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Asymptotics for the Baseline Model

Bai and Ng (2002), Bai (2003)

Suppose there are T time periods and N macroeconomic variables available in the sample, and
denote the ith variable at time ¢ by Xj; . Let there exist r < min(N,T) common factors F;
~— ~—

(1x1) (rx1)
that determine these variables, with the loadings of each factor on the ith variable being given

as A\; € R, The model is then given as
Xit = NiFy +eir,

where e;; is the idiosyncratic element of X;;, to whom we have yet to impose any time series
properties.
Let X, = (X1, -, X)), FO= (F}, - ,FQQ)I, e; = (es1, - ,e;r), where the superscript 0 repre-

sents the true values. Then,

LZfiAQvL\QL,

()

(Tx1) (TXT)(rx1) (Tx1)

and collecting X = (X;,--,Xy), AV = (A},---,A) and e = (e1, -+ ,en),

X =FA"+e.

Alternatively, denoting X; = (X1s,---, Xn¢)" and e; = (e14,---,eny)’, we can organize the data as

X, = AY F) 4+ ¢
~—~ ~ N =~
(Nx1)  (NX7)(px1)  (Nx1)



1.1 Derivation of Estimators of Factors and their Loadings

The factor model defined above is estimated using the technique of asymptotic principal com-
ponents, which just means that A and F' are found as the solution to the following least squares

minimization problem (we assume that k factors are estimated):

1 N T )
r/r\unS(k: AF) T;;(Xit_A;Ft)

In other words, A and F are found as the values that minimize the mean squared deviation from

the dependent variables in the given sample.

To simplify this problem, note that we can write

S(k, A, F) =

The model can now be estimated in two different ways depending on whether we solve the first

order condition for A or F first.

i) Solving for A

In this case, the first derivative of the above objective function for vec(A) is

0 _ Ot (X' = AF') (X' = AF")) Ovec((X'—AF"))
Ovec (A)'S(k’A’F) B Ovec ((X ’—AF’))/ dvec (A)'
= —2vec (X' F®IN ) = —2vec (X' —AF')F)',

where we used the fact that

otr(A'A)
oA = 24
and
Ovec((X'—AF"))  Ovec(AF’)
dvec (A)’ ~ Ovec(A)
Ovec (A)
—(FX)I —(FX) In).
QM) e (ay X 1n)



Therefore, the estimator of A given F' is
AF)=X'F(F'F)L.
Substituting this into the objective function yields the concentrated form

V(k,F) = S(k,A(F),F) = % tr (X — FA(F))(X — FA(F)"))
= ﬁ tr (X = F(F'F)"'F'X) (X - F(F'F)'F'X))

_ ﬁ tr (X' (I = F(F'F)'F') X ).

ii) Solving for F’
In this case, the first derivative of the above objective function for vec (F) is
0 otr (X —FAN) (X —FAN)) Ovec((X —FA))
7/S(k7A>F) = 7 ’ 7
Ovec (F') ovec ((X — FN)) ovec (F)
= —2vec (X = FA")) - (AQ) In) = —2vec (X —FA")A)'.

Therefore, the estimator of F' given A is
F(A)=XANAN)L
Substituting this into the objective function yields the concentrated form

7 (k,A) = S(k, A, F(A)) = ﬁtr (X = F(MA)(X — F(A)F'))

e e
_ % tr (X (In — AA)'A) X).

It remains to derive the estimator of F' and A under the above specifications. Let us first derive

the estimator of F'.



The problem is now to minimize the concentrated objective function

V(k,F) = itr(x’ (Ir=F(F'F) ' F') X) = - tr(X IX)— g (X'F(F'F)'F'X)

NT NT NT
1 1
t _ ! =1 g /
= 7 r(X'X) tr ((F F)Y'F'XX F)

with respect to F', which reduces to the problem of maximizing
tr ((F'F) ' F'XX'F)

with respect to F. Imposing the normalization # = I}, implies that we must find the F' that

solves the constrained maximization problem

max  tr(F'(XX")F)
FERT xk

1
subject to TF/F = I.

Let us now proceed step by step. To begin with, we find the upper bound of the expression
tr(A’M A) for any A € RT** such that A’A = I}, and positive semidefinite M € RT*T,

(1) Expanding the expression of tr(A'MA)
Because M is symmetric, by the principal axis theorem there exist an orthogonal matrix
P e RT*T and a diagonal matrix
D = diag (p1,---,pur) € RT*T with p3 > --- > pur > 0 equal to the ordered eigenvalues of
M such that M = PDP’. As such, defining B = P'A and denoting the columns of B by

Bla"'kaERTa
B|DB, --- B|DB;
tr(A'MA) = tr(B'DB) = tr : : => B/DB;
B.DB, --- B,DBy =
~ |2
—ZZ:U’Z Z,uz (ZB ) Zﬂz B;
j=1i=1 =1

where By,---,Bp € R¥ are the rows of B.

_ 2
Br

N

2
(2) Finding an Upper Bound for ‘Bl

Because
BB, --- B{Bj
B,'ﬁBl . B,;Bk
=APPA=AA=1,,



{B4i,: -+, B} is an orthonormal set and thus a collection of linearly independent T-dimensional

vectors with norm 1. Letting V be the subspace of RT spanned by {Bj,---, By}, there ex-
ists an orthogonal complement V| of V, and V| satisfies R = V@V, . Let {B1,---,Br_i}
be an orthonormal basis of V| ; then, R =V @V, implies that

{B1,- By, b1, Br—i}

is an orthonormal basis of RZ. Define

B, = (51 5T7k) e RTX(T=F),

and let C' = (B B J_) € RT™*T, Because the columns of B form an orthonormal basis of
RT, C is an orthogonal matrix, and as such the norm of the rows of C are all equal to 1.
Letting Cy,---,Cr be the rows of C', and denoting §; = (515, - ,BT]-)' forany 1 <j<T—k,
this implies that

T—k

k k
2 2
=B <> BL+)Y Bh=ICl*=1
j=1 j=1 j=1

0< |B;

for any 1 <i <T', or that the squared norm of the rows of B are bounded above by 1.

Finding the Upper Bound of tr(A'MA)
Note that

9 T r ) k T ) k )
=Y Y Bi=>.> Bi=Y |Bj’=k

i=1j=1 j=li=1 j=1

T
>[5
i=1

2
for

since the columns of B all have norm equal to 1. Therefore, denoting a; = ‘Bi

1<i<T, a1, - ,ar are values such that

i) 0<a;<1lforall1<i<T,and

ii) ap+---4ar =k



With this in mind, we can see that

r(A'MA) Zu,

T
= Zﬂiai
i=1
k k
:ZMz’az‘JerZ(l—ai)—ukZ(l—az‘)
Zﬂzaz+ﬂk2 —ay ] + Z Hiay — sz 1—@1

i=k+1
< ZHiai+Zui(1 —a;)| + p Z a; _Z(l —ay)
i=1 i=1 i=k+1 i=1
(1 > -+ > pg, while pg > pgr1 >+ > pr)
k T
= itk |y ai— k]
1=1 i=1
k
] Z,u‘z (E;r:l a; = k)
i=1

Therefore, tr(A’M A) is bounded above by the sum of the k largest eigenvalues of M.

It is now a simple matter to solve the maximization problem. Letting vq,---,v; € RT be an
orthonormal set of eigenvectors of M corresponding pq,-- -, g, denote V = (v1 S vk) e RTxk
and note that

w0
Mv=v|: - :|=vD
0 Pk
Then, V'V = I}, and
tr(V MV) =tr(V'VD) = tr(D Z”Z'

Putting A =V allows the function tr(A’M A) to attain its upper bound, and therefore it is the
maximizer of tr(A’M A) over the set of all T'x k matrices A such that A’A = Ij.

As such, letting the columns of %F’k be orthonormal eigenvectors of X X’ corresponding to the

k largest eigenvalues pq > -+ > pug > 0 of XX/,

(TF’“’ xXx' F’“) ZM

and F* is a solution to the stated maximization problem; we put the superscript k to emphasize

the fact that & factors have been estimated.



This is why the method is called asympototic ”principal components”; in effect, the estimated
factors are the first k principal components of X X', found successively by searching for the linear
combination of the data that yields the largest empirical variance. Here, the linear combination
is across time, so that the factors are the k collection of weights that best explain the variation

in the data across time.

The maximized value of tr(F'(XX’)F') becomes

(P (XX ) = T (P00 )

1 k! ok i
=Ttr (TF 'F .D> =Ttr(D) :TEM,

where D is the k x k diagonal matrix collecting p1,---,ur. Therefore, the minimized value of

the objective function is

1
V(k,Fk) = ~ (XX f—Zm,

and the estimator of the factor loadings A is

1

M= Lxip
T



Likewise, the estimator of A that minimizes the concentrated objective function

V(k,A) = % (X X') %u ((VA)'A(X"X)A)

subject to the normalization % is given as v N times a set of k orthonormal eigenvectors
corresponding to the k largest eigenvalues of X’ X. Denoting this estimator by A", the estimator

of F' is now given as

—k 1 —&
F'=—XA
N )

and the minimized value of the objective function is

1
V(kA") = ﬁtr (XX Zuz,

where vy > --- > v, are the k largest eigenvalues of X'X.

Note that, if the k largest eigenvalues p1,---,ur of XX’ are positive, then they are the same as
those of X’X; this indicates that, if the k largest eigenvalues of X X’ are positive, then either of
the above approaches yields the same minimum value of the objective function. In other words,
F* and A* are not unique solutions to the least squares problem.
We can also see that, for any nonsingular k x k matrix P, F¥P also solves the minimization
problem, since

Vi, F*P) = —— tr (x' (tr = F*P(P'FYFFP) P/ EV) X))

NT

ﬁtr (X7 (b= FR(FM PR T X) =V (k, ).

10



1.2 Asymptotic Properties of the Estimated Factors:

Assumptions and Notation

We now show, under the same set of assumptions, that the panel information criteria introdued
in Bai and Ng (2002) consistently estimate the number of factors, and that the estimators de-

rived above possess the asymptotic properties laid out in Bai (2003).

To make the discussion slightly more formal, we let (Q2,H,P) be our probability space and as-

sume that every random element in the following exposition is defined on 2 and H-measurable.

1.2.1 The Trace Norm on R™*"

Throughout, we will treat the matrix space R™*" as a metric space under the metric induced

by the trace norm ||-|| on R"™*"  defined as
||l = tr(A’A)2

for any A € R™*™. It is very easy to see that ||A|? is simply the sum of the squares of all the

entries of A, and it follows that

41— (ii%) 3y

i=1j=1 i=1j=1

We will now show that ||| possesses the properties that a matrix norm such as the operator

norm should possess.

Recall that, for any n € N, defining S™*™ as the set of all symmetric n X n matrices, S™*" is
a linear subspace of the real vector space R™*™: this can be seen easily, since the zero n xn
matrix is symmetric and, for any a € R and A, B € S"*", (aA+ B) =aA’+ B'=aA+ B and
thus aA+ B € S™*™.

In addition, the operation (-,-) : S™*™ x S"*™ — R defined as

(A, B) = tr(A'B)

for any A, B € S™*™ is an inner product defined on S™*":

e Forany a € R and A,B,C € ™",
(aA+B,C) =tr((aA+B)'C) =tr(a- AC+B'C) =a-tr(A'C)+tr(B'C) =a-(A,C)+(B,C),

so that (-,-) is linear in its first argument.

11



e For any A, B € S™*™
(A,B) =tr(A'B) = tr(BA") = tr(B'A) = (B, A),

where we used both the commutativity property of the trace operation and the symmetry
of A and B.

o For any A € S™*",
(A, A) =tr(A’A) = tr(A?).

Letting A = PDP’ be the eigendecomposition of A (which exists because A is real and
symmetric), A = O if and only if all the diagonal entries of D are 0. Lettng p1,---,u, be
the diagonal entries of D, since A2 = PD?P’ and tr(A?%) = tr(D?), we can see that

(A, A) = tr(D?) Zm >0,

where the inequality holds as an equality if and only if uy =--- = p, =0, or D =O. There-
fore, (A,A) >0if A#O.

We have just shown that (S™*",(-,-)) is a real inner product space; denote by |||, the norm

induced by (-,-). Since

N|=

Al = (A, A))? = tr(A'A)2

for any A € S"*", we can see that ||-||,. equals the trace norm ||| on S™*".

By the Cauchy-Schwarz inequality,
tr(A'B)| = [(A, B)| < | All,,| Bll,

for any A, B € S"*™.
In particular, for any positive semidefinite A € S™*™, letting A = PD P’ be its eigendecomposition
and p1,---,p, be the diagonal entries of D (the eigenvalues of A), u1,---,un > 0. Therefore,

1
5 n
1
Il =t = (3202) < 3=
i=1
which tells us that the trace norm of a positive semidefinite matrix is majorized by its trace.

Returning to the general setting of the space of all real m x n matrices R™*™, we can now see

that the trace norm [|-|| on R™*"™ has the following properties:

[AB] < [[Al[llB]

12



For any A € R™*™ and B € R™*P,

|AB||? = tr(B'A’AB) = tr((A’A)(BB'))

=(A'A,BB’) (A’A, BB’ are n x n symmetric matrices)
<||A'A|,,-|BB'l,, (The Cauchy-Schwarz Inequality)
<tr(A'A)-tr(BB') (A’A, BB’ are positive semidefinite)
= || A|*-IBI”.
Therefore,
IAB| < [|A[[- |B]-
la- Al = fal - [| Al

Let a ¢ R and A € R™*™. Then,

N

lad] = tr(a®A'A)2 = |al - tx(A'A)= = [a| - || A].

A+ B[ < [[All+ B
Let A, B € R™*";

|A+ BJ||* = tr((A+B)'(A+ B)) = tr(A’A) + tr(B'B) + tr(B'A) + tr(A'B).

Letting the (¢,j)th entry of A, B be denoted A;;, B;; for any 1 <i<m, 1< j <n, note
that

tI'(B,A> = tr(A’B) = Z ZAijBija
j=1li=1

and by the Cauchy-Schwarz inequality,

D AijBij <Y |AiBij| < (ZA?J) (Z B%-)
=1 =1 =1 =1

for any 1 < j <n, so that another application of the Cauchy-Schwarz inequality yields

1 1
n o m n m 2 m 2
DD AyBi <) (Z A?j> (Z%)
=1 =1

j=li=1 j=1

1 1
g< Afj) (zzij) Bl
J:

j=11i=1 Jj=1li=1

13



Therefore,

|A+ B||* = tr(A’A) +tr(B'B) + tr(B'A) + tr(A'B)
< AP+ [IBI* +2- 1Al BIl = (I Al + [ BI?.

|A| =0 if and only if A=0
Let A € R™*™. Suppose that ||A]| =0. Then,

0=tr(A4) =) A2,

i=1j=1

so that A;; =0 for any 1 <i<m, 1 <j <n. It follows that A= O. It is obvious that
|A||=0if A=0.
We have now shown that ||-|| is a norm on R™*™. Therefore, we can induce a metric d on
R™*™ by defining

d(A,B) = |A- B
for any A, B € R™*™,
For any = € R", |z| = ||z|
Let = be an n-dimensional real valued vector whose euclidean norm is |x|. Then, |z| is
well-defined as the norm of the n x 1 matrix x. It is easy to see that
2 2

l]|” = tr(a"z) = |,

By implication, for some A € R™*" and z € R",

|Az| = || Az]| < [|A]| - [l]| = [[A[] - |-

Inversion is Continuous under |-||
The proofs here follow those in chapter 9 of PMA for the operator norm.
For any n € Ny, let Q° be the space of all invertible n x n matrices. We first show that

° is open under the metric induced by the trace norm ||-|.

Choose any A € Q°. Because A~! # O, ||[A7!| > 0. Let B € R™" be an element in the
open ball B(A,1/||Al|) around A, that is,

1
A= Bl <=7+
A=

14



Choose any = € R™, and suppose that z # 0. Then,

o= |A7 42| < |A7Y||-| A2~ Bz + Bal
<||a7|- q1a- Blllzl + Bz))

Because |z| > 0, we have
| a7 -14=Bllz| < =],
so that
|| < || +[Baz],

which implies |Bz| > 0, or Bz # 0. By contraposition, if Bx =0, then z = 0. This tells
us that the null space of B consists only of the zero vector 0, and as such that B is an

invertible matrix.
This holds for any B € B(A,1/||A]|), so B(A,1/||A]]) € ©°. This in turn holds for any

A € Q°, so Q° is open with respect to the metric induced by the trace norm.

Now we can easily show that matrix inversion is continuous.
Define f:Q° — Q° as

f(A)=A"1 for any A€ R™",

Choose any A € Q°, and B € R™*" such that ||[A— B|| < 4. Then, B € Q° by the above
result, and because A7 [|[A— B <1,

|57 = Jlatas~| < a7 - By~ 4
<[laz]-na- i[5+ va- |47
implies

iAo
AT TA-B]

L B
It then follows that
1#() - fB) =A™ (=B B! < |4 B|-[a]- | B7|

VA A= B)
1A A= B

The right hand side goes to 0 as |A— B|| — 0, so it follows that || f(A)— f(B)]|| also goes

to 0 as ||A— BJ|| — 0. This shows us that f is a continuous function on °.

15



1.2.2 Big O Notation in Probability

Let {X,}nen, be a sequence of random elements taking values in some matrix space (E,d)
whose metric d is induced by the matrix norm ||-|| on E. Let E be equipped with a Borel
o-algebra £ generated by the metric topology on F induced by the metric d. Note that the

relationship |[(A, B)|| < ||A||||B]| holds for any matrix under either the operator or trace norm.

We say that {X, }nen, is a Op(a,) process for a positive real sequence {an}nen, if {%}neN+

is bounded in probability, that is,

X
For any € > 0, there exists an M >0 and N € N, such that P (Hn
an

>M><eforanyn2N.

On the other hand, we say that {X,},en, is an o,(a,) process if {f—:}neN+ converges in

probability to 0; to state the definition explicitly,

Xn

For any § > 0 and € > 0, there exists an N € N such that ]P’(
Qn

>5)<eforanyn>]\7.

If {Xn} nen, is Op(an) (op(an)), then {%}n€N+ is Op(1) (0p(1)), so we will mostly deal with

processes of Op(1) and o,(1).

The following are some important properties of 0,(1) and Op(1) processes:

1) If {X,}nen, is op(1), then it is also O,(1)

This follows almost immediately from the definition. Suppose {X,}nen, is o0p(1), and

choose any € > 0; then, by definition,
lim P(||X,||>1)=0,
n—oo

so there exists an N € N such that P (|| X,| > 1) <e for any n > N. We can put M =1,
this holds for any € > 0, so by definition {X,, },en, is Op(1).

2) If {X, }nen, converges in probability or distribution, then {X, },cn, is O,(1)

First suppose X, % X for some random element X taking values in F, and let the dis-
tributions of || X,||, || X]| be the measures p,, p on the real line R for all n € N.. By the

Portmanteau theorem,

lim 1, (4) = pu(A)

n—oo

for any Borel sets A on the real line whose boundary has measure 0 under pu, that is,

16



w(0A) =0.

To prove our result, fix € > 0.

We first prove that the set defined as
M=A{zeR[u({z}) >0}
is at most countable. For any n € N4, define
1
My ={zeR|p({z}) >~}

then, M =J,, M,,. Suppose M,, contains more than n elements. Then, letting J be a

finite subset of M,, with n+ 1 elements, we can see that J is a measurable subset of R and
1 J _n+1
1=u(R)Zu(J)=u<U{x}> B S(IED S A P AL S
zeJ xzeJ zeJ n n n

which is a contradiction. Therefore, M,, contains at most n elements and is a finite set.

Since M is the countable union of finite sets, it is at most countable.

Now note that P (||X| > n) = u((n,+00)) = 0 as n — oo; this is because {(n,+00)}nen,

is a sequence of subsets of R decreasing to (), which implies, by sequential continuity, that

lim p((n,+00)) = p(@) =0.

n—0o0

Therefore, there exists an N € N, such that

P X[ >n) <

DO ™

for any n > N. If u({N}) >0, then there exists an M > N such that u({M}) =0, since
otherwise the uncountable set [N,+o0) must be contained in the countable set M, a

contradiction. This implies that
€
p((M,+00)) = P(| X[ > M) < P(J X[ > N) < 5.

Since (M,+0o0) is a Borel set whose boundary has measure 0 under y, by the Portmanteau

theorem
Jim g1y, (M, 400)) = p((M, +00)).
As such, there exists an Ny € Ny such that

(M, 400)) = (M, +00))| < 5
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for any n > Ny. Note that u,((M,+00)) =P (|| X,| > M) for any n € N4, so that
€
B (|| Xnll > M) =B (X[ > M)| < 5

for any n > Ny.

As such, we have the string of inequalities
P Xnll > M) < [P(| Xnl| > M) =P (]| X]| > M)|+P (]| X]| > M) <e

for any n > No. This holds for any € > 0, so by definition {X,,},en, is bounded in proba-
bility and thus Op(1).

Now suppose that X, % X to some random element X taking values in E. Then, because
convergence in probability implies convergence in distribution, X, % X and {Xn}nen, is

again O,(1).

If {X, }nen, is 0p(1) and {Y, }nen, is Op(1), then {X,Y, }en, is op(1)

The property in question is surprisingly easy to show:
Choose any § > 0 and € > 0. By boundedness in probability, there exists an M > 0 and
Np € N4 such that

€
P(IYal > M) < §

for any n > Ny. Note that M and Ny depend only on e.
Then, by convergence in probabiliy, there exists an N1 > Ny such that

1) €

for any n > Ny. Here, Ny depends on Ny, M, e and §, and therefore only on € and 4.
Now note that, for any n > Ny,

0
P (| X0 Yol > 6) <P ([ Xnll > M) +P (Yl > M)

<-4+

= €.

N
N

This holds for any € > 0, so

lim P (|| X,Y,| > 0) =0,
n—0o0
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and this again holds for any 6 > 0, so XY, > 0 and by definition {XnYntnen, is op(1).

4) If { X, }nen, and {Y, },en, are Opy(1), then {X,Y, },cn, is also O,(1)

Choose some € > 0. Then, by definition, there exist M, My >0 and N € Ny such that
P(|| X, > M) < g and P (|[Vin]| > M) < €2
for any n > N. Then,
P(IXn Yol > MiMa) <P (| Xn| > My) +P([[Yin| > Ma) <€

for any n > N, so by definition, {X,, Y}, }nen, is also Op(1).

5) If {Xy}nen, and {Y,}nen, are Oy(1), then {X,, +Y,},en, is also O,(1)

For any € > 0, there exist M1, My >0 and N € N such that
P(|| X, > M) < % and P (||Y| > M) < €2
for any n > N. Then,
P([[ X0+ Yol > My + M) <P ([| Xn[| > M1) +P([[Yim|| > M) <e

for any n > N, so by definition, {X,, + Y}, }nen, is also Op(1).

If { Xy} nen, is Op(1) and {Y; }nen, is 0p(1), then {X, + Y, }ren, is Oy(1)

Since being o, (1) implies being Op(1), {X, + Y, }nen, is the sum of two Op(1) processes
and is thus Op(1).

If {X,}nen, is Op(an) and {Y,}nen, is Op(by), where ‘g—z — 0, then {X,, +Y,}nen,
is Op(b,) and { XY, }nen, is Op(anby)
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10)

By definition, {%}n€N+ and {%}neN+ are Op(1). Furthermore, since

X, _ X, an

by an by
for any n € Ny, where {‘;—Z}ne N, is a sequence of degenerate random variables that is
op(1), it follows that {f—:}neNJr is op(1).
Therefore, the process {)b(—: + z/—:}neNJr is the sum of an 0,(1) process and an Op(1) process,
so that it is itself O,(1). It follows that { X, + Y, }nen, is Op(bn).
In contrast, we showed that the product of two O,(1) processes is also Op(1), so that the
process {20}, v is Op(1); it follows that {X, Yy nen, is Op(anby).

anbn

If {X,,}nen, is Op(1), then for any real positive sequence {a,},cn, that increases

to 400, { Xy }nen, is op(ay)

Note that {ai}ne N, can be considered a sequence of degenerate random variables that

converges to 0 in probability. Thus, é =0p(1), so that, by the result above,

X 1
—=—X,= op(1)

an an

as well. This implies that { X, }nen, is op(an).

If there exists an M >0 and N € N4 such that E[|X,,|]] < M for any n > N, then
{Xn}n€N+ is Op(l)

Suppose that there exists an M >0 and N € N, such that E[||X,||] < M for any n > N.
Then, for any € > 0,

M €
Pl Xn|] >—) < =E[|X,
(120 > ) < SEX) <

for any n > N, so that {X,, }nen, is Op(1) by definition.

If there exists an convergent positive real sequence {a,},cy, and N € N, such
that E[||X,[]] < a, for any n > N, then {X,},en, is Op(1)
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Because any convergent real sequence is also bounded, there exists an M > 0 such that
an < M for any n € Ny. By impliciation, E[||X,]||] < a, < M for any n > N, so by the

previous result, {X, }nen, is Op(1).

