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Asymptotics for the Baseline Model
Bai and Ng (2002), Bai (2003)

Suppose there are T time periods and N macroeconomic variables available in the sample, and
denote the ith variable at time t by Xit︸︷︷︸

(1×1)

. Let there exist r < min(N,T ) common factors Ft︸︷︷︸
(r×1)

that determine these variables, with the loadings of each factor on the ith variable being given
as λi ∈ Rr×1. The model is then given as

Xit = λ′
iFt +eit,

where eit is the idiosyncratic element of Xit, to whom we have yet to impose any time series
properties.
Let Xi = (Xi1, · · · ,XiT )′, F 0 =

(
F 0

1 , · · · ,F 0
T

)′, ei = (ei1, · · · ,eiT )′, where the superscript 0 repre-
sents the true values. Then,

Xi︸︷︷︸
(T ×1)

= F 0︸︷︷︸
(T ×r)

λ0
i︸︷︷︸

(r×1)

+ ei︸︷︷︸
(T ×1)

,

and collecting X = (X1, · · · ,XN ), Λ0′ =
(
λ0

1, · · · ,λ0
N

)
and e= (e1, · · · ,eN ),

X = F 0Λ0′ +e.

Alternatively, denoting Xt = (X1t, · · · ,XNt)′ and et = (e1t, · · · ,eNt)′, we can organize the data as

Xt︸︷︷︸
(N×1)

= Λ0′︸︷︷︸
(N×r)

F 0
t︸︷︷︸

(r×1)

+ et︸︷︷︸
(N×1)

.
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1.1 Derivation of Estimators of Factors and their Loadings

The factor model defined above is estimated using the technique of asymptotic principal com-
ponents, which just means that Λ and F are found as the solution to the following least squares
minimization problem (we assume that k factors are estimated):

min
Λ,F

S(k,Λ,F ) = min
Λ,F

1
NT

N∑
i=1

T∑
t=1

(Xit −λ′
iFt)2.

In other words, Λ and F are found as the values that minimize the mean squared deviation from
the dependent variables in the given sample.

To simplify this problem, note that we can write

S(k,Λ,F ) = 1
NT

N∑
i=1

T∑
t=1

(Xit −λ′
iFt)2

= 1
NT

T∑
t=1

(Xt −ΛFt)′(Xt −ΛFt)

= 1
NT

tr
(
(X−FΛ′)(X−FΛ′)′) .

The model can now be estimated in two different ways depending on whether we solve the first
order condition for Λ or F first.

i) Solving for Λ
In this case, the first derivative of the above objective function for vec(Λ) is

∂

∂vec(Λ)′S(k,Λ,F ) = ∂ tr((X ′ −ΛF ′)′(X ′ −ΛF ′))
∂vec((X ′ −ΛF ′))′ · ∂vec((X ′ −ΛF ′))

∂vec(Λ)′

= −2vec
(
(X ′ −ΛF ′)

)′ · (F⊗IN ) = −2vec
(
(X ′ −ΛF ′)F

)′
,

where we used the fact that

∂ tr(A′A)
∂A

= 2A

and

∂vec((X ′ −ΛF ′))
∂vec(Λ)′ = −∂vec(ΛF ′)

∂vec(Λ)

= −(F
⊗

IN ) · ∂vec(Λ)
∂vec(Λ)′ = −(F

⊗
IN ).
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Therefore, the estimator of Λ given F is

Λ(F ) =X ′F (F ′F )−1.

Substituting this into the objective function yields the concentrated form

V (k,F ) = S(k,Λ(F ),F ) = 1
NT

tr
(
(X−FΛ(F )′)(X−FΛ(F )′)′)

= 1
NT

tr
(
(X−F (F ′F )−1F ′X)′(X−F (F ′F )−1F ′X)

)
= 1
NT

tr
(
X ′
(
IT −F (F ′F )−1F ′

)
X
)
.

ii) Solving for F
In this case, the first derivative of the above objective function for vec(F ) is

∂

∂vec(F )′S(k,Λ,F ) = ∂ tr((X−FΛ′)′(X−FΛ′))
∂vec((X−FΛ′))′ · ∂vec((X−FΛ′))

∂vec(F )′

= −2vec
(
(X−FΛ′)

)′ · (Λ⊗IN ) = −2vec
(
(X−FΛ′)Λ

)′
.

Therefore, the estimator of F given Λ is

F (Λ) =XΛ(Λ′Λ)−1.

Substituting this into the objective function yields the concentrated form

Ṽ (k,Λ) = S(k,Λ,F (Λ)) = 1
NT

tr
(
(X−F (Λ)Λ′)(X−F (Λ)F ′)′)

= 1
NT

tr
(
(X−XΛ(Λ′Λ)−1Λ′)(X−XΛ(Λ′Λ)−1Λ′)′

)
= 1
NT

tr
(
X
(
IN −Λ(Λ′Λ)−1Λ′

)
X
)
.

It remains to derive the estimator of F and Λ under the above specifications. Let us first derive
the estimator of F .
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The problem is now to minimize the concentrated objective function

V (k,F ) = 1
NT

tr
(
X ′
(
IT −F (F ′F )−1F ′

)
X
)

= 1
NT

tr(X ′X)− 1
NT

tr
(
X ′F (F ′F )−1F ′X

)
= 1
NT

tr(X ′X)− 1
NT

tr
(
(F ′F )−1F ′XX ′F

)
with respect to F , which reduces to the problem of maximizing

tr
(
(F ′F )−1F ′XX ′F

)
with respect to F . Imposing the normalization F ′F

T = Ik implies that we must find the F that
solves the constrained maximization problem

max
F ∈RT ×k

tr(F ′(XX ′)F )

subject to 1
T
F ′F = Ik.

Let us now proceed step by step. To begin with, we find the upper bound of the expression
tr(A′MA) for any A ∈ RT ×k such that A′A= Ik and positive semidefinite M ∈ RT ×T .

(1) Expanding the expression of tr(A′MA)
Because M is symmetric, by the principal axis theorem there exist an orthogonal matrix
P ∈ RT ×T and a diagonal matrix
D = diag(µ1, · · · ,µT ) ∈ RT ×T with µ1 ≥ ·· · ≥ µT ≥ 0 equal to the ordered eigenvalues of
M such that M = PDP ′. As such, defining B = P ′A and denoting the columns of B by
B1, · · · ,Bk ∈ RT ,

tr(A′MA) = tr(B′DB) = tr



B′

1DB1 · · · B′
1DBk

... . . . ...
B′

kDB1 · · · B′
kDBk


=

k∑
j=1

B′
jDBj

=
k∑

j=1

T∑
i=1

µiB
2
ij =

T∑
i=1

µi

 k∑
j=1

B2
ij

=
T∑

i=1
µi

∣∣∣B̃i

∣∣∣2,
where B̃1, · · · , B̃T ∈ Rk are the rows of B.

(2) Finding an Upper Bound for
∣∣∣B̃1

∣∣∣2, · · · , ∣∣∣B̃T

∣∣∣2

Because

B′B =


B′

1B1 · · · B′
1Bk

... . . . ...
B′

kB1 · · · B′
kBk


=A′PP ′A=A′A= Ik,
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{B1, · · · ,Bk} is an orthonormal set and thus a collection of linearly independent T -dimensional
vectors with norm 1. Letting V be the subspace of RT spanned by {B1, · · · ,Bk}, there ex-
ists an orthogonal complement V⊥ of V , and V⊥ satisfies RT = V

⊕
V⊥. Let {β1, · · · ,βT −k}

be an orthonormal basis of V⊥; then, RT = V
⊕
V⊥ implies that

{B1, · · ·Bk,β1, · · · ,βT −k}

is an orthonormal basis of RT . Define

B⊥ =
(
β1 · · · βT −k

)
∈ RT ×(T −k),

and let C =
(
B B⊥

)
∈ RT ×T . Because the columns of B form an orthonormal basis of

RT , C is an orthogonal matrix, and as such the norm of the rows of C are all equal to 1.
Letting C1, · · · ,CT be the rows of C, and denoting βj = (β1j , · · · ,βT j)′ for any 1 ≤ j ≤ T −k,
this implies that

0 ≤
∣∣∣B̃i

∣∣∣2 =
k∑

j=1
B2

ij ≤
k∑

j=1
B2

ij +
T −k∑
j=1

β2
ij = |Ci|2 = 1

for any 1 ≤ i≤ T , or that the squared norm of the rows of B are bounded above by 1.

(3) Finding the Upper Bound of tr(A′MA)
Note that

T∑
i=1

∣∣∣B̃i

∣∣∣2 =
T∑

i=1

r∑
j=1

B2
ij =

k∑
j=1

T∑
i=1

B2
ij =

k∑
j=1

|Bj |2 = k,

since the columns of B all have norm equal to 1. Therefore, denoting ai =
∣∣∣B̃i

∣∣∣2 for
1 ≤ i≤ T , a1, · · · ,aT are values such that

i) 0 ≤ ai ≤ 1 for all 1 ≤ i≤ T , and

ii) a1 + · · ·+aT = k.
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With this in mind, we can see that

tr(A′MA) =
T∑

i=1
µi

∣∣∣B̃i

∣∣∣2 =
T∑

i=1
µiai

=
T∑

i=1
µiai +µk

k∑
i=1

(1−ai)−µk

k∑
i=1

(1−ai)

=
[

k∑
i=1

µiai +µk

k∑
i=1

(1−ai)
]

+
T∑

i=k+1
µiai −µk

k∑
i=1

(1−ai)

≤
[

k∑
i=1

µiai +
k∑

i=1
µi(1−ai)

]
+µk

 T∑
i=k+1

ai −
k∑

i=1
(1−ai)


(µ1 ≥ ·· · ≥ µk, while µk ≥ µk+1 ≥ ·· · ≥ µT )

=
k∑

i=1
µi +µk

[
T∑

i=1
ai −k

]

=
k∑

i=1
µi. (∑T

i=1ai = k)

Therefore, tr(A′MA) is bounded above by the sum of the k largest eigenvalues of M .

It is now a simple matter to solve the maximization problem. Letting v1, · · · ,vk ∈ RT be an
orthonormal set of eigenvectors of M corresponding µ1, · · · ,µk, denote V =

(
v1 · · · vk

)
∈RT ×k

and note that

MV = V


µ1 · · · 0
... . . . ...
0 · · · µk

= V D.

Then, V ′V = Ik and

tr(V ′MV ) = tr(V ′V D) = tr(D) =
k∑

i=1
µi.

Putting A= V allows the function tr(A′MA) to attain its upper bound, and therefore it is the
maximizer of tr(A′MA) over the set of all T ×k matrices A such that A′A= Ik.

As such, letting the columns of 1√
T
F̃ k be orthonormal eigenvectors of XX ′ corresponding to the

k largest eigenvalues µ1 ≥ ·· · ≥ µk ≥ 0 of XX ′,

tr
( 1
T
F̃ k′(XX ′)F̃ k

)
=

k∑
i=1

µi

and F̃ k is a solution to the stated maximization problem; we put the superscript k to emphasize
the fact that k factors have been estimated.
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This is why the method is called asympototic ”principal components”; in effect, the estimated
factors are the first k principal components of XX ′, found successively by searching for the linear
combination of the data that yields the largest empirical variance. Here, the linear combination
is across time, so that the factors are the k collection of weights that best explain the variation
in the data across time.

The maximized value of tr(F ′(XX ′)F ) becomes

tr(F̃ k′(XX ′)F̃ k) = T tr
( 1√

T
F̃ k′(XX ′) 1√

T
F̃ k
)

= T tr
( 1
T
F̃ k′F̃ k ·D

)
= T tr(D) = T

k∑
i=1

µi,

where D is the k× k diagonal matrix collecting µ1, · · · ,µk. Therefore, the minimized value of
the objective function is

V (k, F̃ k) = 1
NT

tr(XX ′)− 1
NT

k∑
i=1

µi,

and the estimator of the factor loadings Λ is

Λ̃k = 1
T
X ′F̃ k.
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Likewise, the estimator of Λ that minimizes the concentrated objective function

Ṽ (k,Λ) = 1
NT

tr(XX ′)− 1
NT

tr
(
(Λ′Λ)−1Λ′(X ′X)Λ

)
subject to the normalization Λ′Λ

N is given as
√
N times a set of k orthonormal eigenvectors

corresponding to the k largest eigenvalues of X ′X. Denoting this estimator by Λk, the estimator
of F is now given as

F
k = 1

N
XΛk

,

and the minimized value of the objective function is

Ṽ (k,Λk) = 1
NT

tr(XX ′)− 1
NT

k∑
i=1

vi,

where v1 ≥ ·· · ≥ vk are the k largest eigenvalues of X ′X.

Note that, if the k largest eigenvalues µ1, · · · ,µk of XX ′ are positive, then they are the same as
those of X ′X; this indicates that, if the k largest eigenvalues of XX ′ are positive, then either of
the above approaches yields the same minimum value of the objective function. In other words,
F̃ k and Λ̃k are not unique solutions to the least squares problem.
We can also see that, for any nonsingular k× k matrix P , F̃ kP also solves the minimization
problem, since

V (k, F̃ kP ) = 1
NT

tr
(
X ′
(
IT − F̃ kP (P ′F̃ k′F̃ kP )−1P ′F̃ k′

)
X
)

= 1
NT

tr
(
X ′
(
IT − F̃ k(F̃ k′F̃ k)−1F̃ k′

)
X
)

= V (k, F̃ k).
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1.2 Asymptotic Properties of the Estimated Factors:
Assumptions and Notation

We now show, under the same set of assumptions, that the panel information criteria introdued
in Bai and Ng (2002) consistently estimate the number of factors, and that the estimators de-
rived above possess the asymptotic properties laid out in Bai (2003).

To make the discussion slightly more formal, we let (Ω,H,P) be our probability space and as-
sume that every random element in the following exposition is defined on Ω and H-measurable.

1.2.1 The Trace Norm on Rm×n

Throughout, we will treat the matrix space Rm×n as a metric space under the metric induced
by the trace norm ∥·∥ on Rm×n, defined as

∥A∥ = tr(A′A)
1
2

for any A ∈ Rm×n. It is very easy to see that ∥A∥2 is simply the sum of the squares of all the
entries of A, and it follows that

∥A∥ =

 m∑
i=1

n∑
j=1

A2
ij

 1
2

≤
m∑

i=1

n∑
j=1

|Aij |.

We will now show that ∥·∥ possesses the properties that a matrix norm such as the operator
norm should possess.

