and a sequence {yn}n∈N+ in F such
that yn ∈ Γ(xn) for any n ∈N+, there exists a convergent subsequence of {ynk}k∈N+ with
limit in Γ(x).

iii) (Characterization of LHC)
Γ is lower hemicontinuous at x ∈ E if and only if, for any sequence {xn}n∈N+ converging
to x and y ∈ Γ(x), there exists a subsequence {xnk}k∈N+ of {xn}n∈N+ and a sequence
{yk}k∈N+ such that yk ∈ Γ(xnk) for any k ∈N+ and yk→ y as k→∞.

iv) (Closed Graph Theorem)
Suppose Γ is compact valued. If Γ is upper hemicontinuous, then its graph is closed.
If the graph of Γ is closed and, in addition, Γ(A) = ⋃

x∈AΓ(x) is contained in a compact
set for any bounded set A⊂ E, then Γ is upper hemicontinuous.

Proof) Characterization of UHC for Closed-Valued Correspondences
Suppose, for some x ∈ E, that Γ(x) is closed.

Necessity

Let Γ be upper hemicontinuous at x, {xn}n∈N+ be some sequence in E converging to
x and {yn}n∈N+ a sequence converging to some y ∈ F such that yn ∈ Γ(xn) for any
n ∈N+. We want to show that y ∈ Γ(x).

Since Γ(x) is closed, our objective this can be achieved by simply showing that ρ(y,Γ(x)) =
0, that is, the distance between y and the closed set Γ(x) equals 0. To this end, choose
any ε > 0 and consider the inverse image

V = {z ∈ F | ρ(z,Γ(x))< ε}
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of the distance function ρ(·,Γ(x)) : F → R+. V contains Γ(x), and since the distance
function is continuous on F and (−∞, ε) is an open subset of R, V is an open subset of
F . Therefore, by upper hemicontinuity, there exists a neighborhood U around x such
that Γ(U)⊂ V . Since {xn}n∈N+ converges to x, we can choose an N ∈N+ such that

xn ∈ U for any n≥N.

In other words, for any n ≥ N , yn ∈ Γ(xn) ⊂ Γ(U) ⊂ V and therefore ρ(yn,Γ(x)) < ε.
By the continuity of the distance function and the fact that {yn}k∈N+ converges to y,

ρ(y,Γ(x)) = lim
n→∞

ρ(yn,Γ(x))≤ ε.

This holds for any ε > 0, so it follows that ρ(y,Γ(x)) = 0, or in other words, y ∈ Γ(x).

Sufficiency

Now let F be compact in addition to Γ(x) being closed.

Suppose that, for any sequence {xn}n∈N+ converging to x and a sequence {yn}n∈N+

converging to y ∈ F such that yn ∈ Γ(xn), we have y ∈ Γ(x). We want to show that Γ
is upper hemicontinuous at x.

Suppose that Γ is not upper hemicontinuous at x. Then, there exists an open set V
in F such that Γ(x) ⊂ V and, for any neighborhood U of x, there exists a z ∈ U such
that Γ(z)∩ V c 6= ∅. We construct the sequence {xn}n∈N+ by choosing the point xn
in the 1/n-ball Bd(x,1/n) around x such that Γ(xn)∩V c 6= ∅. Furthermore, we can
construct {yn}n∈N+ so that yn ∈ Γ(xn)∩V c for any n ∈N+. {yn}n∈N+ takes values in
the compact set F , which is also sequentially compact, so there exists a subsequence
{ynk}k∈N+ of {yn}n∈N+ that converges to some point y ∈ F . By assumption, y ∈ Γ(x),
since the subsequence {xnk}k∈N+ also converges to x and ynk ∈ Γ(xnk) for any k ∈N+.

However, since the sequence {ynk}∈N+ is contained in the closed set V c, the limit y
should belong to V c. We now have the contradiction

y ∈ Γ(x)⊂ V and y /∈ V.

It follows that Γ is upper hemicontinuous at x.

Characterization of UHC for Compact-Valued Correspon-
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dences
Suppose, for some x ∈ E, that Γ(x) is compact.

Necessity

Let Γ be upper hemicontinuous at x, {xn}n∈N+ be some sequence in E converging to x
and {yn}n∈N+ a sequence in F such that yn ∈ Γ(xn) for any n ∈N+. We want to show
that {yn}n∈N+ has a convergent subsequence with limit in Γ(x).

First, we want to show that {yn}n∈N+ has a convergent subsequence. Since Γ(x) is a
compact set contained in the open (and closed) set F , and any metric space is a locally
compact Hausdorff space, there exists an open set V with compact closure such that

Γ(x)⊂ V ⊂ V ⊂ F.

By the upper hemicontinuity of Γ, there exists a neighborhood U of x such that
Γ(U)⊂ V ⊂ V ; since {xn}n∈N+ converges to x, there exists an N ∈N+ such that xn ∈U
for any n≥N . It follows that, for any n≥N , yn ∈ Γ(xn)⊂ V , so that {yn}n≥N takes
values in the compact set V . Because compactness is equivalent to sequential compact-
ness in metric spaces, it follows that {yn}n≥N has a subsequence that converges to some
point y in V . Denote this subsequence by {ynk}k∈N+ .

Since Γ(x) is closed, {xnk}k∈N+ is a sequeunce converging to x, ynk ∈ Γ(xnk) for any
k ∈N+ and ynk → y as k→∞, by the preceding characterization we can now conclude
from the upper hemicontinuity of Γ that y ∈ Γ(x).

Sufficiency

Conversely, suppose that, for any sequence {xn}n∈N+ converging to x and a sequence
{yn}n∈N+ such that yn ∈ Γ(xn), {yn}n∈N+ has a subsequence that converges to a point
in Γ(x). We want to show that Γ is upper hemicontinuous at x.

Suppose that Γ is not upper hemicontinuous at x. Then, there exists an open set V in
F such that Γ(x)⊂ V and, for any neighborhood U of x, there exists a z ∈ U such that
Γ(z)∩V c 6= ∅. We construct the sequence {xn}n∈N+ by choosing the point xn in the
1/n-ball Bd(x,1/n) around x such that Γ(xn)∩V c 6= ∅. Furthermore, we can construct
{yn}n∈N+ so that yn ∈ Γ(xn)∩V c for any n ∈ N+. Since xn → x in the metric d, by
assumption there exists a subsequence {ynk}k∈N+ of {yn}n∈N+ that converges to some
point y ∈ Γ(x). However, since the sequence {yn}n∈N+ is contained in the closed set V c,

126



the limit y should belong to V c. We now have the contradiction

y ∈ Γ(x)⊂ V and y /∈ V.

It follows that Γ is upper hemicontinuous at x.

Characterization of LHC
Necessity

Suppose Γ is lower hemicontinuous at x ∈ E, and choose y ∈ Γ(x) and any sequence
{xn}n∈N+ converging to x. We want to find a subsequence of {xnk}k∈N+ and a sequence
{yk}k∈N+ such that yk ∈ Γ(xnk) for any k ∈N+ that converges to y.

To this end, note that, because y ∈ Γ(x), the 1-ball Bρ(y,1) around y intersects with
Γ(x); Bρ(y,1)∩Γ(x) 6= ∅. Thus, by lower hemicontinuity, there exists a neighborhood
U1 around x such that Γ(z)∩Bρ(y,1) 6= ∅ for any z ∈ U1. Since {xn}n∈N+ converges to
x, there exists an n1 ∈N+ such that xn1 ∈ U1, and choose y1 ∈ Γ(xn1 ∩Bρ(y,1).

Now suppose, for some k ≥ 1, that we have found n1 < · · ·< nk and y1, · · · ,yk ∈ F such
that

yk ∈ Γ(xnk)∩Bρ(y,1/k).