11) If | X, || < ||Y,|| for any n € Ny and {Y,},en, is Op(1), then { X, },cn, is also O,(1)

For any e, there exists an M >0 and N € N, such that
P([[Ynl > M) <€
for any n > N. Then, for any n > N,
P([[Xnll > M) <P([[Ya]| > M) <€,

so that {X, }nen, is also Op(1).
In general, a heuristic used to understand the big and small O notations is that a process
{X}nen, that is Op(ay) converges at speed a, provided that a, — 0 as n — oo, so that f—:
becomes stable. Therefore, the sum of two convergent sequences converges at the rate of the
slower sequence, while their product converges at the product of their respective rates, which

explains fact 7). Furthermore, a stable sequence (a sequence of O, (1)) converges when multiplied

by a sequence that converges to 0, which explains fact 8).
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We reiterate the above findings for future reference:

1) An o,(1) process is also Oy(1)

2) Any process converging in probability or distribution is O,(1)

6) Op(1)+op(1) =0p(1)

7) If 3= — 0, then Op(an) + Op(bn) = Op(bn) and Op(an)Op(bn) = Op(anby)

8) If a, " +00, then O,(1) = op(ay)

9) Any sequence whose first moments are bounded is O,(1)

10) Any sequence whose first moments are majorized by a convergent sequence is

Op(1)

11) Any sequence majorized by an O,(1) sequence is also O,(1)
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1.2.3 Continuity of Eigenvalues and Eigenvectors

Another property that will be used extensively throughout the proofs is the continuity of eigen-
values and eigenvectors. This allows us to infer the convergence of eigenvalues and eigenvectors
from the convergence of the associated matrices via the continuous mapping theorem. Seeing
as how the factor and factor loading estimators are constructed as eigenvectors of a random

matrix, this will come in handy later on.

The first problem we must deal with is the uniqueness of eigenvalues and eigenvectors. Given an
arbitrary square matrix A € R"*™ A has n (possibly complex) eigenvalues, and thus a mapping
from R™*™ to the eigenvalues of n x n matrices must be a mapping from a matrix to a set of n!
permutations of its eigenvalues in order to be a function. Likewise, if a diagonalizable matrix A
has repeated eigenvalues, then the eigenspace corresponding to that eigenvalue does not have a

unique orthonormal basis, which means that we cannot recover a unique eigenbasis of A.

Continuity of Ordered Eigenvalues when the Eigenvalues are Real

To deal with the eigenvalue uniqueness problem, we first define the set M,, of n x n matrices

with real eigenvalues, and the subset A,, of R™ defined as
Moo= (@ z) €RY (1 > 2 .

We let the ordered eigenvalues of any A € M,, be the eigenvalues of A ordered from largest to
smallest. That is, A1,---, A, € R are the ordered eigenvalues of A if they are eigenvalues of A
and Ay > - >\,

The function eig,, : M,, — A,, is defined as

eign(A) = The vector of ordered eigenvalues of A

for any A € M,,. We can then show that eig is a continuous function under the matrix norm
||| on M,, and the euclidean norm |-| on R™. To this end, recall that, for any matrix A € M,,

and an eigenvalue A € R of A, letting v € R™ be an eigenvector of \;,
[Aillv] = [Aiv] = |Av| < [|Al[v].
Because v is non-zero by the definition of an eigenvector, |v| > 0 and therefore

Al < [ Al < +o0.
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The vector (A1,---,A,) € Ay, of ordered eigenvalues of A is now bounded above as follows:

(A, M)l < DNl < e [JA] < oo
=1

Now choose any A € M,, and let { A }ren, be a sequence in M,, converging to A in the operator
norm. For any k € Ny, let \#) = (/\E’“),~-~ ,)\%k)) € A, be the collection of ordered eigenvalues of
Ay, and likewise define A = (A1,---,\,) € A, for A. Then, from the preceding result we know
that

A®] <Al

for any k€ N;. Since ||Ay — A|l converges to 0 as k — oo, the sequence {n- | A|}ren, is
bounded, and by the above inequality, so is {A\#)}ren, C A,

A, is a subset of R", so {A(k)}ke N, is a bounded subset of R", which implies by the Bolzano-
Weierstrass theorem that {\(F)},c n, has at least one convergent subsequence. It remains to
show that every convergent subsequence of {/\(k)}ke N, converges to A to complete the proof.
Suppose {A*m)},.c . is a convergent subsequence of {\*)},cn, , with limit A* = (A},--,\%) €
R™. It can easily be shown that A, is a closed subset of R", so \* € A,,, that is, A\ >--- > A7,

A,Ek"L)

For any 1 <¢<n and m € Ny, solves the equation

N, — Ay, | =0,
and by the continuity of the determinant and the fact that A, — A as m — oo,

N L= Al = Tim A1, 4y, | =0,

m— 00

It follows that Aj,---, A} are eigenvalues of A such that A] >--- > Ay; by the uniqueness of
ordered eigenvalues, \* = \ and {)\(km)}me N, converges to A. This holds for any convergent
subsequence of {)\(k)}keN+, S0

lim A% =\,

k—o0

This can be rewritten as
lim eig,(Ag) = eign(A),
k—oo

so that eig, is a continuous function.
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The Continuity of Eigenvectors when the Eigenvalues are Distinct

Now that we have established the continuity of ordered eigenvalues of matrices whose eigenval-
ues are real, we can establish the continuity of normalized eigenvectors for a subset of M, via

similar methods.

Formally, define the subset MZ of M,, as the set of n x n matrices with real and distinct
eigenvalues.

Let A€ Mg with distinct ordered eigenvalues A\; > --- > A,,. Then, because the eigenvalues
are all distinct, the eigenspace corresponding to each eigenvalue has dimension exactly 1. This
means that, for any 1 < ¢ < n, there exists exactly two orthonormal bases for the eigenspace
corresponding to \;: specifically, for any eigenvector v; of A; with norm 1, {v;} and {—v;} are
the only orthonormal bases for the eigenspace of A;.

Suppose that we are given a set of n signs s = (s1,-++,8,). Then, the above result means that,
for any 1 <i < n, there exists exactly one eigenvector v; of A; with norm 1 and first entry with
the sign s;. As such, collecting the unique normalized eigenvectors vy,---,v, € R™ of Ay, -+, Ay
whose first entries have the signs s1,-, s, into the matrix V = (vl Un>, V' is a nonsingular
matrix (eigenspaces of different eigenvalues are linearly independent) with columns of norm 1
such that

AV =VD,

where D is the diagonal matrix collecting the ordered eigenvalues A1,---, A, of A.

Based on the above observation, given a vector of n signs s we can define the function eigvec;, :

ME — R™™ ag

eigvec, (A) = The unique n X n nonsingular matrix with columns of norm 1 and signs s such that
AV =V D, where D is the diagonal matrix collecting the ordered eigenvalues of A

for any A € M%. Note that, because the columns of eigvecs (A) have norm 1 and ||eigvecs (A)]|?

is bounded above by the sum of the squared norms of the columns of eigvec; (A), it follows that
leiguecs (A)||* < n, or |leigvecs (A)| < v/n.

Note that, if A is symmetric, then eigvecs (A) is an orthogonal matrix, since the eigenvectors in
different eigenspaces are orthogonal in this case.

It is now easy to show the continuity of eigvecs on M.

Let A€ M? and let {4y }ren, be a sequence in M? converging to A in the operator norm. For
any k € N, let k) = ()\gk),m ,Aﬁf)) € A, be the collection of ordered eigenvalues of Ay, and
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likewise define A = (A1,--+,Ap) € A, for A. Define

AR A - 0
D, = : : and D= :
NN 0 A

for any k € N;. Then, letting Vj, = eigvecs (Ay) for any k € Ny and V = eigvecs (A), we have
Aka = Vka and AV =VD

for any k€ N,.

In addition, ||[Vi|| < +/n for any k € Ny, so the sequence {V}}ren, is bounded in the operator
norm. Since matrix spaces can be seen as extensions of euclidean spaces under the operator
norm, by the Bolzano-Weierstrass theorem {V}}ren, has a convergent subsequence. As before,

it now remains to see that every convergent subsequence of {V;}ren, converges to V.

To see this, first observe that, because {A}ren, is a sequence in M,, and A and element of

M., by the result proved above
AE) — eign(Ag) — eign(A) = A

as k — oo. Thus, Dy — D in the operator norm.

Let {Vk,, }men, be any convergent subsequence of {V}}ren, with limit V*. Since the conver-
gence Vi, — V in the operator norm implies element-wise convergence, the columns of each Vj,
have norm 1, and the unit circle on R” is closed, the columns of V* must also have norm 1. In
addition, because signs are preserved across limits, the first entries of each column of V* have

the signs assigned in s. Note also that, because
At Vi, = Vi Dy,

for any m € Ny, where Ay, — A and Dy, — D in the operator norm, taking m — oo on both
sides yields

AV* =V*D.

By definition, V* = eigvec; (A) =V, and as such Vi, — V as m — oo. This holds for any

subsequence of {Vj }ren, , s0

lim Vi =V,
k—o0
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or in other words,

lim eigvec; (Ay) = eigvec, (A).
k—o00
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1.2.4 Assumptions and Preliminaries

Bai and Ng (2002) and Bai (2003) both prove their results under an approximate factor model
framework with time-series serial correlation and heteroskedasticity, that is, they assume that
the errors e;; still retain correlation across both the cross-sectional and time dimensions and
that the distributions of the time series {e; }1ez for i € N; may not be identical. They also do
not specify whether these series should be stationary or non-stationary, imbuing the model with

the utmost generality.

The same results will be proved here under the stronger assumptions of an exact factor model
and stationarity, that is, we will assume that {e;; };cz are i.i.d. and weakly stationary time series

for all i € Ny. We will also make the following assumptions:

(1) Non-triviality of Scaled Factors
We assume that there exists a kmqr € N4 such that r < ke, and the kp,q, largest eigen-
values of XX’ are always positive. This implies that the k largest eigenvalues of X X'
are always positive for 1 < k < kjq2, and as such that, when we use the scaled factors
Fr = ﬁX X'F* later on, the scaled factors are non-zero, or non-trivial.

Additionally, we assume the true number of factors r satisfies r < kyqz-

(2) Second Moment Convergence of True Factors and Factor Loadings
We assume that the factor loadings AJ,--- ,)\9\, are nonrandom, and that there exists an
M > 0 such that

sup E‘FtO‘Q <M,

t€N+
o2
sup |A;| < M.
’iGNJr
In addition, we assume that
FO/ FO AO/ AO
£> XF and — A

for some positive definite matrices X p.X) € R™*",

(3) Exact Factor Model
We assume that the processes {e;; }1ez are independent and identically distributed for any

i€ N,

(4) Stationarity of Errors

We assume that {e;; }+cz is weakly stationary with mean 0 and autocovariance function
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v:Z—R.
In addition, we assume that the autocovariances are absolutely summable and that the
time series has bounded fourth moments, that is, there exists an p4 < 400 such that

E[e}] < puq for any t € Ny.

Weak Dependence between Factors and Errors
There exists an M > 0 such that

2

| N|T
E |72 |2 Flea| | <M
i=1lt=1
| NI 2
El— FO (eyeis—y(t—s))| <M (for any t € Ny)
AT I,
2
E <M

A A
— F))\e;
PR

for any N,T € N,.

CLT for Time Dimension

For any 7 € N4,

1 & d
—N " Fleiy S N[0,9,],
\/T; t Cit [ 1]

for the positive definite matrix

T
!
®; = plim T Z e FPEY.

Sufficient Conditions for Factor Identification
The kynae largest eigenvalues of X X/ are distinct for any N, T € N, such that T > kg

Likewise, the r X r matrix 35X has distinct eigenvalues.

The Probability Limit of £7£"

We assume that, for any 1 < k < kmaa, there exists an r x k matrix Q* of full rank such
that

FO/F’G » .
— .
T Q

This assumption greatly simplifies the proofs below, and, together with assumption 7, we

can express )7 in terms of quantities related to the matrices X5, ¥ .
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The following are some implications of the above assumptions:

e Implications of Assumption 2
1 1 1
Letting X7 be the Cholesky factor of X, the r x r matrix EI%,EAEI% is positive definite
and thus has r positive eigenvalues. By implication, the eigenvalues of X5 ¥ g are equal to
1

1 1
those of E%,Z AX# and are thus all positive.

e Implications of Assumption 5
The first two statements of the assumption tells us that the errors e; and their cross
products e;e;s — (s —t) are only weakly dependent on the factors F'. This imposes some
kind of exogeneity on the factors and is standard in much of the time series literature.
Meanwhile, the third statement in the assumption says that the common component F\Y

itself is only weakly correlated with the errors.

e Implications of Assumption 7

Recall that the factor estimate F* was derived as
F* = /T x The orthonormal eigenvectors of X X’ corresponding to its k largest eigenvalues

for any 1 < k < kjaz. Since the k.. largest eigenvalues of XX’ are assumed to be
distinct, so are its k largest eigenvalues. By implication, the eigenspaces corresponding to
the k largest eigenvalues of X X’ have dimension 1, meaning that each eigenspace has an
orthonormal eigenbasis consisting of a single vector of norm 1 that is unique up to sign
changes. Since eigenvectors corresponding to different eigenvalues are orthogonal to one
another, the columns of F* are determined uniquely up to sign changes.

By extension, the factor loadings AF = %X 'F* are also determined uniquely up to sign

changes.
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We first prove some preliminary results about the rate of convergence of some factors before

moving onto the actual proof. The results are as below:

-

1T |k
° thzl‘Ft

To see this, note simply that

1| 22 1~ o FWE)
T;‘Ft‘ :tr<T;FtFt’ =t =t ) =k

forany T'e Ny and 1 <k < k-

2
= Op(l)

1 T N
 NT D=1 ’21:1 Nejt

This is the counterpart to the first assumption in assumption (5), and it implies that the
term in the expectations is Op(1). This can be derived directly from the fact that the true

factor loadings are nonrandom and the stationarity of {e; }tez.

Note that, for any ¢t € Ny,

N 2 NN
| Meu| <3°DE [eue; 2]
i=1 i=1j=1
N N
-3 [] =0 (L)
i=1 =1

= 7(0)- tr (A”A°)

by the assumed exact factor structure and weak stationarity of the errors.

2 AOIAO
< . .
<~(0) tr( ~ )
AOIAO

Because 2~ — ¥ by assumption, the expectation of = S ‘Zf\il Nej

2
is Op(1).

As such, we can see that

1 T

E

N

0
> Nei
=1

is majorized

by a convergent real sequence, which implies that ﬁ Zle ‘Zz‘]\; Nej
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° NTZ 1Zt 1|Xlt| - (1)

The above process can be bounded above as follows:

1 N T
N7 22 Kal* = ZZ AVE) +eir)”
i=1t=1

zltl

:tr( AOF FO )—1—22)\0/ <1§:Ft0€it> ZZet.
N T T=

zltl

The first term is clearly Op(1), since

1 OFOIFO o) AO/AO FO/FO

. 0/A0 07 O . e e . .
and the matrices & NA a TF converge in probability to positive definite matrices.

Q]ZE

for some M > 0 by assumption 5 and

As for the second term, because

1
NT 2=

=1

Z Ftoeit

t=1

E|-2 3 FY
M;‘ €;

1 N 1 T T
‘NZA'LO, (TZFtoeit> S —— g ZFtoeit
t=1 t=1

i=1 i=1
N 3 N
1 o2\’
SNT ( Ai ) (Z
=1 =1

1
2\ 2 1 AO/ AO 3
= tr
by the Cauchy-Schwarz inequality, we can see that

1A0/A0
<
Mt(T - )

0
Ft €t

M=

T
Z Fto €5t

t=1

T -

i=11t=1

—
Z‘H
hE

E - )\il < Ft eit> ’
N =1 T t=1

where the last term goes to 0 as N,T" — 00, so the second term is 0,(1).

Finally,

[NTZZ%} =7(0) < +o00,

1=1t=1

so the last term is Op(1). Therefore,

1 N T
TZ; zt| = 1) +o0p(1) + Op(1) = Op(1).
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FA%e; % N (0,7(0)- 3

{)\?eit}ie N, is a sequence of independent random vectors by the exact factor model as-
sumption with a finite mean 0 and covariance matrix v(0) - AX9AY for any i € N.. Note

that

1 AOIAO
2 (7(0)- 2PN ) =~(0) —=7(0)2a
N~ N
as N — oo, and
1 & 0 |4 1 Xy g4
a0l YRR E alt

2

11 2 1 AVAO\ 2
<pp— | = 0 =y —
<y (w20F) =y (+(55))

Thus,

We can now apply Lyapunov’s CLT to see that

1 1 X d
——AY = — Z/\?eit = N[0,7(0) - X4]
VN \/Ni:1

as N, T — oo.
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1.3 Consistency of the Estimated Factors

The consistency of the factors is established by first normalizing them in an appropriate way.

Recall that the columns of %F k¥ form an orthonormal set of k eigenvectors of X X’ corresponding

to its k largest eigenvalues. Let the k largest eigenvalues of X X' be collected in the diagonal
matrix VNT € R¥**F; then, the diagonal entries of VNT are W times the k largest eigenvalues of
X X', which implies that

By implication,
vh o _ (1pklpk) vk 1 [Fk/ (1XX’) Fk]
Our normalizaiton of the estimated factors is
B = PRVl
Because the diagonal entries of VJ@T are assumed to be positive, V]@T is non-singular and thus
V(k,F*) =V (k FF).

Effectively, F* scales each factor estimate by the corresponding eigenvalue.

We can expand F* as

N 1 -
= ——XX')F*
(NT )

— |7 (A% o) (Foav )| £

AYAON [ FYEk 1 _ 1 . 1 _
— FO AOFOIFk 7F0A0/ le: - /Fk.
( N )( T )TN TNrT T TN

Defining H* = (%) (F OITF k), which is a 7 X k-matrix valued random element with rank

min(k,r), we can see that

! FOAY e FR|| 4 ee' F¥||.

HF’“ FOH’“H<H eAOFY Bkl 4 HNT

|
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Note that

F/FO AO/AO 111 ~ AO/AO
= (5 ) (5| < 21l 25
< L|e | 3 ATAT
- T N
F/F % FO/FO % AO/AO
:H T T N ||

All three matrices on the right hand side are O,(1), so H* is also O,(1) for any k € N

For any real numbers z1,---,x,, by the Cauchy-Schwarz inequality,

) () - )
i=1 i=1 i=1 =1

(5] < ()

Using this inequality, we can see that

n
D i
=1

so we have

1

o] <s3

FOAY, ’F’“
E H N
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We examine each term in turn:
-2
1) 3| preAFE|
The rows of the term inside the norm are given by
6/1 AO 0 Fk
eAOFO/Fk —
e/T AO FO/ ka

Therefore,

He/\OFO'ﬁ’kH2 =tr [(eAOFO’Z*:'k> (eAOFOIFk),]

T
t=1

~ .12
e;AOFOIFk ’

and this term can be further majorized as

PV < (i
t >

') e e
t=1

2 2 ~ 112
EERE

>

t=1

T | N
=1

As such,
1H L voporpe]’Z 1 Jenoro
T|NT N2T3
2 ~ ~
1 {1 &|& FO o PRk
< — —Z Z/\Qeit -tr( -tr
N (NT | T T
2
Ef 1 L& FO o
| FEm el (5.
N (NT | T

where the last equality follows because F k}F o k. All terms on the right hand side, aside

o (3)

from %, is Op(1), so

1 1 _
e AOFOIFk:
THNTe
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2) || FOAve /FkH

The rows of the matrix in within the norm are given by

Fl()/ AO/ e Fk
FOAO/e/Fk — :
F:?/ AO/ e Fk

so by the definition of the trace norm,

00//~k2:T 0 A0 1 k|
|FOAY e FE | = S| P A B
t=1

< (32 [FoF) e
t=1

2 ~1., ~ 2
= tr(FY FO). HAO’e/ tr(FM %) = kT tr(FY FO). HA%/

i

The columns of A”¢’ are given by
A = (A% --AVr),

so the trace norm once again tells us that

2
HAO/ ’ ‘AO/ ‘ _ Z)\ eir
t=1li=
Therefore,
1] 1 k 1 k
THMFOAOI /F N2T3HFOAO/ /F H
k (FO'F0> Z Z 0 ’
< —-tr . A€ .
N T t 1li=1 !

Once again, the two rightmost terms are O,(1), so

o (3)

FOAOI le

HNT
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)
3) %Hﬁee’F’“H
Note that
eje' Fk
ce' FF =

elre' ',

so that

D)
ege'Fk‘ .

! 1ok 2: a
t=1

For any t € N4,

T
eée/Fk =e] Z esFSk/

s=1

N
k!
< eiteis> F
K2

N1 B T N B
> (eieis =t =)+ 35t =) B

i s=1i=1

Il
M= 114

©
Il
—
-
I
—_

T
(eireis —y(t — s))Ff' +N- Z’y(t — S)Fskl.

Il
M=
M=

s=1i=1 s=1
Therefore,
e (| T N 2 T 2
e;e'Fk‘ <2 ZZFf(eiteis—’y(t—s)) + N2> A (t—s)FY
| ls=1i=1 s=1
(| T N 2 T e
<2 DY FFeneis—v(t—s)) +N2‘<27(f—s)2> (Z ¥ )
_s:li:l s=1 s=1
r 2
<2 ZZFf(eiteisf*y(tfs)) +EN?T-Z|,
s=1i=1

where we used the Cauchy-Schwarz inequality to justify the second inequality, and we

write

Z= 3 ()

Z=—00

which is finite because the autocovariances (-) are absolutely summable and absolute

summability implies square summability.
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This holds for any t € Ny, so

2 2
il | RPN A4 ! tak 1 ok
THNTee N2T3 Hee F H < ete F ’
T|T N 2 T
2
< N2T3Z ZZF eiteis —y(t—s)) +2N2T3Zk]\7 T-Z
t=1ls=1i=1 t=1
T N 2 1
< N2T3; <s ‘ izl(eiteis_’Y(t_S))> +2'Tk’Z-
By the Cauchy-Schwarz inequality,
1 T N 2 1 | TN 2
NT? (Z F¥ Z(eiteis—v(t—s))> < (TZ ” ) ]\TZ > (eieis—(t—s))
s=1 i=1 s=1 s=11i=1
| LN 2
=k > > (eieis—(t—s))
NT s=1li=1

N
NlTZZZE [(eneis — (s — 1) (ejeejs — (s 1)
1 N
NT 22

=1i=1
1 ST ZN
ZWZZ{E[e?ﬁ?g]—’Y(S—t } ZZM e
s=1li=1 s li=1

we can see that

= 1 (Z ¥ i( (t )))2 < ko
=== s eitis —Y(t—$ < ;
NT &= | NT2 \ =1 || & N
SO
3 (SIS o}
Fil-1> (eieis—(t—s)) > =0p () :
N2T3 t=1 \s=1 i=1 N
We can finally see that
L1, =l 1 1
il | < _
THNTeeF O”(N)+Op (T>
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It follows that

and as such,
1 4 k k/F02_1 Fk FO Hk2_0 571
7 2 |- HYE = | P P01 = 0, (85%)
t=1
where dy7 = min(N,T).
Therefore, even if the true number of factors is unknown, the mean squared deviation of the

estimated factors from some linear combination of the true factors converges at rate min(N,T),

provided that the factors are suitably scaled.
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1.4 Information Criteria for the Number of Factors

As the number of factors k increases, the value of the minimzed objective function decreases.
To see this, for any T' € N, let py > -+ > pp > 0 be the ordered eigenvalues of X X'. Then, for
any 1 <k <kmaz,

1

V(k,Fk) = ﬁtr (XX") Zuz— Z i
z k+1
k+1 ~
Z ul——tr (XX") Zm_ (k+1, Fk+1y,
2 k+2

where the inequality is strict because pg1 > 0 by assumption 7. This indicates that, the larger
the difference in the kth and k+ 1th eigenvalues of X X’, the smaller the difference between
V(k,F*) and V (k4 1, F¥1), which in turn implies that it is likely that there are k true factors.

As such, an intuitive approach to determining the number of factors could be to choose the

1 < k < kpqe such that the ratio M’:i o indeed, this is the approach taken in Ahn and Hornstein
(2013).

In contrast, Bai and Ng suggest using V(k,ﬁ‘ ¥) in a role similar to the estimated error variance
in traditional information criteria such as the AIC or BIC when constructing their informatio
criteria, since it can be interpreted as the sum of squared residuals in a traditional least squares

context. Specifically, they suggest using the criterion
PC(k) =V (k,F*) + kg(N,T),

for 1 <k < kpasz, where g(N,T') is a penalty term representing the inefficiency that arises as

more factors are included into the model.

Because VNT is nonsingular under our assumptions, substituting Fk=F ka into the function
V (k,-) also yields the same value as F*, that is,

V(k,F*) =V (k,FF).
Thus, the information criterion can be reformulated as
PC(k) =V (k,F*) + kg(N,T).

This representation will help us derive the asymptotic properties of the information criterion

more effectively, since our asymptotic results above were formulated in terms of F* instead of F*.
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We now show the conditions that the penalty function g(IN,7') must satisfy in order for the
number of factors derived using the above criterion to consistently estimate the true number of

factors r; that is, we show the conditions under which
P(k*#7r)—0
as N,T — oo, where k* is the number of factors chosen by PC(k).

We first show some preliminary results before moving onto the proof.
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1.4.1 Preliminary Result 1

We want to show that:

If 1 <k <r, then V(k,F*) =V (k, FOH") = 0,(65/%).