Recall that, for any n ∈ N+, defining Sn×n as the set of all symmetric n×n matrices, Sn×n is
a linear subspace of the real vector space Rn×n: this can be seen easily, since the zero n×n

matrix is symmetric and, for any a ∈ R and A,B ∈ Sn×n, (aA+B)′ = aA′ +B′ = aA+B and
thus aA+B ∈ Sn×n.
In addition, the operation ⟨·, ·⟩ : Sn×n ×Sn×n → R defined as

⟨A,B⟩ = tr(A′B)

for any A,B ∈ Sn×n is an inner product defined on Sn×n:

• For any a ∈ R and A,B,C ∈ Sn×n,

⟨aA+B,C⟩ = tr((aA+B)′C) = tr(a ·A′C+B′C) = a · tr(A′C)+tr(B′C) = a · ⟨A,C⟩+ ⟨B,C⟩,

so that ⟨·, ·⟩ is linear in its first argument.
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• For any A,B ∈ Sn×n,

⟨A,B⟩ = tr(A′B) = tr(BA′) = tr(B′A) = ⟨B,A⟩,

where we used both the commutativity property of the trace operation and the symmetry
of A and B.

• For any A ∈ Sn×n,

⟨A,A⟩ = tr(A′A) = tr(A2).

Letting A = PDP ′ be the eigendecomposition of A (which exists because A is real and
symmetric), A=O if and only if all the diagonal entries of D are 0. Lettng µ1, · · · ,µn be
the diagonal entries of D, since A2 = PD2P ′ and tr(A2) = tr(D2), we can see that

⟨A,A⟩ = tr(D2) =
n∑

i=1
µ2

i ≥ 0,

where the inequality holds as an equality if and only if µ1 = · · · = µn = 0, or D=O. There-
fore, ⟨A,A⟩> 0 if A ̸=O.

We have just shown that (Sn×n,⟨·, ·⟩) is a real inner product space; denote by ∥·∥tr the norm
induced by ⟨·, ·⟩. Since

∥A∥tr = (⟨A,A⟩)
1
2 = tr(A′A)

1
2

for any A ∈ Sn×n, we can see that ∥·∥tr equals the trace norm ∥·∥ on Sn×n.
By the Cauchy-Schwarz inequality,

∣∣tr(A′B)
∣∣= |⟨A,B⟩| ≤ ∥A∥tr∥B∥tr

for any A,B ∈ Sn×n.
In particular, for any positive semidefinite A∈Sn×n, letting A=PDP ′ be its eigendecomposition
and µ1, · · · ,µn be the diagonal entries of D (the eigenvalues of A), µ1, · · · ,µn ≥ 0. Therefore,

∥A∥tr = tr(A2)
1
2 =

(
n∑

i=1
µ2

i

) 1
2

≤
n∑

i=1
µi = tr(A),

which tells us that the trace norm of a positive semidefinite matrix is majorized by its trace.

Returning to the general setting of the space of all real m×n matrices Rm×n, we can now see
that the trace norm ∥·∥ on Rm×n has the following properties:

• ∥AB∥ ≤ ∥A∥∥B∥

12



For any A ∈ Rm×n and B ∈ Rn×p,

∥AB∥2 = tr(B′A′AB) = tr((A′A)(BB′))

= ⟨A′A,BB′⟩ (A′A,BB′ are n×n symmetric matrices)

≤
∥∥A′A

∥∥
tr ·
∥∥BB′∥∥

tr (The Cauchy-Schwarz Inequality)

≤ tr(A′A) · tr(BB′) (A′A,BB′ are positive semidefinite)

= ∥A∥2 · ∥B∥2.

Therefore,

∥AB∥ ≤ ∥A∥ · ∥B∥.

• ∥a ·A∥ = |a| · ∥A∥
Let a ∈ R and A ∈ Rm×n. Then,

∥aA∥ = tr(a2A′A)
1
2 = |a| · tr(A′A)

1
2 = |a| · ∥A∥.

• ∥A+B∥ ≤ ∥A∥+∥B∥
Let A,B ∈ Rm×n;

∥A+B∥2 = tr((A+B)′(A+B)) = tr(A′A)+tr(B′B)+tr(B′A)+tr(A′B).

Letting the (i, j)th entry of A,B be denoted Aij ,Bij for any 1 ≤ i ≤ m, 1 ≤ j ≤ n, note
that

tr(B′A) = tr(A′B) =
n∑

j=1

m∑
i=1

AijBij ,

and by the Cauchy-Schwarz inequality,

m∑
i=1

AijBij ≤
m∑

i=1
|AijBij | ≤

(
m∑

i=1
A2

ij

) 1
2
(

m∑
i=1

B2
ij

) 1
2

for any 1 ≤ j ≤ n, so that another application of the Cauchy-Schwarz inequality yields

n∑
j=1

m∑
i=1

AijBij ≤
n∑

j=1

(
m∑

i=1
A2

ij

) 1
2
(

m∑
i=1

B2
ij

) 1
2

≤

 n∑
j=1

m∑
i=1

A2
ij

 1
2
 n∑

j=1

m∑
i=1

B2
ij

 1
2

= ∥A∥∥B∥.

13



Therefore,

∥A+B∥2 = tr(A′A)+tr(B′B)+tr(B′A)+tr(A′B)

≤ ∥A∥2 +∥B∥2 +2 · ∥A∥∥B∥ = (∥A∥+∥B∥)2 .

• ∥A∥ = 0 if and only if A=O

Let A ∈ Rm×n. Suppose that ∥A∥ = 0. Then,

0 = tr(A′A) =
m∑

i=1

n∑
j=1

A2
ij ,

so that Aij = 0 for any 1 ≤ i ≤ m, 1 ≤ j ≤ n. It follows that A = O. It is obvious that
∥A∥ = 0 if A=O.
We have now shown that ∥·∥ is a norm on Rm×n. Therefore, we can induce a metric d on
Rm×n by defining

d(A,B) = ∥A−B∥

for any A,B ∈ Rm×n.

• For any x ∈ Rn, |x| = ∥x∥
Let x be an n-dimensional real valued vector whose euclidean norm is |x|. Then, ∥x∥ is
well-defined as the norm of the n×1 matrix x. It is easy to see that

∥x∥2 = tr(x′x) = |x|2.

By implication, for some A ∈ Rm×n and x ∈ Rn,

|Ax| = ∥Ax∥ ≤ ∥A∥ · ∥x∥ = ∥A∥ · |x|.

• Inversion is Continuous under ∥·∥
The proofs here follow those in chapter 9 of PMA for the operator norm.
For any n ∈ N+, let Ωo be the space of all invertible n×n matrices. We first show that
Ωo is open under the metric induced by the trace norm ∥·∥.

Choose any A ∈ Ωo. Because A−1 ̸= O,
∥∥A−1∥∥ > 0. Let B ∈ Rn×n be an element in the

open ball B(A,1/∥A∥) around A, that is,

∥A−B∥< 1
∥A−1∥

.

14



Choose any x ∈ Rn, and suppose that x ̸= 0. Then,

|x| =
∣∣∣A−1Ax

∣∣∣≤ ∥∥∥A−1
∥∥∥ · |Ax−Bx+Bx|

≤
∥∥∥A−1

∥∥∥ · (∥A−B∥|x|+ |Bx|) .

Because |x|> 0, we have
∥∥∥A−1

∥∥∥ · ∥A−B∥|x|< |x|,

so that

|x|< |x|+ |Bx|,

which implies |Bx| > 0, or Bx ̸= 0. By contraposition, if Bx = 0, then x = 0. This tells
us that the null space of B consists only of the zero vector 0, and as such that B is an
invertible matrix.
This holds for any B ∈ B(A,1/∥A∥), so B(A,1/∥A∥) ⊂ Ωo. This in turn holds for any
A ∈ Ωo, so Ωo is open with respect to the metric induced by the trace norm.

Now we can easily show that matrix inversion is continuous.
Define f : Ωo → Ωo as

f(A) =A−1 for any A ∈ Rn×n.

Choose any A ∈ Ωo, and B ∈ Rn×n such that ∥A−B∥ < δ. Then, B ∈ Ωo by the above
result, and because

∥∥A−1∥∥ · ∥A−B∥< 1,
∥∥∥B−1

∥∥∥=
∥∥∥A−1AB−1

∥∥∥≤
∥∥∥A−1

∥∥∥ ·
∥∥∥(A−B)B−1 + In

∥∥∥
≤
∥∥∥A−1

∥∥∥ · ∥A−B∥ ·
∥∥∥B−1

∥∥∥+
√
n ·
∥∥∥A−1

∥∥∥
implies

∥∥∥B−1
∥∥∥≤

√
n ·
∥∥A−1∥∥

1−∥A−1∥ · ∥A−B∥
.

It then follows that

∥f(A)−f(B)∥ =
∥∥∥A−1 (A−B)B−1

∥∥∥≤ ∥A−B∥ ·
∥∥∥A−1

∥∥∥ ·
∥∥∥B−1

∥∥∥
≤

√
n ·
∥∥A−1∥∥ · ∥A−B∥

1−∥A−1∥ · ∥A−B∥
.

The right hand side goes to 0 as ∥A−B∥ → 0, so it follows that ∥f(A)−f(B)∥ also goes
to 0 as ∥A−B∥ → 0. This shows us that f is a continuous function on Ωo.
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1.2.2 Big O Notation in Probability

Let {Xn}n∈N+ be a sequence of random elements taking values in some matrix space (E,d)
whose metric d is induced by the matrix norm ∥·∥ on E. Let E be equipped with a Borel
σ-algebra E generated by the metric topology on E induced by the metric d. Note that the
relationship ∥⟨A,B⟩∥ ≤ ∥A∥∥B∥ holds for any matrix under either the operator or trace norm.

We say that {Xn}n∈N+ is a Op(an) process for a positive real sequence {an}n∈N+ if {Xn
an

}n∈N+

is bounded in probability, that is,

For any ϵ > 0, there exists an M > 0 and N ∈N+ such that P
(∥∥∥∥Xn

an

∥∥∥∥>M

)
< ϵ for any n≥N.

On the other hand, we say that {Xn}n∈N+ is an op(an) process if {Xn
an

}n∈N+ converges in
probability to 0; to state the definition explicitly,

For any δ > 0 and ϵ > 0, there exists an N ∈N+ such that P
(∥∥∥∥Xn

an

∥∥∥∥> δ

)
< ϵ for any n≥N.

If {Xn}n∈N+ is Op(an) (op(an)), then {Xn
an

}n∈N+ is Op(1) (op(1)), so we will mostly deal with
processes of Op(1) and op(1).

The following are some important properties of op(1) and Op(1) processes:

1) If {Xn}n∈N+ is op(1), then it is also Op(1)

This follows almost immediately from the definition. Suppose {Xn}n∈N+ is op(1), and
choose any ϵ > 0; then, by definition,

lim
n→∞

P(∥Xn∥> 1) = 0,

so there exists an N ∈N+ such that P(∥Xn∥> 1)< ϵ for any n≥N . We can put M = 1;
this holds for any ϵ > 0, so by definition {Xn}n∈N+ is Op(1).

2) If {Xn}n∈N+ converges in probability or distribution, then {Xn}n∈N+ is Op(1)

First suppose Xn
d→ X for some random element X taking values in E, and let the dis-

tributions of ∥Xn∥, ∥X∥ be the measures µn, µ on the real line R for all n ∈N+. By the
Portmanteau theorem,

lim
n→∞

µn(A) = µ(A)

for any Borel sets A on the real line whose boundary has measure 0 under µ, that is,
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µ(∂A) = 0.
To prove our result, fix ϵ > 0.

We first prove that the set defined as

M = {x ∈ R | µ({x})> 0}

is at most countable. For any n ∈N+, define

Mn = {x ∈ R | µ({x})> 1
n

};

then, M =
⋃

n Mn. Suppose Mn contains more than n elements. Then, letting J be a
finite subset of Mn with n+1 elements, we can see that J is a measurable subset of R and

1 = µ(R) ≥ µ(J) = µ

(⋃
x∈J

{x}
)

=
∑
x∈J

µ({x}) ≥
∑
x∈J

1
n

= |J |
n

≥ n+1
n

> 1,

which is a contradiction. Therefore, Mn contains at most n elements and is a finite set.
Since M is the countable union of finite sets, it is at most countable.

Now note that P(∥X∥> n) = µ((n,+∞)) → 0 as n → ∞; this is because {(n,+∞)}n∈N+

is a sequence of subsets of R decreasing to ∅, which implies, by sequential continuity, that

lim
n→∞

µ((n,+∞)) = µ(∅) = 0.

Therefore, there exists an N ∈N+ such that

P(∥X∥> n)< ϵ

2

for any n ≥ N . If µ({N}) > 0, then there exists an M >N such that µ({M}) = 0, since
otherwise the uncountable set [N,+∞) must be contained in the countable set M, a
contradiction. This implies that

µ((M,+∞)) = P(∥X∥>M) ≤ P(∥X∥>N)< ϵ

2
.

Since (M,+∞) is a Borel set whose boundary has measure 0 under µ, by the Portmanteau
theorem

lim
n→∞

µn((M,+∞)) = µ((M,+∞)).

As such, there exists an N0 ∈N+ such that

|µn((M,+∞))−µ((M,+∞))|< ϵ

2

17



for any n≥N0. Note that µn((M,+∞)) = P(∥Xn∥>M) for any n ∈N+, so that

|P(∥Xn∥>M)−P(∥X∥>M)|< ϵ

2

for any n≥N0.

As such, we have the string of inequalities

P(∥Xn∥>M) ≤ |P(∥Xn∥>M)−P(∥X∥>M)|+P(∥X∥>M)< ϵ

for any n≥N0. This holds for any ϵ > 0, so by definition {Xn}n∈N+ is bounded in proba-
bility and thus Op(1).

Now suppose that Xn
p→X to some random element X taking values in E. Then, because

convergence in probability implies convergence in distribution, Xn
d→X and {Xn}n∈N+ is

again Op(1).

3) If {Xn}n∈N+ is op(1) and {Yn}n∈N+ is Op(1), then {XnYn}n∈N+ is op(1)

The property in question is surprisingly easy to show:
Choose any δ > 0 and ϵ > 0. By boundedness in probability, there exists an M > 0 and
N0 ∈N+ such that

P(∥Yn∥>M)< ϵ

2

for any n≥N0. Note that M and N0 depend only on ϵ.
Then, by convergence in probabiliy, there exists an N1 ≥N0 such that

P
(

∥Xn∥> δ

M

)
<
ϵ

2

for any n≥N1. Here, N1 depends on N0,M,ϵ and δ, and therefore only on ϵ and δ.
Now note that, for any n≥N1,

P(∥XnYn∥> δ) ≤ P
(

∥Xn∥> δ

M

)
+P(∥Yn∥>M)

<
ϵ

2
+ ϵ

2
= ϵ.