Since Bρ(y,1/(k+ 1)) once again intersects Γ(x), by lower hemicontinuity there exists
a neighborhood Uk+1 around x such that Γ(z)∩Bρ(y,1/(k+ 1)) 6= ∅ for any z ∈ Uk+1.
Since {xn}n∈N+ converges to x, Uk+1 contains infinitely many values in {xn}n∈N+ , so
that we can choose some nk+1 > nk such that xnk+1 ∈ Uk+1. Finally, we can choose

yk+1 ∈ Γ(xnk+1)∩Bρ(y,1/(k+ 1)).

Having constructed the sequence {yk}k∈N+ and subsequence {xnk}k∈N+ in this way, we
can see that

yk ∈ Γ(xnk) for any k ∈N+

and, since ρ(yk,y)< 1
k for any k ∈N+, {yk}k∈N+ converges to y.

Sufficiency
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Suppose now that, for any sequence {xn}n∈N+ converging to x and y ∈Γ(x), there exists
a subsequence {xnk}k∈N+ of {xn}n∈N+ and a sequence {yk}k∈N+ such that yk ∈ Γ(xnk)
for any k ∈N+ and yk→ y as k→∞. We want to show that Γ is lower hemicontinuous
at x.

Again, assume that Γ is not lower hemicontinuous at x. Then, there exists an open set
V in F such that V ∩Γ(x) 6= ∅ and, for any neighborhood U of x, Γ(z)⊂ V c for some
z ∈ U . Since V ∩Γ(x) 6= ∅, there exists a y ∈ Γ(x) such that y ∈ V as well.

We now construct the sequence {xn}n∈N+ as in the upper hemicontinuity case, by
choosing the point in the 1/n-ball Bd(x,1/n) such that Γ(xn) ⊂ V c. Since d(xn,x) <
1/n for any n ∈ N+, {xn}n∈N+ converges to x; thus, by assumption, there exists a
subsequence {xnk}k∈N+ of {xn}n∈N+ and a sequence {yk}k∈N+ such that yk ∈ Γ(xnk)
for any k ∈N+ and yk→ y as k→∞. It follows that, for any k ∈N+,

yk ∈ Γ(xnk)⊂ V c,

and because V c is a closed set containing {yk}k∈N+ , its limit y is contained in V c.
However, this contradicts the fact that y ∈ Γ(x)∩V ⊂ V , so it must be the case that Γ
is lower hemicontinuous at x.

Proof of Closed Graph Theorem
Suppose that Γ is compact-valued.

Suppose Γ is upper hemicontinuous on E. Recall that graph of Γ is defined as

Gr(Γ) = {(x,y) ∈ E×F | x ∈ E,y ∈ Γ(x)}.

To show that it is closed, let (x,y) ∈ E ×F be a limit point of Gr(Γ); then, there
exists a sequence {(xn,yn)}n∈N+ in Gr(Γ) converging to (x,y). For any n ∈N+, since
(xn,yn) ∈Gr(Γ), we have yn ∈ Γ(xn). By the characterization of upper hemicontinuity
established above, there exists a subsequence {ynk}k∈N+ of {yn}n∈N+ that converges to
a point in Γ(x); since y is the limit of {ynk}k∈N+ , it follows that y ∈ Γ(x). Therefore,
(x,y) ∈Gr(Γ), and Gr(Γ) is closed.

Conversely, suppose that Gr(Γ) is closed, and that, for any bounded set A ⊂ E, the
image Γ(A) is contained in a compact set. For any x ∈ E, let {xn}n∈N+ be a sequence
converging to x and {yn}n∈N+ a sequence in F such that yn ∈ Γ(xn) for any n ∈N+.
Since {xn}n∈N+ is convergent, it is bounded, and therefore by assumption there exists
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a compact set K such that

⋃
n

Γ(xn)⊂K.

Since {yn}n∈N+ is a sequence in the compact setK, there exists a subsequence {ynk}k∈N+

of {yn}n∈N+ that converges to some point y ∈K. Then, the sequence {(xnk ,ynk)}k∈N+

converges to (x,y), and because {(xnk ,ynk)}k∈N+ lies in Gr(Γ), by the closedness of
Gr(Γ), we have (x,y) ∈Gr(Γ). By definition, y ∈ Γ(x), so that, by the characterization
above, Γ is upper hemicontinuous at x. This in turn holds for any x ∈E, so Γ is upper
hemicontinuous on E.

Q.E.D.

Note that, if (F,ρ) is a euclidean space, then the third result follows when Γ(A) =⋃
x∈AΓ(x)

is bounded for any bounded A⊂E. This is because, by the Heine-Borel theorem, any bounded
subset in a euclidean space is contained in a larger compact set.

The following are some continuous correspondences that we often encounter:
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Theorem 4.2 (Examples of Continuous Correspondences)
The following are examples of how to construct continuous correspondences:

i) Let (E,τ) and (F,s) be topological spaces, and f :E→F a function. Define the correspon-
dence Γ : E→ F as Γ(x) = {f(x)} for any x ∈ E. Then, Γ is a continuous correspondence
if and only if f is a continuous function.

ii) Let (E,τ) and (F,s) be topological spaces, K a compact subset of F , and define Γ :E→ F

as Γ(x) =K for any x ∈ E. Γ is a continuous correspondence.

iii) Let (E,τ),(F,s),(G,r) be topological spaces, f :E→F a continuous function, and Γ :F →
G a continuous correspondence. Then, the correspondence Γ◦f : E→G defined as

(Γ◦f)(x) = Γ(f(x))

for any x ∈ E is a continuous correspondence.

iv) Let f : Rn→ R+ be a continuous function, and define Γ : Rn+→ R+ as Γ(x) = [0,f(x)] for
any x ∈ Rn. Γ is a continuous correspondence.

Proof) i) Suppose that Γ is continuous, and choose any x ∈ E. Then, for any open set V
containing f(x), by upper hemicontinuity there exists a neighborhood U of x such
that Γ(z) ⊂ V for any z ∈ U . In other words, U ⊂ f−1(V ), and by definition f is
continuous at x. This holds for any x ∈ E, so f is a continuous function.
Conversely, suppose that f is a continuous function, and choose any x ∈E. Then,
for any open set V such that Γ(x) = {f(x)} ⊂ V , there exists a neighborhood U

of x such that U ⊂ f−1(V ). This implies that, for any z ∈ U , Γ(z) = {f(z)} ⊂ V ,
so that Γ is upper hemicontinuous at x.
Now let V be an open set in F such that V ∩Γ(x) 6= ∅. This means that f(x) ∈ V ,
so by the same process as above, we can see that there exists a neighborhood U

of x such that f(z) ∈ V for any z ∈ U . In other words, Γ(z)∩V = {f(z)}∩V 6= ∅
for any z ∈ U , so that Γ is lower hemicontinuous at x. This holds for any x ∈ E,
so Γ is a continuous function.

ii) Let Γ be defined as Γ(x) =K for any x ∈E, where K is a compact set. Then, for
any x ∈ E, letting V be an open set containing Γ(x), V is an open set containing
K, so that Γ(z)⊂ V for any z ∈E. Taking E as the neighborhood around x, Γ is
upper hemicontinuous at x by definition.
Now let V be an open set such that V ∩Γ(x) = V ∩K 6= ∅. Then, Γ(z)∩ V =
K∩V 6= ∅ for any z ∈E, so Γ is lower hemicontinuous at x as well. This holds for
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any x ∈ E, so Γ is a continuous function.

iii) Let Φ = Γ◦f be defined as in the claim. For any x∈E and an open set V containing
Φ(x) = Γ(f(x)), by the upper hemicontinuity of Γ there exists a neighborhood U

of f(x) such that Γ(y) ⊂ V for any y ∈ U . The continuity of f now tells us that
there exists a neighborhood W of x such that W ⊂ f−1(U). Therefore, for any
x′ ∈W , f(x′) ∈ U and therefore

Φ(x′) = Γ(f(x′))⊂ V.