Let 1 <k <r. Note that

1 ~ PN BN
V(kF) = ot (X’ [IT—Fk (4 E*) Fk’] X>

N B
where PI’:i =Lk (F"“Fk) F¥  Likewise, because

1 —1
V(k FOHk> NT (X/ |:IT o FOHk‘ (H’k/FOIFOHk’) Hk/F0/:| X)
1 N

-1
where Pk, = FOH* (Hk'FO’FOH’f) HYFY it follows that

V(k, ¥~V (k, FOH*) = ZX (PFH Pk)X

k! ik k! ;707 70 17k . A~ ~ k! ik
Define Dy, = FTF and Dy = w Since F'* = FkV]@T and FTF = I}, we have

o= (v,

and by the definition of H”,

Fk/FO AO/AO FO/FO AOIAO FO/Fk

Note that Dy is Op(1), since H*, £ OITF ® and £ O/TF £ are Op(1) by assumption. Specifically,

FO/Fk » .
ﬁ )
T Q
where Q¥ has rank k = min(r,k) by assumption. and AOJIVAO, E O}F - converge in probability to

positive definite matrices X5 and X g, so

Do 5 L=QNM\XpEAQF,
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where the k x k matrix on the right hand side has full rank and is thus positive definite.

Note that Dy — Dy can be decomposed as
Fk:/ﬁwk H¥ O 0 prk
T T
1

A A A 1 A
(Fk—FOHk),(Fk—FOHk)+T(Fk—FOHk),FOHk+fHk/FO,(Fk—FOHk),

Dy —Dy=

1
T

so that, by the triangle inequality,

-l e pom [ () () Lo

1
< e et o) ()

T
From the results studied earlier, we can now say that

192~ 00100 (i) 0 v ) = O

It follows from this discovery that, since

1D — L|| < [[Do — Dyl + [| Do — L]

where || Do — Dyl = Op(c;;,;ﬂ) and || Do — L|| = o0p(1), it follows that || Dy — L|| = 0p(1), that is,
Dy, 2 L. Since L is positive definite, by the CMT we have DO_1 2 L1 and D,;l Lo
Dyt =0,(1) and D' = 0,(1).

Furthermore, the relationship
ot o5 = - Do < o5

tells us that HD,;1 —DO_IH is Op(égéﬂ).
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Expanding the kernel (P}]f% e Pl’:i), we can see that

—1 ~ ag A\ —1 A
P}’?'H _ P}’; — FOHk‘ (Hk:/FO/FOHk’> Hk,‘/FO/ _ Fk’ <F/<:/Fk) Fk‘l

—_ lFOHk‘DalHk/FO/ _ le‘Dlzlpk/
T T

Lok y—1 gk m0r L [k 72077k | 120 77k] =1 [ £k 017k o 70 7k’
:fFHDOHF—T[F—FHJrFH}Dk [PF - FOH 4 O]
okt o L a0k o1 (pk 0k L (pk 0 prk =1 ks 0
_TFHDOHF—T(F—FH)Dk (F—FH)—T(F—FH)DkHF

Lok =1 (#k _ 0k L 20 prk =1 rpks 120
- PP D; (P —FH)—TFHD,CH'F’

_ %FOH’“ (Dal _Dlzl) HM O _ % (ﬁk_Fon) D;? (Fk_FOHk)/
1

T

/

(ﬁvk _ FOHk) D HMFY %FonDlzl (Fk _ FOHk>

Therefore,

so that

v £ v roi) < (e S ) e o - o
’ ’ “\NT&= )T 0 k
gl o |

w2 (e men) (1) -
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Since

Jal - =0, (35)
| Do =D = 0, (537%)
Pl = () =ou
2] = ox0)
1 N ) 1 N T )
7 o Xl = e L X =000

we can see that
V(k, F*) =V (k, FOH")| < 0, (63) + 0, (53%) = 0p (6347,
and as such

V(k, F¥) =V (k, FPH*) = 0, (531)
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1.4.2 Preliminary Result 2

Here we want to show that:

For any 1 <k <r, there exists a 7, > 0 such that

. 0rky 0 _
N71T11L100[P(V(k,F HY) =V (r, FO) > ) = 1.

Let 1 <k <r, and define P = FO(FYF%)~1F0.

Since k < r, by assumption %ﬁk LN Q" to a r x k matrix QF with rank k < r, and as such

o= (F2E) () o,

where Q¥ ¥ has rank k < r. Note that

1 FORO\ T g 1 FORO N1
Pr— Pk — FO FO/ . F()Hk Hk/ Hk Hk/ FO/
|75 = Pha ‘\/T ( T ) VT' VT T JT
1 1
1 2 FO/FO -1 FO/FO 2/ FO/FO -1 FO/FO 2
< 7HFOH . . I?“_ Hk Hklin Hk/ £ ’
T T T T T

l /
where (%) ? is the Cholesky factor of £ OTF 2

Since
FO/FO
Hk’iT HE B QM SppQF = I,

where L has rank k,

and

1 , 1 1
where X7 is the Cholesky factor of X and (F OTF 0) RN X% by the CMT and the continuity of
the Cholesky operation.
1
Defining the r x k matrix P = Z%/EAQ’“, we can see that

Byr 5 P(P'P)LP.

Letting M = I, — P(P'P)~! P’ because M is symmetric and idempotent, its trace equals its
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rank; therefore,
rank(M) = tr(M) =7 —tr(P(P'P)'P)=r —tr(Iy) =r—k >0
by the assumption that 1 < k < r. This means that
I, — By 5 M,
and by implication
1T — Bzl % 1M = te(M'M)? = tr(M)% =/r — k.

Since

Hlrel = (55

by the CMT and the continuity of the trace operation,

) 2t (2p)

(;HFO‘F) ' H (F(;F()) _lH |1, — Bnr|| & tr(zF)Hz;Hm S0

and as such HP}’; —P}]%HH =0,(1).

V(k,FOH*) -~V (r,F°) can be decomposed as
| X

N
VI, FOHY) =V (r, F%) = o 3 X (I — Ppogp) X = N7 2 il = PRX;

(v (5P )
e ((Poav ) (P k) (P00 )

= tr (NlTAOFD’ (PF— Px) FOA0’>

1 1
+2tr (WAOFOI (P}";—P}I?’H) 6) +tr (Mel (P};_Pf]‘iH> 6) .
For any N,T € Ny,
tr (16’ (P}—P}]?H) e) - 3 e (P};—P}’?H) e; >0
=1 =1 — )
NT NT &

since Pk — Pk, is positive semidefinite. Thus,

1
NT

1

V(k, FOH") =V (r, F°) > tr ( A°FY (P~ Pfy) FOAD’) +2tr ( A (PF— Px) e) .
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We examine each term in turn:

1) tr (ﬁAOFO' (P}; - PﬁH) FOAO/>

Note that
tr LAOFO’(PT—P’“ )FOAY) = tr lFO/(pr_pk ) PO AYA?
NT P 7 (PF—FPru v )

We now have

B FO 0 00 Hk <Hk/FD/FOHk> -1 Hk/ O 0

1 0/ g k 0
TF (PF*PFH)F_ T T T T

5 0p—SpEAQFLTIQMEASp,
where

1

1 1 1\ 1

Yp—SpXAQFLTIQN Y\ S =52 <IT — E;’EAQ’“L_IQ’“’ZAE;) 2
1 L
=YXiMX}.

By the CMT and the continuity of the trace operation,

1 1 1
tr <NTA0F0’ (PF— Py) F0A0’> 2t (z LMY A) .

Denoting the above limit by 73 (the limit depends on k through M), we can see that

1 l/ l/ 1 l/ 1

T = tr (E%MZ% EA> =tr (Ei LEMYE Zf\) .
1, 1 1, 1

The matrix X3 Y7 M7 X3 is symmetric positive semidefinite, so its trace 73 is the sum
of all its (non-negative) eigenvalues (this follows by using the eigendecomposition of the
matrix).

1, 1 1, 1
We now establish the rank of Ei/E%ME%/Zi.
For any a € R", if

then
1, 1 \/ 1, 1
(E; EX@) M (E}% Ef\a) =0

1, 1
as well. Denoting 5 = Eﬁlﬁia # 0, because M is symmetric and idempotent, the above
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equality implies that

1
5/

1
or that M3 = MY} Yia=0.
0

1, 1 1, 1 1, 1
trivially, so that the null spaces of Ef\/E%M EZ%IE?\ and M 212;/2[2\ are equivalent. The two

matrices are both r x r matrices, so this implies that they have the same rank.

1, 1 1, 1
Since a matrix and its transpose has the same rank, EfxlE}M Z;/Ef\ has the same rank
1, 1 1, 1
as Ei/E%M. By the same line of reasoning as above, we can show that EK/E%M has the

1, 1 L, 1
same rank as M, and by extension ZX/E%M E%,Ef\. Therefore,

1 1

1, 1 i, 1
rank (zg’E%ME;’zg> = rank(M) =7 —k >0,

which implies that it has at least one non-zero eigenvalue and therefore that its trace 7%

is positive.
Therefore,

1
tr <NTA0F°’ (PF— Py FOAO’) L 7> 0.
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2) tr (FpAFY (Pp— Pl )e)

Note that
1 0 0/ r k _ 1 0 0/ r k
Since
et A°
e’ = :
el AY
and

for any t € Ny, we have

) T
Jea? = 3] -
t=1 =1

Z AO €t

i=1

This allows us to see that

N21T2 ET: ’eAOF t0\2

< (3l (el

(FO’FO) ( 1 ; ZAO%

=1
WeAOFO/ 0,,(

H AOFO/

)

V -ZV )
.

Meanwhile,

so we can see that

o1



and as such that

1

A (P —Pfy) 0.

By the CMT and the continuity of the trace operation,

1 T
tr (MAOFO/ (PF — P}]%H> €> = Op(l).

From the above results, we can conclude that

1

1 T
AR =tr (AOFO’ (PF - PII;H) FOAO’) +2-tr (NT

N7 A°FY (P~ Pfy) e) L 7> 0.

Therefore,

0<P (V(k,FOHk) _V(rF) < T;) <P (A’fVT <7 Zf)

where the latter term converges to 0 as N, T — oo by the definition of convergence in probability
and the fact that 5 > 0. It follows that

lim P (V(k,FOHk) ~V(r,F% < T’“) =0,

N, T—oc0 2

and redefining 73, as % yields the desired result.
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1.4.3 Preliminary Result 3

Here we show that:

For any k> r, V(k,ﬁk) —V(r, FT) = OP((;]:I}F)'

Suppose that r < k < kjq2. Then,
Hk‘l & Qk/ZA

where QF has rank r, so that Q¥ ¥, also has rank r, and H* itself has rank r. As such, H*H"

has full rank r and is nonsingular; defining
Hk+ — Hk/ (Hka/) -1

HFH** =1, so that H** is the right generalized inverse of H*.

Since
o aY 5 5,QRQM sy,
where the limt is nonsingular,
(H’%ﬂf’)_1 L2t [EAQka’EA}_l
and

-1
HE 25 QM2 [2AQRQME|

By implication, ‘ HkJrH = 0p(1).

Note that we can express X as

X:FOAO/+€:FOHka+AOI+e

= FRHMAY — (B*— FOHY) HM A e
Therefore, defining

k __ k
ME = I — Pk,

>
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we have

V(k,EF*) =

%tr(X MEX)
(s
Sl - o)
o)

since M k [k — O. Likewise, defining

we have

Mp =TIy — Pp,

1
V(r,F%) = ~7 (X' M}y X)

1 0 A Or P (0 A0
1
ﬁtr(e/MEe).

Therefore, the difference between the two can be written as

V(k, F*) —

Vir, %) = <t (¢ (P~ PE) e)
—l-Q%tr (AOH’”’ (B*~Fom*) Me )

—i—%tr <A0H’“+’ (F FOH’“) M* (F FOHk> H’”AO’).
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As usual, we will examine each term in turn:

1) yrtr <A0Hk+' ("~ Fom*) Mk (B~ — FomF) Hk+A0')

Because PZ]:i is symmetric and idempotent,
v'PI’;fv = v'PI’;f’P]éfv = (P;;fv)/ (Pll;fv) ,
which tells us that P}];f, is positive semidefinite. Therefore, for any v € R”,
U’ng =1/ (PI{E —IT) +v'v>0;
Pg —Ir= Mg, SO

v’Mgv <v'v.

Note that
A~ / A
AO R+ (Fk - FOHk) ME (F’“ - FOH’f) HE+AY
F

is a positive semidefinite matrix, and therefore that its trace is non-negative. In addition,

due to the property of M I’; shown above,

0< % tr (AOH’“’L’ (F*- FOHk)'M’f (F*—FOH") Hk+A°’)
< —tr ( AOrk+ Fk FOH’“)/ (Fk _ FOHk) Hk+A0')
(F*-

tr(

(F*-F H’“)/ (F* - Fom)

< (gl e ) (Sl o

where we once again utilized the Cauchy-Schwarz inequality applied to the trace inner

) (Fk _ FOHk) (Hk+A0/A0Hk+/>>

‘ X HHk-I—AO/AOHk+/

< NTH

product on the space of all real symmetric k x k matrices. The two rightmost terms are
Op(1), so

% tr (AOH’”’ (B*— FOH") M (F*— For*) o ’“*A°’> = 0y (d3%)
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2) wn tr (AOHk+f (k- FOHk)'Mge)
2

Since FMEk =T (V]@T) ,

e B

1 -, -
— *Fka‘/
|7

2 Fk/ﬁwk
:tr< T >:k<—|—oo,

<lﬁk
- T

S0 PZ{Z = O,(1). It follows that
HMIIf“H < |\l + HPEH <k+Vk < 400,

so that Mlli = 0p(1) as well.
Thus,

1 0 ppktr ( £k =07k Ak \|
‘NTtr(AH (F —FH)MFe —

Uk (06 00k 2 sk /A0
tr<NTH (F —FH)MFeA

1 . ’
< \/; ﬁ@lAOHk—H (Fk—FOHk) MFIE,

e/ AY

1
7

where we used the result that, for any r x r matrix A,

\/77
<=

1
r r 3
jtr(A)] <D [Aul < (Zlﬁ) V<Vl 4]
i=1 i=1

by the Cauchy-Schwarz inequality.

Since

2

=z

=

t=1

Z )\?eit

i=1

)

9 T
e’AOH = Z ‘AO/et
t=1

it follows that

2
1

0] 2 1 L& 0
TN = o 2 [ e = 0ol
Therefore,
1tr<AOHk+/<Fk_FOHk)/MIge)_O I )
NT F "\ min(N, vV NT)

o6

[ (gl o)) s



3) o tr (e’ (P} - PI{E) e)
This final term can be decomposed as
itr (e’ (PT - P’f) e) = itlr (¢' Pre) — itr (e’P]fe)
NT FooE NT FYNT F)
Focusing on the first term, note that

1 rproy A 1120 (200 10\ "L 0r
OSMtr(ePFG)—Mtr<eF (F F) FYe

1 FO/FO -1
:NTZtr(< T ) FO’ee’FO)

< N1T2 (F(;]ﬂ)> _1H : HForeefFoH
(%) | Gl

by the Cauchy-Schwarz inequality applied to the trace inner product on the space of » x r

real symmetric matrices. Since

FY% = (Fo’gl F0’§N>,
we have
1 N | ) | NI 2
NlFe| =y o [Fe] = g X [ e = 0,(1)
i=1 i=1lt=1
Therefore,

1 Ipr N\ _ =
ﬁtr(ePFe) —Op (T)

() (557)

Since ﬁﬁ’k is a T x k matrix such that % = I and ee’ a T x T positive semidefinite

matrix, as derived all the way back in page 8, we have
k

tr ((\%F’k)lee' (\}Tﬁk>) <D i,

i=1

o7



where p1 > -+ > pp > 0 are the k largest eigenvalues of ee’.
Denote by p(ee’) = 1, the largest eigenvalue of ee’. We will show that

(e = 0,(1).

ee’ is not a zero maftrix, so its largest eigenvalue must always be positive. The non-zero
eigenvalues of ee¢’ and €’e are identical, so it follows that p(ee’) = p(e’e). Because €’e is
symmetric, using the principal axis theorem we can find a v* € R" such that |[v*| =1 and

p(e'e) = v¥'e'ev* = |ev*|?. Since

N 2

E :ﬁﬂf

i=1

N N
_ / %,k
= E E €i€;U; Vg,

i=1j=1

lev*|* =

we can see that

where the last equality follows because > (v)2 = [v*|? = 1. Therefore,

1

E {Tp(ee')] <7(0) < +o0,
which implies that 7p(ee’) = O,(1).

We can finally see that

1 1 k
wrtr(¢Phe) < pp 3om < i (olee)).

which tells us that
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Putting the above results together, we have

%tr (¢ (PF-PE)e) =0, (;) +0, (;f) =0, (53h)-

The results above reveal that

V(k, F¥) =V (r,F%) = 0, (551 ) + Oy <M> =0, (531) -

Now note that, for any r» < k < kinaz,

|V (kPR =V (r, F7)

< ‘V(k,ﬁ"“‘) —V(r,F%)| + ]V(r, Fry—V(r, FO)‘ <2 max

Tgkgkmaz

V(k,E*)—V(r, FO)‘.

A

Since ’V(k:,ﬁ’k) —V(r, FO)‘ is Op(dyr) for all 7 <k < kpag, we can see that V(k, F¥) =V (r, F")
is also Op((ixf%) for any r < k < knaz-
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1.4.4 The Consistency of PC(k)

Letting k be the number of factors chosen by PC(k), we hope to show that

le}goop (I; 7 T) =0

Since the inclusion

{k#r}c U {PC(k) < PC(r)}

1<k<kmaz, k#r

holds, it suffices to prove that
lim P(PC(k)<PC(r))=0

N, T—00

for all 1 <k < ke such that k # r.
Note that

PC(k)— PC(r) =V (k,F*) =V (r,F") + (k—7)g(N,T)
for any 1 < k < kpmag; as such, PC(k) < PC(r) if and only if V (k, F*) =V (r, F") < (k—r)g(N,T).

We study two distinct cases:

1) The Case k<r

Initially, let £ < r. Then, we can decompose
V (kB =V (r, ) = (V (kB = V (b, FOHF) ) 4 (V (k, FOHR) = V (r, FPHT) )+ (V(r, FOHT) = V (1, 7))

By premilinary result 1, the first and third terms are Op(éjﬁp), which implies that they

are op(1). As for the second term, since H" is nonsingular 7 x r matrix valued,
V(r,F°H") =V (r,F°).
Thus, by preliminary result 2,
. 0 prky _ 0y > _
N}l%rgooIP’(V(k,F HY) =V (r,F) > 1) =1.

for some 71 > 0. Denoting

Anr == (V(k, F¥) =V (k, PPHY) ) = (V(r, FPH") = V (1, 7)) = 0,(1),
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we can now see that
PV FOHY) =V FO) 2 ) <B (VO FH) -V F) 2 ) 4P (Anr 2 3.
so taking N,T"— oo on both sides yields

| < liminf P <V(k,ﬁk) _V(r ET) > T’“) < limsupP <V(k,ﬁk) _V(r ET) > T’“) <1,
N, T—o0 2 N, T—00

and therefore implies

Since
P(PC(k) < PC(r) <P (PC’(k) _PO(r) < Z‘“) _p ((V(k, B9V (5, 7)) ~ (r— k)g(N.T) < Zf)
<P (V(k,ﬁk‘) V() < g“) P (g(N, ) > 4(2@) ,

if g(N,T) — 0 as N,T — oo, then

N,ITLIEOO]P)(PC(]{;) < PC(r))=0.

The Case k > r

Now suppose that r < k < ka2 It holds that

P(PC(k) < PC(r) =P (V(k, F*) =V (1, ") + (k= 1)g(N,T) < 0)

R R V(r, F") =V (k,EF*
P(V(r,B") =V (k%) > (k=r)g(N,T)) =P < ) VR ET) k;—r> ,
where kK —r > 1. From preliminary result 3, we have the relation
V(k, F*) =V (r, F7) = Op(Sy1),

indicating that V (r, F") — V(k, F*) converges at the same rate as &y

If g(N,T) converges to 0 at a rate faster than 5;,1T, then %‘;gkm will diverge to
+00 in probability, meaning that P(PC(k) < PC(r)) — 1 as N,T — oc.

On the other hand, if g(IV,T") converges to 0 at the same rate as (5;,1T, %‘;gkm may
converge to a level larger than k —r, at which point P(PC(k) < PC(r)) — 0 as N,T — oo

is not guaranteed.
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Therefore, in order for %&;gkﬂ) to converge to 0, or for P(PC(k) < PC(r)) =0 as

N,T — o0, it must be the case that g(N,T') goes to 0 at a rate slower than 5&%. What

this means is that

N, T
5NT-g(N,T) = 9(5_71 ) — +00
NT

as N,T — oo, since the denominator goes to 0 at a faster rate than the numerator.

We can now see that the penalty term must satisfy two conditions for P(PC(k) < PC(r)) — 0
as N, T — oo for any 1 <k #1r < kmnaq:

i) g(N,T) — 0 in order for P(PC(k) < PC(r)) — 0 for k < r, while

ii) dn7-g(N,T) — 400 as N,T — oo in order for P(PC(k) < PC(r)) — 0 for k > r.

Note that these conditions mirror those ensuring consistency of traditional information criteria

used to determine lag orders, such as the AIC and BIC; the penalty term must converge to 0

in order to rule out lag orders below the true lag order but not too fast in order to rule out lag

orders higher than the true lag order.

Bai and Ng propose threee specific information criteria that satisfy the constraints above, which

are given as

Icpl(k)zlog(v(kvﬁk))+""(N+T)log( o )

NT N+T
. N+T
N log(d
ICy, (k) =log (V (k, F)) +1<:°g5(NZT),
where the choice NN—JrTT was considered because dy7 & NN—fT for large N,T.
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1.5 The Asymptotic Distribution of the Estimated Factors

Suppose now that the true number of factors r is known, and that k = r factors are estimated. Let
the estimators without the superscript k denote the estimators under k£ = r factors. Specifically,
we let I be the estimated factors, which were obtained as /T times the orthonormal eigenvectors

corresponding to the r largest eigenvalues of X X', which are assumed to be positive, and

AO/AO FO/F
n-(5) ()

We now proceed in steps:

1.5.1 Decomposing F}
Return to equation (1), namely

. 1 ~ 1 - 1 -
_ O — 0 07 0AOr / /
F—F'H TeAF F+—TFA eF+—TeeF.

By implication, for any ¢t € Ny, choosing a T' greater than ¢, we have

_ 1 .
F'eAF)+ ——Fle-e.

. 1 - 1
F-HF = —FFNe + — N7

NT NT

We already saw earlier that, under our assumptions,

Sl = il <o, ().

Since Vyr is a diagonal matrix with positive diagonal entries, it is nonsingular, so that, by
Vnrk: = F,

2
)

L2 70l L&, 1 0
fZ‘Ft—HFt‘ :VNT'TZ‘Ft_HFt
t=1 t=1

where

B F'FO AV A0
Hl — —1H/ — -1 i

Likewise,

Fr— A'FY = Vi

J 1 - 1 -
WF/FOAO/GZ‘/ + ﬁFleAOFtO + WF/G . 6t:| .
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1.5.2 The Probability Limit of Vyr

We now show that Vyp converges in probability to a positive definite matrix. This is easy to
FYF
T

show under the assumption that

Q.

converges in probability to some nonsingular r X r matrix

From the consistency result above, we found that

1

- F—FOHHQZ;ET:

B[ =0, (55%).

or equivalently, that

\% (F-FH) = \% (FVnr—F°H) =0, (W) = 0,(1).

Premultiplying both sides by % and using the fact that g = [, implies that

F’FO AO/AO FOIF
VNT — ( )

= 1
T N T Op( )7

and because

Q'EAQ,

F/FO AO/AO FO/F £>
T N T

it follows that
Vnr BV =Q'2,Q,

where V is positive definite because @ has full rank and >, is positive definite, and is diagonal
because Vi is diagonal for any N,T. In addition, the diagonal entries of V' are ordered because
the diagonal entries of V7 are ordered.

By the continuous mapping theorem, we now have

Vyr VL
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The Form of V

To derive the specific form of V', we proceed as follows.

Premultiplying both sides of the equation ﬁ (F Vr — FH ) =o0p(1) by 5(% = O,(1) yields the

equation

FO/F FOIFO
- Vvr = = H = 0(1).

. - AO/AO FO’F .
Since H = ( N ) ( T ), rearranging terms we have

FO/ F FO/ FO AO/ AO FO/ F

We can see that

FO/FO AO/AO FO/F

or equivalently,

FO/FO AO/AO FO/F
(5) () 52w

Likewise, we have

FYF
T

VNt —QV =0p(1).
By implication,

LrXaQ —QV =o,(1),

and because the left hand side is deterministic, this means

Yr¥aQ=QV.

By definition, V' is a diagonal matrix with diagonal entries equal to the eigenvalues of X pX,.

Because Y and X, are positive definite, the eigenvalues of Xy are exactly those of XY p.
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The Probability Limit of %/F

We now derive the expression for the probability limit @) of %/F by relying on the assumption
that the eigenvalues of Y X5 are distinct.

1
Letting ¥} be the Cholesky factor of ¥4, since

11
QV =Xp2yQ =2puinE Q,
1
premultiplying both sides by Ef\/ implies
1, 1r 1,
DI DI [Ei Q} = [Z
Denoting
1
'=33%0Q,

it is clear that I" is a nonsingular r x r matrix whose columns are (non-normalized) eigenvectors
1

of E%/E FE?\, which shares eigenvalues with X3 ,. Since the eigenvalues in question are all
distinct, the columns of I' are orthogonal to one another.