This holds for any ϵ > 0, so

lim
n→∞

P(∥XnYn∥> δ) = 0,
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and this again holds for any δ > 0, so XnYn
p→ 0 and by definition {XnYn}n∈N+ is op(1).

4) If {Xn}n∈N+ and {Yn}n∈N+ are Op(1), then {XnYn}n∈N+ is also Op(1)

Choose some ϵ > 0. Then, by definition, there exist M1,M2 > 0 and N ∈N+ such that

P(∥Xn∥>M1)< ϵ

2
and P(∥Ym∥>M2)< ϵ2

for any n≥N . Then,

P(∥XnYn∥>M1M2) ≤ P(∥Xn∥>M1)+P(∥Ym∥>M2)< ϵ

for any n≥N , so by definition, {XnYn}n∈N+ is also Op(1).

5) If {Xn}n∈N+ and {Yn}n∈N+ are Op(1), then {Xn +Yn}n∈N+ is also Op(1)

For any ϵ > 0, there exist M1,M2 > 0 and N ∈N+ such that

P(∥Xn∥>M1)< ϵ

2
and P(∥Ym∥>M2)< ϵ2

for any n≥N . Then,

P(∥Xn +Yn∥>M1 +M2) ≤ P(∥Xn∥>M1)+P(∥Ym∥>M2)< ϵ

for any n≥N , so by definition, {Xn +Yn}n∈N+ is also Op(1).

6) If {Xn}n∈N+ is Op(1) and {Yn}n∈N+ is op(1), then {Xn +Yn}n∈N+ is Op(1)

Since being op(1) implies being Op(1), {Xn +Yn}n∈N+ is the sum of two Op(1) processes
and is thus Op(1).

7) If {Xn}n∈N+ is Op(an) and {Yn}n∈N+ is Op(bn), where an
bn

→ 0, then {Xn +Yn}n∈N+

is Op(bn) and {XnYn}n∈N+ is Op(anbn)
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By definition, {Xn
an

}n∈N+ and {Yn
bn

}n∈N+ are Op(1). Furthermore, since

Xn

bn
= Xn

an
· an

bn

for any n ∈ N+, where {an
bn

}n∈N+ is a sequence of degenerate random variables that is
op(1), it follows that {Xn

bn
}n∈N+ is op(1).

Therefore, the process {Xn
bn

+ Yn
bn

}n∈N+ is the sum of an op(1) process and an Op(1) process,
so that it is itself Op(1). It follows that {Xn +Yn}n∈N+ is Op(bn).
In contrast, we showed that the product of two Op(1) processes is also Op(1), so that the
process {XnYn

anbn
}n∈N+ is Op(1); it follows that {XnYn}n∈N+ is Op(anbn).

8) If {Xn}n∈N+ is Op(1), then for any real positive sequence {an}n∈N+ that increases
to +∞, {Xn}n∈N+ is op(an)

Note that { 1
an

}n∈N+ can be considered a sequence of degenerate random variables that
converges to 0 in probability. Thus, 1

an
= op(1), so that, by the result above,

Xn

an
= 1
an
Xn = op(1)

as well. This implies that {Xn}n∈N+ is op(an).

9) If there exists an M > 0 and N ∈N+ such that E [∥Xn∥]<M for any n≥N , then
{Xn}n∈N+ is Op(1)

Suppose that there exists an M > 0 and N ∈N+ such that E [∥Xn∥]<M for any n≥N .
Then, for any ϵ > 0,

P
(

∥Xn∥> M

ϵ

)
≤ ϵ

M
E [∥Xn∥]< ϵ

for any n≥N , so that {Xn}n∈N+ is Op(1) by definition.

10) If there exists an convergent positive real sequence {an}n∈N+ and N ∈N+ such
that E [∥Xn∥]< an for any n≥N , then {Xn}n∈N+ is Op(1)
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Because any convergent real sequence is also bounded, there exists an M > 0 such that
an <M for any n ∈ N+. By impliciation, E [∥Xn∥] < an <M for any n ≥ N , so by the
previous result, {Xn}n∈N+ is Op(1).

11) If ∥Xn∥ ≤ ∥Yn∥ for any n ∈N+ and {Yn}n∈N+ is Op(1), then {Xn}n∈N+ is also Op(1)

For any ϵ, there exists an M > 0 and N ∈N+ such that

P(∥Yn∥>M)< ϵ

for any n≥N . Then, for any n≥N ,

P(∥Xn∥>M) ≤ P(∥Yn∥>M)< ϵ,

so that {Xn}n∈N+ is also Op(1).

In general, a heuristic used to understand the big and small O notations is that a process
{Xn}n∈N+ that is Op(an) converges at speed an provided that an → 0 as n → ∞, so that Xn

an

becomes stable. Therefore, the sum of two convergent sequences converges at the rate of the
slower sequence, while their product converges at the product of their respective rates, which
explains fact 7). Furthermore, a stable sequence (a sequence of Op(1)) converges when multiplied
by a sequence that converges to 0, which explains fact 8).
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We reiterate the above findings for future reference:

1) An op(1) process is also Op(1)

2) Any process converging in probability or distribution is Op(1)

3) op(1)Op(1) = op(1)

4) Op(1)Op(1) =Op(1)

5) Op(1)+Op(1) =Op(1)

6) Op(1)+op(1) =Op(1)

7) If an
bn

→ 0, then Op(an)+Op(bn) =Op(bn) and Op(an)Op(bn) =Op(anbn)

8) If an ↗ +∞, then Op(1) = op(an)

9) Any sequence whose first moments are bounded is Op(1)

10) Any sequence whose first moments are majorized by a convergent sequence is
Op(1)

11) Any sequence majorized by an Op(1) sequence is also Op(1)
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1.2.3 Continuity of Eigenvalues and Eigenvectors

Another property that will be used extensively throughout the proofs is the continuity of eigen-
values and eigenvectors. This allows us to infer the convergence of eigenvalues and eigenvectors
from the convergence of the associated matrices via the continuous mapping theorem. Seeing
as how the factor and factor loading estimators are constructed as eigenvectors of a random
matrix, this will come in handy later on.

The first problem we must deal with is the uniqueness of eigenvalues and eigenvectors. Given an
arbitrary square matrix A ∈ Rn×n, A has n (possibly complex) eigenvalues, and thus a mapping
from Rn×n to the eigenvalues of n×n matrices must be a mapping from a matrix to a set of n!
permutations of its eigenvalues in order to be a function. Likewise, if a diagonalizable matrix A
has repeated eigenvalues, then the eigenspace corresponding to that eigenvalue does not have a
unique orthonormal basis, which means that we cannot recover a unique eigenbasis of A.

Continuity of Ordered Eigenvalues when the Eigenvalues are Real

To deal with the eigenvalue uniqueness problem, we first define the set Mn of n×n matrices
with real eigenvalues, and the subset Λn of Rn defined as

Λn = {(x1, · · · ,xn) ∈ Rn | x1 ≥ ·· · ≥ xn}.

We let the ordered eigenvalues of any A ∈ Mn be the eigenvalues of A ordered from largest to
smallest. That is, λ1, · · · ,λn ∈ R are the ordered eigenvalues of A if they are eigenvalues of A
and λ1 ≥ ·· · ≥ λn.
The function eign : Mn → Λn is defined as

eign(A) = The vector of ordered eigenvalues of A

for any A ∈ Mn. We can then show that eig is a continuous function under the matrix norm
∥·∥ on Mn and the euclidean norm |·| on Rn. To this end, recall that, for any matrix A ∈ Mn

and an eigenvalue λ ∈ R of A, letting v ∈ Rn be an eigenvector of λi,

|λi||v| = |λiv| = |Av| ≤ ∥A∥|v|.

Because v is non-zero by the definition of an eigenvector, |v|> 0 and therefore

|λi| ≤ ∥A∥<+∞.
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The vector (λ1, · · · ,λn) ∈ Λn of ordered eigenvalues of A is now bounded above as follows:

|(λ1, · · · ,λn)| ≤
n∑

i=1
|λi| ≤ n · ∥A∥<+∞.

Now choose any A∈ Mn and let {Ak}k∈N+ be a sequence in Mn converging to A in the operator
norm. For any k ∈N+, let λ(k) = (λ(k)

1 , · · · ,λ(k)
n ) ∈ Λn be the collection of ordered eigenvalues of

Ak, and likewise define λ = (λ1, · · · ,λn) ∈ Λn for A. Then, from the preceding result we know
that

∣∣∣λ(k)
∣∣∣≤ n · ∥Ak∥

for any k ∈ N+. Since ∥Ak −A∥ converges to 0 as k → ∞, the sequence {n · ∥Ak∥}k∈N+ is
bounded, and by the above inequality, so is {λ(k)}k∈N+ ⊂ Λn.
Λn is a subset of Rn, so {λ(k)}k∈N+ is a bounded subset of Rn, which implies by the Bolzano-
Weierstrass theorem that {λ(k)}k∈N+ has at least one convergent subsequence. It remains to
show that every convergent subsequence of {λ(k)}k∈N+ converges to λ to complete the proof.
Suppose {λ(km)}m∈N+ is a convergent subsequence of {λ(k)}k∈N+ , with limit λ∗ = (λ∗

1, · · · ,λ∗
n) ∈

Rn. It can easily be shown that Λn is a closed subset of Rn, so λ∗ ∈ Λn, that is, λ∗
1 ≥ ·· · ≥ λ∗

n.
For any 1 ≤ i≤ n and m ∈N+, λ(km)

i solves the equation
∣∣∣λ(km)

i In −Akm

∣∣∣= 0,

and by the continuity of the determinant and the fact that Akm →A as m→ ∞,

|λ∗
i In −A| = lim

m→∞

∣∣∣λ(km)
i In −Akm

∣∣∣= 0.

It follows that λ∗
1, · · · ,λ∗

n are eigenvalues of A such that λ∗
1 ≥ ·· · ≥ λ∗

n; by the uniqueness of
ordered eigenvalues, λ∗ = λ and {λ(km)}m∈N+ converges to λ. This holds for any convergent
subsequence of {λ(k)}k∈N+ , so

lim
k→∞

λ(k) = λ.

This can be rewritten as

lim
k→∞

eign(Ak) = eign(A),

so that eign is a continuous function.
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The Continuity of Eigenvectors when the Eigenvalues are Distinct

Now that we have established the continuity of ordered eigenvalues of matrices whose eigenval-
ues are real, we can establish the continuity of normalized eigenvectors for a subset of Mn via
similar methods.

Formally, define the subset Md
n of Mn as the set of n×n matrices with real and distinct

eigenvalues.
Let A ∈ Md

n with distinct ordered eigenvalues λ1 > · · · > λn. Then, because the eigenvalues
are all distinct, the eigenspace corresponding to each eigenvalue has dimension exactly 1. This
means that, for any 1 ≤ i ≤ n, there exists exactly two orthonormal bases for the eigenspace
corresponding to λi: specifically, for any eigenvector vi of λi with norm 1, {vi} and {−vi} are
the only orthonormal bases for the eigenspace of λi.
Suppose that we are given a set of n signs s= (s1, · · · ,sn). Then, the above result means that,
for any 1 ≤ i≤ n, there exists exactly one eigenvector vi of λi with norm 1 and first entry with
the sign si. As such, collecting the unique normalized eigenvectors v1, · · · ,vn ∈ Rn of λ1, · · · ,λn

whose first entries have the signs s1, ·,sn into the matrix V =
(
v1 · · · vn

)
, V is a nonsingular

matrix (eigenspaces of different eigenvalues are linearly independent) with columns of norm 1
such that

AV = V D,

where D is the diagonal matrix collecting the ordered eigenvalues λ1, · · · ,λn of A.

Based on the above observation, given a vector of n signs s we can define the function eigvecs
n :

Md
n → Rn×n as

eigvecs
n(A) = The unique n×n nonsingular matrix with columns of norm 1 and signs s such that

AV = V D, where D is the diagonal matrix collecting the ordered eigenvalues of A

for any A ∈ Md
n. Note that, because the columns of eigvecs

n(A) have norm 1 and ∥eigvecs
n(A)∥2

is bounded above by the sum of the squared norms of the columns of eigvecs
n(A), it follows that

∥eigvecs
n(A)∥2 ≤ n, or ∥eigvecs

n(A)∥ ≤
√
n.

Note that, if A is symmetric, then eigvecs
n(A) is an orthogonal matrix, since the eigenvectors in

different eigenspaces are orthogonal in this case.
It is now easy to show the continuity of eigvecs

n on Md
n.

Let A ∈ Md
n and let {Ak}k∈N+ be a sequence in Md

n converging to A in the operator norm. For
any k ∈ N+, let λ(k) = (λ(k)

1 , · · · ,λ(k)
n ) ∈ Λn be the collection of ordered eigenvalues of Ak, and
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likewise define λ= (λ1, · · · ,λn) ∈ Λn for A. Define

Dk =


λ

(k)
1 · · · 0
... . . . ...
0 · · · λ

(k)
n

 and D =


λ1 · · · 0
... . . . ...
0 · · · λn


for any k ∈N+. Then, letting Vk = eigvecs

n(Ak) for any k ∈N+ and V = eigvecs
n(A), we have

AkVk = VkDk and AV = V D

for any k ∈N+.
In addition, ∥Vk∥ ≤

√
n for any k ∈ N+, so the sequence {Vk}k∈N+ is bounded in the operator

norm. Since matrix spaces can be seen as extensions of euclidean spaces under the operator
norm, by the Bolzano-Weierstrass theorem {Vk}k∈N+ has a convergent subsequence. As before,
it now remains to see that every convergent subsequence of {Vk}k∈N+ converges to V .

To see this, first observe that, because {Ak}k∈N+ is a sequence in Mn and A and element of
Mn, by the result proved above

λ(k) = eign(Ak) → eign(A) = λ

as k → ∞. Thus, Dk →D in the operator norm.
Let {Vkm}m∈N+ be any convergent subsequence of {Vk}k∈N+ with limit V ∗. Since the conver-
gence Vkm → V in the operator norm implies element-wise convergence, the columns of each Vkm

have norm 1, and the unit circle on Rn is closed, the columns of V ∗ must also have norm 1. In
addition, because signs are preserved across limits, the first entries of each column of V ∗ have
the signs assigned in s. Note also that, because

AkmVkm = VkmDkm

for any m ∈N+, where Akm → A and Dkm →D in the operator norm, taking m→ ∞ on both
sides yields

AV ∗ = V ∗D.