By definition, Φ is upper hemicontinuous at x.
Now choose any open set V such that Φ(x)∩V 6= ∅. By the lower hemicontinuity
of Γ, there exists a neighborhood U of f(x) such that Γ(y)∩V 6= ∅ for any y ∈ U .
Again, the continuity of f now tells us that there exists a neighborhood W of x
such that W ⊂ f−1(U). Thus, for any x′ ∈W , f(x′) ∈ U and

Φ(x′)∩V = Γ(f(x′))∩V 6= ∅.

By definition, Φ is lower hemicontinuous at x. This holds for any x ∈ E, so Φ is
continuous on E.

iv) Let f : Rn → R+ be a continuous function, and define Γ : Rn → R+ as Γ(x) =
[0,f(x)] for any x∈Rn. Clearly, Γ is a non-empty compact valued correspondence.
For any x ∈ Rn, let {xk}k∈N+ be a sequence converging to x and {yk}k∈N+ a
sequence such that yk ∈ Γ(xk) = [0,f(xk)] for any k ∈N+. Since {f(xk)}k∈N+ is a
convergent sequence (by the continuity of f , it converges to f(x)), it is bounded,
say, by M ∈ (0,+∞), and since {yk}k∈N+ is a sequence contained in the compact
set [0,M ], there exists a convergent subsequence {ykl}l∈N+ of {yk}k∈N+ . Letting
y be the limit of this subsequence, since 0 ≤ ykl ≤ f(xkl) for any l ∈ N+, taking
l→∞ on both sides yields 0 ≤ y ≤ f(x), or equivalently, y ∈ [0,f(x)] = Γ(x). By
the characterization theorem above, Γ is upper hemicontinuous at x.
To show lower hemicontinuity, for any x ∈ Rn, let {xk}k∈N+ be a sequence con-
verging to x and y ∈ Γ(x) = [0,f(x)]. Defining yk = min(f(xk),y) for any k ∈N+,
yk ∈ [0,f(xk)] = Γ(xk) for any k ∈ N+, and, by the continuity of the minimum
function,

lim
k→∞

yk = min(f(x),y) = y.

Therefore, Γ is lower hemicontinuous at x. This holds for any x ∈ Rn, so Γ is a
continuous correspondence.

Q.E.D.
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4.1.2 Berge’s Maximum Principle

The next theorem is fundamental for optimization, not only in microeconomics but across eco-
nomics as a whole. It states that any maximization problem involving a continuous function, a
continuous constraint and a compact domain yields a continuous value function and an upper
hemicontinuous solution set.

Theorem 4.3 (Theorem of the Maximum)
Let (E,τ) and (Θ,s) be topological spaces, Γ : Θ→ E a non-empty compact-valued and con-
tinuous correspondence, and f : E×Θ→ R a continuous function on E×Θ. Define the value
function v : Θ→ [−∞,+∞] as

v(θ) = sup
x∈Γ(θ)

f(x,θ)

and the correspondence of maximizers G : Θ→ E as

G(θ) = argmax
x∈Γ(θ)

f(x,θ) = {x ∈ Γ(θ) | f(x,θ) = v(θ)}

for any θ ∈Θ. Then, v is a continuous function taking values in R, and G is a non-empty compact
valued and upper hemicontinuous correspondence. By implication, if G is single-valued on Θ, it
defines a continuous function.

Proof) The difficult part of the proof involves showing that v and G are continuous in the
sense described above, so we first prove the results that are not related to continuity.

Step 0: Non-Continuity Results
We first show that v is real-valued and G is a non-empty compact valued correspon-
dence. For any θ ∈ Θ, since Γ(θ) is compact and the section f(·,θ) is a continuous
function, by the extreme value theorem there exists an x∗ ∈ Γ(θ) such that

f(θ,x∗) = sup
x∈Γ(θ)

f(θ,x) = v(θ) ∈ R.

Therefore, x∗ ∈G(θ), which shows us that v is real-valued and G is non-empty valued.

To show that G is compact-valued, let us first show that it is closed. Suppose x is a
limit point of G(θ). Then, since x is a limit point of the set G(θ), which is a subset of
Γ(θ), a compact set, by the fact that any compact set is also limit point compact, we
can see that x∈Γ(θ). Now suppose that f(x,θ) 6= v(θ). Assuming f(x,θ)>v(θ) without
loss of generality, since f(·,θ) is continuous on E and thus lower semicontinuous, there
exists a neighborhood U of x such that f(z,θ)> v(θ) for any z ∈ U . Since x is a limit
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point of G(θ), G(θ)∩U 6= ∅, so that there exists some z ∈G(θ)∩U . This implies that

v(θ) = f(z,θ)> v(θ),

a contradiction, so it must be the case that f(x,θ) = v(θ). Therefore, x∈G(θ) and G(θ)
is a closed set. Finally, G(θ) is a closed set of the compact set Γ(θ), which implies that
G(θ) is also compact.

Step 1: Continuity of v

We will show that v is continuous by showing that it is both lower and upper semicontin-
uous. Lower and upper semicontinuity follow from the lower and upper hemicontinuity
of Γ, respectively. Note that, for upper semicontinuity, it is enough to show that, for any
θ ∈Θ and ε > 0, there exists a neighborhood Uθ around θ such that v(θ′)≤ v(θ)+ ε. To
see why, suppose that this property holds, and consider the set A= {θ ∈Θ | v(θ)< a}
for some a ∈ R. If A is empty, then it is trivially open, so suppose A is non-empty. In
this case, choosing any θ ∈ A and putting ε = a−v(θ)

2 > 0, it follows that there exists a
neighborhood Uθ around θ such that

v(θ′)≤ v(θ) + ε < v(θ) + (a−v(θ)) = a.

In other words, Uθ ⊂ A; this holds for any θ ∈ A, so A is the union of open sets and
therefore open itself. A similar result holds for lower semicontinuity.

Upper Semicontinuity of v

We employ the proof method introduced above. Choose any ε > 0 and θ ∈Θ. We want
to show that v(θ′) ≤ v(θ) + ε for any θ′ in some neighborhood around θ. To do so, it
suffices to show that, for any x ∈ Γ(θ), there exist neighborhoods around x and θ such
that

f(x′,θ′)≤ f(x,θ) + ε

for any x′ and θ′ in their respective neighborhoods. Then, the compactness of Γ(θ) tells
us that Γ(θ) is covered by a finite number of these neighborhoods around x. Taking the
finite intersection of the corresponding neighborhoods around θ, we can see that, for
any x ∈ Γ(θ) and θ′ in this new neighborhood, we have f(x,θ′) ≤ v(θ) + ε. The upper
hemicontinuity of Γ tells us that this inequality holds for any x ∈ Γ(θ′) as well. The
desired inequality is then established by taking suprema over x ∈ Γ(θ′) over both sides.
Below we formalize this intuition.

133



First, choose any x ∈ Γ(θ). Our goal is to form an open cover of Γ(θ) using open balls
around x. To this end, note that the upper semicontinuity of f with respect to the
product topology τ ×s at (x,θ) implies that the set

Ω(x) = {(x′,θ′) ∈ E×Θ | f(x′,θ′)< f(x,θ) + ε}

is open, that is, contained in τ×s. Since the set of all open rectangles is a base generating
τ×s and (x,θ)∈Ω(x,θ), it follows that there exist neighborhoods V (x)⊂E and U(x)⊂
Θ around x and θ such that

V (x)×U(x)⊂ Ω(x).