Let V* be the r x r diagonal matrix with the ith diagonal entry equal to the norm of the ith
column of I'. Then, defining

r*=rWvH,

the norms of the columns of I'+ are normalized to 1. Furthermore, by the orthogonality of the

columns of I', we have
(V)?=IT=QT\Q=V,

so that the squared norm of each column of I' is precisely the eigenvalue to which it corresponds.
It follows that

so that () is now recovered as
o
Q=X,°T"Vz.
Note that, by the distinctness of the eigenvalues of ¥ X4, the matrix of orthonormal eigenvectors

I'* is unique up to sign changes, and as such, the probability limit () is also unique up to sign

changes.
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1.5.3 The Rate of Convergence of F} —[:[’Fto

We know that

TXT;]Ft H’FO‘ o Z‘Ft H'FO[,

where

3 F/FO AO/AO
H =VyiH = VN}<T )( ¥ )

. 2
Since we showed above that Vi = O,(1), and %Zthl ‘Ft = H’Ft()’ = 0,(d5+) by the result of

section 2, we can see that
LN s o2 Lla . mog|? -1
LS Jh el = L poi] <oyt
t=1
as well.

Also recall that

. 1 - 1 -
F,—HF) =Vy; ﬁF’FOAO’ NTF/eAOFtO—FﬁF'e-et :

for any t € N,. Now we investigate the rate of convergence of each term on the right:

1) ﬁﬁvFvolet
Note that

2 B N7 2
L popoe | <9 (F—FOH) FOAYe,| +2 ‘H FOEOAY, ‘

1
NT N2T? N2T2

<2 [P ro a2

2
<ok (3p-raf’)u(55). ‘ fzw

2
o s () e

N2T2HHH [#o A

We saw above that

- 112 1
HH =Op (min(N,T))’
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07 170

and fI,FTF

are Op(1). Due to the nonrandomness of the factor loadings,

L N
N > Mew 5 N (0,7(0)-%4).
iz1

Therefore,d ﬁ SN Neyy are O,(1), and we have

2P| <00 (o) <0 () = (%)
- < - — ) = — .
FEANe <O\ yomn ) 7%\ \v) =%\ 5

‘NT

By implication,

1 =~
F'FAYe, =0, (

VT )

2) = L"eAOF

Once again, note that

%F’eAOFO g2ﬁ (F FOH )eAOFO +2N2T2(HF0’ AOFO‘
<2 [F - A Jeal[ - |2 2 A |0 ene e
<oy (gl ) (r el ) 1ot

T
+2% ‘FIHQ'H <F2F0> ) (]\}T;‘AOIQS

; 02 FYFO
Since |F{ |, =~ and

JELE

are all Opy(1),

F’eAOFt

-0, <N.mii<N,T>> +0, (7).

1 1
Nemi(N,T) Converges to 0 at a slower rate than =, so

NT

T F’eAOFt

=Or <Nm1<zv,T>)
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and as such

1 - 1
— FeNF =0, ————— .
NT " 7P\ min(N, VNT)

3) wplle e

We can expand the final term as

1 1 |&
n n /
NTT e | S |2 e
1 T N N 1 T _
< — ZZFS (eiteis —y(t—9))|+ = Zsty(t—s)
NT |~ & T |~
s=1i=1 s=1
1 1 T N _
< — F(e;e t—s
_\/N‘T.\/N;; S( AE] 'Y( ))
1|~ ~ - 1]~ -
+ 7 S (B H'E)A(t—s)|+ | > H'Fy(t —s)
s=1 s=1
1 1 T N ~
< — Fs(ejeis—y(t—s
< e 3 A —tt-9)

£y AR

+Q%<;§; ﬁ Qi;w@ﬁ2+ﬂﬁﬂ<§;

where the last inequality uses the Cauchy-Schwarz inequality.

Fy

'I’V(S—t)|>,

Expanding the first term, we find that

1 T N B . ) ~ N

T \/N;Z;Fs(eiteis—ﬂt—s)) gT'\/N; F,—H'FY ;(61'7&61‘3—7@—5))‘
1 1~ | LN ,

+7THHH ‘W;EFS (eztezs ’Y(t—s))‘

o
\—/
ol

where the last inequality follows once again from the Cauchy-Schwarz inequality.

By assumption,
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and we showed that

2

N
Z (eireis —Y(t—s))

1 T
NT 2 |2

s=1

has bounded first moments and is thus Op(1) in section 3, so

| 1 T N

~ 1 1
T.\/N;;Fs(eiteis_'}/(t_s))|_Op (min(\/]v,ﬁ)>+0p (\/T>_OP (min(\/ﬁ,ﬁ)

Meanwhile,

gl

o=01]- el
< Z ( ) (s —1)] (Holder’s inequality)

< (N £ ) g (EJW)) |

By the absolute summability of () and the finiteness of sup ¢y, IE|FSO|27 the term on the
right hand side is finite, so that

s—1))]

(s— )] = 0y(1).

s=1

Therefore,

’F/G €t

1 1 1
<O (min(N,x/ﬁ)) O (min(T,W)) O <T>

: 1 1
Since win(N,VNT) and i (T.VNT) converge to 0 at a slower rate than =,

1 -, 1 1
Nl o= O”(mm(w,m>>+0p<min(T,m>>'
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From the above results, we can infer that

R L VN N S WO A N WY S S
R =0,( ) 00 <mm<N,m>> o (min(N, W)) o <min(T, Vm) |

1 1
Clearly, — converges to 0 at a slower rate than TN

\/N WaSN,T—)OO,SO

F—'F) =0, (jﬁ) O (M) |

Suppose that g —0as N,T — oco. Then,

1
min(7T,v/ 1
(T71 NT) _ ‘ = 0
ﬁ min (ﬁ’ \/T)

. . 1 1
as N,T — oo, implying that o (T/NT) converges to 0 fasterthan TN Therefore,

and because the O, (\/Lﬁ) term corresponds to ﬁﬁ' "FOAYe;, we have

- 1 .
VN (B~ H'F)) = V];%WF’FOAO’Q +op(1)

_ F’FO AOlet
:VNil”( T )\/ﬁ'f_op(l)-
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1.5.4 The Asymptotic Distribution of \/N(Ft —FI'FtO)

We showed above that

\/>Z>\ €it —)N[O,’}/(O)EA]

under assumptions 1 to 6. It follows by Slutsky’s theorem that

Var (F;w) 15;% $N{0;’Y( ) VIQEAQV ™ }

and again that

! 70 o7
\/N(Ft—H’FtO) Vb (Ff )1:/%+o,,(1)$N[0,7(0)-V—1Q’EAQV—1}.

To further simplify the expression above, recall that the probability limit Q of £7-£ is given as
Q= zﬁ’r*vé,
where I'* collects the unique (up to sign changes) orthonormal eigenbasis of 22 'S FEZ Thus,
SAQV Tl =SS TVl 2SIV =
using the property that I'*~t =T'*. It follows that
VTV =V TIQQ TV =V,
and the asymptotic distribution of F; becomes
VN (B, —H'F)) % N |0,%(0)- V2]

In other words, the factors at time ¢ are asymptotically independent with the asymptotic variance
of the ith factor being equal to the error variance v(0) divided by the square of the ith largest
eigenvalue of X4 X r. By implication, the more overall cross-sectional variation is explained by

a factor, the more precisely it is estimated.
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1.6 Asymptotic Theory for the Estimated Factor Loadings

The estimated factor loadings A were seen to be given as

A/:f~ — F/(FOAO/—{—G)

N 1 -
F'FOAY 4 TF’e.

This implies that, for any ¢ € N,

- 1 -~ 1 -
N\ = TF’FO)\?JF TF’Qi,

given that N > 4. Writing FO— FH~'+ FH~! in place of FO, the above expression can be

further expanded as

1

T
. 1 -~ o 1 /- Y 1 -

=H N+ F (FO—FE' )X+ 7 (F—F°H{) e+ e,

- 1 . s - _
A= F (FO— FHT) )+ H N + e,

so that

S BN = L P (F= POR) BN+ 1 (F— FPR) et P,

We will study the rate of convergence of each term on the right.

The easiest term to deal with is the rightmost term:

< el

— Z Ftoeit

1 ~
’TH,FOIBi

5
I

where

by assumption 6, so
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1.6.1 The Rate of Convergence of % (F— FOFI>/§Z

Using equation (1), we can decompose the term

%(F—FOFI) e _VNTT (F- FOH)

vty

NT?

We study each term one by one:

F'FOAYe! . €

) NT2

T

F'FOAY . e;+

1 (F—FOI:I>/Q as

NT2

As in section 5, we decompose this term as follows:

1
NT?

2
F'FOAYe! el <2

N2T4

1 /1= . FO O 1 &
<oy (=P ) (50 (52

(F FOf )FOA%’ e;

+2N2T4

T
+2% ’ﬁHQ'tr (F(;Fo>2. (z\rlTXT:‘A%t‘Q) . Giei) ‘

Note that
1 d o7 2 _
w7 2 e = 5o
and that
E 1262
thl 1t

implying that % Z?:l e2, = O,(1). As such,
1 2 1
<o,(

! 70 A O7 7
NT2FFAe -€;

which implies that

L
NT?

74

t=1

1
N~min(N,T)> +0p <NT> =0y

min(N,VNT)

F/eAOFO/e +

Flee-e;l.

NT?

2
‘H FYFOAV ¢

Sjea)

F/FOAO/el e, = Op <1> .

).



2)

NT2 F/€AO FO/

As is routine by now, we can see that

2 2
e FeA Fe| < 2@ (F—FOR) eAF %, +2 N2T4 A FOeAF e,
1 (1= oml? 1 &, 02 FY O
<o (pl-raf) (k) o (S50 (32
1 =2 [FYF° 1 & 2\ |1 & :
+2—|H| -t o AT ) =Y Fle;
el () (s el )7 e

SO

2
F'eNOFY,

1 1 1
O P — — =0, ).
NT? _OP(N-min(N,T))+Op (NT) OP(N-min(N,T))

This tells us that

1 = 1
N FYe, =0, ),
NT? - P\ min(N,VNT)

so that the two terms examined so far have the same rate of convergence.

%pFleel *€;

Note that
Flee' -€; —ZF/e etezt—ZZFe €tEit
t=1s=1
T T N T T R
:ZZZF (ejt€js — (t—s))eit—i-N-ZZv(t—s)Fseit,

t=1s=1j=1 t=1s=1

so that
T T N 1 ]r.r
- -
N7zt ee' ¢ NT2 ;;;F ejiejs —Y(t—s)) e + s ;;’Y(t—S)Fs% ~

We start with the easier second term.
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The Second Term

Note that
1 I.T 1 LT
EZZV(t—s Fe@t T2 ZZ F H'F0 (t—s)ei —&—HHH | Foy(t—s)eit.
t=1s=1 t=1s=1
By repeated applications of the Cauchy-Schwarz inequality,
1 LT 1 I T
—ZZZ(FS—H/FS)V(t—S)en §—22 L\ —H'FY|. Z'y(t—s)ezt
t=1s=1 s=1 t=1
1 o\ L
1 T ~ - 02 2 1 T 2
< fz F,—H'F! =2 D (t—s)eq
s=1 s=1It=1
1o o2 171X/ ) T , 3
< (THF—F | ) ( SZ<ZW—S> ) (Z%))
s=1 \i=1 t=1
5 0 77||? 3 1 & AVEESANE
<(7lE-ra) (X Xoe-2) (X4
s=1t=1 t=1
1 T 3
Z ]. ~ 0 £ 2 2 1 2
where Z =322 7(2)? < +oc as usual. It follows that
1 K& - - 1
— F,—HFYt—s)ey| =0, ———— .
72 2 2 (s e p(min(T,Fm)
Meanwhile,
T T
99 ST LTI S 9 SRR 21100
t=1s=1 t=1s=1
RSN 02\? (Elo. )}
<o (t—s) (E[FY) (Eleal)
t=1s=1
2 % 1 rr
< (s E[re[) 202 (Xt 0)
sENy t=1s=1
1

All the terms on the right are finite constants except for %,
tations is O (%)

It follows that

1 1
~0n(mmivam) (7
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so the term inside the expec-
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The First Term
As for the first term, note that

T T N
NT2ZZZF ejiejs =Y (t—5))eit
t=1s=15=1
. I T N
< NTQZ S—H’FS0 . ZZ(ejtejs—’y(t—s))eit
s=1 t=1j=1
. T|T N
| S 220 D0 FD s — ()| lead
=1|s=1j=
) 1
L1 d . , 2 TN 2\ 2
<— (=N |E-HF — (ejeejs —y(t—s))eu
1 3 1 ] TN 2\ 2 1z 3
+—= = —— FJ (ejie t—s ——
vl | 7 T 2 2 1 Ceacas =(0=9) (T§>
By assumption, there exists an M > 0 such that
2
ZZF ejtejs —y(t—s))| <M
s 1j=1
for any t € Ny and N,T € N4, so
SIS 3 302 |
=27 Fy (ejiejs —y(t—9))| | <M
= NT =3 ’

and therefore the rightmost term is O, (ﬁ)
On the other hand, for any s € N,

T 2 | TN 2 T
NT2 ZZ(ejtejs_'Y(t_S))eit < WZ Z(ejtejs Y(s—1)) (T Z%%)
t=1j=1 t=1 |j=1 t=1
by the Cauchy-Schwarz inequality, so that
] T |rN 2 Ll oo 2 T

S99 NEEESTENIIE ES S ol e eI | R ES o

s=1{t=1j=1 s=1 t=1 |j=1 =1
We saw in section 3 that

L T 2
ﬁz Z (ejtejs —v(s—1))| | < pa,
t=1|j=1
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2
forany s € Ny and N,T€ Ny, s0 S0 1520, ‘Zévzl (ejiejs — (s — t))‘ } has bounded
first moments for any N,T" € N as well, which tells us that the term inside the expectation
is Op(1). It follows that

T|T N 2
Z ZZ ejiess —(t—s))en| =Op(1),
=1 |t=1 :
so that
T T N 1 1 1
F s—(t— il =0y | —————]+0 <>:O _ .
NT2 ;;]21 e]tej s)) eit p(min(N, /7NT>> P\ /NT p(min(N, ,—NT)>

Putting the two results together, we have

1 Flee' -e; =0 _ +0 _
NT? = 7P\ min(T,VNT) P\ min(N,VNT) )

Results 1) to 3) reveal that

1 /- N/ 1 1
T (F_FOH) € =0y (min(T,W)) O (min(N,\/ﬁ)>'

Since
min(min(7, vV NT),min(N,VNT)) =min(N,T),

we have
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1.6.2 The Rate of Convergence of % (F— FOFI>/F0

We once again turn to the decomposition

N 1 - 1 -
F'FONY FO 4 —— F'eAFYF + —— Fee' F°| .

1 /-~ N/
—(F—FH) FO=vVL
T( ) NT | NT2 NT? NT

We study each term one by one:

1) = FFONY e’ FO

Note that

2

F’FOAO’e’FO <9 HF FOHH HFUH HAO’ ’FOH 1o

N2T4 N2T4

2ﬁ (THF— FOﬁHQ) tr <FDTFO> . (NTHAO’e’FOHQ)

+2— ‘HH (F(;F(])Q. <N1THAO’6’FOH2> .

AYe'FO can be expressed as

] eerearer]

v

FY
AYEF = (A% - AVep) | 1| =D AR,
Y

and since AY¢; = SV, Aey; for each t € N, we have

AOIe/FO Z Z )\OFtO/ezt
t=11i=1

By assumption 5,

1HM&WLIH§§ww%Q
NT NT t=1li=1 '

is Op(1), so

F/FOAOICIFO

o)

2 1 1
<
<Oy (NT-min(N,T)) +0p (NT)

|5

By implication,

8 1
F'FOAY'F =0, () :

NT? VNT
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) NT2 FleAOFO/FO

As usual, we majorize the above term as follows:

U R Y R e T

1
~oal

v

]\72T4
1 /1= 0712 1TN0. FO 0\ 2

o gl (saplrent) e (75

Since F¥eA? = (AYe'F 0)/, all the components on the rightmost term except for = is

O,(1). By implication,

Fl AO O/FO

1 1 1
< - B —— fry _—
e Op(zv-mmw,T)) +0(57) Op(N-min(N,n)’

and as such

1
F'eA’FYF0 = 0, ()

NT2 min(N,vVNT)

3) F'ee' FO
The proof for this component almost exactly mirrors that of the previous subsection for

F'ee’e;. We re-state it for the sake of completeness:

NT2

Note that

T T T
Flee! FO=> Fle e =Y Y Fe,e

t=1 t=1s=1
T T N T T ]
=D NN Eilepess—y(t—s) F+N-D N y(t—s)FLFY,
t=1 Siljzl t=1s=1
so that
T T N T T
Flee! FO|| < SOSS T Aegre t— ) FY + L SN (- ) ELFY
NT2 NT2t1 s jt€js — t 7| & l’y sEY .
s=1j= 15—

Once again, we start with the easier second term.
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The Second Term

Note that
1 T T ~ 1 T T ~ R 3 1 T
||ﬂ227(t—s)FsF£’ < EZZ(FS—H’FS‘))W(t—s)FP’ +HHH.||T22F§7(75_S)FE’.
t=1s=1 t=1s=1 t=1

By repeated applications of the Cauchy-Schwarz inequality,

1TT

= SN (Fs—HF))y(t—s)FY

t=1s=1

1 T
gT—Z

where Z =32 ~(2)? < 4+o00. It follows that

1 1
— (Fy— H'FO)y(t—s)FY B ——
HT2 ;z:l Wyt =s)ET =0 (min(T,VNT))
Meanwhile,
S R B v o e )
t= ls 1

o2 L1 LT
§<S€N+ ) )-7(0)2-<T2227(7ﬁ—8)>

t=1s=1
2\ 1
S ( ° ) ' 7Z.
SENy T

All the terms on the right are finite constants except for %, so the term inside the expec-
tations is O (%)

It follows that

HTQZZ’Y (t—s) FF

t=1s=1

1 1 1
=0 (min(T, \/ﬁ)) O (T) = (min(T, \/ﬁ)) '
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The First Term
As for the first term, note that

T T N
NTQZZZF ejrejs —y(t —s)) FY'
t=1s=1j=1
1 T T N
= NT? SNE—HTF- DD (ejeejs—y(t—s)) FY
s=1 t=1j=1
0
| ( e 3 et 1)
1 2\
L = i DN )E
— ~T3 e]tejs y(t—s)) Fy
\/N NT s=1|t=1j5=1
2 3 1
2
1 oal (1] 1 - FOFO\?
]| | £ oD F (e —(t—5)) n(
NT T= NT =3 ’ T
We saw in the previous subsection that
T T N 2
*Z 7/722}70 (ejte]S 7(t_3)) :Op(l)u
T t=1 s:lg:l ’
. . 1
so the rightmost term is O, (W)
On the other hand, for any s € N,
2 2
1 | L& 1 | XN FO 0
N ZZ(ejtejs —y(t—s))F; —Z (ejejs—y(s—1t))| |tr
NT t=15=1 NT = j=1 T
by the Cauchy-Schwarz inequality, so that
2 2
1 T|T. N . T 1 Il FO 0
NT3Z ZZ(ejtejs V(E—s) Fy| < Z WZ (ejeejs —7(s—1)) “tr T :
s=1t=1;=1 T4 t=1|j=1
Again, we saw in the previous subsection that
1|1 al i
TZ ﬁz Z(ejtejs_’Y(S_t)) :Op(1>>
s=1 =1 |j=1
which tells us that
1 T |r. N 2
78 2| 2o 0 (enejs =y (t=8) Y| = Op(1).
s=1|t=1j=1
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Therefore,

o 200D Faegues (i — ) Y

T T N
t=1s=15=1

1 1 1
o (Mm)) +00 () =0 <muwzw>> |

Putting the two results together, we have

1 - 1 1
Flee F'=0,| ————— | +0, | ———— |..
N7z b (min(T, \/NT)) P\ min(N,VNT)

Results 1) to 3) reveal that, as in the previous subsection,

1= 7 1 1 1
—(F-F'H)F'=0,| ——— | +0,| ———— | +0 ()
T< ) p(min(T,\/NT)> P\ min(N,VNT) PA\VNT
o v Noof v
~ P\ min(T,VNT) P\ min(N,VNT) )
Once again, this implies
l(F—FOH’)'FO:O (
T p

We can now easily recover the rate of convergence of % (}3’ —FYH )/F;
S (Popom) B = (F- PR (F—FOR) 4 o (P FOR) PO,

SO

! ~

|7 (F-roi) | < g |F - posi 4 7| (P pom) P |

We already know that

~ - 1
%HF a FOHH2 =0 (min(N,T))

e o\ ol < 1 )
TH(F FH)F =0 min(N,T) )’

therefore,

oo (b

as well.
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1.6.3 The Asymptotic Distribution of ﬁ(j\l —f[‘l)\i)

Return to the equation

o 1., - N 1 - 1
N—H N = F (F—rF'i) i 1)\?+T<F—FOH) et H'FV;.
We have shown that:

1) -0, )
p P (F=F) =00 (v )

1= L\ 1
—(F—FH) ¢; = ——
T( ) € =0p (min(N,T)>’

).

1 -
TH/F(]/ei:Op<

5=

Therefore,

- . 1 1
i—H I\ = () () .
A A =0, min(N,T) +0, 7

If%%O as N,T — oo, then

min(N,T) _ 1 .
G ()

1

as N,T — oo, meaning that min(N,T)

converges to 0 faster than % Thus, in this case,

< - 1
Ni—H '\ =0 (>
LP\VT

and because the rightmost term in the original equation is the unique O, (ﬁ) term, we can

write

~ ~ 1 =~
\/T ()\Z — Hil)\g) = ﬁH/FO/Qi "‘Op(l)

By assumption,

where
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and because

5 AO/AO FO/F B

HE Qv

we have

By Slutsky’s theorem,
VT (A - FI‘l)\?) AN [0, SAQVLe, VIS, .
Again, we can further simplify the asymptotic variance above by noting that the probability
limit @ of # is given as
1 1
Q=%,"T"Vz,
1 1
where I'* collects the unique (up to sign changes) orthonormal eigenbasis of Ei/E rX3. Thus,
-1 —3/ w1 iy —1 3 *yr— % /-1
TAQV  =XpE,\ 2 I"VaV =3T"V 2 =Q',
using the property that I'*~! = I'¥. The asymptotic distribution of \; now becomes

VT ()\ - ﬁI*lA?) AN [0, o'1o,01].
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1.7

Asymptotic Theory: Summary

We now summarize our findings to this point.

Consider the factor model given as

Xt =MNVE) ey

for any 1 <i¢< N, 1<t <T. Organizing the data into the full panel

X=F\"+e

as above, the estimator of F' and A found by minimizing the objective function

1 L Z 1
— SN (Xie—NF)? = ——tr (X — FA')(X — FA))
NT & & NT

with respect to F' and A.

The following assumptions are made:

(1)

Non-triviality of Scaled Factors

We assume that there exists a ke € N4 such that r < ke, and the ko, largest eigen-
values of XX’ are always positive. This implies that the k largest eigenvalues of X X’
are always positive for 1 < k < k40, and as such that, when we use the scaled factors
Fk = ﬁX X'F* later on, the scaled factors are non-zero, or non-trivial.

Additionally, we assume the true number of factors r satisfies r < kpqz-

Second Moment Convergence of True Factors and Factor Loadings

We assume that there exists an M > 0 such that

sup E’F,?’Q < M,

teNy
and that the factor loadings \Y,--- ,)\9\, are nonrandom.
In addition, we assume that
FO/ FO AO/ AO
5 vp and =

for some positive definite matrices Y p.X 5 € R™*".

Exact Factor Model
We assume that the processes {e; }+ez are independent and identically distributed for any

i€ N,
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(4)

Stationarity of Errors

We assume that {e; }icz is weakly stationary with mean 0 and autocovariance function

v:Z—R.

In addition, we assume that the autocovariances are absolutely summable and that the

time series has bounded fourth moments, that is, there exists an p4 < 400 such that

E[e}] < pq for any t € Ny.

Weak Dependence between Factors and Errors
There exists an M > 0 such that

| NI 2
Nigg t Eit _M
2
FO(eipeis—(t—s))| <M
’ /7;; itCis —
E LiiFOAO’e« 2<M
VNT =5 A

for any N, T € N,.

CLT for Time Dimension

For any 7 € N4,

fZFtelt—u\f[mp]

for the positive definite matrix

®; = plim — ZeZtFOFO’

Tﬁ\oo

Sufficient Conditions for Factor Identification

(for any t € Ny)

The kpqz largest eigenvalues of X X’ are distinct for any N,T € Ny such that T > ks

Likewise, the r X r matrix 35> has distinct eigenvalues.

The Probability Limit of £

We assume that, for any 1 < k < k4., there exists an r x k matrix Qk of full rank such

that

FO/Fk

P Ak
5 QF.
T Q
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1.7.1 Estimation and Determination of Number of Factors
Suppose we estimate 1 < k < k4. factors. Solving for A first, we obtain the concentrated

objective function

V(k,F) = ﬁtr(XX') - %tr (X'P(F'F)F'X),

and finding the T x k matrix F' that minimizes this expression and satisfies # is given as

F* = /T x The orthonormal eigenvectors of X X’ corresponding to its k largest eigenvalues,

and the associated factor loading estimators are AF = %X 'Fk

On the other hand, solving for F first, we obtain the concentrated objective function

N 1
V(k,A) = 5o tr(XX) - %tr (XA(A’A)—lA’X’) ,

and finding the N x k matrix A that minimizes this expression and satisfies A/TA is given as

A¥ = V/N x The orthonormal eigenvectors of X’X corresponding to its k largest eigenvalues,

and the associated factor estimators are F* = %X Ak,

To choose the number of factors, we can make use of information criteria of the form

. 1 1 &
PC(k) =V (k,F*) +kg(N,T) = Nt (XX') — NT > wi+kg(N,T),
=1

where p1 > -+ > pg > 0 are the k largest eigenvalues of ﬁXX’ and g(N,T) is a penalty term.