By definition, V ∗ = eigvecs
n(A) = V , and as such Vkm → V as m → ∞. This holds for any

subsequence of {Vk}k∈N+ , so

lim
k→∞

Vk = V,
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or in other words,

lim
k→∞

eigvecs
n(Ak) = eigvecs

n(A).
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1.2.4 Assumptions and Preliminaries

Bai and Ng (2002) and Bai (2003) both prove their results under an approximate factor model
framework with time-series serial correlation and heteroskedasticity, that is, they assume that
the errors eit still retain correlation across both the cross-sectional and time dimensions and
that the distributions of the time series {eit}t∈Z for i ∈N+ may not be identical. They also do
not specify whether these series should be stationary or non-stationary, imbuing the model with
the utmost generality.

The same results will be proved here under the stronger assumptions of an exact factor model
and stationarity, that is, we will assume that {eit}t∈Z are i.i.d. and weakly stationary time series
for all i ∈N+. We will also make the following assumptions:

(1) Non-triviality of Scaled Factors
We assume that there exists a kmax ∈N+ such that r < kmax and the kmax largest eigen-
values of XX ′ are always positive. This implies that the k largest eigenvalues of XX ′

are always positive for 1 ≤ k ≤ kmax, and as such that, when we use the scaled factors
F̂ k = 1

NT XX
′F̃ k later on, the scaled factors are non-zero, or non-trivial.

Additionally, we assume the true number of factors r satisfies r < kmax.

(2) Second Moment Convergence of True Factors and Factor Loadings
We assume that the factor loadings λ0

1, · · · ,λ0
N are nonrandom, and that there exists an

M > 0 such that

sup
t∈N+

E
∣∣∣F 0

t

∣∣∣2 ≤M,

sup
i∈N+

∣∣∣λ0
i

∣∣∣2 ≤M.

In addition, we assume that

F 0′F 0

T

p→ ΣF and Λ0′Λ0

T
→ ΣΛ

for some positive definite matrices ΣF .ΣΛ ∈ Rr×r.

(3) Exact Factor Model
We assume that the processes {eit}t∈Z are independent and identically distributed for any
i ∈N+.

(4) Stationarity of Errors
We assume that {eit}t∈Z is weakly stationary with mean 0 and autocovariance function
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γ : Z → R.
In addition, we assume that the autocovariances are absolutely summable and that the
time series has bounded fourth moments, that is, there exists an µ4 < +∞ such that
E
[
e4

it

]
< µ4 for any t ∈N+.

(5) Weak Dependence between Factors and Errors
There exists an M > 0 such that

E

 1
NT

N∑
i=1

∣∣∣∣∣
T∑

t=1
F 0

t eit

∣∣∣∣∣
2≤M

E
∣∣∣∣∣ 1√
NT

N∑
i=1

T∑
s=1

F 0
s (eiteis −γ(t−s))

∣∣∣∣∣
2

≤M (for any t ∈N+)

E
∥∥∥∥∥ 1√

NT

T∑
t=1

N∑
i=1

F 0
t λ

0′
i eit

∥∥∥∥∥
2

≤M

for any N,T ∈N+.

(6) CLT for Time Dimension
For any i ∈N+,

1√
T

T∑
t=1

F 0
t eit

d→N [0,Φi] ,

for the positive definite matrix

Φi = plim
T →∞

1
T

T∑
t=1

e2
itF

0
t F

0′
t .

(7) Sufficient Conditions for Factor Identification
The kmax largest eigenvalues of XX ′ are distinct for any N,T ∈N+ such that T ≥ kmax.
Likewise, the r× r matrix ΣΛΣF has distinct eigenvalues.

(8) The Probability Limit of F 0′F̃ k

T

We assume that, for any 1 ≤ k ≤ kmax, there exists an r×k matrix Qk of full rank such
that

F 0′F̃ k

T

p→Qk.

This assumption greatly simplifies the proofs below, and, together with assumption 7, we
can express Qr in terms of quantities related to the matrices ΣΛ,ΣF .
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The following are some implications of the above assumptions:

• Implications of Assumption 2
Letting Σ

1
2
F be the Cholesky factor of ΣF , the r× r matrix Σ

1
2 ′
F ΣΛΣ

1
2
F is positive definite

and thus has r positive eigenvalues. By implication, the eigenvalues of ΣΛΣF are equal to
those of Σ

1
2 ′
F ΣΛΣ

1
2
F and are thus all positive.

• Implications of Assumption 5
The first two statements of the assumption tells us that the errors eit and their cross
products eiteis −γ(s− t) are only weakly dependent on the factors F 0

t . This imposes some
kind of exogeneity on the factors and is standard in much of the time series literature.
Meanwhile, the third statement in the assumption says that the common component F 0

t λ
0′
i

itself is only weakly correlated with the errors.

• Implications of Assumption 7
Recall that the factor estimate F̃ k was derived as

F̃ k =
√
T ×The orthonormal eigenvectors of XX ′ corresponding to its k largest eigenvalues

for any 1 ≤ k ≤ kmax. Since the kmax largest eigenvalues of XX ′ are assumed to be
distinct, so are its k largest eigenvalues. By implication, the eigenspaces corresponding to
the k largest eigenvalues of XX ′ have dimension 1, meaning that each eigenspace has an
orthonormal eigenbasis consisting of a single vector of norm 1 that is unique up to sign
changes. Since eigenvectors corresponding to different eigenvalues are orthogonal to one
another, the columns of F̃ k are determined uniquely up to sign changes.
By extension, the factor loadings Λ̃k = 1

T X
′F̃ k are also determined uniquely up to sign

changes.
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We first prove some preliminary results about the rate of convergence of some factors before
moving onto the actual proof. The results are as below:

• 1
T

∑T
t=1

∣∣∣F̃ k
t

∣∣∣2 = k

To see this, note simply that

1
T

T∑
t=1

∣∣∣F̃ k
t

∣∣∣2 = tr
(

1
T

T∑
t=1

F̃ k
t F̃

k′
t

)
= tr

(
F̃ k′F̃ k

t

T

)
= k

for any T ∈N+ and 1 ≤ k ≤ kmax.

• 1
NT

∑T
t=1

∣∣∣∑N
i=1λ

0
i eit

∣∣∣2 =Op(1)

This is the counterpart to the first assumption in assumption (5), and it implies that the
term in the expectations is Op(1). This can be derived directly from the fact that the true
factor loadings are nonrandom and the stationarity of {eit}t∈Z.

Note that, for any t ∈N+,

E
∣∣∣∣∣

N∑
i=1

λ0
i eit

∣∣∣∣∣
2

≤
N∑

i=1

N∑
j=1

E
[
eitejtλ

0′
i λ

0
j

]

=
N∑

i=1
λ0′

i λ
0
i ·E

[
e2

it

]
= γ(0) ·

(
N∑

i=1
λ0′

i λ
0
i

)
= γ(0) · tr

(
Λ0′Λ0

)
by the assumed exact factor structure and weak stationarity of the errors.
As such, we can see that

E

 1
NT

T∑
t=1

∣∣∣∣∣
N∑

i=1
λ0

i eit

∣∣∣∣∣
2≤ γ(0) · tr

(
Λ0′Λ0

N

)
.

Because Λ0′Λ0

N → ΣΛ by assumption, the expectation of 1
NT

∑T
t=1

∣∣∣∑N
i=1λ

0
i eit

∣∣∣2 is majorized

by a convergent real sequence, which implies that 1
NT

∑T
t=1

∣∣∣∑N
i=1λ

0
i eit

∣∣∣2 is Op(1).
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• 1
NT

∑N
i=1
∑T

t=1 |Xit|2 =Op(1)

The above process can be bounded above as follows:

1
NT

N∑
i=1

T∑
t=1

|Xit|2 = 1
NT

N∑
i=1

T∑
t=1

(λ0′
i F

0
t +eit)2

= tr
(

1
N

Λ0F
0′F 0

T
Λ0′
)

+2 1
N

N∑
i=1

λ0′
i

(
1
T

T∑
t=1

F 0
t eit

)
+ 1
NT

N∑
i=1

T∑
t=1

e2
it.

The first term is clearly Op(1), since

tr
(

1
N

Λ0F
0′F 0

T
Λ0′
)

= tr
[(

Λ0′Λ0

N

)(
F 0′F 0

T

)]

and the matrices Λ0′Λ0

N , F 0′F 0

T converge in probability to positive definite matrices.
As for the second term, because

E
[

1
NT

N∑
i=1

∣∣∣F 0′ei

∣∣∣2]= E

 1
NT

N∑
i=1

∣∣∣∣∣
T∑

t=1
F 0

t eit

∣∣∣∣∣
2<M

for some M > 0 by assumption 5 and∣∣∣∣∣ 1
N

N∑
i=1

λ0′
i

(
1
T

T∑
t=1

F 0
t eit

)∣∣∣∣∣≤ 1
NT

N∑
i=1

∣∣∣λ0
i

∣∣∣∣∣∣∣∣
T∑

t=1
F 0

t eit

∣∣∣∣∣
≤ 1
NT

(
N∑

i=1

∣∣∣λ0
i

∣∣∣2)
1
2
 N∑

i=1

∣∣∣∣∣
T∑

t=1
F 0

t eit

∣∣∣∣∣
2

1
2

= tr
(

1
T

Λ0′Λ0

N

) 1
2
 1
NT

N∑
i=1

∣∣∣∣∣
T∑

t=1
F 0

t eit

∣∣∣∣∣
2

1
2

by the Cauchy-Schwarz inequality, we can see that

E
[∣∣∣∣∣ 1
N

N∑
i=1

λ0′
i

(
1
T

T∑
t=1

F 0
t eit

)∣∣∣∣∣
]

≤M · tr
(

1
T

Λ0′Λ0

N

) 1
2

,

where the last term goes to 0 as N,T → ∞, so the second term is op(1).
Finally,

E
[

1
NT

N∑
i=1

T∑
t=1

e2
it

]
= γ(0)<+∞,

so the last term is Op(1). Therefore,

1
NT

N∑
i=1

T∑
t=1

|Xit|2 =Op(1)+op(1)+Op(1) =Op(1).
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• 1√
N

Λ0′et
d→N (0,γ(0) ·ΣΛ)

{λ0
i eit}i∈N+ is a sequence of independent random vectors by the exact factor model as-

sumption with a finite mean 0 and covariance matrix γ(0) ·λ0
iλ

0′
i for any i ∈ N+. Note

that

1
N

N∑
i=1

(
γ(0) ·λ0

iλ
0′
i

)
= γ(0)Λ0′Λ0

N
→ γ(0)ΣΛ

as N → ∞, and

1
N3

N∑
i=1

E
[∣∣∣λ0

i eit

∣∣∣4]≤ µ4 ·
(

1
N3

N∑
i=1

∣∣∣λ0
i

∣∣∣4)

≤ µ4
1
N

(
1
N

N∑
i=1

∣∣∣λ0
i

∣∣∣2)2

= µ4
1
N

(
tr
(

Λ0′Λ0

N

))2

,

Thus,

lim
N→∞

1
N3

N∑
i=1

E
[∣∣∣λ0

i eit

∣∣∣4]= 0.

We can now apply Lyapunov’s CLT to see that

1√
N

Λ0′et = 1√
N

N∑
i=1

λ0
i eit

d→N [0,γ(0) ·ΣΛ]

as N,T → ∞.
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1.3 Consistency of the Estimated Factors

The consistency of the factors is established by first normalizing them in an appropriate way.
Recall that the columns of 1√

T
F̃ k form an orthonormal set of k eigenvectors ofXX ′ corresponding

to its k largest eigenvalues. Let the k largest eigenvalues of 1
NT XX

′ be collected in the diagonal
matrix V k

NT ∈ Rk×k; then, the diagonal entries of V k
NT are 1

NT times the k largest eigenvalues of
XX ′, which implies that ( 1

NT
XX ′

) 1√
T
F̃ k = 1√

T
F̃ kV k

NT .

By implication,

V k
NT =

( 1
T
F̃ k′F̃ k

)
V k

NT = 1
T

[
F̃ k′

( 1
NT

XX ′
)
F̃ k
]
.

Our normalizaiton of the estimated factors is

F̂ k = F̃ kV k
NT .

Because the diagonal entries of V k
NT are assumed to be positive, V k

NT is non-singular and thus

V (k, F̂ k) = V (k, F̃ k).

Effectively, F̂ k scales each factor estimate by the corresponding eigenvalue.

We can expand F̂ k as

F̂ k =
( 1
NT

XX ′
)
F̃ k

=
[ 1
NT

(
F 0Λ0′ +e

)(
F 0Λ0′ +e

)′
]
F̃ k

= F 0
(

Λ0′Λ0

N

)(
F 0′F̃ k

T

)
+ 1
NT

eΛ0F 0′F̃ k + 1
NT

F 0Λ0′e′F̃ k + 1
NT

ee′F̃ k.

Defining Hk =
(

Λ0′Λ0

N

)(
F 0′F̃ k

T

)
, which is a r× k-matrix valued random element with rank

min(k,r), we can see that

∥∥∥F̂ k −F 0Hk
∥∥∥≤

∥∥∥∥ 1
NT

eΛ0F 0′F̃ k

∥∥∥∥+
∥∥∥∥ 1
NT

F 0Λ0′e′F̃ k

∥∥∥∥+
∥∥∥∥ 1
NT

ee′F̃ k

∥∥∥∥.
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Note that

∥∥∥Hk
∥∥∥=

∥∥∥∥∥
(
F̃ ′F 0

T

)(
Λ0′Λ0

N

)∥∥∥∥∥≤ 1
T

∥∥∥F̃ k
∥∥∥∥∥∥F 0

∥∥∥∥∥∥∥∥Λ0′Λ0

N

∥∥∥∥∥
≤ 1
T

∥∥∥F̃ ′F̃ k
∥∥∥ 1

2
∥∥∥F 0′F 0

∥∥∥ 1
2

∥∥∥∥∥Λ0′Λ0

N

∥∥∥∥∥
=
∥∥∥∥∥ F̃ ′F̃

T

∥∥∥∥∥
1
2
∥∥∥∥∥F 0′F 0

T

∥∥∥∥∥
1
2
∥∥∥∥∥Λ0′Λ0

N

∥∥∥∥∥.
All three matrices on the right hand side are Op(1), so Hk is also Op(1) for any k ∈N+.