Note that {V (x)}x∈Γ(θ) now forms an open cover of Γ(θ); by the compactness of Γ(θ),
there exist x1, · · · ,xn ∈ Γ(θ) such that

Γ(θ)⊂
n⋃
i=1

V (xi).

The right hand side above is one big open set, so by the upper hemicontinuity of Γ
there exists a neighborhood U(θ) of θ such that

Γ(U)⊂
n⋃
i=1

V (xi).

Now define the neighborohood U of θ as

U = U(θ)∩U(x1)∩·· ·∩U(xn).

Choose any θ′ ∈ U and x ∈ Γ(θ′). Then, because θ′ ∈ U(θ),

x ∈ Γ(θ′)⊂
n⋃
i=1

V (xi)

and x ∈ V (xi) for some 1≤ i≤ n. θ′ ∈ U(xi) as well, so we have

f(x,θ′)< f(xi,θ) + ε≤ v(θ) + ε.

This holds for any x ∈ Γ(θ′), so

v(θ′) = sup
x∈Γ(θ′)

f(x,θ′)≤ v(θ) + ε.

Therefore, we have found a neighborhood U of θ such that, for any θ′ ∈ U , v(θ′) ≤
v(θ) + ε. By the remark preceding this section, this shows us that v is upper semicon-
tinuous.
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Lower Semicontinuity of v

We proceed in much the same way as the preceding section. Choose any θ ∈ Θ and
ε > 0. We want to show that there exists a neighborhood of θ such that v(θ)− ε≥ v(θ′)
for any θ′ in this neighborhood.

Let x ∈ Γ(θ) be chosen so that

v(θ)− ε

2 < f(x,θ);

such an x exists by the definition of the supremum. By the lower semicontinuity of f
at (θ,x), the set

Ω = {(x′,θ′) ∈ E×Θ | f(x′,θ′)> f(x,θ)− ε/2}

is open in the product topology τ×s. Since Ω contains (x,θ), there exist neighborhoods
V and W of x and θ such that V ×W ⊂ Ω.

Note that x ∈ Γ(θ)∩V , so that Γ(θ)∩V 6= ∅. By the lower hemicontinuity of Γ, there
exists a neighborhood W ′ of θ such that Γ(θ′)∩V 6= ∅ for any θ′ ∈W ′. Define U =
W ′∩W . For any θ′ ∈U , since Γ(θ′)∩V 6= ∅, there exists an x′ ∈ Γ(θ′) and x′ ∈ V . Since
(x′,θ′) ∈ V ×W ⊂ Ω, we have

f(x,θ)− ε

2 < f(x′,θ′).

Finally, x′ ∈ Γ(θ′) shows us that

f(x,θ)− ε

2 < f(x′,θ′)≤ sup
y∈Γ(θ′)

f(y,θ′) = v(θ′).

By our choice of x, we can finally conclude that

v(θ)− ε < v(θ′).

Step 2: Upper Hemicontinuity of G

The final step of our proof involves proving the upper hemicontinuity of G. Choose some
θ ∈ Θ and an open set V in E such that G(θ) ⊂ V . We want to find a neighborhood
around θ whose image is contained in V . The idea of the construction is to first express
G(θ) as the intersection of two correspondences. In other words, since G(θ) is the
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collection of all x in Γ(θ) such that f(x,θ) = v(θ), we can write

G(θ) =B(θ)∩Γ(θ),

where we define the correspondence B : Θ→ E as

B(θ) = {x ∈ E | f(x,θ) = v(θ)}

for any θ ∈ Θ. Given G(θ) ⊂ V , if Γ(θ) ⊂ V the desired result follows by the upper
hemicontinuity of V . On the other hand, if Γ(θ)∩V c 6= ∅, then we cover the compact
set Γ(θ)∩V c with balls around x on which (x,θ) lie outside the graph Gr(B) of B. Since
no point in G(θ) can lie outside the graph of B, we can then construct a neighborhood
of θ whose image does not intersect V c, and instead lies in V . We now formalize this
intuition.

First, we prove that the graph of B is closed, so that we can take neighborhoods
of points outside the graph. The proof proceeds almost identically to the proof of the
closedness of G(θ); suppose that (x,θ) is a limit point of Gr(B) that lies outside Gr(B),
that is, f(x,θ) 6= v(θ). Assuming without loss of generality that f(x,θ)> v(θ), the lower
semicontinuity of the mapping (x′,θ′) 7→ f(x′,θ′)− v(θ′) (which follows because f and
v are continuous), there exists an neighborhood Ω of (x,θ) such that

f(x′,θ′)> v(θ′)

for any (x′,θ′) ∈ Ω. As such, Ω ⊂ Gr(B)c. However, by the definition of a limit point,
Gr(B)∩Ω 6= ∅, which is a contradiction. Therefore, Gr(B) should contain the limit
point (x,θ), and Gr(B) is closed.

Choose any θ ∈Θ and open set V in E such that

G(θ) =B(θ)∩Γ(θ)⊂ V.

If Γ(θ)⊂ V , then by the upper hemicontinuity of Γ, there exists a neighborhood U of
θ such that G(U)⊂ Γ(U)⊂ V , and the proof is complete.

Now suppose that Γ(θ) 6⊂ V , that is, Γ(θ)∩ V c 6= ∅. Γ(θ)∩ V c is a closed subset of
the compact set Γ(θ), so it is itself compact. Choose any x ∈ Γ(θ)∩ V c; x /∈ G(θ),
since otherwise x ∈ G(θ) ⊂ V , a contradiction. Since x ∈ Γ(θ), this must mean that
f(x,θ) 6= v(θ), that is, (x,θ) /∈ Gr(B). The openness of Gr(B) furnishes us with a
neighborhood Ω(x) ∈ τ × s around (x,θ) such that Ω(x)⊂Gr(B)c, and as earlier, this
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implies that there exist neighborhoods V (x) ⊂ E and U(x) ⊂ Θ around x and θ such
that

V (x)×U(x)⊂ Ω(x)⊂Gr(B)c.

Then, {V (x)}x∈Γ(θ)∩V c is an open cover of the compact set Γ(θ)∩V c; it follows that
there exist x1, · · · ,xn ∈ Γ(θ)∩V c such that

Γ(θ)∩V c ⊂
n⋃
i=1

V (xi).

As such,

Γ(θ)⊂ V ∪
(

n⋃
i=1

V (xi)
)
.

The right hand side is itself an open set, so by the upper hemicontinuity of Γ, there
exists a neighborhood U(θ) of θ such that

⋃
θ′∈U(θ)

Γ(θ′)⊂ V ∪
(

n⋃
i=1

V (xi)
)
.

Define the neighborhood

U = U(θ)∩U(x1)∩·· ·∩U(xn)

of θ. For any θ′ ∈ U and x ∈G(θ′), since θ′ ∈ U(θ),

x ∈G(θ′)⊂ Γ(θ′)⊂ V ∪
(

n⋃
i=1

V (xi)
)
.

Suppose that x /∈ V . Then, there exists some 1≤ i≤ n such that x ∈ V (xi); therefore,

(x,θ′) ∈ V (xi)×U(xi)⊂Gr(B)c,

and we have f(x,θ′) 6= v(θ′). However, since x ∈G(θ′)⊂B(θ′), it must be the case that
f(x,θ′) = v(θ′), a contradiction. Therefore, x ∈ V ; this holds for any x ∈G(θ′), so

G(θ′)⊂ V.

This in turn holds for any θ′ ∈ U , so G(U)⊂ V .

In any case, we can find a neighborhood around θ such that the image of this neigh-
borhood under G is a subset of V . By definition, G is upper hemicontinuous at θ, and
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since this holds for any θ ∈Θ, G is upper hemicontinuous on Θ.