Under the assumption that F k}F ’ converges in probability to some k x r matrix of full rank,

it can be shown that the value k* that minimizes the above information criterion consistently
estimates the true number of factors r if, as N, T — oo,

e g(N,T)— 0, and

e min(N,T)-g(N,T) — +o0; g(N,T') goes to 0 at a rate slower than m
The first condition ensures that & is not chosen to be smaller than 7, while the second condition

is needed for k to not be chosen as a value larger than r.

To control for scale effects, the information criterion

. log (o
I1C(k) =log (V (k, F*)) + ploglOnT)
ONT
is proposed, where each 7 can be replaced by NN—JFTT
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1.7.2 Asymptotic Distributions of F; and \;

Now suppose that the true number of factors r is known, and let F = F” and A = A”. Under

the above assumptions, we can show that
Vnr 5V,

where Vi collects the r largest eigenvalues of ﬁX X', or equivalently ﬁX 'X, and V the
eigenvalues of ¥\ Y p.

In addition, we obtain the following consisteny results:

S e L

- <A0’A0> <F0’F> Vol
N T

and 0y7 = min(N,T"). This tells us that the estimated factors are consistent up to a rotation

where

of the true factors and factor loadings, where the rotation is given by H. The failure of exact
consistency makes sense because the estimator F is itself a normalized rotation out of an infinite

number of possible minimizers of the concentrated objective function.

The above consistency result can now be used to derive a tractable expansion of individual

factors. For any t € N, we can see that
- L(FFYN [ 1 &
\/N(Ft—H/FtO) =Vt <T> ( Z )+op 1)

if YN 50 as N, T — oo.
Likewise for the factor loadings, for any ¢ € N,

VT (%~ B0 = \} FY%, +0,(1)

if%—)@ as N,T — oo.

It then follows that

VN (B~ H'F?) % N [0,4(0)- V]
\/T(Xi—(}’)\?> N[o Q10,0 }
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where

1 T
®; = plim— > e5, FY F}.

T—oo t=1

Note the Relative Growth Rate of N and T. In order for the above asymptotic results to hold,
N and T must satisfy

VN VT
—\ — =0

T ' N
as N,T — oco. This tells us that N must not grow faster than 72, nor should T grow faster than
N?. In other words, for the asymptotic results to hold N must not be significantly larger than

T, and vice versa.
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1.7.3 Asymptotic Principal Components as OLS

- [ AV AO -1 B F'FO

0 a0\ L
A;) \/%Amet—l—op(l)

- VN [(AOEI/—1>/ (Aoﬁ/_l)} -1 (AOﬁ/_1>/€t+0p(1)-

Using the fact that

we can rewrite equation (1) as

VR (Fi— BE) = I (

Since
X = AFD ey = AH' T (H'F) + e,
and the estimator Ft can be written as
B A (0 (R )] (AR o1

_ {(AOI:I’_I), (Aoﬁ’_l)]_l (AOI”{/—1>,Xt—|—0p(1),

F, can be interpreted as the OLS coefficient estimator from the regression of the dependent
variable X; on the regressors AH’~!. This is intuitively appealing because, as even Bai and Ng

(2002) pointed out, given the factor loadings A° the equation
Xt = AOFtO + €t

looks like your typical linear regression equation with true coefficients Fy. Since we can only
consistently estimate the rotation H’ F? of the true coefficients, the OLS estimator F} consistently

estimates the coefficients of the equation with rotated regressors

X, = A H (H'FY) +ev.
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Asymptotics for Multilevel Models

Choi et al. (2018)

Now we turn to multilevel factor models, in which the observations are clustered into groups
and there exist factors affecting every observation and those that only affect observations in
some cluster. This model is mostly used to study cross-country models of the macroeconomy,
in which there are global factors affecting every obseration and country factors that affect only
the observations in each country.

Analysis of these kinds of models was pioneered in Choi et al. (2018), and involves much of the
same principal components machinery as in the usual factor models, except with the inclusion

of canonical correlation analysis when deriving the initial global factor estimate.

The model is formulated as follows. Let X,,; be the observation of individual 7 in country m
at time ¢, and assume that there are N, individuals in country m, so that the total number of
cross-sectional observations is N = N1+ -+ N,,. Letting G be the collection of r global factors
at time t and F,,; the collection of r,, country-specific factors for country m, with respective

factor loadings I'y,,;; € R™ and Ap,; € R™ ) we assume X,,;; is determined as
Xmit = YiniGt + Mpi Fnt + €mit,

where e,,;; is an idiosyncratic error term.

COHeCtiDg Xmt = (Xm1t7' e aXm,Nm,t)/a Iy, = ('7m17' o a'Ym,Nm),a Am = ()‘mla' e 7)\m,Nm)/ and
emt = (Emit, * ,€m,N.t) » we can collect the observations for each country m into
Xt = Ui - Gy + ANy - Foe + e
—~ =~~~ =~ =~ =~
Ny x1 Npxr rxl1 N Xrm T™mX1  Npx1
Gy
= (Fm Am) + eme
Fmt
= Om - Kot +ems.
~~ ~—~—

Ny Xr+rm r+7rm X1

Further deﬁning Xm = (X’mla”' 7XmT),) G= (Glu'” 7GT)/7 F’m = (F’mla"' 7FmT)/7 and €m =
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(ém1, ++,emr)’, we have

Xn, =G Tt B At e
T'x N Txr TXrm TXNpm
F/
:(G Fm>- Zn +em
Am
- Km ng +em,
~ ~~

TXr+rm 141, X Nm

where Ky, = (K1, -+, Kmr)'.
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2.1 Canonical Correlation Analysis

If PCA is aimed at recovering the linear combinations of a given set of data that best explains
the variation contained in that set of data, Canonical Correlation Analysis (CCA) is designed to
recover the linear combinations of two different sets of data that best captures the correlation

between them.

2.1.1 Population CCA

Formally, suppose that there exist two random vectors X and Y, each of dimension ny and ns.

Let the covariance matrix of the nj + ns-dimensional random vector (Y, X)’ be defined as

by by
5 Y YX 7
Yxy Xx
where Yy x = Cov(Y,X) and Xy,YXx are the covariance matrices of X and Y, and 3, ¥x, Xy
are assumed to be of full rank.

Choosing k < min(n1,ns), the goal is to find sets H = (hy,--- ,hy) ER™** and R = (r1,--- ,7%) €
R"2%k of weights such that:

H'Sy H = Cov(H'Y) = I,
R'YSxR=Cov(R'X) =1

pr - 0
HYyxR=Cov(HY,RX)=|: . where p} > --- > p?
0 - pi
and Zle p? is maximized. Since py,---,py can be interpreted as the correlation coefficients of

RY, rlX for each 1 <i <k given the normalization of their variances to 0, H'Y and R'X can be
viewed as the collection of orthonormal linear combinations of Y and X that have the highest

correlations. The values p1,-- -, pr are therfore called the first & canonical correlations.

We now search for the weights H, R that satisfy the above conditions.
Assuming that ny <nq, we first study some properties of the eigenvalues of the matrix XyE{,lEy X 271;

let A € C be an eigenvalue of ZXyE;;lEYXE)_(I.

o If A\#0, then A€ (0,1)
Suppose that A ## 0. Then, there exists a nonzero v € R™ such that

(Bxr Ty Syx By Ju=A-v,
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Then,

_1 _1 _1 _1
(2X22 XY2;12YX2X2’> <2XQU> =\ (zX%),

_1
where ¥ y?v # 0 because otherwise, (ZXyE;lﬁy)(E;(l) v=0= \-v, a contradiction.

_1 _1
Therefore, A is also an eigenvalue of the positive semidefinite matrix ¥ 3 XyE;/lEy XXy’
and thus a real non-negative value.

By the same line of logic, A > 0 is also an eigenvalue of EYXZ;(IEXyZ{,I.

We can also see that A < 1. Note first that the determinant of ¥ is

Yy Yyx _
e R

and because |X x| # 0, it follows that ¥ x — % XyE{,lEy x is a non-singular matrix. It is also
positive definite, since it is the inverse of the (1,1) block in ¥ ~!, which must be positive

definite by the positive definiteness of ¥~1. X now satisfies

ATy, —nyz;lzyxz)_{l’ = Z)_(l’ : ‘)\‘EX —ZXYE)_/IEYX’
=22 |- [ =1 2x 4 (Bx — Zxy By Sy x|

1

_1 —
= E;{l“ZXI : '(A1)-In2 +Xy? (EszxyZ;lzy)() I

1

_1 _1
= |(A=1) Iny + 37 (Bx = Dy Bp By ) 5| =0,

1
-5/

so that A—1 is an eigenvalue of the negative definite matrix — E (EX Yxy Xy EYX> DIPS
It follows that A—1 <0, or that A < 1.
We have thus seen that X € (0,1).

_1 _1
. ZXYZ;lZYXZ}l and X * EXyZ;IZYXZX2, have the same number of eigenvalues

equal to O

A is a non-zero eigenvalue of X xy Z;IZY X Z)_(l if and only if it is also a non-zero eigenvalue
_1 _1
of ¥* X XyZ];lEy X2 XQI. Since the two matrices are of the same dimensions, it follows

that they have the same number of eigenvalues equal to 0.

By implication, the matrices X XyE{,lZy X E)_(l and Xy XZ}IZ XyZ;/l share the exact same set
of eigenvalues, of which the non-zero ones lie in the interval (0,1).

If 0 <r < ng eigenvalues of EXYE_ EYXE)_( are equal to 0 then this means the rank of X xy is
ng — 1 > 0, and as such, the matrix EY EYXEX EXyEY " has exactly ni — (ng —r) eigenvalues

equal to 0. Since the non-zero eigenvalues of X+, QZYXE EXyE 2! and Yy x Xy EXyZ)Y are
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the same, this means that nyz;(lz)(yz;l also has ny — (ng2 —r) eigenvalues equal to 0.

In conclusion,
. -1 —1 . ~3 -1 —3/ n
ign, (Dxv Sy Dy x DY) = eign, <2X Sxy Sy Sy x Ty > e [0,1]"
and

. -1 _ -1 . _ _
€ign, <2Y2 Sy xS Sxy Sy 2 ) = eign, (zyxlezxyzyl)

., -1 -1\’ n
= | eign, (Sxv Sy By D5 0,00 | 0,1,

Now let us solve the maximization problem

k
/ 2
max E (hizyxn‘)
HeR™1 >k ReRm2Xk <7

subject to thyhi = T’;ZXT’i =1 forany 1 <1i <k,

to find the weights hy,---,hy € R™*! and rq,--- 7, € R"™>*! normalized to hi¥yh; =riYxr; =1
such that S8 | (h/Zy xr)? is maximized.

The Lagrangian to this problem is defined as

k k
LOH, R p) = (RSyxr)® + 3 [N (1= RSy hi) + i (1—1iSxr5)] -
i=1 i=1
Suppose H € R™"*¥ and R € R™** form a solution to the problem. The first order condition

for maximization tells us that

g}f 2(hSyxri) Sy xri—2X\ - Syh; =0,
oL
87“ (h'Zyxm) Yxyhi —2p;-Xxr; =0,

h;Eyhi = riZXri =1
for any 1 <i¢ < k. Rearranging the f.o.c.s above yields

(hiSyxm;) Sy xri =N Sy hi
(RiSy xmi) - Exyhi = pi - Xxri,

so premultiplying each equation by h; and r; gives us

(h;zyxﬁ)z = /\i and (h;nyri)Q = Wi,
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implying that A\; = pu; >0 for any 1 <i <k.
It follows that

A BxyEy! Byxri = N (iByxri) - Bxvhi = X Bxri

pi- Sy xEx Sxyhi = pi (N Sy xri) - Sy xri = 5 Sy hi,
so we have

/\i . ()\iEX — Exyz;lzyx) r; = 0

i - (Mz‘EY - Z3YXE;_<1EXY) h; =0.
We now investigate two distinct cases:

J )\i = Wi 75 0
Suppose A; = u; # 0. Then, the above redueces to

(AiZX — Exyz;lzyx) r,=0
(MiEY - EYXE}IEXY) h; =0,

for non-zero vectors r; and h;, so that

NiXx — ExyZ;IZYX‘ =

Ai Ing —EXYE;JEYXE;(I‘ 2x|=0

HiXly — EYXZ)_(IZXY‘ = i Iny — EYXE)_(IEXYZ)_/I‘ Xy =0

and therefore pu; = \; is an eigenvalue of the matrices Exyz;/lzyx E}l and Xy x E)}l Yxy E;l.
By the results shown above, \; = p; € (0,1).

Since
()\ﬂm - ZXYE;/leXE;(l) (Xx7;) =0,

Yxr; € R™*! is an eigenvector of ¥ XyE;IEYXZ;(I corresponding to \;, and likewise,

Yy h; € Rm*1 s an eigenvector of EYXE}I EXyE{/l corresponding to ;.

In summation, if A; = p; > 0, then A\; = y; € (0,1) and r;, h; are E;(l, E{,l times eigenvectors
of

EXyz;lzy)(Z;(l and EYXE;(lzxyE;l

corresponding to the eigenvalue \; = ;.
1 1

Equivalently, we are able to see that Zg(/m, Z?,/hi are orthonormal eigenvectors of the
symmetric matrices

_1 _1 _1 _1
S Exy Sy Sy xSyt and 2Ny xSy Sxy Sy 2
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corresponding to the eigenvalue A\; = p;.

e Ai=pi=0
Suppose now that \; = u; =0. It follows that the k largest eigenvalues of X xy Z;IEY X E;(l
contain 0; otherwise, we can increase the value of the objective function Zle i by choos-
ing Y xr; to be an eigenvalue of some non-negative eigenvalue of 3 XyZ{,l Yy XZ)_(l. This
in turn implies that EYXZ;Z XyZ;l has the n; —ng more eigenvalues equal to 0 than

hM XyE{,lEy XE)_(I, and that its k largest eigenvalues also contain 0.

When \; = p; =0, then the first order conditions always hold, and we are able to choose
i, h; as any vectors that satisfy r/Xxr; = h;3y h; = 1. Therefore, to maintain consistency

with the case above, we choose r; and h; as vectors satisfying

()\izX - EXYE;?lEYX) 7 =Sxy Sy Sy xri =0
(MiEY - E}/)(23}12)(1/) hi=YyxEy' Sxyh; =0,

where the existence of r; and h; are guranteed by the observation above.

This means that X xr;, 3y h; are again orthonormal eigenvectors of
YxyEy Syx Yy and Sy xXy Exy Dyt
corresponding to the 0 eigenvalue of the above matrices.
We have thus seen that r;, h; are chosen so that ¥ xr;, Xy h; are eigenvectors of X xy 2;12y X E}l
and Xy XE)_(IE XyE;l corresponding to the eigenvalue A; for any 1 <1 < k, where
Ni = (W 2y x7;)?

for any 1 <i < k. Therefore, hy,---,hr and rq,--- 7 are solutions to the maximization problem

only if Ay > --- > A are the k largest ordered eigenvalues of Exyz;/lzyxz)_(l (or EYXE)_(IEXyE;l).

Note that hi,---,hg and 71, -+ ,r; can be chosen so that
1

1 1 1 1
(22'hy,, 22} and (S, ST}

are orthonormal sets of eigenvectors corresponding to A\; > --- > A, for the symmetric positive

semidefinite matrices

_1 _1 _1 _1
Sy 28y xS Sxy Sy 2 and B 2xy Ty SyxEy?
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It follows that

1
Y3
H'SyH=| - (%’ 3! )—I
yi = :1 Xihy oo XYih) =1k
h X%

and likewise, R'YXx R = I}.

Finally, for any 1 <i <k, we denote

hiSyxri = pi = VA or =/,

which represents the ith largest possible correlation between linear combinations of X and Y.
For any 1 <14 # j <k such that A\; > 0, since

pis Xy xTi = N+ Xy hy
by the first order conditions, premultiplying both sides by h; yields
pi-h;Yyxri=Ai-h;¥yh; =0,
where the last equality follows because H'Yy H = I},. Since \; > 0, we have
h;Ey xr; =0.
Meanwhile, if A\; =0, then note that r; is chosen so that
Yxy Sy Sy xr = 0;
premultiplying the above equation by 7/ yields
Sy xri) Sy (Syxr) =0,
and since E;l is positive definite, Xy xr; = 0 and
h;Ey xr; =0.

The above analysis applies to the case where ng > n; as well, since we have restricted k <

min(ni,ng).
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In summary, for any k < min(ny,ns), if we choose H = (hy,--- ,hi) ER™** and R= (ry,--- ,r}) €
R™2*F such that:

e 1>X; >---Ap >0 are the k largest solutions to the equations
‘)\'Zy —nyzg(lzxy’ =0,
or equivalently,

‘)\-EX—EXYE;,TYX‘ —0,

1 1
. {Ef/,hl, e ,Ef/,hk} is a set of orthonormal eigenvectors of the matrix
_1 ) _1,
Ey2zyxz;( EXyEY2

corresponding to A1, -, Ag

1 1
. {2)2(,7“1, e ,2)2(/7%} is a set of orthonormal eigenvectors of the matrix
_1 1 _1
L ExyEy Yy x Xy’

corresponding to Ay, -, Ak,

then we have

Ri¥yhy -+ RiZyhg
hXyhi -+ hiXyhy
Tierl s rﬂEer
R'YxR= : : =1
TLEXT1 o TLLXTE
Pi¥yxr1 - MYyxre pr - 0
H'SyxR= : : = . i | where pf = Ao 0 = g
hXyxri -+ R Xyxrg 0 - pg
p1,--+,pk € [—1,1] can be interpreted as the k largest correlations (in magnitude) achievable

between linear combinations of X and Y.
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2.1.2 Sample CCA

The problem we studied above was canonical correlation analysis for the population. To conduct

the same analysis for the sample, suppose X € R7*"2 and Y € RT*™ are data matrices collecting

T sample observations of the random vectors X and Y such that
Sx = XX By
X T X
L P
Sy = TYY = Yy, and

1
Sy x = TY’X& Yy x,

as T — oo, where we define Sxy = Sy y. Then, the first & < min(n;,ng) sample canonical

correlations can be found as the k largest eigenvalues 1 > 5\1 > > 5\k > 0 that solve the

equation
‘)\ -Sy — Syxs)_(lsxy‘ =0,
or equivalently

‘)\-Sx—SxyS;lsyxl =0.

N . _1
The sample weights H and R that take values in R™1*¥ and R"2*¥ are found as Sy

times a set of orthonormal eigenvectors of

_1 _1
Sy 2 Sy x S5 Sxy Sy 2
and
_1 1 _1,
SXQSXyS; SYXSX2
corresponding to :\1 > > 5\k
Then, we have
H'SyH =1y
R'SxR=1I,
pr o+ 0
IA{ISYXR: ) where ﬁ%zj‘17"'aﬁz:5\kv
0 Pk

by much the same process as above.
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By the continuity of ordered eigenvalues and the probability limits stated above, we can see that
i BN

for 1 <i <k, so that the squared sample canonical correlations are consistent for their popula-

tion counterparts.
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2.2 Assumptions and Preliminaries

We retain much of the same assumptions as in the unilevel factor model studied above, tailored

for the presence of global and country-specific factors.

As usual, the superscript 0 indicates true values. This time, the assumptions will be given in

blocks:

I) Block 1: Relationship between Global and Country Factors

(1)

Relationship between Global and Country-Specific Factors
The processes {GY }iez, {F ez, {Fyy; ez are independent processes.

Time Series Properties of Global and Country-Specific Factors

We assume that {G9}iez, {F ez, {F Yy htez are weakly stationary mean zero

. . /. .
processes such that the covariance matrix of K9, = (GY,F2,)" is given as

% 0
2m = “ )
O XYrm
where both ¢ and X, are positive definite.

Rate of Convergence of Cross Products

For any two countries m,n, we assume that

T

1 1

T LK —B[K0K%] = 0, (=)
t=1

Magnitude of Country-Specific Cross Sectional Observations
We assume that N = Nj+---+ Njs and each N, is of the same magnitude (% =
O,(1) for each m). In other words, the number of cross-sectional observations from

one country does not dominate those of other countries.
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IT) Block 2: Asymptotics of the Factor Estimators of Each Country

(1)

(5)

Non-Triviality of Global Factors

For any country m, we assume that the r+r,, largest eigenvalues of X,, X/ are al-
ways positive. This implies that the r +r,, largest eigenvalues of X/, X,,, are the same
as those of X,, X/, and thus also positive. We collect the r +r,, largest eigenvalues

1 I
of meXm m VNm’T.

Second Moment Convergence of True Factors and Factor Loadings
Define

9% = (%%’ A%i)

for any 1 <m < M and 1 <i < N,,, which is the ¢th row of @9n.
We assume that, for any 1 < m < M, the factor loadings 6°

0
s 70m,Nm are non-

random, and that there exists a constant K > 0 such that

2
sup E Kglt‘ <K
teNy

2
<K.

sup 9211'
€N,

In addition, for any country m, we assume that

90/@0 KO/KO
—m_m mﬁ)E@m and m__m

D,
—)EK
Nm ;M

where X, i m € ROFm)X4m) are positive definite matrices.

Exact Factor Model
We assume that the processes {enit}tcz are independent and identically distributed

across m and 1.

Stationarity of Errors

For any m and i, we assume that the process {emi}tcz is weakly stationary with
mean 0 and autocovariance function v :7Z — R.

In addition, we assume absolutely summable autocovariances ( 322 |v(2)| < 4+00),

and that the process has bounded fourth moments, that is, sup;c; E [64 | < g < +o00.

mat

Weak Dependence between Factors and Errors
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For any 1 <m < M, we assume that there exists a constant K > 0 such that

»

2
<K (for any t € Ny)

T

Z K mtEmit

t=1

1Nm

NoT 2

z 1

T Nm

|\/WZZ emitemis*’)/(tfs))

s=1i=1

2
<K

IEH \/ﬁ ZZKgmg%emit
m

t=1:=1

for any Np,,T € Ny.

(6) CLT for Time Dimension
Forany 1<m < M and i € Ny,

\F ZKmtemt 5 N[0,8,,]

where

mz - phm T Z emthgth%t‘

T—o0

(7) Sufficient Conditions for Factor Identification
We assume that the r+r,, eigenvalues collected in Vl,, 7, as well as those of YXg 1,2 i m,

are distinct.

.19 N KY K,
(8) The Probability Limit of ==

~ ~ ~ /
For any 1 <m < M and the estimator K,, = ( AP ,K;nT) of the factors K,
defined below, there exists a nonsingular r x r matrix ), such that
KYK
— 5 Q.
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2.3 Step 1: The Initial Estimation of Global Factors

The estimation of the global and country-specific factors proceeds in steps. In the initial step,
data on only two countries are used to derive rudimentary estimators of the global factors, and
in the subsequent step the country-specific factors are estimated by treating the estimators of
the global factors derived in the previous step as if they were the true global factors.

The factors estimated as such rely only on data on two countries, so to make use of the full data,
the global factors are re-estimated, this time using the country-specific factor estimators derived
in the second step in place of the true country-specific factors. Finally, the country-specific fac-
tors are re-estimated using the newly estimated global factors in place of the true global factors.
In this section we focus on the first step of the estimation, which uses canonical correlation
analysis to estiamte the global factors. The next three steps all rely on familiar principal com-
ponents analysis used in Bai and Ng (2002) and Bai (2003).

We now proceed in steps:

2.3.1 Estimation of Factors Affecting Each Country

Recall the concatenated model

Xt = 99)1 : Kgnt + emt,

where
GO
(99,1:(1’2Z A%) and K2, = (f
Fmt

For any country m,
th - @,(r)n . K’I?”Lt + Emt

for 1 <¢<T and N,, cross-sectional observations resembles the usual unilevel factor model
studied in previous sections. Therefore, we can estimate the factors K,,; and factor loadings
0,, by minimizing the objective function

2

a G 1
S Xmie = (s M) | ]| = tr (Xon = KmO},) (Xon — Kn©),)")
t=1

M

1
N T Fo N T

=1

with respect to K, = (K1, , Kpnr) and ©,,. Denote these estimates by 0,, and K,,.
From what we know of the unilevel factor model, assuming that we concentrate out ©,, first

and then estimate the factors K,,, under the usual factor identification condition % =1,
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the estimators K,, and ©,, are given by:

K,, =T x The orthonormal eigenvectors of X,, X corresponding to its r largest eigenvalues
O =

1 -
= =X, Kon.

From the second block of assumptions we made, the result on unilevel factor models that we

derived earlier tells us that:

e Consistency of the Factors

T

=7

1) - 71 70 2 o | .
T;‘Kmt_Hmet (o~ K| =0 (mn(NmT))

where

- 0Yel \ (KYK,,\ . _

KY K,
T

» Consistency of Vy,, 7 and
VN 7 2 Vi,

where V,, collects the r eigenvalues of Qg ,, 2k m, Which are assumed to be all positive

and distinct. By implication,

Hyp 5 S0 mQum Vit = HY.

e« Rate of Convergence of the Factor Estimator
For any t €T,

i 1 1 1
Ky — H), KD, = () ()_ '
¢ B = O\ G )+ O v,y ) = O min(v/Np,, T)

« Rate of Convergence of the Factor Loading Estimator

For any i € Ny,

Ormi — H,,' 09, = Op <\/1T) +O0p (W) =0 (W) .
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From the consistency result we have

1, . 1
ﬁ(Km—KBIHm) =0, (min(\/m,\/f))

Meanwhile, since

Hy,

)

1 = * /1 2\ (1l 5 K K,
[ rtittn] = (e (V) = e ()
VT T T
where both terms on the right hand side are Op(1), we can tell that

1 -
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2.3.2 Canonical Correlation Analysis with Two Countries

Select two countries, with indices m = 1,2 for convenience.