For any real numbers x1, · · · ,xn, by the Cauchy-Schwarz inequality,

∣∣∣∣∣
n∑

i=1
xi

∣∣∣∣∣≤
n∑

i=1
|xi ·1| ≤

(
n∑

i=1
x2

i

) 1
2
(

n∑
i=1

1
) 1

2

=
√
n ·
(

n∑
i=1

x2
i

) 1
2

,

so we have (
n∑

i=1
xi

)2

≤ n ·
(

n∑
i=1

x2
i

)
.

Using this inequality, we can see that

1
T

∥∥∥F̂ k −F 0Hk
∥∥∥≤ 3 1

T

[∥∥∥∥ 1
NT

eΛ0F 0′F̃ k

∥∥∥∥2
+
∥∥∥∥ 1
NT

F 0Λ0′e′F̃ k

∥∥∥∥2
+
∥∥∥∥ 1
NT

ee′F̃ k

∥∥∥∥2
]
.
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We examine each term in turn:

1) 1
T

∥∥∥ 1
NT eΛ

0F 0′F̃ k
∥∥∥2

The rows of the term inside the norm are given by

eΛ0F 0′F̃ k =


e′

1Λ0F 0′F̃ k

...
e′

T Λ0F 0′F̃ k

 .

Therefore,
∥∥∥eΛ0F 0′F̃ k

∥∥∥2
= tr

[(
eΛ0F 0′F̃ k

)(
eΛ0F 0′F̃ k

)′
]

=
T∑

t=1

∣∣∣e′
tΛ0F 0′F̃ k

∣∣∣2,
and this term can be further majorized as

T∑
t=1

∣∣∣e′
tΛ0F 0′F̃ k

∣∣∣2 ≤
(

T∑
t=1

∣∣∣e′
tΛ0

∣∣∣2) ·
∥∥∥F 0

∥∥∥2
·
∥∥∥F̃ k

∥∥∥2

=

 T∑
t=1

∣∣∣∣∣
N∑

i=1
λ0

i eit

∣∣∣∣∣
2 ·

∥∥∥F 0
∥∥∥2

·
∥∥∥F̃ k

∥∥∥2
.

As such,

1
T

∥∥∥∥ 1
NT

eΛ0F 0′F̃ k

∥∥∥∥2
= 1
N2T 3

∥∥∥eΛ0F 0′F̃ k
∥∥∥2

≤ 1
N

 1
NT

T∑
t=1

∣∣∣∣∣
N∑

i=1
λ0

i eit

∣∣∣∣∣
2 · tr

(
F 0′F 0

T

)
· tr
(
F̃ k′F̃ k

T

)

= k

N

 1
NT

T∑
t=1

∣∣∣∣∣
N∑

i=1
λ0

i eit

∣∣∣∣∣
2 · tr

(
F 0′F 0

T

)
,

where the last equality follows because F̃ k′F̃ k

T = Ik. All terms on the right hand side, aside
from k

N , is Op(1), so

1
T

∥∥∥∥ 1
NT

eΛ0F 0′F̃ k

∥∥∥∥2
=Op

( 1
N

)
.
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2) 1
T

∥∥∥ 1
NT F

0Λ0′e′F̃ k
∥∥∥2

The rows of the matrix in within the norm are given by

F 0Λ0′e′F̃ k =


F 0′

1 Λ0′e′F̃ k

...
F 0′

T Λ0′e′F̃ k

 ,

so by the definition of the trace norm,

∥∥∥F 0Λ0′e′F̃ k
∥∥∥2

=
T∑

t=1

∣∣∣F 0′
t Λ0′e′F̃ k

∣∣∣2
≤
(

T∑
t=1

∣∣∣F 0
t

∣∣∣2) ·
∥∥∥Λ0′e′

∥∥∥2
·
∥∥∥F̃ k

∥∥∥2

= tr(F 0′F 0) ·
∥∥∥Λ0′e′

∥∥∥2
· tr(F̃ k′F̃ k) = kT · tr(F 0′F 0) ·

∥∥∥Λ0′e′
∥∥∥2
.

The columns of Λ0′e′ are given by

Λ0′e′ =
(
Λ0′e1 · · ·Λ0′eT

)
,

so the trace norm once again tells us that

∥∥∥Λ0′e′
∥∥∥2

=
T∑

t=1

∣∣∣Λ0′et

∣∣∣2 =
T∑

t=1

∣∣∣∣∣
N∑

i=1
λ0

i eit

∣∣∣∣∣
2

.

Therefore,

1
T

∥∥∥∥ 1
NT

F 0Λ0′e′F̃ k

∥∥∥∥2
= 1
N2T 3

∥∥∥F 0Λ0′e′F̃ k
∥∥∥2

≤ k

N
· tr
(
F 0′F 0

T

)
·

 1
NT

T∑
t=1

∣∣∣∣∣
N∑

i=1
λ0

i eit

∣∣∣∣∣
2 .

Once again, the two rightmost terms are Op(1), so

1
T

∥∥∥∥ 1
NT

F 0Λ0′e′F̃ k

∥∥∥∥2
=Op

( 1
N

)
.
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3) 1
T

∥∥∥ 1
NT ee

′F̃ k
∥∥∥2

Note that

ee′F̃ k =


e′

1e
′F̃ k

...
e′

T e
′F̃ k,


so that

∥∥∥ee′F̃ k
∥∥∥2

=
T∑

t=1

∣∣∣e′
te

′F̃ k
∣∣∣2.

For any t ∈N+,

e′
te

′F̃ k = e′
t

T∑
s=1

esF̃
k′
s

=
T∑

s=1

(
N∑

i=1
eiteis

)
F̃ k′

s

=
T∑

s=1

N∑
i=1

(eiteis −γ(t−s))F̃ k′
s +

T∑
s=1

N∑
i=1

γ(t−s)F̃ k′
s

=
T∑

s=1

N∑
i=1

(eiteis −γ(t−s))F̃ k′
s +N ·

T∑
s=1

γ(t−s)F̃ k′
s .

Therefore,

∣∣∣e′
te

′F̃ k
∣∣∣2 ≤ 2

∣∣∣∣∣
T∑

s=1

N∑
i=1

F̃ k
s (eiteis −γ(t−s))

∣∣∣∣∣
2

+N2 ·
∣∣∣∣∣

T∑
s=1

γ(t−s)F̃ k′
s

∣∣∣∣∣
2

≤ 2

∣∣∣∣∣
T∑

s=1

N∑
i=1

F̃ k
s (eiteis −γ(t−s))

∣∣∣∣∣
2

+N2 ·
(

T∑
s=1

γ(t−s)2
)(

T∑
s=1

∣∣∣F̃ k
s

∣∣∣2)


≤ 2

∣∣∣∣∣
T∑

s=1

N∑
i=1

F̃ k
s (eiteis −γ(t−s))

∣∣∣∣∣
2

+kN2T ·Z

 ,
where we used the Cauchy-Schwarz inequality to justify the second inequality, and we
write

Z =
∞∑

z=−∞
γ(z)2,

which is finite because the autocovariances γ(·) are absolutely summable and absolute
summability implies square summability.
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This holds for any t ∈N+, so

1
T

∥∥∥∥ 1
NT

ee′F̃ k

∥∥∥∥2
= 1
N2T 3

∥∥∥ee′F̃ k
∥∥∥≤ 1

N2T 3

T∑
t=1

∣∣∣e′
te

′F̃ k
∣∣∣2

≤ 2 1
N2T 3

T∑
t=1

∣∣∣∣∣
T∑

s=1

N∑
i=1

F̃ k
s (eiteis −γ(t−s))

∣∣∣∣∣
2

+2 1
N2T 3

T∑
t=1

kN2T ·Z

≤ 2 1
N2T 3

T∑
t=1

(
T∑

s=1

∣∣∣F̃ k
s

∣∣∣ · ∣∣∣∣∣
N∑

i=1
(eiteis −γ(t−s))

∣∣∣∣∣
)2

+2 · 1
T
kZ.

By the Cauchy-Schwarz inequality,

1
NT 2

(
T∑

s=1

∣∣∣F̃ k
s

∣∣∣∣∣∣∣∣
N∑

i=1
(eiteis −γ(t−s))

∣∣∣∣∣
)2

≤
(

1
T

T∑
s=1

∣∣∣F̃ k
s

∣∣∣2)
 1
NT

T∑
s=1

∣∣∣∣∣
N∑

i=1
(eiteis −γ(t−s))

∣∣∣∣∣
2

= k · 1
NT

T∑
s=1

∣∣∣∣∣
N∑

i=1
(eiteis −γ(t−s))

∣∣∣∣∣
2

.

Since

E

 1
NT

T∑
s=1

∣∣∣∣∣
N∑

i=1
(eiteis −γ(t−s))

∣∣∣∣∣
2= 1

NT

T∑
s=1

N∑
i=1

N∑
j=1

E [(eiteis −γ(s− t))(ejtejs −γ(s− t))]

= 1
NT

T∑
s=1

N∑
i=1

E
[
(eiteis −γ(s− t))2

]

= 1
NT

T∑
s=1

N∑
i=1

[
E
[
e2

ite
2
is

]
−γ(s− t)2

]
≤ 1
NT

T∑
s=1

N∑
i=1

µ4 = µ4,

we can see that

E

 1
N2T 3

T∑
t=1

(
T∑

s=1

∣∣∣F̃ k
s

∣∣∣ · ∣∣∣∣∣
N∑

i=1
(eiteis −γ(t−s))

∣∣∣∣∣
)2

= 1
NT

T∑
t=1

E

 1
NT 2

(
T∑

s=1

∣∣∣F̃ k
s

∣∣∣∣∣∣∣∣
N∑

i=1
(eiteis −γ(t−s))

∣∣∣∣∣
)2≤ k ·µ4

N
,

so

1
N2T 3

T∑
t=1

(
T∑

s=1

∣∣∣F̃ k
s

∣∣∣ · ∣∣∣∣∣
N∑

i=1
(eiteis −γ(t−s))

∣∣∣∣∣
)2

=Op

( 1
N

)
.

We can finally see that

1
T

∥∥∥∥ 1
NT

ee′F̃ k

∥∥∥∥2
≤Op

( 1
N

)
+Op

( 1
T

)
.
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It follows that

1
T

T∑
t=1

∣∣∣F̂ k
t −Hk′F 0

t

∣∣∣2 = 1
T

∥∥∥F̂ k −F 0 ·Hk
∥∥∥2

≤Op

( 1
N

)
+Op

( 1
N

)
+Op

( 1
N

)
+Op

( 1
T

)
,

and as such,

1
T

T∑
t=1

∣∣∣F̂ k
t −Hk′F 0

t

∣∣∣2 = 1
T

∥∥∥F̂ k −F 0 ·Hk
∥∥∥2

=Op

(
δ−1

NT

)
,

where δNT = min(N,T ).
Therefore, even if the true number of factors is unknown, the mean squared deviation of the
estimated factors from some linear combination of the true factors converges at rate min(N,T ),
provided that the factors are suitably scaled.
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1.4 Information Criteria for the Number of Factors

As the number of factors k increases, the value of the minimzed objective function decreases.
To see this, for any T ∈N+ let µ1 ≥ ·· · ≥ µT ≥ 0 be the ordered eigenvalues of XX ′. Then, for
any 1 ≤ k < kmax,

V (k, F̃ k) = 1
NT

tr(XX ′)− 1
NT

k∑
i=1

µi = 1
NT

T∑
i=k+1

µi

>
1
NT

T∑
i=k+2

µi = 1
NT

tr(XX ′)− 1
NT

k+1∑
i=1

µi = V (k+1, F̃ k+1),

where the inequality is strict because µk+1 > 0 by assumption 7. This indicates that, the larger
the difference in the kth and k+ 1th eigenvalues of XX ′, the smaller the difference between
V (k, F̃ k) and V (k+1, F̃ k+1), which in turn implies that it is likely that there are k true factors.
As such, an intuitive approach to determining the number of factors could be to choose the
1 ≤ k < kmax such that the ratio µk

µk+1
; indeed, this is the approach taken in Ahn and Hornstein

(2013).

In contrast, Bai and Ng suggest using V (k, F̃ k) in a role similar to the estimated error variance
in traditional information criteria such as the AIC or BIC when constructing their informatio
criteria, since it can be interpreted as the sum of squared residuals in a traditional least squares
context. Specifically, they suggest using the criterion

PC(k) = V (k, F̃ k)+kg(N,T ),

for 1 ≤ k ≤ kmax, where g(N,T ) is a penalty term representing the inefficiency that arises as
more factors are included into the model.

Because V k
NT is nonsingular under our assumptions, substituting F̂ k = F̃ kV k

NT into the function
V (k, ·) also yields the same value as F̃ k, that is,

V (k, F̂ k) = V (k, F̃ k).

Thus, the information criterion can be reformulated as

PC(k) = V (k, F̂ k)+kg(N,T ).

This representation will help us derive the asymptotic properties of the information criterion
more effectively, since our asymptotic results above were formulated in terms of F̂ k instead of F̃ k.
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We now show the conditions that the penalty function g(N,T ) must satisfy in order for the
number of factors derived using the above criterion to consistently estimate the true number of
factors r; that is, we show the conditions under which

P(k∗ ̸= r) → 0

as N,T → ∞, where k∗ is the number of factors chosen by PC(k).

We first show some preliminary results before moving onto the proof.
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1.4.1 Preliminary Result 1

We want to show that:

If 1 ≤ k ≤ r, then V (k, F̂ k)−V (k,F 0Hk) =Op(δ−1/2
NT ).

Let 1 ≤ k ≤ r. Note that

V (k, F̂ k) = 1
NT

tr
(
X ′
[
IT − F̂ k

(
F̂ k′F̂ k

)−1
F̂ k′

]
X

)

= 1
NT

N∑
i=1

X ′
i

(
IT −P k

F̂

)
Xi,

where P k
F̂

= F̂ k
(
F̂ k′F̂ k

)−1
F̂ k′. Likewise, because

V (k,F 0Hk) = 1
NT

tr
(
X ′
[
IT −F 0Hk

(
Hk′F 0′F 0Hk

)−1
Hk′F 0′

]
X

)

= 1
NT

N∑
i=1

X ′
i

(
IT −P k

F H

)
Xi,

where P k
F H = F 0Hk

(
Hk′F 0′F 0Hk

)−1
Hk′F 0′, it follows that

V (k, F̂ k)−V (k,F 0Hk) = 1
NT

N∑
i=1

X ′
i

(
P k

F H −P k
F̂

)
Xi.