Q.E.D.

4.1.3 A Measurable Selection Theorem

Sometimes it is desirable to make a selection from a correspondence, that is, given a correspon-
dence Γ :E→ F , to choose a function whose value at every x∈E is contained in the set Γ(x). In
particular, it is of interest whether we can choose this function so that it is measurable relative
to selected σ-algebras. This is the content of the next theorem:

Theorem 4.4 (Kuratowski–Ryll-Nardzewski Measurable Selection Theorem)
Let (E,E) be a measurable space and (F,d) a complete and separable metric space with metric
topology τ and Borel σ-algebra B(F,τ). Let Γ :E→ F be a non-empty closed valued correspon-
dence such that, for any closed set A in F ,

{x ∈ E | Γ(x)∩A 6= ∅} ∈ E .

Then, there exists a measurable selection of Γ, that is, a function g :E→ F measurable relative
to E and B(F,τ), and g(x) ∈ Γ(x) for any x ∈ E.

Proof) By the separability of (F,d), there exists a countable set F0 ⊂ F that is dense in
F . Arrange the elements of F0 into the sequence {yn}n∈N+ , and define the functions
N0 : E→N+ and ζ0 : E→ F as

N0(x) = min{n ∈N+ | Γ(x)∩Bd(yn,1) 6= ∅}

ζ0(x) = yN0(x)

for any x ∈ E, where Bd(yn,1) is the closed ball of radius 1 around yn. Note that, for
any x∈E, the set {n∈N+ | Γ(x)∩Bd(yn,1) 6= ∅} is non-empty since Γ(x) is non-empty
and the denseness of F0 in F implies that 1-balls around points in F0 cover F . The
function ζ0 constructed as above takes countably many values (its range is a subset of
F0), and for any n ∈N+,

ζ−1
0 ({yn}) =

(
n−1⋂
i=1
{x ∈ E | Γ(x)∩Bd(yi,1) 6= ∅}c

)
∩{x ∈ E | Γ(x)∩Bd(yn,1) 6= ∅} ∈ E ,

where the last inclusion follows by the assumption that {x ∈ E | Γ(x)∩A 6= ∅} is E-
measurable for any closed set A in F . Thus, for any open set V ∈ τ ,

ζ−1
0 (V ) =

⋃
n∈N+,yn∈V

ζ−1
0 ({yn}) ∈ E ,
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and because τ generates B(F,τ), ζ0 is measurable relative to E and B(F,τ).

Now suppose that, for some k ≥ 1, we have constructed functions ζ0, · · · , ζk−1 taking
values in F0 such that

d(ζi(x), ζi−1(x))≤ 2−i+1 and d(ζi(x),Γ(x))≤ 2−i

for any 1≤ i≤ k−1 and x ∈E, where d(·,Γ(x)) is the distance function for the closed
set Γ(x). Construct the functions Nk : E→N+ and ζk : E→ F as

Nk(x) = min
{
n ∈N+ | Γ(x)∩Bd

(
ζk−1(x),2−k

)
∩Bd

(
yn,2−k

)
6= ∅

}
ζk(x) = yNk(x)

for any x∈E. Again, Nk(x)∈N+ due to the denseness of F0 in F , and ζk is measurable
relative to E and B(F,τ) by the same reason as ζ0. Finally, for any x∈E, by construction
there exists a z ∈ Γ(x) such that

d(z,ζk−1(x))≤ 2−k and d
(
z,yNk(x)

)
≤ 2−k.

Therefore,

d(ζk(x), ζk−1(x)) = d(yNk(x), ζk−1(x))≤ d(z,ζk−1(x)) +d
(
z,yNk(x)

)
≤ 2−k+1

and

d(ζk(x),Γ(x))≤ d(ζk(x),z) = d
(
z,yNk(x)

)
≤ 2−k.

For any x ∈E and m,k ∈N+, assuming without loss of generality that m> k, we have

d(ζm(x), ζk(x))≤
m−k−1∑
i=0

d(ζm−i(x), ζm−i−1(x))

≤
m−k−1∑
i=0

2−m+i+1 = 2−m+1
(
m−k−1∑
i=0

2−i
)

= 2−m+1
(
2−2−m−k+1

)
.

Taking m,k→∞ on both sides reveals that

lim
m,k→∞

d(ζm(x), ζk(x)) = 0,

implying that {ζk(x)}k∈N+ is a Cauchy sequence in F . By the completeness of (F,d),
this sequence converges to some ζx ∈ F . This holds for any x ∈E, so we can define the
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function g : E→ F as

g(x) = ζx

for any x ∈E. Then, {ζk}k∈N+ is a sequence of measurable functions converging point-
wise to g, which tells us that g is also measurable relative to E and B(F,d). Furthermore,
for any x ∈ E, since

d(ζk(x),Γ(x))≤ 2−k

and the distance function d(·,Γ(x)) is continuous on E, taking k→∞ on both sides
yields

d(g(x),Γ(x)) = 0.

By the closedness of Γ(x), g(x)∈Γ(x); this holds for any x∈E, so the proof is complete.

Q.E.D.

Corollary to Theorem 4.4 Let (E,τ) be a topological space with Borel σ-algebra B(E,τ)
and (F,ρ) a complete and separable metric space with metric topology s and Borel σ-algebra
B(F,s). Let Γ :E→ F be a non-empty closed valued and upper hemicontinuous correspondence.
Then, there exists a measurable selection of Γ.

Proof) In light of the above theorem, we need only show that, for any closed set A in F ,

{x ∈ E | Γ(x)∩A 6= ∅}

is contained in B(E,τ). We will show the stronger result that any such set is a closed
subset of E.

Fix a closed set A and define

V = {x ∈ E | Γ(x)∩A= ∅}= {x ∈ E | Γ(x)⊂Ac}.

For any x ∈ V , Γ(x) is contained in the open set Ac. By the upper hemicontinuity of
Γ, there exists a neighborhood U of x such that Γ(x′)⊂ Ac for any x′ ∈ U . Therefore,
U ⊂ V , and since this holds for any x ∈ V , V is an open set. This means that

{x ∈ E | Γ(x)∩A 6= ∅}= V c

is a closed set.

Q.E.D.
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4.2 Fixed Point Theorems

Here we study and prove Brouwer and Kakutani’s fixed point theorems using Sperner’s lemma
and the machinery of correspondences studied above. The method of proving Brouwer’s theorem
via Sperner’s lemma is a classical approach, and one of the main examples of the application of
algebraic topology.

4.2.1 Simplices and Sperner’s Lemma

Sperner’s lemma concerns n-dimensional simplices, which are essentially convex hulls of affinely
independent vectors in Rn. Formally, for 0 ≤ k ≤ n, given k+ 1 vectors {v0, · · · ,vk} in Rn, we
say that this set is affinely independent if v1− v0, · · · ,vk− v0 are linearly independent. Given
k+ 1 affinely independent vectors v0, · · · ,vk ∈ Rn, the k-dimensional simplex ∆k(v0, · · · ,vk) is
the convex hull generated by v0, · · · ,vk ∈ Rn, that is,

∆k(v0, · · · ,vk) =
{ k∑
i=0

ai ·vi | a0, · · · ,ak ∈ R+,
k∑
i=0

ai = 1
}
.

The convex hull of any subset of {v0, · · · ,vk} of size m+ 1 is called an m-face of the simplex
∆k(v0, · · · ,vk); note that any face of this simplex is itself a simplex. Letting {e1, · · · ,en} be the
standard basis of Rn, the standard (n−1)-simplex ∆n−1 is the simplex generated by {e1, · · · ,en}.