Once the above estimation has been completed for m = 1,2, we now note that the global factors
GY form the first r elements of each combined factor K, and KY,, while the latter r; and ro
elements, Flot and th, are assumed to be uncorrelated. As such, the first » canonical correlations
of Ky, and K3, must be 1, with the weights being the first r standard basis vectors in R"*" and
R"*"2 while the remaning min(ry,r2) canonical correlations must be 0. We now confirm this

intuition.

Population CCA

By assumption, the covariance matrix of K2, is

by
Em = “ © )
O XYpm

where both Y and ¥f,, are positive definite. Moreover,

Yo O
1o = B[] = (5 o) e RHrxrirs)

Letting 71 = min(ry,r2) without loss of generality, the r 4 r; squared canonical correlations

pr > > p? 4 Of K 0 and K3, are the first 7 +r; ordered eigenvalues solving the equation

Pl T = 1% S| =0,

or equivalently,

p§-22—2’1221—12m‘ =0,

for 1<i<r+nr.
Note that, for any 1 <i <7 -+7q,

2
_ p?2-Ye—Y¢ O
EDITRED T I VAN ( ‘ )

O P2 X
so that
p; -1 — 312251232’ = ‘(P? - 1)20’ 1o} EF,l’
= (0} = 1) (0"l [ZEal.
It follows that p? =--- = p2 =1 and pgﬂ :-‘-:pfw1 =0.
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Sample Estimators of the Covariance Matrices

Define

for m=1,2, and let

_ 1L 1 - -
S = — K K/ :*K/K.
12 T; 1t ot T 2

Since

ﬂ‘“

07 1
K40, (o)

and

for any m = 1,2 we have

(1 05 1 / 105 1
- ( VT “Op(min(m,ﬁ))) (ﬁK”Hm+0p<min<m,ﬁ>>>

- 1
T )H’”w” (min(m,ﬁ)>'

Likewise,

_ _ /1 N 1
S0 = H! (KO’KO> Hy+O )
12 \p™t 72 )0 P min(v/N1,v/Na,VT)

Defining
mt — T m*im

1 & 1
_ 0 o _ 07 .70
Sm——TtgletK —K'K

T
1 1
S12 = TZK%K%/ = TK?/KS
=1
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for m =1,2, we can see that

N ~ - 1
Spn=H' SpHy+O
P <min(\/Nm,ﬁ)>
- - -~ 1
Sio = H! S19Ho +O .
e p<min<m,m,ﬁ>>

By implication,

and
.S Hyy B HYS o HY,
where the limit is an 7 X » matrix of full rank, we have
S B HYS i o HY,
and therefore

(80) " (At~ 5 (2t

-1 ;- _ o1
by the CMT. This tells us that ( m) , (H,QISmHm) are Op(1), and as such, the decompo-

sition

St = (S ) | < || Son — By S|

51 H ()~

implies that

- - - 1
Syt —H,,' S H) =0 :
m m ~m “Tm p min( ﬁNm,ﬁ)

The above results imply that

S i 1
5718198518, = HyH (S71S12551 ), ) Hy + O ‘
1 91255 519 1 ( 1 91292 12) 1Tr min(v/Ni, v Nz,VT)

It remains to find the rate of convergence of I:Ifl (5’1—15'125’2_15{2) H;.

Because
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by assumption, and
[t ==t < st |- 150 = Sl

where St % $-1 implies that S;,' = O,(1), we can see that

1
S1_y1=-0 () .
m m p \/T

In addition, by assumption

1
S12 = Y12 =0, (\/T> )

so that
1151255151,
= (ST 4 (ST =271)) (Bro+ (S12 = B10) (3514 (851 = 57) ) (Tra + (S12 = T1a))

_ _ 1
=512 pN YL+ 0, (ﬁ) :

Therefore,

e (5;15125’518{2> Hy=H! <S;1512351512 - Ef1212251232> Hy+ H{' S 055 Y, Hy

N B - 1
= H{ 'S S05 'S i+ O, <ﬁ> ’
which implies that
$7181,5:18 — Ao 'Sy o3 ' iy = O (1) +0 !
1 2 P12 1“1 2 <12 P\ T P min(y/N1, /N2, VT)
o ! )
P min(v/N1,vNo,vT) )

This also tells us that

57181285180, B HY T iy o35 e, HY.
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Let i and @ be the first  sample canonical correlation weights of K| and Ko, that is,

where p% > -

or equivalently,

Since

ﬂ/‘glﬂ =1,
' Sot = I,
[ 8190 =

(512551512 - 51) fii =0
(5*{25*;1&2 — P2 52) 5 =0

forany 1 <¢<r

forany 1 <¢<r

> p? are the 7 largest eigenvalues that solve the equation

-8 - 512557180, =0,

A8 = §1,57 81| 0.

S1181285 151, B HY 'S 1,5, 'S, HY

by the continuity of ordered eigenvalues, p? >

eigenvalues that solve the equation

- > p2 converge in probability to the r largest

Equivalently,

We saw above that the r +r; solutions to this problem are 1,---,1,0,
——

for1<i<r.

=0.

[HY IS 055 TS HY = A Ly,

}21222—1232—)\-21‘ —0.

T
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We can also study the rate of convergence of fi, fi is Op(1) but not o,(1). Its O,(1) nature
follows from the fact that

~1 1
Il = |\a'S¢ S, 2

IN
A
N

IN
£IJ|1
]

where S & HYS1 HY, implies that S;' = 0,(1).
On the other hand, if ji = 0,(1), then taking limits on both sides of ji'Siji = I,., we have

I,=0'%,0=0,

a contradiction, so i must be Op(1) but not o,(1).

114



2.3.3 The Initial Estimator of the Global Factors

Our initial estimator G(!) = (C;‘gl) @(Tl ))/ of the global factors G is defined as
G =K\,

which is the collection of linear combinations of the columns of K with weights assigned by fi.
Heuristically, the columns of K1 i are the r linear combinations of the columns of K, that yield
the highest correlation with similar combinations of the columns of K5, that is, our estimator of
G isolates the parts of K that are most highly correlated with K5. Since the columns of K} rep-
resent the estimated time series of each factor in K7, = (GY, F{})’, which shares the global factor
GY with K9, out choice of G as the estimator of G means that we identify the global factor as
that the part of K}, and K9, that is correlated. It follows then that the country-specific factors

in K9, and K9, are identified as the parts of K9, and K§, that are uncorrelated with one another.

Consistency of Mean Squared Global Factor Estimates

To show that these global factor estimators are consistent, note that
(31—15*125*2—1512) fo= DNy Ny TS
so that
GYDN, Ny = K1fiDn, Ny, = K1 (5'1_151252_1512) f

Since

i Al - . 1
S718158,1 81, — H e e o2 S H =0 ,
1 12099 12 1 1 12449 12411 D min(\/i\/ﬁl,\/ﬁg

we can write

1
VT

1 - - _ 1
= —=K; ) (H 'S 0002 1 Hy ) i+ O ,
(ﬁ 1) ( 1o e 1),u P min(v/T, v/ Ni,v/Nz)

1 .
—TG(UDNI,NQ,T, = (

s K ) (371515, 80,)

owing to the fact that %ffl is Op(1).

Note that

1 ~ 1
— K= — KV +0, | ———
! T p(min(V]\ﬁ,ﬁ))
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and that Hi, ji are Oy(1). We then have

1 - 1 - - . 1
—GWD :<K> HST Y 0,5, 'Y Hy ) i+ O
\/T N1,Na, T \/T 1 ( 1 1 12449 12 1))“ D mln(ﬁjmjm)
1 N 1
= — KV (Siis ey, ) Hip+ 0 .
JT 1( 1 Z12249 12) 1 P min(\/T, NN

We know that
D,
Dy, Ny — I
by the convergence of the canonical correlations. Defining
5 (y—1 “1v \ 77~ -1
Q= (21 21220 E12) HlN'DNl,NQ,Tv

which is a random matrix taking values in ROT70%7 it follows that

1 4 1 ~ 1
—GW = _——_K)Q+0
T T et O\ T R V)
because Dy, n, 7 = Op(1). Therefore,
1 4 ~ 1
— M _ K%l = O 7
\/TH 1QH P min(\/T,\/Nl,\/Ng)
and we have
10 A ~ 112 1
— ¢ — g0 — - -
7|6V -K1Q| =0, (min(Nl,Ng,T))’

which is the familiar consistency result.
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Note now that

Therefore,

where Q) collects the first r rows of Q, and is defined as
5 FO/@O KO/R’
1 191 1151 1 a1
Q( ) = ( Nl ) < T VNl,T/“[/DNl,Nz,T’

which tells us that Q) = 0,(1).

Since K can be decomposed as,

we have
14 N 1
“IEM a0 ||” = s
T ¢ G'Q H Op <1rnin(]\71,]\72,T)>7
or equivalently,
Ls- et 4 2 1
NG QW =0 ()
T; ¢ Q t‘ P min(Nl,NQ,T)

This result tells us that the initial global factor estimator is consistent for a rotation of the true

global factors, and that the global factors are thus identified.
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Consistency of Individual Global Factor Estimates

So far we have seen that the mean square of the factor estimates is consistent for some rotation
of the global factors. We can now show a stronger result that says the individual factor esti-
mates are consistent for some rotation of the corresponding global factor. The derivation follows

similarly to the above.

For any t € N4, note as before that
N ~ ~ ~ ~ ! ~
GV = D! vy (57151285180, ) K
We already know that

_ - 1
K= Hik =0, (W) ’

and because this implies that Ky, EN HYKY, as N1, T — o0, Ky = Op(1).

Therefore,

A~ ! ~
GV = Dyl yy B (571512851 81,) K

1
=D} SIS S YL ) K40,
N1,No, T ( 1 12449 12 1) 1t (min(ﬁ,\/]Th\/ﬁz))

:DX/},NQ,T i (H1 IS VT EmHl) H{K},+0, (

_ ~/ 17 - - ! 1
=Dy, v, AH (21 Tt 12,12) Kt +0p (min(ﬁ VN1 \/JTQ)>

—_ N .50 1
=< K1t+op<min<ﬁ,m,m>>'

el ~ QW
KY = t and = ,
() e (5

AL _ AQy A0 _ 1
G @G (min(ﬁ,m,m)

Since

we have Q'KY, = QU'GY and

This tells us that, for any t € N, the estimate of the global factor C:S) at time ¢ is consistent
for some rotation of the true factors GY.

In contrast to factor estimates of unilevel factor models, the rate of convergence depends on v/T'
instead of 7.
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2.4 Step 2: The Initial Estimation of Country-Specific Factors

Now that we have obtained initial estimators of the global factors GO, we use them as proxies

for the true global factors G in the factor equation
th = F?n . Gt +A9n . F??Lt + Emt-
The estimators of Fi; and Fb; are extracted from this model by solving the usual asymptotic
principal components problem
| NaT . .
min 722 (Xi -I' -Gy _Am'Fmt)

Fyn A i Ny T 7=

ot <(Xm ~GOTY, — Fy ) (X~ GO, — -A;ﬂ)'> .

Given F,,, and A,,, the minimizer I';,(F),, A;,) of the above function becomes
N PN |
T (Foy An) = (Xpn — Fp - A,) GO (G(l)’G(l)) ,
in analogy with the case of unilevel factor models.

The concentrated objective function becomes

1 . . :
_GW ' E, A _GW N
NmTtr<(Xm GOT s (Foy A = Frn Ay, ) (X = GOT (B A = P Am))
1 /
N7 o0 (Xom = Fon - Al) Mgy (X = Fin-A,) )

R v Ay =1 4 N
where Mpaqy = It — G (G(l)’G(l)) G is the residual maker corresponding to G(V).
Given F,,, the minimizer A,,(F,,) of the concentrated function becomes
A (Fom) = X2y My Fr (Fiy My Fr)

m

again in analogy with the case of unilevel factor models.

The finalized concentrated objective function becomes

tr ((Xm —Fn- Am(Fm)/)/M(?(l) (Xm —Fm - Am(Fm)/))

1
= N7 tr (X7, Mgy MpMeaay Xm)

N,,T

where Mp = It — Mgy Fy, (FT’nMé(l)Fm)leT’nMém is the residual maker corresponding to
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Defining X = M) X and FS = M ) Fi, this function can be rewritten as

1 1 -1
ot (X)) = g () () ).
m

G pG
so normalizing % = I, , our analysis of unilevel factor models tells us that the estimator

ES of FS is
Fg = /T x The collection of r,, orthonormal eigenvectors of XﬁXﬁ’

corresponding to its 7, largest eigenvalues,

where we collect the 7, largest eigenvalues of =X, “X G in the matrix VG

Our estimator of the country specific factors Fm is now given by

Note that this is not an estimator of Fj, per se, but rather the quantity MG(l)F We will
1)

show below that, nevertheless, F}(n

factors FO.

consistently estimates a rotation of the true country specific

Before moving on, we note an observation that will make our lives much easier:

(1 = =
=T-@/S1p=T,

since fi is chosen so that ji'Sifi = I,..

This means that

1 Ay A
Mg _IT—TG(”G(”’,
where
l@(l)@(l)/: PGNGVGY 40 (1)
T O min(Ny,No,T)) "
Since

2

)

HlGOQ(l)Q(l)’GO’
T

<tr (G(;GO> |

%GOQ(I)Q(I)’GO’ = O,(1), and by implication, so is %é(l)é(l)’.
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2.4.1 Transforming the Model
We can transform the true model as follows:
X = GTY + FOAY +e,
=G (QW) Y L FOAY e,

= G0 (QU) T TY 4+ FOAY 4 e — (G0 - G0QW) (GW) T,
Premultiplying both sides by Mxn) yields

XG

A ~ <\ —1
= My o A+ Mgy em + Mg, (G(l) _ GOQ(U) (Q(1)> o

FGo

am

The original paper uses this expansion to prove that ﬁ'ﬁ is consistent for some rotation of F.

However, because the eigenvectors i do not converge to some quantity in this case (due to the
<\ —1

non-uniqueness of eigenvalues at the limit), we cannot establish that (Q(l)) is Op(1), which

means that the proof in the original paper falls apart.

Fortunately, given that

Fry =0, Fi = 0p(1)
for some O, (1) rotation Q,,, we can easily establish that F, is consistent for some rotation of
FY, as well.
To see this, first note that FG° = Mé(l)FT% =F) — %@(l)é(l)’]ﬂ% by definition, so
1 A1) A
FGO—F0, _ TF,?Z’G(”GEI).

mt

Since
FRGW = B (GW - G0QW) + FYGOQW,
we have
Looamy FRG <0y (1 oN( L (A1) ~0Am))
FY¢G QW = Fm —T(G ~G'QW) ) = 0,(1)
Furthermore,
EYGY
T 0,
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so that

As such,
F’rgg - F7(‘r)7,t = Op(]')v
and because Q,, = O,(1), we have

FnG’Lt - Q/mFth = Op(l)-
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Factor-Augmented Vector Autoregres-
sions

Bernanke et al. (2005)

In Bernanke et al. (2005), the authors introduce a Factor-Augmented Vector Autoregression
(FAVAR) model, in which the factors, which include both observable and unobservable vari-

ables, are assumed to follow a VAR and serve as the common factors in a unilevel factor model.

3.1 Motivation for Factor Augmentation

To motivate the use of a factor-augmented version of the VAR model instead of the usual SVAR

model, the authors of the paper cite three shortcomings of traditional SVAR analyses:

e Discrepancies in Information Sets
While policymakers usually make their decision based on a multitude of macroeconomic
variables, SVAR models only include a select few of those variables, necessarily leading to
omitted variable bias. In other words, the information set implied by the VAR model and

used in actual policymaking are vastly different.

e Measurement Errors
It is often unclear whether single variables such as GDP or inflation can sufficiently rep-
resent economic concepts such as real activity or the nominal side of the economy. In
addition, even if they can represent such concepts, there are a multitude of measurement
errors associated with these variables, which can distort analysis. For this reason, it seems
inappropriate to conduct VAR analysis exclusively with observable variables, as in tradi-

tional models.

e Limitations in Analysis
In traditional SVAR models, we can conduct impulse response analysis or variance de-
composition for those variables that are included in the VAR system. Thus, a model

that enables us to study the responses of a variety of macroeconomic variables to certain
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shocks, such as monetary policy shocks, will serve as an improvement upon traditional

SVAR models.

In light of the above limitations of the standard SVAR model, the authors suggest estimating
a factor-augmented VAR model, in which unobserved factors affecting a plethora of macro
variables are included in the VAR system alongside the usual observable variables.

To motivate this specific setup, a simple backward-looking model of the economy is introduced

as follows:

= 0m—1+ K(Y—1 — Y5 1) + St (Phillips Curve)
Y=y 1=V (i—1—m—1) +dy (IS Curve)
Yy = pyiq +m (Evolution of Natural Output)
Sp = QuSp_1 + Uy (Evolution of Cost-push Shocks)
it = Bre+y(ye —yi') + &t (Monetary Policy Rule)

This model can be seen as the solution to a traditional NK model with shocks evolving according
to an AR(1) process.

In this model, there are five endogenous variables, the inflation rate m;, output ¥;, natural output
yy', the cost-push shock s;, and the nominal interest rate i, that jointly follow a VAR process.
Of these, natural output and the cost-push shock are unobserved, while the other variables are
observed, so it stands to reason that we should estimate a VAR model with two unobsered
factors vy, s; and three observed variables y;,m; and %;.

However, even this might be insufficient, since y; and m; often represent the real and nominal
sides of the economy in a NK model, and there is reason to believe that GDP and inflation
might be insufficient proxies for these economic concepts. Therefore, it is reasonable to think of
the model as a VAR with four unobserved variables y;*, s¢,y:, 7 and a single observed variable,

the central bank’s policy instrument 4;. This is the main FAVAR specification used in the paper.
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3.2 The FAVAR Model

Formally, consider k unobservable factors F; and m observable macro variables Y; that are

jointly generated by a VAR process specified as follows:

where ®(L) = Iy, —P1L—--- —®,LP is an AR lag polynomial of some lag order p, and v; is a

white noise process with covariance matrix X.

F; and Y; are then assumed to be common factors affecting a wide variety of macroeconomic
variables. Specifically, let there be N ”informational” macro variables, and that the ith such

variable is determined as
I y/
Xit:)\i Ft-i‘)\z ‘Y;5+57;t,

where )\Zf € R* and A/ € R™ are the factor loadings of z;; on Fy and Y;. Heuristically, X1z, -, Xn¢
may be taken to be "noisy measures of the unobserved factors”.
Defining X; = (X17,-++, Xn), AF = (M, ML) e RVF AV = (WY, ... Ay Y € RVX™ and &, =

(€1t,--+,ent)’, we now have the concatenated model
Xt :Af‘Ft-i‘Ay'}/t—Fét.

Note that this setup is virtually identical to the unilevel factor model studied above, except that

now we explicitly specify the dynamics of the factors, namely that they follow a VAR process.

The FAVAR model is now determined by the following equations (where the lag order is set to

1 for notational simplicity):

Xy =A F,+A .Y, +¢ (Measurement equation)
F; Fi 4 .. .
=& + vy (Transition Equation)
Y; Yiq
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3.3 Estimating the FAVAR Model

The authors propose two ways to estimate this model:

The first estimation method is a two-step approach, in which the factors F},Y; are first estimated
via principal components as if the measurement equation represented a unilevel factor model, as
in Bai (2003), and then the estimated factors are plugged into the transition equation to recover
the VAR parameters. This has the advantage of being semi-parametric and thus applicable to
more general settings, but suffers from the problem of generated regressors in the second step.
Furthermore, we do not use the fact that Y; is observable in the first step.

As noted above when discussing the models in Bai and Ng (2002) and Bai (2003), the principal
components estimator of the factors in the measurement equations consistenly estimate a rota-
tion of the true factors F},Y; under regularity assumptions; therefore, in order to recover the
estimator of F; from the estimator of F},Y;, we must devise a means of extracting the part of
the latter that is independent of Y;. This is done by imposing identification restrictions in the

second step of the estimation procedure.

The second estimation method is a one-step, or joint estimation, approach, in which the factors

F; and the parameters of the model are estimated at once by estimating the state-space model

given by
Xi A AV Fi €t . .
= + , where ¢&;~iidN(0,9) (Measurement equation)
Yy O In)\Y:
Fi Fi g o :
=o. +v; where v ~iidN(0,%), (Transition Equation)
Yy Y

which explicitly imposes the restriction that Y; are observed and that the errors are iid nor-
mal, unlike in the two-step approach. Because this model does not suffer from the generated
regressors problem, it is more robust in terms of estimation, but because the dimension N of
X; is large, we must rely on Bayesian priors to smooth the likelihood function, which makes

computation very costly.
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3.4 Identification of the FAVAR Model

Before estimating the model, it is necessary to impose some restrictions on the model parameters.
There are two types of these restrctions: restrictions that identify the unobserved component

F; and those that help identify the structural shocks. We discuss each restriction in turn.

3.4.1 Identifying F} in the One-Step Approach

Because F; is unobserved, if we do not impose any restrictions on the model, we are unable
to obtain a unique estimate of Fy. Specifically, consider a non-singular matrix H € RF** and
B e R¥*™ and define

F} = HF, + BY;.
Then, F} is also a k-vector of unobserved factors such that Fy = H~'F — H-'BY; and thus

X, =N FE4+A Y, +¢
= AT (H‘lFt* —H‘lBY},) FAY-Y; 4
= (M H ) B+ (A= M HTUB) Yty
= APCF AT Y ey,

so that X; retains the same linear factor model structure as before.

Furthermore, since

F\ (H'F;-H'BY,\ (H' —-H'B\ [F;
v, Y, o In Y, )
defining

-1
., (HY -H'B H-' —-H'B
q) — @ I
0, I, O In,

—1 —1 /—1
H-! —-H'B . (HY —-H'B H-' —-H'B
Up = vy and X = by
0] I, O I, O I,

tells us that
F* *
t — @* t—l +Ut.
Y Y1

Therefore, the new factors F;* constructed as a linear combination of F; and Y; also satisfy the
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equations

X, = A Ff AV Y, +ey,

+ut7
Y Y1

where u; ~ WN (0,X%).

Because F; and F}* are both unobserved components, the likelihood of the model will be the
same under the original parameters A7, AY,® ¥, Q and the new paramters A/* AV* &* ¥* Q.
This means that the model is unidentified, and that estimators of F; will not be consistent
under the one-step estimation approach. We now survey the restrictions that must be imposed
in order for estimates of the factors to consistently estimate the true factors in the one-step

approach.

Suppose we do not want to impose any restrictions on the VAR parameters ® and X governing
the factor dynamics. Then, Af and AY must be required to satsify some restrictions in a manner
such that, if F;' = HF;+ BY; is a transformation of the factors that yields the same value of the
likelihood as Fy, then H =1, and B =O.

The authors propose imposing the restriction that

RN and Av— PR cpivxm

A@) Av(2)

If Af, AT*) AY and AY* satisfy the above restrictions, then H = I}, and B = O, so that F} = F}
and the model is identified.

The above restirctions imply that the first k& variables included in X; are determined as

X1t 1t
= Ft + )
Xkt Ekt
so that they are precisely the unobserved factors F} with additional noise represented by €14, , €ps.

Therefore, under the proposed restrictions, we are identifying the unobserved factors by assum-
ing that the first k& variables in X} incorporate information about F; and F; alone; simply put,
F; and Y; are distinguished by assuming that the former can affect the first k£ variables, but the

latter cannot.
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3.4.2 Identifying the Factors in the Two-Step Approach

In the two-step estimation approach, the difficulty of recovering a unique estimator of the factors
can be circumvented by simply estimaing the principal components under the normalization
presented in Bai and Ng (2002) and Bai (2003). Specifically, letting X = (X1,---, X7)’, provided
that the k largest eigenvalues of X X’ and the probability limit of

N f T
v () e | () e

i=1 t=1

are distinct for any N,T, the k unobsered factors in F; can be estimated uniquely up to sign
changes by C = (C’l,-~- ,C’T)’, where

C = VT x The orthonormal eigenvectors corresponding to the k largest eigenvalues of X X',

so that CZFO = I;.

Furthermore, as we have seen above, under appropriate regularity assumptions Cy is consistent
for some rotation of the true factors Fy,Y;.

It is then up to restrictions imposed in the second step of the estimation procedure to separate
the part of Cy due to Y}, so that the resulting estimator of F; truly represents the unobserved

factors Fj.
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3.4.3 Identifying the Monetary Policy Shock in the One-Step Approach

In this paper, the authors identify the monetary policy shock in the usual recursive manner, by
assuming that the factors cannot contemporaneously affect the policy instrument 4;, which is
the only variable comprising Y;. They emphasize that this means the unobserved factors F; do

not have to be separately identified, unlike with other identification approaches.

To achieve identification of the state space model used for one-step estimation under this identi-
fication scheme for monetary policy shocks, we need only impose the restriction that By is lower

triangular in the structural factor dynamics

F F_
By t — By t—1

+ Bovta
Y; Yi

where By 1B(’f1 =Y, alongside the restrictions on A/ and AY prposed above.