Define Dk = F̂ k′F̂ k

T and D0 = Hk′F 0′F 0Hk

T . Since F̂ k = F̃ kV k
NT and F̃ k′F̃ k

T = Ik, we have

Dk = F̂ k′F̂ k

T
=
(
V k

NT

)2
,

and by the definition of Hk,

D0 =
(
F̃ k′F 0

T

)(
Λ0′Λ0

N

)(
F 0′F 0

T

)(
Λ0′Λ0

N

)(
F 0′F̃ k

T

)
.

Note that D0 is Op(1), since Hk, F 0′F 0

T and F 0′F̃ k

T are Op(1) by assumption. Specifically,

F 0′F̃ k

T

p→Qk,

where Qk has rank k = min(r,k) by assumption. and Λ0′Λ0

N , F 0′F 0

T converge in probability to
positive definite matrices ΣΛ and ΣF , so

D0
p→ L=Qk′ΣΛΣF ΣΛQ

k,

43



where the k×k matrix on the right hand side has full rank and is thus positive definite.

Note that Dk −D0 can be decomposed as

Dk −D0 = F̂ k′F̂ k

T
− Hk′F 0′F 0Hk

T

= 1
T

(F̂ k −F 0Hk)′(F̂ k −F 0Hk)+ 1
T

(F̂ k −F 0Hk)′F 0Hk + 1
T
Hk′F 0′(F̂ k −F 0Hk),

so that, by the triangle inequality,

∥Dk −D0∥ ≤ 1
T

∥∥∥F̂ k −F 0Hk
∥∥∥2

+2
( 1√

T

∥∥∥F̂ k −F 0Hk
∥∥∥) ·

( 1√
T

∥∥∥F 0
∥∥∥) ·

∥∥∥Hk
∥∥∥

≤ 1
T

∥∥∥F̂ k −F 0Hk
∥∥∥2

+2
( 1√

T

∥∥∥F̂ k −F 0Hk
∥∥∥) · tr

(
F 0′F 0

T

) 1
2

·
∥∥∥Hk

∥∥∥.
From the results studied earlier, we can now say that

∥Dk −D0∥ ≤Op

( 1
min(N,T )

)
+Op

(
1

min(
√
N,

√
T )

)
=Op(δ−1/2

NT ).

It follows from this discovery that, since

∥Dk −L∥ ≤ ∥D0 −Dk∥+∥D0 −L∥,

where ∥D0 −Dk∥ = Op(δ−1/2
NT ) and ∥D0 −L∥ = op(1), it follows that ∥Dk −L∥ = op(1), that is,

Dk
p→ L. Since L is positive definite, by the CMT we have D−1

0
p→ L−1 and D−1

k

p→ L−1;
D−1

0 =Op(1) and D−1
k =Op(1).

Furthermore, the relationship
∥∥∥D−1

k −D−1
0

∥∥∥=
∥∥∥D−1

k (Dk −D0)D−1
0

∥∥∥≤
∥∥∥D−1

k

∥∥∥∥∥∥D−1
0

∥∥∥∥Dk −D0∥

tells us that
∥∥∥D−1

k −D−1
0

∥∥∥ is Op(δ−1/2
NT ).
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Expanding the kernel
(
P k

F H −P k
F̂

)
, we can see that

P k
F H −P k

F̂
= F 0Hk

(
Hk′F 0′F 0Hk

)−1
Hk′F 0′ − F̂ k

(
F̂ k′F̂ k

)−1
F̂ k′

= 1
T
F 0HkD−1

0 Hk′F 0′ − 1
T
F̂ kD−1

k F̂ k′

= 1
T
F 0HkD−1

0 Hk′F 0′ − 1
T

[
F̂ k −F 0Hk +F 0Hk

]
D−1

k

[
F̂ k −F 0Hk +F 0Hk

]′
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T
F 0HkD−1

0 Hk′F 0′ − 1
T

(
F̂ k −F 0Hk

)
D−1

k

(
F̂ k −F 0Hk

)′
− 1
T

(
F̂ k −F 0Hk

)
D−1

k Hk′F 0′
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T
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k

(
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− 1
T
F 0HkD−1

k Hk′F 0′

= 1
T
F 0Hk

(
D−1

0 −D−1
k

)
Hk′F 0′ − 1

T

(
F̂ k −F 0Hk

)
D−1

k

(
F̂ k −F 0Hk

)′

− 1
T

(
F̂ k −F 0Hk

)
D−1

k Hk′F 0′ − 1
T
F 0HkD−1

k

(
F̂ k −F 0Hk

)′
.

Therefore,

V (k, F̂ k)−V (k,F 0Hk) = 1
NT

N∑
i=1

X ′
i

(
P k

F H −P k
F̂

)
Xi

= 1
NT 2

N∑
i=1

X ′
iF

0Hk
(
D−1

0 −D−1
k

)
Hk′F 0′Xi

− 1
NT 2

N∑
i=1

X ′
i

(
F̂ k −F 0Hk

)
D−1

k

(
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Xi

− 1
NT 2
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X ′
i
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k Hk′F 0′Xi
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NT 2

N∑
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X ′
iF

0HkD−1
k

(
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)′
Xi,

so that

∣∣∣V (k, F̂ k)−V (k,F 0Hk)
∣∣∣≤ (

1
NT

N∑
i=1

|Xi|
2
)

[ 1
T

∥∥∥F 0
∥∥∥2

·
∥∥∥Hk

∥∥∥2
·
∥∥∥D−1

0 −D−1
k

∥∥∥
+ 1
T

∥∥∥F̂ k −F 0Hk
∥∥∥2

·
∥∥∥D−1

k

∥∥∥
+2 ·

( 1√
T

∥∥∥F̂ k −F 0Hk
∥∥∥)( 1√

T

∥∥∥F 0
∥∥∥) ·

∥∥∥Hk
∥∥∥].
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Since

1√
T

∥∥∥F̂ k −F 0Hk
∥∥∥=Op

(
δ

−1/2
NT

)
,∥∥∥D−1

0 −D−1
k

∥∥∥=Op

(
δ

−1/2
NT

)
1√
T

∥∥∥F 0
∥∥∥= tr

(
F 0′F 0

T

) 1
2

=Op(1)∥∥∥D−1
k

∥∥∥=Op(1)

1
NT

N∑
i=1

|Xi|
2 = 1

NT

N∑
i=1

T∑
t=1

X2
it =Op(1),

we can see that
∣∣∣V (k, F̂ k)−V (k,F 0Hk)

∣∣∣≤Op

(
δ

−1/2
NT

)
+Op

(
δ−1

NT

)
=Op

(
δ

−1/2
NT

)
,

and as such

V (k, F̂ k)−V (k,F 0Hk) =Op

(
δ

−1/2
NT

)
.
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1.4.2 Preliminary Result 2

Here we want to show that:

For any 1 ≤ k < r, there exists a τk > 0 such that

lim
N,T →∞

P
(
V (k,F 0Hk)−V (r,F 0) ≥ τk

)
= 1.

Let 1 ≤ k < r, and define P r
F = F 0(F 0′F 0)−1F 0′.

Since k < r, by assumption F 0′F̃ k

T

p→Qk to a r×k matrix Qk with rank k < r, and as such

Hk′ =
(
F̃ k′F 0

T

)(
Λ0′Λ0

N

)
p→Qk′ΣΛ,

where Qk′ΣΛ has rank k < r. Note that

∥∥∥P r
F −P k

F H

∥∥∥=

∥∥∥∥∥∥ 1√
T
F 0
(
F 0′F 0

T

)−1 1√
T
F 0′ − 1√

T
F 0Hk

(
Hk′F

0′F 0

T
Hk

)−1

Hk′ 1√
T
F 0′

∥∥∥∥∥∥
≤ 1
T

∥∥∥F 0
∥∥∥2

·

∥∥∥∥∥∥
(
F 0′F 0

T

)−1
∥∥∥∥∥∥ ·

∥∥∥∥∥∥Ir −
(
F 0′F 0

T

) 1
2 ′

Hk

(
Hk′F

0′F 0

T
Hk

)−1

Hk′
(
F 0′F 0

T

) 1
2
∥∥∥∥∥∥,

where
(

F 0′F 0

T

) 1
2 is the Cholesky factor of F 0′F 0

T .
Since

Hk′F
0′F 0

T
Hk p→Qk′ΣΛΣF ΣΛQ

k = L,

where L has rank k,
(
Hk′F

0′F 0

T
Hk

)−1
p→ L−1

and

BNT =
(
F 0′F 0

T

) 1
2 ′

Hk

(
Hk′F

0′F 0

T
Hk

)−1

Hk′
(
F 0′F 0

T

) 1
2

p→ Σ
1
2 ′
F ΣΛQ

kL−1Qk′ΣΛΣ
1
2
F ,

where Σ
1
2
F is the Cholesky factor of ΣF and

(
F 0′F 0

T

) 1
2 p→ Σ

1
2
F by the CMT and the continuity of

the Cholesky operation.
Defining the r×k matrix P = Σ

1
2 ′
F ΣΛQ

k, we can see that

BNT
p→ P (P ′P )−1P ′.

Letting M = Ir −P (P ′P )−1P ′, because M is symmetric and idempotent, its trace equals its
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rank; therefore,

rank(M) = tr(M) = r− tr(P (P ′P )−1P ′) = r− tr(Ik) = r−k > 0

by the assumption that 1 ≤ k < r. This means that

Ir −BNT
p→M,

and by implication

∥Ik −BNT ∥ p→ ∥M∥ = tr(M ′M)
1
2 = tr(M)

1
2 =

√
r−k.

Since

1
T

∥∥∥F 0
∥∥∥2

= tr
(
F 0′F 0

T

)
p→ tr(ΣF )

by the CMT and the continuity of the trace operation,

( 1
T

∥∥∥F 0
∥∥∥2
)

·

∥∥∥∥∥∥
(
F 0′F 0

T

)−1
∥∥∥∥∥∥ · ∥Ir −BNT ∥ p→ tr(ΣF )

∥∥∥Σ−1
F

∥∥∥√r−k > 0.

and as such
∥∥∥P r

F −P k
F H

∥∥∥=Op(1).

V (k,F 0Hk)−V (r,F 0) can be decomposed as

V (k,F 0Hk)−V (r,F 0) = 1
NT

N∑
i=1

X ′
i(IT −P k

F H)Xi − 1
NT

N∑
i=1

X ′
i(IT −P r

F )Xi

= 1
NT

tr
(
X ′
(
P r

F −P k
F H

)
X
)

= 1
NT

tr
((
F 0Λ0′ +e

)′(
P r

F −P k
F H

)(
F 0Λ0′ +e

))
= tr

( 1
NT

Λ0F 0′
(
P r

F −P k
F H

)
F 0Λ0′

)
+2tr

( 1
NT

Λ0F 0′
(
P r

F −P k
F H

)
e

)
+tr

( 1
NT

e′
(
P r

F −P k
F H

)
e

)
.

For any N,T ∈N+,

tr
( 1
NT

e′
(
P r

F −P k
F H

)
e

)
= 1
NT

N∑
i=1

e′
i

(
P r

F −P k
F H

)
ei ≥ 0,

since P r
F −P k

F H is positive semidefinite. Thus,

V (k,F 0Hk)−V (r,F 0) ≥ tr
( 1
NT

Λ0F 0′
(
P r

F −P k
F H

)
F 0Λ0′

)
+2tr

( 1
NT

Λ0F 0′
(
P r

F −P k
F H

)
e

)
.
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We examine each term in turn:

1) tr
(

1
NT Λ0F 0′

(
P r

F −P k
F H

)
F 0Λ0′

)

Note that

tr
( 1
NT

Λ0F 0′
(
P r

F −P k
F H

)
F 0Λ0′

)
= tr

([ 1
T
F 0′

(
P r

F −P k
F H

)
F 0
]

· Λ0′Λ0

N

)
.

We now have

1
T
F 0′

(
P r

F −P k
F H

)
F 0 = F 0′F 0

T
− F 0′F 0

T
Hk

(
Hk′F 0′F 0Hk

T

)−1

Hk′F
0′F 0

T

p→ ΣF −ΣF ΣΛQ
kL−1Qk′ΣΛΣF ,

where

ΣF −ΣF ΣΛQ
kL−1Qk′ΣΛΣF = Σ

1
2
F

(
Ir −Σ

1
2 ′
F ΣΛQ

kL−1Qk′ΣΛΣ
1
2
F

)
Σ

1
2 ′
F

= Σ
1
2
FMΣ

1
2 ′
F .

By the CMT and the continuity of the trace operation,

tr
( 1
NT

Λ0F 0′
(
P r

F −P k
F H

)
F 0Λ0′

)
p→ tr

(
Σ

1
2
FMΣ

1
2 ′
F ΣΛ

)
.

Denoting the above limit by τk (the limit depends on k through M), we can see that

τk = tr
(

Σ
1
2
FMΣ

1
2 ′
F ΣΛ

)
= tr

(
Σ

1
2 ′
Λ Σ

1
2
FMΣ

1
2 ′
F Σ

1
2
Λ

)
.

The matrix Σ
1
2 ′
Λ Σ

1
2
FMΣ

1
2 ′
F Σ

1
2
Λ is symmetric positive semidefinite, so its trace τk is the sum

of all its (non-negative) eigenvalues (this follows by using the eigendecomposition of the
matrix).
We now establish the rank of Σ

1
2 ′
Λ Σ

1
2
FMΣ

1
2 ′
F Σ

1
2
Λ.

For any α ∈ Rr, if

Σ
1
2 ′
Λ Σ

1
2
FMΣ

1
2 ′
F Σ

1
2
Λα= 0,

then (
Σ

1
2 ′
F Σ

1
2
Λα

)′
M

(
Σ

1
2 ′
F Σ

1
2
Λα

)
= 0

as well. Denoting β = Σ
1
2 ′
F Σ

1
2
Λα ̸= 0, because M is symmetric and idempotent, the above
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equality implies that

(Mβ)′ (Mβ) = 0,

or that Mβ =MΣ
1
2 ′
F Σ

1
2
Λα= 0.