A simplex generated by any n+ 1 vectors is n-dimensional in the sense that it has a non-
empty interior; specifically, we can show that c ∈∆n(v0, · · · ,vn) given as

c=
n∑
i=0

1
n+ 1 ·vi

called the barycentric center of the simplex ∆n(v0, · · · ,vn), can be shown to be an interior point
of ∆n(v0, · · · ,vn). This idea is formally argued in the lemma below, and it helps us better un-
derstand the geometric structure of simplices. As usual, we denote, by B(x,ε), the open ball
around x ∈ Rn with radius ε > 0.

Lemma 4.5 Let {v0, · · · ,vk} be an affinely independent subset of Rn. If k = n, then the
barycentric center c of the n-dimensional simplex generated by {v0, · · · ,vn} is an interior point
of the simplex.

In addition, defining P ∈Rn×k as the matrix with columns equal to v1−v0, · · · ,vk−v0 ∈Rn,
the k-dimensional simplex generated by {v0, · · · ,vk} is contained is the open ball B(c,‖P‖).

Proof) Denote ui = vi−v0 for any 1≤ i≤ k; by definition of affine independence, {u1, · · · ,uk}
is linearly independent. We can define the matrix

P =
(
u1 · · · uk

)
∈ Rn×k.
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The barycentric center of ∆k(v0, · · · ,vk) is defined as

c=
k∑
i=0

1
k+ 1 ·vi =

k∑
i=1

1
k+ 1 ·ui+v0,

so that, letting ιk ∈ Rk be the vector of ones, we can see that

c−v0 = P

( 1
k+ 1 · ιk

)
.

Suppose k = n. Then, since P is non-singular, we can define ε = 1
‖P−1‖ ·

1
n(n+1) > 0.

Choose any v ∈ B(c,ε); {u1, · · · ,un} is now a basis of Rn, so there exist a1, · · · ,an ∈ R
such that

v−v0 =
n∑
i=1

ai ·ui.

Then,

P−1 · (v−vn+1) = P−1
(
u1 · · · un

)
a1
...
an

=


a1
...
an


︸ ︷︷ ︸

a

and as such ∣∣∣∣a− 1
n+ 1 · ιn

∣∣∣∣= ∣∣∣P−1 · (v−v0)−P−1(c−v0)
∣∣∣

≤
∥∥∥P−1

∥∥∥ · |v− c|< ε ·
∥∥∥P−1

∥∥∥= 1
n(n+ 1) .

For any 1≤ i≤ n, ∣∣∣∣ai− 1
n+ 1

∣∣∣∣< 1
n(n+ 1) ,

so that ai ∈ (0,1/n). Therefore,

v = v0 +
n∑
i=1

ai ·ui =
n∑
i=1

ai ·vi+
(

1−
n∑
i=1

ai

)
v0,

where each ai > 0 and

1−
n∑
i=1

ai > 1−1 = 0.
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By definition, v ∈∆n(v0, · · · ,vn). Therefore,

B(c,ε)⊂∆n(v0, · · · ,vn),

and c is an interior point of the n-simplex generated by v0, · · · ,vn.

Now relax the assumption that the simplex is n-dimensional, so that 1 ≤ k ≤ n in
general. To show the second claim, choose any v ∈ ∆k(v0, · · · ,vk). Then, there exist
a0, · · · ,ak ∈ [0,1] such that ∑k

i=0ai = 1 and

v =
k∑
i=0

ai ·vi =
n∑
i=1

ai ·ui+v0 = P ·a+v0

for a= (a1, · · · ,ak)′ ∈ [0,1]k. It follows that

|v− c|=
∣∣∣∣∣
k∑
i=1

ai ·ui+ (v0− c)
∣∣∣∣∣

=
∣∣∣∣P (a− 1

k+ 1 · ιk
)∣∣∣∣≤ ‖P‖ · ∣∣∣∣a− 1

k+ 1 · ιk
∣∣∣∣.

By definition,

∣∣∣∣a− 1
k+ 1 · ιk

∣∣∣∣2 =
k∑
i=1

(
ai−

1
k+ 1

)2

=
k∑
i=1

(
a2
i −2ai ·

1
k+ 1 + 1

(k+ 1)2

)

=
k∑
i=1

a2
i −2(1−a0) · 1

k+ 1 + k

(k+ 1)2

≤ (1−a0)
(

1− 2
k+ 1

)
+ k

(k+ 1)2

= k−1
k+ 1 + k

(k+ 1)2 = k2 +k−1
(k+ 1)2

<
k2 + 2k−1

(k+ 1)2 = 1,

where we used the fact that 0≤ 1−a0 ≤ 1 and a2
i ≤ ai for any 1≤ i≤ k. Therefore,

|v− c| ≤ ‖P‖ ·
∣∣∣∣a− 1

k+ 1 · ιn
∣∣∣∣< ‖P‖,

and v is contained in the open ball B(c,‖P‖).

Q.E.D.
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The preceding theorem shows us that there always exists an open ball around the barycentric
center of a simplex that contains the entire simplex, and in addition that its radius depends on
the distance between the vertices of the simplex. Furthermore, if the simplex has maximal di-
mension, that is, if k = n, then there also exists an open ball around the barycentric center that
is completely contained in the interior of the simplex. If we were open to employing the concept
of the relative interior, then we would also be able to show that there exists an open ball around
the barycentric center that is completely contained in the relative interior of the simplex for any
values of 1≤ k≤ n. Unfortunately, the study of relative interiors is beyond the scope of this text.

Given some k-dimensional simplex S in Rn, a simplical subdivision of S is the division
of S into smaller simplices, or cells, that are either disjoint or share a full face of a certain
dimension. Formally, we can characterize a simplical subdivision of S by a collection of points
S′ = {v1, · · · ,vm} ⊂ S containing the vertices of S. In this case, the smaller simplices comprising
the subdivision would be exactly the convex hulls generated by subsets of S′ such that no point
of S′ lies in the the convex hull other than the vertices; that is, the following collection of convex
hulls:

{
conv(vi1 , · · · ,vij ) | 1≤ i1 < · · ·< ij ≤m, conv(vi1 , · · · ,vij )∩S′ = {vi1 , · · · ,vij}

}
.

Let S ⊂ Rn be a k-simplex generated by v0, · · · ,vk ∈ Rn, and suppose there is a simplical sub-
division of S with vertices S′ that contain v0, · · · ,vk. A proper coloring of this subdivision is a
function c : S′→ E, where E is a set of k+ 1 colors, such that

1) The vertices of S are all assigned different colors; c(vi) 6= c(vj) for i 6=.

2) Points on each face of S are assigned one of the colors of the vertices of the face on which
it rests; that is, if

v ∈ S′∩ conv(vi1 , · · · ,vij )

for some 1≤ i1 < · · ·< ij ≤ k+ 1, then

c(v) ∈ {c(vi1), · · · , c(vij )}.

We can now state and prove Sperner’s lemma:
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Theorem 4.6 (Sperner’s Lemma)
Any simplical subdivision with a proper coloring must contain a rainbow cell, that is, a cell
whose vertices are all assigned different colors.

Proof) Let S ⊂ Rn be a k-simplex generated by vertices v0, · · · ,vk ∈ Rn, and S′ a collection of
points in S that contain v0, · · · ,vk that constitute the vertices of some simplical subdi-
vision D of S. Let c : S′→{1, · · · ,k+1} a proper coloring of this simplical subdivision.
We must show that there exist an odd number of rainbow cells.

We proceed by induction on the dimension k of the simplex S. If k = 1, then we have a
line connecting two points v1 and v2, which are assigned different colors by c because it
is a proper coloring. Then, going from v1 to v2, we must change colors an odd number
of times, since otherwise v1 and v2 are assigned the same color. The number of times
the color changes going from v1 to v2 is the number of rainbow cells in D, so this implies
that there are an odd number of rainbow cells.