Under the suggested identificaiton scheme for monetary policy shocks, factors are slow-moving
(do not contemporaneously respond to the interest rate, which means that they respond ”slowly”
to changes in policy) in contrast to other fast-moving variables, which respond contemporane-
ously to the interest rate and thus respond relatively ”quickly” to changes in policy. Since the
first k variables in X; are just the unobserved factors F; with noise, this means that the first
k variables in X; must be slow-moving; otherwise, we would have a model where fast moving

variables are determined by slow moving variables plus noise, which is unreasonable.
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3.4.4 Identifying the Monetary Policy Shock in the Two-Step Approach

To achieve identification of the model under the two-step estimation approach with the identi-
fication scheme for monetary policy shocks proposed above, we must find a way to separate the
effects of V; from C in the initial step. This is because, as is, C' represents a linear combination
of the true factors F; and i;.

To make the necessity of this separation clearer, suppose that C, is used as a proxy for F; to
estimate the VAR parameters. Since there exist random matrices Hy, Ho taking values in RF*¥
and R**™ such that

C’t%HF'Ft_‘_Hy'it)

for large N, T, in this case Cy would respond contemporaneously to changes in i; through the
term H, -i;. Since F; are characterized by their slow response to 7, in this case C, cannot be
viewed as a true estimator of Fj.

In addition, Cy could not be used instead of F; to estimate the VAR model. Specifically, since Cy
responds contemporaneously to i, this means that we cannot impose the recursive identification
assumption to the VAR system with endogenous variables C’t,it, and therefore that the VAR

model in the second step of the estimation procedure remains unidentified.

A possible way of partialling out the effect of i; in C; is to regress Cy on C’f, a measure of the

common factors other than ¢;, and ¢; in the linear model
Cr=b.-Cr+bi-iy+e.
Then, using the OLS estimator BC and lA)z of b. and b;, the residual
Fy=Cy—bi-ig

would be used as the estimator of F;. This regression in effect represents separating Cy into the
part depending directly on 4; and the part with no direct dependence on i, so that ét — lA)Z ¥

represents the part of C; that is not directly determined by .

The reason we do not directly regress Cy on iy is because, in general, F; and i; may be correlated,
so that removing every part of C, that is correlated with é; could end up removing the parts of
F} correlated with i; as well.

Instead, the above linear model allows us to separate from C, the part that is directly correlated

with 4;, while leaving intact the part that is indirectly correlated with i; through Fj.

As a measure of C’f , the authors propose using the principal components from the truncated
version of X; consisting only of slow-moving variables. This method makes use of the identifi-
cation assumption that F; are the slow-moving variables themselves and thus that much of the

information in F} is contained in the slow-moving variables comprising X;.
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The reason Cyx is not used as a direct estimator of F} is because, even though it represents much
of the information in F}, it does not reflect all the information in F} since it was derived only
using slow-moving variables, whereas information on F; could potentially be contained in the

fast-moving variables if their loading on F; is non-zero.
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Interactive Fixed Effects Models

Bai (2009)

Bai introduces the interactive fixed effects model in his 2009 paper, which imposes a factor
structure on the unobserved individual/time effects in a fixed effects model and exploits the

large N, large T framework to estimate the model.

4.1 Interactive Fixed Effects

Consider a typical panel data model with dependent variable Yj;, independent variable X,

individual/time effects d;; and idosyncratic errors e;; that are related as
Yie = X;, 8+ bit + et

forany 1 <i< N, 1<t <T. In the fixed effects literature, it is customary to assume large N

and small 7', and impose an additive structure on the fixed effects d;, that is, to assume that
0it = oy + €.

This allows the individual effects «; to be removed via within-sample demeaning or first differ-

encing, and the time effects to be controlled for via time dummies.

However, there are cases in which the additive structure may be inappropriate, and instead an

interactive effects framework, in which the individual /time effects are represented as

for an r-dimensional vector \; and F}, is needed. Note that this specification nests the additive

frameworks, since we need only let

(67 1

N = and F;=

€t

for the additive structure to be represented in terms of interactive effects.
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To illustrate the usefulness of the interactive effects structure, consider, for instance, a panel
model for wages with time-varying prices for the unobserved components. Specifically, suppose
that Y;; stands for the wage of individual ¢ with aget, X;; a vector of exogenous variables that
affect the wage Yj¢, and A; an r-vector of unobserved individual characteristics such as ability

and social awareness. The traditional fixed effects model, in which
Yie = X8+ i + e,

implicitly assumes that the price of each unobserved component in A; does not vary across
cohorts and thus is normalized to 1. However, if the price of each unobserved component varies

across cohorts and is represented in the vector F}, then the interactive fixed effects framework
Yie = X, 8+ NiFi + e
becomes more appropriate.

Before moving onto estimation, we first organize the model into a vector/matrix form as we did
for the unilevel and multilevel factor models.

Suppose that there are r unobserved factors and k observed exogenous variables, so that A;, Fi
are r-dimensional vectors and X;;, 8 are k-dimensional.

Defining X; = (X;1,---, Xor)', Yi= (Ya,---,Yir), ei = (e, ,eir) and F = (Fy,---, Fr)’, the

model can be written as

On the other hand, combining the data by time, so that Y; = (Yi¢,---,Yne), Xe = (Xue, -+, Xne),

€t = (eltu'“ 7eNt) and A = (Alf" 7)\N)/7 we have

Yi =X¢- B+ A - F + e .
~— =~ N~~~
Nx1 Nxk kx1 NXr rx1 Nx1
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4.2 Estimation of the Interactive Effects Model

The estimators of 5, A and F' are found as the minimizers of the average sum of squared errors

T
> (Yie = XiyB— NiF)

t=1

M=

SSR(B,F,\) =

I

Mz

(Yi— XiB—FN) (Yi— XiB — F )

s
Il
i

subject to the normalizations LTF = I, and diagonal A’A.

4.2.1 Concentrating out A

We first concentrate out A; for any 1 <i < N, given 8 and F the minimizer \;(3,F) of the

objective function with respect to \A; satisfies the f.o.c.
F'(Y; — X — FA(,F)) = 0.
Therefore, we have
\i(B,F) = (F'F)"'F'(Yi - Xif3),

and substituting this into the objective function, we have the concentrated version

V(B F) = <= Y0 [Yi= Xif— F(F'F) ' F'(Yi = Xi)| [Yi— XiB = F(F'F) " F/(Yi — X))

@
I
—

(Y = XiB) Mp (Y — X;B),

N N
MZ

Mz

s
Il
i

where Mp = It — F(F'F)~'F' is the residual maker associated with the 7' x r matrix F. We
define the projection matrix Pr = F(F'F)~LF’ for later use.

Since M is symmetric and idempotent, its rank is given by

rank(Mp) =tr(Mp) =T —r.

4.2.2 Estimating § and F

The estimators of 3 and F' are obtained as the minimizers of V' (53, F).
First, assume that F is known. Then, the minimizer 3(F') of V (3, F) satsifeis the f.o.c.

N

S X/ Mp(Y;— X;- B(F)) =0,
=1
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so that B(F) is the least squares estimator

N -1 N
B(F) = [ZXzMFXZ-] > X[ MpY.
=1 =1

On the other hand, if § is known, then defining W; =Y; — X;8 and W = (Wy,--- , Wy), the

objective function can be written as

1 Y 1
i=1
1 ! 1 ! / —1 v
=— —— F(F'F)F .
o (W) = < e (W F(F'F) ™ F'W)

The minimizer of the above function with respect to F' subject to the normalization # =1, is

the solution to the maximization problem

max  tr(E'WW'F)
FeRTxr
/

) F'F
subject to T = 1.

We already proved, in our study of unilevel factor models, that tr(F'WW’F) is bounded above
by the sum of the r largest eigenvalues of the positive semidefinite matrix WW’, and this upper
bound is attained when we set F equal to v/T times the r orthonormal eigenvectors corresponding
to the r largest eigenvalues of WW'. Therefore, as is par for the course by now in factor models,

we set
F(B)= VT x Orthonormal eigenvectors of WW' corresponding to its r largest eigenvalues .

We also denote by V7 the r x r diagonal matrix collecting the r largest eigenvalues of ﬁWW’

as its diagonal elements, as is also customary by now. It follows that

(7 WW') - F(8) = F@)Vir.

and by definition, F'(5) can also be characterized as the 7" x r matrix that satisfies the above

equation along with the normalization w =1,.

4.2.3 The Estimators of 5, F,A

So far, we have derived the estimators of 5 and F' assuming that the other was given. Suppose
that 3 and F' are minimizers of V(B,F). Then, by definition,

B=B(F) and F=F(p).
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To see why this is the case, suppose that 3 # ﬁ(ﬁ) Then, by the definition of 5(F') for an

arbitrary T x r matrix valued random matrix F, it follows that

which contradicts the assumption that 8 and £ minimize V(B,F).
It follows from a similar line of reasoning that £ = F(B) must also hold true.

Therefore, B and F' must satisfy the nonlinear equations

N -1 N R
[ZXiMpXil S X|MpYi=p
=1

i=1
1 Y N A P
i=1
F'F
T = I,.
The estimator of each )\; is then given as
Q PPN 1 4, «
Ai = Ni(B,F) = —F'(Yi — Xi3)

for every 1 <i < N.

We have estimated S, F), A by first concentrating out A, but of course it is possible to concentrate
out F first and then jointly estimate § and A. The method chosen in Bai (2009) is because his
primary interest is in the common factors F}; instead of the individual unobserved components

s
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4.3 Assumptions and Preliminaries

To establish consistency of the estimators B ,F above, and later their rates of convergence, we
require the following assumptions. They are mostly the same as the assumptions in Bai (2003)
used to prove the asymptotic properties of the factor and factor loading estimators, along with
some assumptions that takes into consideration the additional term X/, that is not present in

pure factor models.

To make the proofs as simple as possible, we assume that the idiosyncratic errors are i.i.d. across

both the cross-sectional and time dimensions. The specific assumptions are as follows:

(1) Bounded Moments of Exogenous Variables
We assume that there exists an M < 4-oc such that

sup  E[Xy)* < M.
iEN, tEN,

1

Since E|X;|* < (IE|X“\4) % for any i,t € Ny by Jensen’s inequality, we have

sup  E|Xy|* <M
€Ny teNS

as well.

(2) Identification of
Let F’ be the set of all full rank 7' x r matrices. For any F € F', define

1 N 1 N N
D(F) = 157 > XiMpXi = 15553 > XiMp Xiaij,
i=1 i=1j=1

where

for any 4,5 € Ny.

We assume that, there exists a pmin > 0 such that the minimum eigenvalue of D(F') for
any F € F' is always greater than or equal to pyin. This ensures that D(F) is positive
definite for any F € F'.

In addition, we assume that the parameter space of 8 is bounded.

These ensure that the objective function has a unique minimum at the true value 3° of 3,

hence the name of the assumption.

(3) Non-triviality of Scaled Factors
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We assume that the r largest eigenvalues of X X’ are always positive. This implies that
the r largest eigenvalues of X X' are always positive, and as such that, when we use the

scaled factors F'= ﬁX X'F later on, the scaled factors are non-zero, or non-trivial.

Second Moment Convergence of True Factors and Factor Loadings
We assume that {|F?| |t € N1} and {|\)||i € N} } are L?-bounded and that

FO/ FO AO/ AO
S r and

—)EA

for some positive definite matrices X g, X5 € R™".
The factor loadings A; are also assumed to be stochastic this time around because they

can represent unobserved individual characteristics in the fixed effects model framework.

LI.I.D. Idiosyncratic Errors
We assume that the process {e;; }ien . tenN, is independent and identically distributed with

finite fourth moment
E {e?t} = py < +00.
This implies that the second moment is also finite;

E [e?t} = 0% < +o0.

Independence of Errors

We assume that e;; is independent of X, \;, Fs for any j,s € N,.
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We can consider the following implications of the above assumptions:

e The Rates of Convergence of X;, X;
Note that

L2 < 2 50 X
1 iy k2 )
T Tt:l

since

1 & 1 &
E| =31 Xul| = = Y E[Xq]? < M,
Tt:l Tt:l
it follows that L[| X;||* is Op(1).

Likewise, %HXAF is also Op(1), and because

N

1 2_ 1 2
2 I < == D0 Xl
NT = NT =D

it follows that 5>~ 1X5]|> = 0,(1) as well.
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The Rate of Convergence of the Product of Exogenous Variables and Errors

It is also true that

1 N
=1

To see this, note that

N | N7
TNT > Xjei= TNT o> Xieir,

i=1 1=1t=1

and recall that

sup E|Xy> <M
1, tENL

for some M > 0. Therefore,

N N T T

2
1
SO D DN ICTEE

i=1j=1t=1s=1
N N T T

= D S Elene E XX

i=1j=1t=1s=1

E ‘

1 N
- X'e:
VNT ; v

so that
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e The Rate of Convergence of the Product of Factors and Errors

Let F be the set of all T x r matrices F' such that LTF = I,.. Letting Fy,---,Fp be the

rows of any F' € F, we can show that

2

sup
FeF

T
Z tCit

vl

1
(mmw, T>> |

converges at a uniform rate in F.

2
. 1 <N |1<T
that is, 5> ;2 ‘T > =1 Frei

We first expand the above term as

LN T 2 N T T
NZ TZFteit = ZzzeztestF
i=1 t=1 z 1t=1s=1
N T T
T2ZZZ €it€is — ezteis])FtlFS_‘_U T2 ZZ‘Ft ’
i=1t=1s=1 =1t=1

where the last term follows because E[e;ie;s] = 0 if t # s and E [ejie;s] = 02 if t = s.

By the Cauchy-Schwarz inequality, we can see that

1 N T T 1 T N
NT2 ZZZ (eiteis —E[eieis]) F{ Fis < WZZ Z(eiteis E[eiteis ‘|FtF’
1=1t=1s=1 t=1s=1li=1
1 [z N 213 7 o7 ;
< W ZZ Z(eitezs E eztezs [ZZ|F£F5|
t=1s=1li=1 t=1s=1 i

TQZZ

t=1s=1

N
Mo > (eiteis — Elexeis))
=1

2]§
b

since

We will show below that there exists an M < +oo such that

1 Y ’
‘\/7 Z €it€is — ezteis]) <M
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z:l

N

D=



for any t,s € N, ; it follows that

1 LT 1 N 2
E T2 Z Z 7]\7 Z(eiteis —E [eiteisD <M
t=1s=1 i=1
as well, which implies that
] NT T ,
/
5 ZZ Z (eiteis —E [eiteis]) Fth < 701)(1).
NT i=1t=1s=1 VN
The second term can be written as
1 N T 2 T
2 2
Fil© = —
7 NT? ;;' =07

Taken together, we have

2

2 LT

L
=Y Fei
T

1 N
P
=1

where the last term is Op(1).

[N

F, it follows that
2]

1 L1 & ’ T N (AR .
sup | — — > Fe <o? ot = | — eiteis — E|eite; ,
R AR L PR
and as such
2
11 & 1
sup | =) Fiey| | =0 .
FeF N; T; ’ p<m1n(\/N,T)>

2
=0p(1), we need only note that

To show that SN %ZtT:l Fey

2}%

S 3ES SV U IEe] LAl | ES S SIS »
<D= Frea Str< ) = —= ) (eieis —Eleieis))
Ni:l Tt:1 N T t=1s=1 Ni:l
07 1,70
+U2ltr rr
T T
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e The Rate of Convergence of the Product of Common Component and Errors

We now investigate the rate of convergence of
SLES S D
1 1t=1

To do so, recall that we assumed {|F?| |t € Ny} and {|A\?| |i € Ny} are L%-bounded, so
that there exists an M < +o0o such that

2 02
sup E|F;| , sup E|\;
teN, iEN,

It then follows that
2 N N T T

_ ZZZZE [enerAO’Ft FY), }

zl]ltlsl

=0 ZZE PP

i=1t=1
1
2\ 2

) (2

1
§U2’7 (E FO/
NT;; ’ t

T
Z 0/ Ft et

||Mz

02
%

1
> ’ (Holder’s inequality)

so that

ZZ)\O’Ft eit = Op(1).

11t1
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¢ Rate of Convergnece of the Product of Factor Loadings and Errors

Here we study the rate of convergence of

€; )\?, .

T
UNT

To do so, let )‘?k be the kth element of \) for 1 <k <r, so that

ey o e\, .
ei)\?’ = < ZZ eit/\?k .
k=1t=1
erA) ey
It follows that
1 1 N r T
or 0
S e < AT el
NT = VNT = =i
Recall that
2
N <M
iEN+

for some M < +o00. Now we have

N ¢ T 2 N N r r T T
S99 ) 3TN EFCS 999 93 3) 3L HERVE0)
=1lk=1t=1 i=1j=1k=11l=1t=1s=1

N T r r

' 5 ZZZZE{A?MJ

zltlklll

Il
Q

< 02 (Holder’s inequality)
flt 1k=11=1
<o’M- ﬁNT r? = o2 Mr?,
which implies that
1 N r» T
0
== D> > leihik| = 0p(1)
VNT ===
and therefore that
T
o7
—— Y |eA) || = 0,(1)
NT =
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¢ Rate of Convergence of Squared Errors

We will investigate the rate of convergence of

ZZ%
'L 1t=1
since

ZZ%

zltl

ﬁ Zi]\il Zthl ezzt = Op(l)-

« The Rate of Convergence of Error Cross Products

For any t,s € N, note that

2
N
1

Z €itCis — elt eZS

COV (€iteis, €jt€js)
\/»

11]1

1
=~ ;E [(eiteis -E [eiteis]ﬂ

4 .
o ift#s

= 7 < +00.
ps—ot ift=s

Therefore, there exists an M < +oo such that

N 2
Z eztezs ezteis]) <M

aw

for any t,s € N.
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e The Rates of Convergence of the Covariance of Error Cross Products

Choose any t,s € Ny and ,7,k,l € Ny. Then, we can consider the following cases:
(1) t=s
In this case,
Cov (eitejtpekm 615) =K [eitejtektelt] —-E [eitejt] ‘E [ektelt]
ps—ot ifi=j=k=1
=<0t ifi=k#j=lori=1l#j=k.

0 otherwise

(2) t#s

In this case,
Cov (eitejt, exs, e1s) = Eleieje] - Eegsers] — Eleieji] - Elegsers] =0

for any 1,7, k,1.

Therefore, we can see that

Z Z |Cov (€€t s, e15)| < T(N|pg — 04 +2N (N —1)0?).
1<t,5<T 1<i,j k J<N

By implication,
1

TN? Z Z |Cov (eirejt, ks, e1s)| — 204
1<t,s<T 1<4,5,k,I<N

as N,T — oo, meaning that the sequence

1
{TN2 > > |Cov(eireji, ers, ers)| N e,
1<t,s<T 1<4,j,k,I<N

is bounded.

By a symmetric argument, it follows that the sequence

1
{572 > Y. |Cov(eiteis; ejueso) |} N.TeN,

1<4,j<N 1<t,s,uv<T

is also bounded.
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4.4 Consistency of the Least Squares Estimators of 5, F’

4.4.1 Preliminary Results

As before, let F be the set of all T' x r matrices F' such that FITF = I,.. Then, we can show the

following;:

* SUPrer Tzz 1 XiMpei| = op(1)

Note that, for any F € F with rows F1,---, Fp, we can decompose the above expression as

1 X, 1 X, ,
7TZ;XZMF€Z: NiTZ;XZez NT2 ZX FF €;.

1=

where we used the fact that
/ —1 v 1 /
F(F'F)""F'==FF".
T
Focusing on the second term, we have

> X{FFlej| <

NTQZ|

1 N % N
2
<|FlL (;nxin ) (¥

|NT2

i=1

1

1 N 2 1 N
= =17 (NTzluxu) -(N;
1 N

LAY
sﬁ(mi;uxin) -(NZ

i=1

t=1

where we used the Cauchy-Schwarz inequality and the fact that

s (5 -

D=

Therefore,
1 N
X!M Xle;
Fer NTZ Fei| < T; i

2

(NI

LT
= Feq
T

1 N ) % 1 N
— X, ) il
+\/?<NT;|| J) ?el?rNi:l
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We proved above that

N
1
—— ) X/Mpe; =0,(1),
NT; 7 ey P()
1 X
1 X1 & ’ 1
sup — — N Fey| =0 ,
Fe}‘N; T; tt p(mm(x/ﬁ,T))
SO
1N
sup |— Y X/ Mrpe;| = o0,(1).
Fer NT; ) FEq P( )
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1 N 0, 707
. SupFe]: Wzizl )\l IF MFei

=0p(1)
As above, note that
N T

N
1
Z)\O/FOIM e; = T ZA;FO/(% —
=1

for any F' € F with rows Fy,---, Fr.

The second term can further be majorized as

<|

1 N
W Z A?/FOIFFIQZ‘
i=1

Therefore, we have

N
1 0, 170/
Sup |—= Y N 1F7 " Mpe;| <
FeF NT; ' '

N
7T Z )\;FO/GZ'
i=1

We assumed and proved above that

1 X,

AOIAO
2
sup — Fiey
rer N ; tzjl ’
so we can conclude that
N
0, 0
sup |— > A\ /FV Mrpe;
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<A A
+7r-tr

2
NT i=1

07A0

N

N
> N FYFF'e;

FeF i=1

=0 (mln(ﬁ,T)) ’

= o0p(1).

t=1

Fieg

=



1 N
 SUPper | NT izt € PR
As is obvious by now, we first choose any F' € F with rows F},---, Fpr and note that

1 Y 1 Y
ﬁ E C{iPFei = W E €;FF/€,L'.
i=1 =1

This term can be simply majorized as

| 1 Y 1 Y 5
/ / /
2Z:eZ-FF el < 2z:|F el|
NT = NT =
N T 2
1 1
:*Z =2 _Fien|
NZIZIT I
SO
N N T 2
LSS el < up L3258
sup |—— Y eiPre;| < sup — — eit| s
FG]—' NTzzz:l 1 (2 c lel thl tCet

and because the term on the right is 0,(1), so is

sup
FeF

1 X

/
—E e; Pre;
NTZ.:1
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4.4.2 Convergence of the Objective Function

Let B C R* be the parameter space for .

Recall that (B,F ) is a point in the parameter space B x F that minimizes the objective function
1 X
B.F N—Z (i = XiB) Mp(Yi - Xi3).

Since ﬁZf\; efMroe; is a term that does not depend on 3,F, we can also say that (ﬁA,F)

minimizes the function
1N
/
S(B,F)=V(B,F)— ~T ZeiMFoei
1 XN
N—Zl (Y; — X;8)' Mp(Y; — Xi8) ——Ze Mrpoe;.

We call S(f,F) the "centered” objective function.

For any 1 <7< N,

Y= X3+ FOX + e,

so we can decompose the centered SSR S(3,F) as

1 N
S(B,F):WZ(Y X:B) Mp(Y; — X;8) — ZeMFoe,
=1
1 X / 1 XN
= ﬁz [Xi(ﬁo_ﬁ)‘FFO)\?‘FGi] Mp [Xi(ﬁo_ﬁ)‘l-FO)\?—f—@i} —ﬁZe;MFoei

@
I
—

= (8- ZXMFX (B8 +2(8- 8" ZXMFFOAOH(& By ZXMFel

N N
1 1
— N NEFYMEFON) 2N " AYFYMpe,
+NT1§1 - NT;l e+

NT Z(MF MFO)ei

for any € B and F' € F. Note that we can write

NT Z)\OIFOIM FOAO —tr < [NT Z)‘OAO,‘| FO/M FO>

AO/AO FOIMFFO
N T ’

Defining

AO/AO FO/MFFO
N T

S(B,F)= (8- ZXMFX(ﬁ ﬁ°)+t< >+2(5 By ZXM FON),
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S(B,F) can now be expressed as

S(B,F)=S8(8,F)+2(8—p8") ZXMFeZ
1
+2WZ)\O’F”’M ei+ 1€l ei(Pgo — Pr)e;

By assumption, the parameter space B of 3 is bounded; that is, there exists an M < +o00 such
that, for any 5 € B, |5] < M.

From the preliminary results, we can see that

sup 58— 60 X!Mpe;| <2M - | sup X!Mpe;|| = o0,(1
(8,F)EBXF ( Z ' FeF NTZ ’ (L)
07 7707 07 1207
sup A, FV' Mpe;| = sup A, V" Mpe;| = o0p(1
(B,F)eBxF NT; ‘' Fer NTZ i| = op(1)
su (P Pr)e;| < sup |—= Y e\ Ppe;|+|—=) €. Proe;| =0,(1),
(BFG%M‘NT’ ro—Fr)ei| < o8 T; o NT; o = sl
where
7Z€{PF0€7; =o0p(1)
NT = '
because
1 X, FOFO 1 o |2
‘MizleiPFOEi S ( T . NTQZZI)F €;
_ 2
(FO’F()) ol i 1 ZT:F
- | A7 = t Eit )
T NFITH

where the first term is Op(1) and the latter o,(1).
Therefore,

sup | S(8,F) = S(8,F)| = 0,(1).