Conversely, if MΣ
1
2 ′
F Σ

1
2
Λα= 0, then

Σ
1
2 ′
Λ Σ

1
2
FMΣ

1
2 ′
F Σ

1
2
Λα= 0

trivially, so that the null spaces of Σ
1
2 ′
Λ Σ

1
2
FMΣ

1
2 ′
F Σ

1
2
Λ and MΣ

1
2 ′
F Σ

1
2
Λ are equivalent. The two

matrices are both r× r matrices, so this implies that they have the same rank.

Since a matrix and its transpose has the same rank, Σ
1
2 ′
Λ Σ

1
2
FMΣ

1
2 ′
F Σ

1
2
Λ has the same rank

as Σ
1
2 ′
Λ Σ

1
2
FM . By the same line of reasoning as above, we can show that Σ

1
2 ′
Λ Σ

1
2
FM has the

same rank as M , and by extension Σ
1
2 ′
Λ Σ

1
2
FMΣ

1
2 ′
F Σ

1
2
Λ. Therefore,

rank
(

Σ
1
2 ′
Λ Σ

1
2
FMΣ

1
2 ′
F Σ

1
2
Λ

)
= rank(M) = r−k > 0,

which implies that it has at least one non-zero eigenvalue and therefore that its trace τk

is positive.

Therefore,

tr
( 1
NT

Λ0F 0′
(
P r

F −P k
F H

)
F 0Λ0′

)
p→ τk > 0.
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2) tr
(

1
NT Λ0F 0′

(
P r

F −P k
F H

)
e
)

Note that

tr
( 1
NT

Λ0F 0′
(
P r

F −P k
F H

)
e

)
= tr

( 1
NT

eΛ0F 0′
(
P r

F −P k
F H

))
.

Since

eΛ0 =


e′

1Λ0

...
e′

T Λ0


and

e′
tΛ0 =

N∑
i=1

eitλ
0′
i

for any t ∈N+, we have

∥∥∥eΛ0
∥∥∥2

=
T∑

t=1

∣∣∣e′
tΛ0

∣∣∣2 =
T∑

t=1

∣∣∣∣∣
N∑

i=1
λ0

i eit

∣∣∣∣∣
2

.

This allows us to see that
∥∥∥∥ 1
NT

eΛ0F 0′
∥∥∥∥2

= 1
N2T 2

T∑
t=1

∣∣∣eΛ0F 0
t

∣∣∣2
≤
(

1
T

T∑
t=1

∣∣∣F 0
t

∣∣∣2)( 1
N2T

∥∥∥eΛ0
∥∥∥2
)

= 1
N

tr
(
F 0′F 0

T

) 1
NT

T∑
t=1

∣∣∣∣∣
N∑

i=1
λ0

i eit

∣∣∣∣∣
2 .

The two rightmost terms are Op(1), so

1
NT

eΛ0F 0′ =Op

( 1√
N

)
.

Meanwhile,

P r
F −P k

F H =Op(1),

so we can see that

1
NT

eΛ0F 0′
(
P r

F −P k
F H

)
=Op

( 1√
N

)
,
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and as such that

1
NT

eΛ0F 0′
(
P r

F −P k
F H

)
p→O.

By the CMT and the continuity of the trace operation,

tr
( 1
NT

Λ0F 0′
(
P r

F −P k
F H

)
e

)
= op(1).

From the above results, we can conclude that

Ak
NT = tr

( 1
NT

Λ0F 0′
(
P r

F −P k
F H

)
F 0Λ0′

)
+2 · tr

( 1
NT

Λ0F 0′
(
P r

F −P k
F H

)
e

)
p→ τk > 0.

Therefore,

0 ≤ P
(
V (k,F 0Hk)−V (r,F 0)< τk

2

)
≤ P

(
Ak

NT < τk − τk

2

)
= P

(
τk −Ak

NT >
τk

2

)
≤ P

(∣∣∣τk −Ak
NT

∣∣∣> τk

2

)
,

where the latter term converges to 0 as N,T → ∞ by the definition of convergence in probability
and the fact that τk

2 > 0. It follows that

lim
N,T →∞

P
(
V (k,F 0Hk)−V (r,F 0)< τk

2

)
= 0,

and redefining τk as τk
2 yields the desired result.
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1.4.3 Preliminary Result 3

Here we show that:

For any k ≥ r, V (k, F̂ k)−V (r, F̂ r) =Op(δ−1
NT ).

Suppose that r ≤ k ≤ kmax. Then,

Hk′ p→Qk′ΣΛ,

where Qk has rank r, so that Qk′ΣΛ also has rank r, and Hk′ itself has rank r. As such, HkHk′

has full rank r and is nonsingular; defining

Hk+ =Hk′
(
HkHk′

)−1
,

HkHk+ = Ir, so that Hk+ is the right generalized inverse of Hk.
Since

HkHk′ p→ ΣΛQ
kQk′ΣΛ,

where the limt is nonsingular,

(
HkHk′

)−1 p→
[
ΣΛQ

kQk′ΣΛ
]−1

and

Hk+ p→Qk′ΣΛ
[
ΣΛQ

kQk′ΣΛ
]−1

.

By implication,
∥∥∥Hk+

∥∥∥=Op(1).

Note that we can express X as

X = F 0Λ0′ +e= F 0HkHk+Λ0′ +e

= F̂ kHk+Λ0′ −
(
F̂ k −F 0Hk

)
Hk+Λ0′ +e.

Therefore, defining

Mk
F̂

= IT −P k
F̂
,
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we have

V (k, F̂ k) = 1
NT

tr
(
X ′Mk

F̂
X
)

= 1
NT

tr
((
e−

(
F̂ k −F 0Hk

)
Hk+Λ0′

)′
Mk

F̂

(
e−

(
F̂ k −F 0Hk

)
Hk+Λ0′

))
= 1
NT

tr
(
e′Mk

F̂
e
)

+2 1
NT

tr
(

Λ0Hk+′
(
F̂ k −F 0Hk

)′
Mk

F̂
e

)
+ 1
NT

tr
(

Λ0Hk+′
(
F̂ k −F 0Hk

)′
Mk

F̂

(
F̂ k −F 0Hk

)
Hk+Λ0′

)
,

since Mk
F̂
F̂ k =O. Likewise, defining

M r
F = IT −P r

F ,

we have

V (r,F 0) = 1
NT

tr
(
X ′M r

FX
)

= 1
NT

tr
((
F 0Λ0′ +e

)′
M r

F

(
F 0Λ0′ +e

))
= 1
NT

tr
(
e′M r

F e
)
.

Therefore, the difference between the two can be written as

V (k, F̂ k)−V (r,F 0) = 1
NT

tr
(
e′
(
P r

F −P k
F̂

)
e
)

+2 1
NT

tr
(

Λ0Hk+′
(
F̂ k −F 0Hk

)′
Mk

F̂
e

)
+ 1
NT

tr
(

Λ0Hk+′
(
F̂ k −F 0Hk

)′
Mk

F̂

(
F̂ k −F 0Hk

)
Hk+Λ0′

)
.
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As usual, we will examine each term in turn:

1) 1
NT tr

(
Λ0Hk+′

(
F̂ k −F 0Hk

)′
Mk

F̂

(
F̂ k −F 0Hk

)
Hk+Λ0′

)

Because P k
F̂

is symmetric and idempotent,

v′P k
F̂
v = v′P k′

F̂
P k

F̂
v =

(
P k

F̂
v
)′(

P k
F̂
v
)
,

which tells us that P k
F̂

is positive semidefinite. Therefore, for any v ∈ RT ,

v′P k
F̂
v = v′

(
P k

F̂
− IT

)
+v′v ≥ 0;

P k
F̂

− IT =Mk
F̂

, so

v′Mk
F̂
v ≤ v′v.

Note that

Λ0Hk+′
(
F̂ k −F 0Hk

)′
Mk

F̂

(
F̂ k −F 0Hk

)
Hk+Λ0′

is a positive semidefinite matrix, and therefore that its trace is non-negative. In addition,
due to the property of Mk

F̂
shown above,

0 ≤ 1
NT

tr
(

Λ0Hk+′
(
F̂ k −F 0Hk

)′
Mk

F̂

(
F̂ k −F 0Hk

)
Hk+Λ0′

)
≤ 1
NT

tr
(

Λ0Hk+′
(
F̂ k −F 0Hk

)′(
F̂ k −F 0Hk

)
Hk+Λ0′

)
= 1
NT

tr
((
F̂ k −F 0Hk

)′(
F̂ k −F 0Hk

)(
Hk+Λ0′Λ0Hk+′

))
≤ 1
NT

∥∥∥∥(F̂ k −F 0Hk
)′(

F̂ k −F 0Hk
)∥∥∥∥ ·

∥∥∥Hk+Λ0′Λ0Hk+′
∥∥∥

≤
( 1
T

∥∥∥F̂ k −F 0Hk
∥∥∥2
)

·
( 1
N

∥∥∥Λ0
∥∥∥2
)

·
∥∥∥Hk+

∥∥∥2
,

where we once again utilized the Cauchy-Schwarz inequality applied to the trace inner
product on the space of all real symmetric k×k matrices. The two rightmost terms are
Op(1), so

1
NT

tr
(

Λ0Hk+′
(
F̂ k −F 0Hk

)′
Mk

F̂

(
F̂ k −F 0Hk

)
Hk+Λ0′

)
=Op

(
δ−1

NT

)
.
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2) 1
NT tr

(
Λ0Hk+′

(
F̂ k −F 0Hk

)′
Mk

F̂
e

)

Since F̂ k′F̂ k = T ·
(
V k

NT

)2
,

∥∥∥P k
F̂

∥∥∥=
∥∥∥∥ 1
T
F̂ k
(
V k

NT

)−2
F̂ k′

∥∥∥∥=
∥∥∥∥ 1
T
F̃ kF̃ k′

∥∥∥∥
≤ 1
T

∥∥∥F̃ k
∥∥∥2

= tr
(
F̃ k′F̃ k

T

)
= k <+∞,

so P k
F̂

=Op(1). It follows that

∥∥∥Mk
F̂

∥∥∥≤ ∥Ik∥+
∥∥∥P k

F̂

∥∥∥≤ k+
√
k <+∞,

so that Mk
F̂

=Op(1) as well.
Thus,∣∣∣∣ 1
NT

tr
(

Λ0Hk+′
(
F̂ k −F 0Hk

)′
Mk

F̂
e

)∣∣∣∣= ∣∣∣∣tr( 1
NT

Hk+′
(
F̂ k −F 0Hk

)′
Mk

F̂
e′Λ0

)∣∣∣∣
≤

√
r ·
∥∥∥∥ 1
NT

e′Λ0Hk+′
(
F̂ k −F 0Hk

)′
Mk

F̂

∥∥∥∥
≤

√
r√
N

·
∥∥∥∥ 1√

NT
e′Λ0

∥∥∥∥ ·
∥∥∥Hk+

∥∥∥ ·
( 1√

T

∥∥∥F̂ k −F 0Hk
∥∥∥) ·

∥∥∥Mk
F̂

∥∥∥,
where we used the result that, for any r× r matrix A,

|tr(A)| ≤
r∑

i=1
|Aii| ≤

(
r∑

i=1
A2

ii

) 1
2

·
√
r ≤

√
r · ∥A∥

by the Cauchy-Schwarz inequality.
Since

∥∥∥e′Λ0
∥∥∥2

=
T∑

t=1

∣∣∣Λ0′et

∣∣∣2 =
T∑

t=1

∣∣∣∣∣
N∑

i=1
λ0

i eit

∣∣∣∣∣
2

,

it follows that

1
NT

∥∥∥e′Λ0
∥∥∥2

= 1
NT

T∑
t=1

∣∣∣∣∣
N∑

i=1
λ0

i eit

∣∣∣∣∣
2

=Op(1).

Therefore,

1
NT

tr
(

Λ0Hk+′
(
F̂ k −F 0Hk

)′
Mk

F̂
e

)
=Op

(
1

min(N,
√
NT )

)
.
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3) 1
NT tr

(
e′
(
P r

F −P k
F̂

)
e
)

This final term can be decomposed as

1
NT

tr
(
e′
(
P r

F −P k
F̂

)
e
)

= 1
NT

tr
(
e′P r

F e
)
− 1
NT

tr
(
e′P k

F̂
e
)
.

Focusing on the first term, note that

0 ≤ 1
NT

tr
(
e′P r

F e
)

= 1
NT

tr
(
e′F 0

(
F 0′F 0

)−1
F 0′e

)

= 1
NT 2 tr

(F 0′F 0

T

)−1

F 0′ee′F 0


≤ 1
NT 2

∥∥∥∥∥∥
(
F 0′F 0

T

)−1
∥∥∥∥∥∥ ·
∥∥∥F 0′ee′F 0

∥∥∥
≤ 1
T

·

∥∥∥∥∥∥
(
F 0′F 0

T

)−1
∥∥∥∥∥∥ ·
( 1
NT

∥∥∥F 0′e
∥∥∥2
)

by the Cauchy-Schwarz inequality applied to the trace inner product on the space of r×r

real symmetric matrices. Since

F 0′e=
(
F 0′e1 · · · F 0′eN

)
,

we have

1
NT

∥∥∥F 0′e
∥∥∥2

= 1
NT

N∑
i=1

∣∣∣F 0′ei

∣∣∣2 = 1
NT

N∑
i=1

∣∣∣∣∣
T∑

t=1
F 0

t eit

∣∣∣∣∣
2

=Op(1).

Therefore,

1
NT

tr
(
e′P r

F e
)

=Op

( 1
T

)
.

As for the second term, since P k
F̂

= 1
T F̃

kF̃ k′,

1
NT

tr
(
e′P k

F̂
e
)

= 1
NT 2 tr

(
e′F̃ kF̃ k′e

)
= 1
NT

tr
(( 1√

T
F̃ k
)′
ee′
( 1√

T
F̃ k
))

.