Now suppose that the theorem holds for some 1 ≤ k < n, and let S be of dimension
k+1, that is, assume it is generated by k+2 affinely independent vertices v0, · · · ,vk+1.
For the sake of notational simplicty, suppose the vertex vi is assigned the color i+1 for
1≤ i≤ k+ 2.

Let R be the number of rainbow cells in the simplical subdivision D, and Q the number
of cells in the subdivision whose vertices are assigned all but the color k+ 2. Further-
more, among the k-dimensional faces of the cells in D whose vertices are assigned the
colors {1, · · · ,k+ 1}, let X be the number of these faces on the boundary of S and Y

the number of these faces in the interior of S. The latter type of faces belong on the
boundary between two cells in D, while the former type of faces appear only on one
cell in D.

Note that any rainbow cell in S has exactly one face with the colors {1, · · · ,k+1}, while
any cell counted in Q has two faces with colors {1, · · · ,k+1}. Meanwhile, the faces with
colors {1, · · · ,k+1} counted in X appear only on one cell, while the same faces counted
in Y appear on the boundary of two cells, that is, in two cells. No cell other than the
ones counted in R and Q can have a face with colors {1, · · · ,k+ 1}, so it must be the
case that

R+ 2Q=X+ 2Y.

Meanwhile, note that any k-dimensional face of the cells in D with vertices assigned the
colors {1, · · · ,k+1} on the boundary of S must be a cell that is on the face of S generated
by the vertices {v0, · · · ,vk}, since the coloring c is a proper coloring. Therefore, X is
precisely the number of rainbow cells in a simplical subdivision of the k-dimensional
simplex conv(v0, · · · ,vk) under the restriction of c to conv(v0, · · · ,vk), which is itself a
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proper coloring. By the inductive hypothesis, X must be odd. Since

R=X+ 2(Y −Q),

R must be odd as well, that is, there are an odd number of rainbow cells in D under
the proper coloring c.

Q.E.D.

4.2.2 Brouwer’s Fixed Point Theorem

With Sperner’s lemma in hand, it is a simple matter now to establish Brouwer’s fixed point
theorem. We first show that it holds for continuous mappings from standard n-simplices into
itself. To use Sperner’s lemma, we subdivide the domain into smaller and smaller simplices and
define a proper coloring on each of the subdivisions. In each subdivision, there exists a rainbow
cell by the lemma, which allows us, in the limit, to establish the desired fixed point as the point
to which these smaller and smaller rainbow cells converge. The formal statement and proof are
given below.

Theorem 4.7 (Brouwer’s Fixed Point Theorem)
Let ∆n be the standard n-simplex in Rn+1, and let f : ∆n→∆n be a continuous function. Then,
f has a fixed point in ∆n, that is, a point x ∈∆n such that f(x) = x.

Proof) We employ the strategy explained in the above remark. Due to the length of the proof,
we proceed in steps.

Step 1: Constructing the Subdivisions

We consider the following subdivision of ∆n. By definition, letting {e1, · · · ,en+1} be the
standard basis of Rn+1, ∆n is the simplex with vertices {e1, · · · ,en+1}. The length of
the edges of ∆n are identical and given as

√
2. The first simplical subdivision has the

(n+ 1) + (n+1)(n+2)
2 vertices

S1 =
{ei+ej

2 | 1≤ i, j ≤ n+ 1
}

In other words, we take as the first simplical subdivision the subdivision with vertices
equal to the vertices of ∆n alongside the midpoints of each edge of ∆n. Note that we
are subdividing ∆n into smaller equilateral simplices with edge length

√
2

2 .

Assuming that we have formed the kth simplical subdivision with vertices Sk for some
k ≥ 1 in a manner such that each cell is equilateral with edge length

√
2

2k , we form the
k+ 1th simplical subdivision by once again bisecting the edges of the cells of the kth
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subdivision, so that the k+ 1th subdivision has vertices

Sk+1 =
{v+u

2 | v,u ∈ Sk
}
.

Then, each cell in the k+ 1th subdivision is equilateral with edge length
√

2
2k+1 .

Having constructed a sequence of subdivisions S1⊂ S2⊂ ·· · as above, note that, for any
k ∈ N+, each cell in the kth subdivision is contained in a ball of radius

√
2n

2k centered
at the barycentric center of the cell. To see this, consider a cell in the kth subdivision
with vertices {u0, · · · ,un} ⊂ Sk. Then, defining

P =
(
u1−u0 · · ·un−u0

)
∈ R(n+1)×n,

and letting c be the barycentric center of this cell, lemma 4.5 tells us that the cell is
contained in the open ball B(c,‖P‖). By definition,

‖P‖2 = tr
(
P ′P

)
=

n∑
i=1
|ui−u0|2.

Since the length of each edge of the cell is equal to
√

2
2k , we have

‖P‖2 =
n∑
i=1

(√
2

2k

)2

= 2n
2k+1 ,

so that ‖P‖=
√

2n
2k .

In short, we have constructed a sequence of simplical subdivisions of ∆n that become
finer and finer as the sequence goes on.

Step 2: Constructing a Proper Coloring

Suppose that f does not have a fixed point, that is, f(x) 6= x for any x ∈∆n. For any
k ∈N+, we define the coloring c : Sk→{1, · · · ,n+ 1} as follows. For any x ∈ Sk,

c(x) = min{1≤ i≤ n+ 1 | (f(x))i < xi}.

c(x) is well-defined because, for any x ∈ Sk, x,f(x) ∈∆n, so that

n+1∑
i=1

xi =
n+1∑
i=1

(f(x))i = 1.

147



If (f(x))i ≥ xi for every 1≤ i≤ n+ 1, then

n+1∑
i=1

[(f(x))i−xi] = 0

would be the sum of non-negative elements and therefore (f(x))i = xi for any 1 ≤ i ≤
n, which contradicts the assumption that f(x) 6= x; therefore, there must exist some
1≤ i≤ n+ 1 such that (f(x))i < xi.

Note that c : Sk→ {1, · · · ,n+ 1} is a proper coloring of the first simplical subdivision.
For any 1 ≤ i ≤ n, since the ith element of ei is the only non-zero element of ei, we
must have c(ei) = i; this shows us that each vertex in ∆n is assigned a different color.
In addition, letting x ∈ Sk on the face generated by ei1 , · · · ,eij , since xi1 , · · · ,xij are the
only non-zero coordinates of x, it follows that

c(x) ∈ {c(ei1), · · · , c(eij )}.

By Sperner’s lemma, there must exist some rainbow cell

Rk = conv
(
{x(k,1), · · · ,x(k,n+1)}

)
,

where we arrange the vertices so that c(x(k,i)) = i for 1≤ i≤ n+1, in the kth simplical
subdivision of ∆n. By definition,

(f(x(k,i)))i < x
(k,i)
i

for 1≤ i≤ n+ 1.

Step 3: The Limiting Behavior of the Rainbow Cells

We can find such rainbow cells for each subsequent simplical subdivision of ∆n. Note
that {x(k,1)}k∈N+ is a sequence in the compact set ∆n, so it must have a convergent
subsequence. {x(k,2)}k∈N+ taken along this subsequence is also contained in the compact
set ∆n, so it must have a further subsequence that converges. Proceeding in this manner,
we can find a subsequence {km}m∈N+ of N+ such that

lim
m→∞

x(km,i)

exists and equals some x(i) ∈ ∆n for 1 ≤ i ≤ n+ 1. Furthermore, note that, for any
1≤ i 6= j ≤ n+ 1, since x(k,i),x(k,j) ∈ Sk are the vertices of the same cell,

∣∣∣x(k,i)−x(k,j)
∣∣∣< 2 ·

√
2n

2k ,
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since each cell in the kth simplical subdivision is contained in a ball of radius
√

2n
2k . It

follows that

∣∣∣x(i)−x(j)
∣∣∣= lim

m→∞

∣∣∣x(km,i)−x(km,j)
∣∣∣= lim

m→∞

(
2 ·
√

2n
2km

)
= 0,

so that x(i) = x(j). This holds for any 1≤ i 6= j ≤ n+ 1, so we put

x∗ = x(1) = · · ·= x(n+1).