(B,F)eBxF
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4.4.3 The Identification Condition for 5 and F?°

We now show that the uniform convergence of the objective function defined above implies that
3 converges to B. As with the usual consistency result for extremum estimators, we must first

show that the true parameters are the unique minimizers of the objective function, in this case

S(B.F).
It is clear that, for any r x r nonsingular matrix valued H, because
FOH(H/FOIFOH)leIFOI — FO(FO/FO)*lFOI

we have Mpo = Moy and thus

~ AYAY FY Mo FO
0 70 F
FYH) =t . —
S(ﬁ? ) r< N T ) 0’

since MpoF9 = O.
We can also show the converse, namely that

S(B,F)=0

implies that 8 = 8" and F = FOH for some nonsingular 7 x r random matrix H.
To this end, note that

o <A01A0 FO/MFFO> _

N
1
— TZ)\?’FO’MFFOA?

lvec (MFFO)\O>
"(NQ1Ir) (W Ir) vee (MpF)
ivj (AN ®IT)] ve (Mg F°)

AO,AO ®IT) vec (MFF )

and

1 N
NTZXM FOX0 = —T;vec (X Mfe - MpFOXY)

N

_ [NlT ; (A?’@X{M{m)l vee (MpF"),
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defining

F) as

we can express S(f3,

S(B,F) =

(B—8%

A(B—=B%) +n'Bn+2(8—°)C’

The first two terms are immediately recognizable as squares of (83— %) and 7, so letting X and

Y satisfy

S(3,F) =

we can see that X' Bn =

and since

X'BX + (8- B°)Y (8- 8°) = (8- 8°) [¢'B"

we finally have

S(8,F) = [n+B'c(5-8")| B

n+X]'Bn+X]+
= (B-p"

(ﬂ _ ,30)/0/

7, so that

X=B"'C(p-p",

Expanding terms, A —C'B~1C is revealed to be

1

i=1j=1
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(B=B% (A+Y)(B-p°)
A(B—pB%)+n'Bn+2(8—pB°)C'n,

'o+Y] (-8 =

[+ BB B%)] + (8- B (A= C'BC)(B - B°).



orp0\ —1 . .
where a;; = )\?’ (%) )\? as defined in assumption 1.

Therefore,
S(8,F) = (8= 8"V D(F)(3=8")+ [n+B'C(8— 5] B [n+B~C(5-6")].
and because D(F) and B are both positive definite for any F € F/,
S(8,F) =0,

where equality holds if and only if 3= % and n=B~1C(8— %) = 0.

Suppose that 5‘(6, F)=0. Then, by the statement shown above, 8 = 3°. This implies that n =0
and thus

MpF'=F'—F(F'F)'F'F°=0;
because F}—F = 1I,, I is of full rank r and thus F'FY is nonsingular. This implies that
F=FY(FF)'F'F=FH,
where H = (F'F)~'F'F is a nonsingular 7 x r random matrix.

We have thus shown that

for any (3,F) € B x F’, and that
S(B,F)=0

if and only if 3 = 3° and there exists a nonsingular 7 x 7 random matrix such that F = F'H.
This means that S (B, F) is minimized precisely at % and rotations FOH of the true factors F°.

This proves that S (B, F) satisfies the identification condition for extremum estimation.
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4.4.4 Consistency ofB

Given the uniform convergence of the centered objective function and the identification condi-

tion above, we can prove that B is consistent for 3.

We currently have the following conditions:

+ (Extremum Estimator) (3, F) is a minimizer of S(3,F) on B x F’

« (Identification Condition) For any r x r nonsingular H, (3°, F°H) is the unique mini-
mizer of S(B,F) on B x F'

o (Convergence of Centered Objective Function) S(f5, F') converges uniformly in prob-
ability to S(8,F) on B x F, that is,
sup ’S(B,F) — S’(B,F)’ =o0p(1).

BeEB,FeF

We now utilize all three conditions above to show that B is consistent for 3°. We proceed in

steps to emphasize the role of each condition in the proof:
Step 1: Using the Identification Condition

Choose any d > 0, and suppose that
’ 5 50‘ > 4.

for some 3 € B. Then, because 3 # 8° and S (B, F) is uniquely minimized at 4, FYH, we can
see that

S(B,F)> S(8° F% =o.

To procure a specific positive lower bound for S (B ,F ) that depends on §, we note that

_50)
B-p|

where ppyin > 0 was defined as the minimum possible eigenvalue of D(F) for any F € F'.

S(B.F) > (B—B°)D(E) (B~

3—50‘2' ( g:ﬁz‘) D(F)(

0| 2
B—p ’ 'pmin>5 * Pmin > 0,

=
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Therefore, for any 6 > 0,

{|B=8]> 8} C{S(B.F) > & prin}-

Step 2: Using the Extremum Property of the Estimators
We can easily see that
505 B ) 505 A 5 A 52’pmin 5 F
{S(B,F)> 8% puin} < {S(B, ) = S(B, ) > =L b u{§(B, F) > =T

Note that, because

Mz

S(B°, F°) = (Y; — X;8°) Mpo (Y; — X, 6%) ——Ze Mpoe;

s
Il
i

Z‘H Z‘H
~ N

-

s
I
—

(FOXY 4 €)' Mpo (FON) + ;) — NTZeMpoel—O

and (3, F) minimizes S(8,F) on B x F,
S(B.F) < S(8°, F) =0,

meaning that

Step 3: Using the Uniform Convergence Result

On the other hand, because B eBand F e F,

which implies that

as N, T — oco.
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Putting all the results above together, we can see that

P(|3-5>0) <P(S(B,F) > 6% puain)

as N, T — oco. This holds for any § > 0, so by definition,

3L B0
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4.4.5 Convergence of P,

As we have seen multiple times during our study of unilevel and multilevel factor models, be-
cause the dimension of £ increases to infinity as T'— 0o, we cannot establish the consistency of
F' through traditional means. Here we establish the convergence of the norm of the difference
of the projection matrices Pz and Ppo; in the next section, we will establish the consistency of
F' akin to that proved in Bai and Ng (2002) and Bai (2003).

First recall that

S(B.F) < S(8°, F) =0,
which we showed above. We also saw that

S(B,F) = 5(B,F) = 0p(1),

where

]P’(‘S(B,F

as N,T — oo. It follows that

By definition,

S(B,F) = (B-5%) <NTZXM X) (5-5°

AO/AO FO/MFFO ov , 0.0
+tr< N 7 +2(6-p° NTZXiMFF 2.

We can easily show that

1 X 1 X

——> X{MpX; and —=> X/M FO)0
F<rt F

NT &= NT &7 ¢
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are Op(1); since B—p0= op(1) by the previous consistency result, we have

AO/AOFO/MAFO A n . ou 1 N ) R o
1"( N TF )—S(ﬁ,F)—(ﬁ—ﬁ) (W;XZMFX1> (B-5")

AOIAO
N

it must be the case that

The matrix

converges to X5, a nonsingular matrix, so it is Op(1) but not o,(1). Therefore,

FO/MﬁFO B FO/FO FOIFFFO B (1)
T T T2 PV

By assumption, £ O}F S F, an 7 X r matrix of full rank, so the above implies that

Jadaaial

as well.

Now we have

HPﬁ_]-DFOH2 Str((PF—PFO)Q)

T

F/FO FO/FO -1 FO/F
=2r —2tr
T T T

_ ot FOIFO -1 FO/FF/FO
=ar r T T2

Loor —2tr(Xp'2p) = 0.

F'PpoF
:tr(PF+PF0) — 2tr <FO>
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4.5 The Rate of Convergence ofﬁA

In the last section we proved that the least squares estimator B is consistent for the true coeffi-
cients 4%, and that the projectio matrix Py is consistent for Pro. We are now in a position to
investigate the rate at which these estimators converge. The process is long and arduous, so we

proceed in small steps.

4.5.1 The Convergence of V7 and Consistency of F
Recall that the least squares estimators B and F are characterized by the equations
N -I'n R
[ZXQMFXZ'] YO XiMpY;=f
i=1 i=1

N

(;TZW Xif)(vi- Xﬂ))F—FvNT

and LTF = I,. Using the fact that

Yi— XiB = X;(8° — B) + FON) + ¢

for any 1 <i < N, we can expand the second equation as follows:

FVnr = (NlT > (Y- XiB)(Yi- Xﬁ)’) P
i=1
N
- [NlTZ(X"(ﬂ B)+ FON) + ) (Xi(B° = B) + FON) + &) | F
=1
- 3 0_3 0/ 1207 A A
=~ X8 = B)(B” - XF+—ZX BN'F F+NTZX _B)elF

11 12 13

1 - . 07 1007
+ﬁz:zlez(5 B)XF‘FiZeZA F F+72616F

14 15 16

ZFD)\O B XiF+ ZFO)\O g ZFO)\O)\?’FO’F.

17 18

The last term on the right hand side can be written as

o fr

N
IJ_VZFO)\?)\?/FO/F:FO< Z)\O)\Ol)
=1
AUIAO FO/F
= F0
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so we can see that

0/ A O 0/ 1,
FVNT—FO<A A ) (F F) =J1+-+18.

N T
We now investigate the rate of convergence of each of the terms I1,---,I8.
1
L] ﬁ[l
Note that
L= S — pe—prxs
VT NT3/2 =" !

£

< (S IxR) oo - A =
Since 5 SV | X:]” = 0,(1) and

1 -
—||F|| <
N

1
F/F 2

we can see that

Len=o0s(j2 ) = (7-4).

=0p(1).

where the last equality follows because ‘ BY—4

1
o ﬁ]2

We can see that

1 1
— 2| = || ——
|22 - |

1 N ) % 1 N
< —=—S"|x; —
<(wryer) (73

1=

N
X (B - B)A?'FOIFH
=1

) -ty

20
T

(3

by the Cauchy-Schwarz inequality. All terms except ’ pO— B ‘ on the right hand side are

Op(1), so
1 ~
Ji2=0, (-
. ﬁ[:&
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As above, we have

1 1
S ]| [ —
|77 = 7

2

N E N
<\wpX ) (FpXle) [9°-6)

i=1

N A A
Xi(ﬁo—ﬁ)eéFH
=1

F.

1
VT
Again, every term except ‘BO — B‘ on the right hand side are Op(1), which means that

1

\/TIBZOP (‘ﬁO_BD'

1
ﬁﬂl

As should be familiar by now,
e -]
= ; !
VT NT3/2 i=1

TR
<\ ~= X ~ i 03
_<NT§ u) (NT;M) E:

The term on the right hand side is exactly the same as the one appearing in the case of
I3, so

1 .
-—=F.
vT

1

\/TMZOP (‘BO_BD'

1
ﬁ”

Finally, we can see that
Hl I7H - Hl §NjF°A°(ﬂ“ —B)’X!FH
- (2 (2
VT NT3/2 &

(1 NEX N 1
< (wpxoiat) (o) |o-a el el

i=1

The term on the right hand side is almost exactly the same as the one appearing in the

case of 12, so
1

Lrr=0,(#-4)
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1
ﬁIE)

This time, we follow the same process as in Bai and Ng (2002). Note that

1 al 07 07 17
|70l | g eotres
N 0/ f;
VN \VNT = T
Since
FOF 1 X
:Op(1)> 72 ei)‘?, :Op(l)v
T VNT =

we can see that

1
ﬁIS

The exposition for this term follows that of the above term almost exactly.

1 1 & .
I8H = |'ZF°A%<FH
H\/T NT3/2 — 1<

1 i))\o, 1
ﬁi*l i € .\/7N7

‘FO -

<L‘ H.L
VT VT

so as above,

o ()

1
ﬁm
We now move onto our final and most troublesome term. Note that
1 1 X
IGH = |75 > eie
H vT NT3/? =
1 XL .
= 722(%6@17{
NT3/? i=1t=1
1 N T R 1 N T A
< NT32 221; (e;eir —E[eieir]) Ft/ + NT32 z:ltz:lE [eieit] Ft/ .
1= = 1= =

We study each term in turn.
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By the Cauchy-Schwarz inequality,

T
NT3/2 ;

SRR (RN ol o
- VN NTQtZ1

N
Z €iCit — ez €1t ’F ‘
=1

H NT3/2 ZZ €i€it — ezezt]) F

i=1t=1

N

N
g €€t — ez ezt

1)

1 .2
(7l

=1

Since

N SN (enei —Eleseqn))

> (eieit —Eleieq]) : :

-1

' SN (eireir — Eleiren))
we have

1 TN 2 1z T 2
501> (eiew—Eleen])| =5 > |—= > (eisei —Eleisei])
NT* = |i5 SSlVNS

We showed above that there exists an M < 400 such that

2
‘\/—Z €is€it — ezseit]) <M
for any ¢,s € N, ; it follows that
T | N 2 T T 1N 2
N2 Z ezezt ezezt = ZZE| Z €is€it — elseitD <M
T t=1li=1 T t=1s=1 v =1

for any N,T € N, so that

E
~—
o
S
3
S
o~
|
&=
)

A
L)
N
=
N—

Therefore,

H TS/QZZ eieir — Eleieq]) FY|| <

i=1t=1

As for the second term, we can see that

N 2\ T >
| oyl ] < (oo omteea] ) (3305 F)
NT 1=1t=1 \/T N Tt:l =1 Tt:l




by applying the Cauchy=Schwarz inequality in the same manner as above. Since

S Elesen]

SN Eleirei]

by the definition of the euclidean metric we have

2 2

1 T |XN 1] LT N
NQT; ;E[eieit] = W;; i:ZI]E[eiseit]
1 TN , 2
- N2T; Z:E &
=11i=1
= N2T02(N2T):(72.

Therefore,

Putting the results together,

|77l s grorovr+

so that

1 1
VT =O (W) |
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We have seen above that % times I1,---,14,17 are all O, (‘60—/3’

), and that % times the

terms 15,16,18 are O, . Therefore,

1
(min(\/ﬁ,ﬁ)

1 A 1
ﬁ(11+--'+18)ZOp(’BO_ﬂD‘FOp <W>y

and because BO—B , ———— are o,(1), it follows that —= (I1+---+18) = 0,(1) as well.
min(v'N,vT) p VT p

The Probability Limit of Vi

We now assume, as in our study of the unilevel factor model, that there exists a nonsingular

r X r matrix ¢ such that

FOIF »
5Q.
7 9

This assumption is for the sake of simplifying the proofs.

Since

R AOIAO FO/F
FVNT—F0< ~ )( 7 >:H+-+I8,

premultiplying both sides b 2 and using the fact that FE_ I, implies that
ymng Y JT T

VNt —

F/ FO [ AOAON O/ F
= 1).
T N T Op( )

Because

F’FO AO/AO FO/Fp ,

b
T ( N T — Q' X7Q,
it follows that

Vnr 2V =Q'2,Q,

where V is positive definite because ) has full rank and X, is positive definite, and is diagonal
because Viyr is diagonal for any N, 7. In addition, the diagonal entries of V' are ordered because
the diagonal entries of V1 are ordered.

By the continuous mapping theorem,
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To derive the specific form of V', we proceed as follows.

Premultiplying both sides of the equation above by % = O,(1) yields the equation

FO/F O 0 AU A0 FOIF
VN — = 0p(1).

T T N T

From our assumptions, we have

O 0 AV AO FO’F

or equivalently,

PO 0 AV AO FO'F
() (557)) 7 -mea=ann

Likewise, we have

FOf
T

VNt —QV =0p(1).
By implication,
LrYaQ —QV =o,(1),
and because the left hand side is deterministic, this means
YrXAQ—-QV =0.

By definition, V is a diagonal matrix with diagonal entries equal to the eigenvalues of X pX4.

Because X and X, are positive definite, the eigenvalues of Xy, are exactly those of XY p.
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The Consistency of F

With the above result, we can now establish the mean square consistency of F in the usual way.

Defining
0/AO 0/ ;70
N T
since
FVNp—F°HVyp =114 ---+ 18,
we have
1 0 -1
7 (F-FH) = T(Il—i—---—i—IS)VNT.
Therefore,

- HF FH| < (HHH et HBH) vt
By the result established above,
Vr 2V

so that V7 = Op(1). Since

e+ kel =0 (-2 o (i)

it stands to reason that
= s (- o
where §y7 = min(N,T).
Finally, we are able to see that
gl -rorl =0, (|23 ) +ontoni + 0y (|5~ 1] 53t
since

Hlll'l

0 1/2
o) <|8° = B|- i,
we can write

%HF—FOHHz ~0, (]50 —/5"2> +O0p(S51)-
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4.6 Testing Additive Effects against Interactive Effects

One might be interested in testing the additive fixed effect specification
Yi= Xftﬁ+ai+€t+€it

against the interactive fixed effects specification
Yit = X[,B+ N Fy + e

Let 3 be the iterated least squares estimator of 8 under the interactive effects model and 3
the LSDV estimator for 8 in the additive effects model. We saw above that 3 is consistent
and asymptotically normal when the fixed effects are interactive, and since the additive effects
model is a special case of the interactive effects model, B remains consistent and asymptotically
normal under the additive effects model.

On the other hand, since the errors e;; are assumed to be homoskedastic, i.i.d. and uncorrelated
with the regressors, under the additive effects model the OLS estimator 3 of 3 is consistent,

asymptotically normal, and in fact the asymptotically efficient estimator of 3.

In summary,

e Under the additive effects model, 3 is a consistent, asymptotically normal and asymptot-

ically efficient estimator of 5.

[ is a consistent and asymptotically normal estimator of 3.

e Under the interactive effects model, B is a consistent, asymptotically normal estimator of

B, but 3 is inconsistent.

Therefore, given that 8 and B are jointly asymptotically normal under the additive effects
model, the conditions for the Hausman test to be asymptotically chi-squared under the null of
the additive effects model and consistent under the alternative of the interactive effects model are

satisfied. The Hausman test can be formulated as the test with null and alternative hypotheses

Hy : The True Model is the Additive Effects Model
H; : The True Model is the Interactive Effects Model

and the test statistic

Ane = NT-(3—B) (V) - V() (B-5) 52,

where V(B) and V(ﬁ) are consistent estimators for the asymptotic variances of 3 and 3, and
NP
(V(3)-V(3)
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is a type of pseudoinverse of V(5) — V(B) that equals its inverse when V(3) — V() is nonsin-

gular. The specific form of this pseudoinverse will be derived in time.

Below we study the Hausman test in detail, and investigate which assumptions are needed for it

to have the desired asymptotic distribution under the null and consistency under the alternative.

4.6.1 The Hausman Test
Assumptions

Let there be two models M; and My with the same set of k parameters 3, and let 3 and f3
be estimators of 5 in models 1 and 2. Suppose we want to test for the null and alternative

hypotheses
Hy: M; is the true model Hy: My is the true model.

Letting {an}nen, be some sequence of real numbers increasing to +oo, assume that:

i) Consistency, Asymptotic Normality and Efficiency Under the Null

Under My,
53— A4, A
o [P7P) 4o, [ A
p—p3 A1 A
A

as N — oo, where As is the asymptotically efficient covariance matrix.

ii) Behavior Under the Alternative

Under Mo,
B5B,
while
BB+
as N — oo.

iii) Consistent Variance Estimators
Let V(3) and V() be estimators of the asymptotic variance of 5 and 5. We assume that

VBB AL, V(B D Ay
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under My, and that

A

V(B)-V(B) LW

under My, where W € RF*F is a postivie definite matrix.

iv) Regularity Assumptions for Estimation
The rank of V(3) — V() and A; — Ay are constant at 0 < r < k for any N € N,.

A~

Moreover, the r non-zero eigenvalues of V(3) — V(5) and A; — Ay are all distinct.

We will now construct the Hausman test statistic and show that it is asymptotically chi-squared

under the null and that it defines a consistent test under the alternative.

The Covariance Structure under the Null

For now, suppose that M is the true model, that is, assume that the null is true. We will
show that the asymptotic covariance of the efficient estimator 3 and the difference B—j of the

estimators must be zero.

By joint asymptotic normality, under My,

0,41 — Ay —Ap+ Ay
>

- B—p
aN(ﬁ—ﬁ):aN.@ —1) (B—B)i)(l —1)N(0,A)=N

Because f3 is asymptotically efficient, we can now show that the asymptotic covariance Aqo of é

and S is equal to the minimal asymptotic variance As.

Define

K
Il

@™
|

o

By assumption, § = 0 under M.
Suppose that A1s # As, and define a new estimator B as

B(r) =B +rCq,
for any r € R, where

C=—(Ag — A3) #O.
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Then,
an (B(r) = B) =an - (B—B) +an-rCq
—an-(B-8)+an-rC((B-B)-(3-8))

=an- (rC’ Ik—TC) (@—B) iN[O,V(r)],

where
V(r) = Ag+r?CEC 47 (Ag1 — A2) C' +7C (A2 — As).

As such, ,5’ (r) is a consistent and asymptotically normal estimator of 8 for any r € R, and by the

minimality of As, it must be the case that V(r) — Az > 0, that is, it must be positive semidefinite.

For any r € R, using the fact that C' = —(A42; — A2), we have
V(r)= Ay +r2C2C’ —2r-CC".

We also assumed that C’ # O, so €’ has non-zero rank and thus there exists some non-zero

vector a € R¥ such that v = C'a # 0. By implication,
f(r)=a'V(r)a=d Asa+r? u'Su—2r -u'u,

where u/u > 0. Note that f(0) = o/Asc, and that f is differentiable on R with first order

derivative
f(r)y=2(r uSu—u'u)

for any r € R.
uw'Yu > 0 because ¥ is a covariance matrix and thus positive semidefinite; if u'Yu = 0 then

f'(r) = =2u'u <0 for any r € R, while if «/Yu > 0 then f/(r) <0 for any 0 <r < JIT“W where

s> 0. In any case, there exists a 2 > 0 such that f'(r) <0 for any r € [0, ).

We can now conclude, from the mean value theorem, that there exists a y € (0,z) such that
F0) = f(z) = f'(y) = <0,
where the last inequality follows because f’(r) < 0 for any r € (0,z). By implication,
o' Asa = f(0) < f(z) =V (2)a,

which contradicts the fact that A2 — V' (x) should be positive semidefinite.
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Therefore, it must be the case that A1 = As, and as such that
Y=A1— Ao — Ao + Ay = A1 — As.

That is, the asymptotic covariance matrix of ﬁ — /3 is simply the difference of their asymptotic
covariance matrices.
To obtain an equivalent formulation, note that

q Lo —Iv\ (6-8) 4 S Ap-4A

any-| ~ =apn- ~ — N |0, s
g—pB O I B—B A9 — Az Ay

which tells us that As; — As is the asymptotic covariance of 3 and §. The result we derived
above thus tells us that asymptotically, the asymptotically efficient estimator and the difference

q of the estimators must be uncorrelated.

The Test Statistic and its Asymptotic Distribution

So far, we have seen that

an-(B—p3) % N {0,4;— Ay
—_——

by

We now construct and derive the asymptotic distribution of the Hausman test statistic.

Because ¥ is symmetric positive semidefinite, it has an eigendecomposition
¥ =PDP,

where P is a k x k orthogonal matrix and D a diagonal matrix with diagonal entries equal to the
eigenvalues A1 > --- A > 0 of 3. Suppose that the rank of 3 is 0 < r <k, so that ¥ has exactly

r non-zero eigenvalues A\; > --- > A\. > 0. Defining

AN - 0

]
Il

ERTXT
0 - A\

and letting P € R**" collect the first » columns of P, we can easily see that
Y =PDP,

where P'P = I,. Since the diagonal elements of D are all positive, its matrix square root D3
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exists, and we can define

with its generalized inverse

Define X as

and let X ~ N[0,X]. Since
Z=x3"X ~N(0,I),
we can obtain the following distribution:

X'STX = X'0elVsetx = 2/7 ~ 2.

Under our regularity assumptions, provided that the vector of signs s is fixed, we can uniquely
recover the r orthonormal eigenvectors of V(B) - f/(ff) corresponding to its r non-zero ordered

eigenvalues; they are given by the k X r random matrix
Py = eigveci,, (V(B) =V (B)).

Letting A\; > --- > A, > 0 be the r non-zero ordered eigenvalues of V(B) — V(B), by the continuity

of ordered eigenvalues and eigenvecctors, and the fact that

the continuous mapping theorem tells us that

N B for any 1 <i <,

Py & eigvecy, () = P,

where the last equality follows because the distribution of X’ X does not depend on the sign
of P.
As such, defining



and

(V(3)-V(5)' = PuDy' P,

by the continuous mapping theorem again we have

(V(3)-V(3) & PD'P=x".

The Hausman test statistic is then defined as

and we can see that
Hy 3 X'STX ~ 2

Note that, if ¥ has full rank, then (V(B) - V(ﬁ))T is simply the inverse of V(3) — V(5), which

shows us that the above case is a generalization of the usual Wald-type statistics.

The Consistency of the Hausman Test

Now that we have constructed the Hausman test statistic and derived its asymptotic distribution
under the null, it remains to verify whether this statistic defines a consistent test, that is, a test

whose power goes to 1 under the alternative.

Suppose that Mo, not My, is the true model.

We first provide a heuristic explanation as to why the test must be consistent. Because B consis-
tently estimates the true parameter 5 but 3 does not under model Mo, the difference between
the two estimators will be large, meaning that the Hausman test statistic, which is defined as a
quadratic form involving the difference between the two estimators, will also tend to infinity as

the sample size increases. This indicates that the test will be consistent.

Formally, we assumed that

under My, and that
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where W is a positive definite k£ x k matrix. By implication,

A,

B8y (VA -V(B) " (B=B) B (B-r)W(E-) >0,

and as such,

as N — oo. This implies that
lim P (Hy<c)=0

for any c € R, so that the probability of rejecting goes to 1 as N — oo.

Note that we made the very strong assumption that f/(ﬁA) — V(B ) converges to a positive definite

matrix under Ms to prove consistency. This requires V(B) to always be ”smaller” than V(B)
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