Finally, for any 1≤ i≤ n+ 1,

(f(x(km,i)))i < x
(km,i)
i ,

for any m ∈N+, so taking m→∞ on both sides implies, by the continuity of f , that

(f(x∗))i ≤ x∗i .

Step 4: Deriving the Contradiction

We now have

n+1∑
i=1

[x∗i − (f(x∗))i] = 0,

where all the summands are non-negative. Therefore, (f(x∗))i≤ x∗i for any 1≤ i≤ n+1,
so that f(x∗) = x∗. This contradicts our initial assumption that f has no fixed points,
so it must be the case that f does have a fixed point on ∆n.

Q.E.D.

4.2.3 Kakutani’s Fixed Point Theorem

Kakutani’s fixed point theorem is a generalization of Brouwer’s theorem to correspondences.
Given a set E and a correspondence Γ : E→ E, a fixed point of this correspondence is a point
x∈E such that x∈ Γ(x). Thus, a generalization of Brouwer’s theorem to correspondences might
look something like: given a continuous correspondence Γ : ∆n→∆n, there exists a point x∈∆n

such that x ∈ Γ(x). Kakutani shows that we can relax continuity to upper hemicontinuity in
exchange for strengthening some of the properties of Γ(x). The formal statement and proof are
below:
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Theorem 4.8 (Kakutani’s Fixed Point Theorem)
Let ∆n be the standard n-simplex in Rn+1, and let Γ : ∆n→∆n be a non-empty closed, convex
valued and upper hemicontinuous correspondence. Then, Γ has a fixed point in ∆n, that is, a
point x ∈∆n such that x ∈ Γ(x).

Proof) As in Brouwer’s theorem, we work with finer and finer simplical subdivisions of ∆n to
find the desired fixed point in the limit. Let {Sk}k∈N+ be the vertices corresponding to
the finer and finer simplical subdivisions cosntructed in the proof of Brouwer’s theo-
rem; recall that each cell in the kth simplical subdivision is equilateral with edge length
equal to

√
2

2k .

We want to apply Brouwer’s theorem to first find a fixed point for each subdivision, and
then show that the limit of these fixed points are a fixed point for the correspondence
Γ. In order to apply the theorem, however, we require a continuous function that maps
∆n to itself. As such, we define the function ϕk : ∆n → ∆n by linearly extrapolating
between the vertices in Sk. For any v ∈ Sk, we choose ϕk(v) as some point in Γ(v). Now,
for any x ∈∆n, we define

ϕk(x) =
n∑
i=0

λi ·ϕk(vi)

where x belongs to the cell in the kth simplical subdivision with vertices {v0, · · · ,vn}
and has representation

x=
n∑
i=0

λi ·vi

as a member of that cell. Note that ϕk is well-defined for any point in x ∈ ∆n; if x
belongs to any one cell in the kth subdivision, then ϕk(x) is clearly well-defined. On
the other hand, if x belongs to more than one cell, this means that it lies in some face
of a cell with dimension less than n, or that λi = 0 for some 0 ≤ i ≤ n. Thus, even in
this case x has a unique representation as a convex combination of vertices in Sk, so
that ϕk(x) is well-defined.

In addition, ϕk is continuous on ∆n. If x ∈ ∆n belongs to only one cell, then λi > 0
for 0 ≤ i ≤ n, so that a small enough neighborhood around x still belongs to that
cell; in this case, letting {xm}m∈N+ be a sequence in ∆n converging to x, the conver-
gence of ϕk(xm) reduces to the convergence of its coordinates, so that ϕk(xm)→ ϕk(x)
as m→∞. Meanwhile, if x lies on the boundary of two or more cells, then letting
{xm}m∈N+ be a sequence in ∆n converging to x, ϕk(xm) again converges to ϕk(x)
becuase the coordinates of ϕk(xm) corresponding to vertices to which x assigns the
coordinate 0 also shrink to 0, and once again the problem is reduced to the convergence
of the coordinates.
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Since ϕk : ∆n→∆n is a continuous function, by Brouwer’s theorem there exists some
x(k) ∈∆n such that x(k) =ϕk(x(k)). Letting x(k) belong to the cell with vertices {v(k)

0 , · · · ,v(k)
n },

x(k) has representation

x(k) =
n∑
i=0

λ
(k)
i ·v

(k)
i

for λ(k)
0 , · · · ,λ(k)

n ∈ [0,1] such that ∑n
i=0λ

(k)
i = 1. By the definition of ϕk,

x(k) = ϕk(x(k)) =
n∑
i=0

λ
(k)
i ·ϕk

(
v

(k)
i

)
=

n∑
i=0

λ
(k)
i ·y

(k)
i ,

where we denote y(k)
i = ϕk(v(k)

i ) for 0≤ i≤ n and k ∈N+.

Note that {x(k)}k∈N+ and each {v(k)
i }k∈N+ , {y(k)

i }k∈N+ for 0≤ i≤ n are sequences that
take values in the compact set ∆n, while each {λ(k)

i }k∈N+ for 0 ≤ i ≤ n is a sequence
taking values in the compact interval [0,1]. As such, by the sequential compactness of
compact sets, we can take nested subsequences to find a subsequence {km}m∈N+ of N+

on which all these sequences converge. Let

lim
m→∞

x(km) = x∗,

limm→∞v
(km)
i = v∗i , lim

m→∞
y

(km)
i = y∗i for any 0≤ i≤ n

and

lim
m→∞

λ
(km)
i = λ∗i ∈ [0,1] for any 0≤ i≤ n.

Since
n∑
i=0

λ
(km)
i = 1

for any m ∈N+, taking m→∞ on both sides shows us that

n∑
i=0

λ∗i = 1.

Furthermore, since

∣∣∣v(km)
i −v(km)

j

∣∣∣≤ 2 ·
√

2n
2km

for any 0≤ i, j≤n andm∈N+ by the construction of the sequence of simplical divisions,
taking m→∞ on both sides shows us that

∣∣∣v∗i −v∗j ∣∣∣= 0,
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or v∗= v∗0 = · · ·= v∗n. Likewise, each x(km) is contained in the cell with vertices v(km)
0 , · · · ,v(km)

n ,
so

∣∣∣x(km)−v(km)
0

∣∣∣≤ 2 ·
√

2n
2km

for any m ∈N+ and we have x∗ = v∗.

For any 0≤ i≤n, since Γ is upper hemicontinuous and closed valued at v∗i , {v
(km)
i }m∈N+

is a sequence converging to x∗, and {y(km)
i }m∈N+ is a sequence converging to y∗i such

that

y
(km)
i ∈ Γ(v(km)

i )

for any m ∈N+, by the sequential characterization of upper hemicontinuity

y∗i ∈ Γ(x∗).

Then, since we have

x(km) =
n∑
i=0

λ
(km)
i ·y(km)

i

for any m ∈N+, taking m→∞ on both sides shows us that

x∗ =
n∑
i=0

λ∗i ·y∗i .

y∗0, · · · ,y∗n ∈ Γ(x∗). Finally, the convexity of Γ(x∗) shows us that

x∗ ∈ Γ(x∗),

so that we have found a fixed point of Γ.

Q.E.D.
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