Since 1√
T
F̃ k is a T ×k matrix such that F̃ k′F̃ k

T = Ik and ee′ a T ×T positive semidefinite
matrix, as derived all the way back in page 8, we have

tr
(( 1√

T
F̃ k
)′
ee′
( 1√

T
F̃ k
))

≤
k∑

i=1
µi,
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where µ1 ≥ ·· · ≥ µk ≥ 0 are the k largest eigenvalues of ee′.
Denote by ρ(ee′) = µ1, the largest eigenvalue of ee′. We will show that

1
T
ρ(ee′) =Op(1).

ee′ is not a zero matrix, so its largest eigenvalue must always be positive. The non-zero
eigenvalues of ee′ and e′e are identical, so it follows that ρ(ee′) = ρ(e′e). Because e′e is
symmetric, using the principal axis theorem we can find a v∗ ∈ RN such that |v∗| = 1 and
ρ(e′e) = v∗′e′ev∗ = |ev∗|2. Since

|ev∗|2 =
∣∣∣∣∣

N∑
i=1

eiv
∗
i

∣∣∣∣∣
2

=
N∑

i=1

N∑
j=1

e′
iejv

∗
i v

∗
j ,

we can see that

E
[
ρ(e′e)

]
= E

[
|ev∗|2

]
=

T∑
t=1

N∑
i=1

N∑
j=1

E
[
e′

iej

]
v∗

i v
∗
j

=
N∑

i=1
E
[
e′

iei

]
(v∗

i )2

=
N∑

i=1
(v∗

i )2
(

T∑
t=1

E
[
e2

it

])

= Tγ(0) ·
(

N∑
i=1

(v∗
i )2
)

= Tγ(0),

where the last equality follows because ∑N
i=1(v∗

i )2 = |v∗|2 = 1. Therefore,

E
[ 1
T
ρ(ee′)

]
≤ γ(0)<+∞,

which implies that 1
T ρ(ee′) =Op(1).

We can finally see that

1
NT

tr
(
e′P k

F̂
e
)

≤ 1
NT

k∑
i=1

µi ≤ k

N

( 1
T
ρ(ee′)

)
,

which tells us that

1
NT

tr
(
e′P k

F̂
e
)

=Op

( 1
N

)
.
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Putting the above results together, we have

1
NT

tr
(
e′
(
P r

F −P k
F̂

)
e
)

=Op

( 1
T

)
+Op

( 1
N

)
=Op

(
δ−1

NT

)
.

The results above reveal that

V (k, F̂ k)−V (r,F 0) =Op

(
δ−1

NT

)
+Op

(
1

min(N,
√
NT )

)
=Op

(
δ−1

NT

)
.

Now note that, for any r ≤ k ≤ kmax,
∣∣∣V (k, F̂ k)−V (r, F̂ r)

∣∣∣≤ ∣∣∣V (k, F̂ k)−V (r,F 0)
∣∣∣+ ∣∣∣V (r, F̂ r)−V (r,F 0)

∣∣∣≤ 2 max
r≤k≤kmax

∣∣∣V (k, F̂ k)−V (r,F 0)
∣∣∣.

Since
∣∣∣V (k, F̂ k)−V (r,F 0)

∣∣∣ is Op(δ−1
NT ) for all r ≤ k ≤ kmax, we can see that V (k, F̂ k)−V (r, F̂ r)

is also Op(δ−1
NT ) for any r ≤ k ≤ kmax.
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1.4.4 The Consistency of PC(k)

Letting k̂ be the number of factors chosen by PC(k), we hope to show that

lim
N,T →∞

P
(
k̂ ̸= r

)
= 0.

Since the inclusion

{k̂ ̸= r} ⊂
⋃

1≤k≤kmax, k ̸=r

{PC(k)< PC(r)}

holds, it suffices to prove that

lim
N,T →∞

P(PC(k)< PC(r)) = 0

for all 1 ≤ k ≤ kmax such that k ̸= r.
Note that

PC(k)−PC(r) = V (k, F̂ k)−V (r, F̂ r)+(k− r)g(N,T )

for any 1 ≤ k≤ kmax; as such, PC(k)<PC(r) if and only if V (k, F̂ k)−V (r, F̂ r)< (k−r)g(N,T ).
We study two distinct cases:

1) The Case k < r

Initially, let k < r. Then, we can decompose

V (k, F̂ k)−V (r, F̂ r) =
(
V (k, F̂ k)−V (k,F 0Hk)

)
+
(
V (k,F 0Hk)−V (r,F 0Hr)

)
+
(
V (r,F 0Hr)−V (r, F̂ r)

)
.

By premilinary result 1, the first and third terms are Op(δ−1/2
NT ), which implies that they

are op(1). As for the second term, since Hr is nonsingular r× r matrix valued,

V (r,F 0Hr) = V (r,F 0).

Thus, by preliminary result 2,

lim
N,T →∞

P
(
V (k,F 0Hk)−V (r,F 0) ≥ τk

)
= 1.

for some τk > 0. Denoting

ANT = −
(
V (k, F̂ k)−V (k,F 0Hk)

)
−
(
V (r,F 0Hr)−V (r, F̂ r)

)
= op(1),
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we can now see that

P
(
V (k,F 0Hk)−V (r,F 0) ≥ τk

)
≤ P

(
V (k, F̂ k)−V (r, F̂ r) ≥ τk

2

)
+P

(
ANT ≥ τk

2

)
,

so taking N,T → ∞ on both sides yields

1 ≤ liminf
N,T →∞

P
(
V (k, F̂ k)−V (r, F̂ r) ≥ τk

2

)
≤ limsup

N,T →∞
P
(
V (k, F̂ k)−V (r, F̂ r) ≥ τk

2

)
≤ 1,

and therefore implies

lim
N,T →∞

P
(
V (k, F̂ k)−V (r, F̂ r) ≥ τk

2

)
= 1.

Since

P(PC(k)< PC(r)) ≤ P
(
PC(k)−PC(r)< τk

4

)
= P

((
V (k, F̂ k)−V (r, F̂ r)

)
− (r−k)g(N,T )< τk

4

)
≤ P

(
V (k, F̂ k)−V (r, F̂ r)< τk

2

)
+P

(
g(N,T )> τk

4(r−k)

)
,

if g(N,T ) → 0 as N,T → ∞, then

lim
N,T →∞

P(PC(k)< PC(r)) = 0.

2) The Case k > r

Now suppose that r < k ≤ kmax. It holds that

P(PC(k)< PC(r)) = P
(
V (k, F̂ k)−V (r, F̂ r)+(k− r)g(N,T )< 0

)
= P

(
V (r, F̂ r)−V (k, F̂ k)> (k− r)g(N,T )

)
= P

(
V (r, F̂ r)−V (k, F̂ k)

g(N,T )
> k− r

)
,

where k− r ≥ 1. From preliminary result 3, we have the relation

V (k, F̂ k)−V (r, F̂ r) =Op(δ−1
NT ),

indicating that V (r, F̂ r)−V (k, F̂ k) converges at the same rate as δ−1
NT .

If g(N,T ) converges to 0 at a rate faster than δ−1
NT , then V (r,F̂ r)−V (k,F̂ k)

g(N,T ) will diverge to
+∞ in probability, meaning that P(PC(k)< PC(r)) → 1 as N,T → ∞.
On the other hand, if g(N,T ) converges to 0 at the same rate as δ−1

NT , V (r,F̂ r)−V (k,F̂ k)
g(N,T ) may

converge to a level larger than k−r, at which point P(PC(k)< PC(r)) → 0 as N,T → ∞
is not guaranteed.
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Therefore, in order for V (r,F̂ r)−V (k,F̂ k)
g(N,T ) to converge to 0, or for P(PC(k)< PC(r)) → 0 as

N,T → ∞, it must be the case that g(N,T ) goes to 0 at a rate slower than δ−1
NT . What

this means is that

δNT ·g(N,T ) = g(N,T )
δ−1

NT

→ +∞

as N,T → ∞, since the denominator goes to 0 at a faster rate than the numerator.

We can now see that the penalty term must satisfy two conditions for P(PC(k)< PC(r)) → 0
as N,T → ∞ for any 1 ≤ k ̸= r ≤ kmax:

i) g(N,T ) → 0 in order for P(PC(k)< PC(r)) → 0 for k < r, while

ii) δNT ·g(N,T ) → +∞ as N,T → ∞ in order for P(PC(k)< PC(r)) → 0 for k > r.

Note that these conditions mirror those ensuring consistency of traditional information criteria
used to determine lag orders, such as the AIC and BIC; the penalty term must converge to 0
in order to rule out lag orders below the true lag order but not too fast in order to rule out lag
orders higher than the true lag order.

Bai and Ng propose threee specific information criteria that satisfy the constraints above, which
are given as

ICp1(k) = log
(
V (k, F̂ k)

)
+k

(
N +T

NT

)
log
(

NT

N +T

)
ICp2(k) = log

(
V (k, F̂ k)

)
+k

(
N +T

NT

)
log(δNT )

ICp3(k) = log
(
V (k, F̂ k)

)
+k

log(δNT )
δNT

,

where the choice NT
N+T was considered because δNT ≈ NT

N+T for large N,T .
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1.5 The Asymptotic Distribution of the Estimated Factors

Suppose now that the true number of factors r is known, and that k= r factors are estimated. Let
the estimators without the superscript k denote the estimators under k = r factors. Specifically,
we let F̃ be the estimated factors, which were obtained as

√
T times the orthonormal eigenvectors

corresponding to the r largest eigenvalues of XX ′, which are assumed to be positive, and

H =
(

Λ0′Λ0

N

)(
F 0′F̃

T

)
.

We now proceed in steps:

1.5.1 Decomposing F̃t

Return to equation (1), namely

F̂ −F 0H = 1
NT

eΛ0F 0′F̃ + 1
NT

F 0Λ0′e′F̃ + 1
NT

ee′F̃ .

By implication, for any t ∈N+, choosing a T greater than t, we have

F̂t −H ′F 0
t = 1

NT
F̃ ′F 0Λ0′et + 1

NT
F̃ ′eΛ0F 0

t + 1
NT

F̃ ′e ·et.

We already saw earlier that, under our assumptions,

1
T

T∑
t=1

∣∣∣F̂t −H ′F 0
t

∣∣∣2 = 1
T

∥∥∥F̂ −F 0H
∥∥∥2

=Op

(
δ−1

NT

)
.

Since VNT is a diagonal matrix with positive diagonal entries, it is nonsingular, so that, by
VNT F̃t = F̂t,

1
T

T∑
t=1

∣∣∣F̃t − H̃ ′F 0
t

∣∣∣2 = V −1
NT · 1

T

T∑
t=1

∣∣∣F̂t −H ′F 0
t

∣∣∣2,
where

H̃ ′ = V −1
NTH

′ = V −1
NT

(
F̃ ′F 0

T

)(
Λ0′Λ0

N

)
.

Likewise,

F̃t − H̃ ′F 0
t = V −1

NT

[ 1
NT

F̃ ′F 0Λ0′et + 1
NT

F̃ ′eΛ0F 0
t + 1

NT
F̃ ′e ·et

]
.
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1.5.2 The Probability Limit of VNT

We now show that VNT converges in probability to a positive definite matrix. This is easy to
show under the assumption that F 0′F̃

T converges in probability to some nonsingular r×r matrix
Q.

From the consistency result above, we found that

1
T

∥∥∥F̂ −F 0H
∥∥∥2

= 1
T

T∑
t=1

∣∣∣F̂t −H ′F 0
t

∣∣∣2 =Op

(
δ−1

NT

)
,

or equivalently, that

1√
T

(
F̂ −F 0H

)
= 1√

T

(
F̃ VNT −F 0H

)
=Op

(
1

min(
√
N,

√
T )

)
= op(1).

Premultiplying both sides by F̃ ′
√

T
and using the fact that F̃ ′F̃

T = Ir implies that

VNT − F̃ ′F 0

T

(
Λ0′Λ0

N

)
F 0′F̃

T
= op(1),

and because

F̃ ′F 0

T

(
Λ0′Λ0

N

)
F 0′F̃

T

p→Q′ΣΛQ,

it follows that

VNT
p→ V =Q′ΣΛQ,

where V is positive definite because Q has full rank and ΣΛ is positive definite, and is diagonal
because VNT is diagonal for any N,T . In addition, the diagonal entries of V are ordered because
the diagonal entries of VNT are ordered.
By the continuous mapping theorem, we now have

V −1
NT

p→ V −1.
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The Form of V

To derive the specific form of V , we proceed as follows.
Premultiplying both sides of the equation 1√

T

(
F̃ VNT −F 0H

)
= op(1) by F 0′

√
T

=Op(1) yields the
equation

F 0′F̃

T
VNT − F 0′F 0

T
H = op(1).

Since H =
(

Λ0′Λ0

N

)(
F 0′F̃

T

)
, rearranging terms we have

F 0′F̃

T
VNT −

[(
F 0′F 0

T

)(
Λ0′Λ0

N

)]
F 0′F̃

T
= op(1).

We can see that [(
F 0′F 0

T

)(
Λ0′Λ0

N

)]
F 0′F̃

T

p→ ΣF ΣΛQ,

or equivalently, [(
F 0′F 0

T

)(
Λ0′Λ0

N

)]
F 0′F̃

T
−ΣF ΣΛQ= op(1).

Likewise, we have

F 0′F̃

T
VNT −QV = op(1).

By implication,

ΣF ΣΛQ−QV = op(1),

and because the left hand side is deterministic, this means

ΣF ΣΛQ=QV.

By definition, V is a diagonal matrix with diagonal entries equal to the eigenvalues of ΣF ΣΛ.
Because ΣF and ΣΛ are positive definite, the eigenvalues of ΣF ΣΛ are exactly those of ΣΛΣF .
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The Probability Limit of F 0′F̃
T

We now derive the expression for the probability limit Q of F 0′F̃
T by relying on the assumption

that the eigenvalues of ΣF ΣΛ are distinct.
Letting Σ

1
2
Λ be the Cholesky factor of ΣΛ, since

QV = ΣF ΣΛQ= ΣF Σ
1
2
ΛΣ

1
2 ′
Λ Q,

premultiplying both sides by Σ
1
2 ′
Λ implies

Σ
1
2 ′
Λ ΣF Σ

1
2
Λ

[
Σ

1
2 ′
Λ Q

]
=
[
Σ

1
2 ′
Λ Q

]
V.

Denoting

Γ = Σ
1
2 ′
Λ Q,

it is clear that Γ is a nonsingular r×r matrix whose columns are (non-normalized) eigenvectors
of Σ

1
2 ′
Λ ΣF Σ

1
2
Λ, which shares eigenvalues with ΣF ΣΛ. Since the eigenvalues in question are all

distinct, the columns of Γ are orthogonal to one another.
Let V ∗ be the r× r diagonal matrix with the ith diagonal entry equal to the norm of the ith
column of Γ. Then, defining

Γ∗ = Γ(V ∗)−1,

the norms of the columns of Γ∗ are normalized to 1. Furthermore, by the orthogonality of the
columns of Γ, we have

(V ∗)2 = Γ′Γ =Q′ΣΛQ= V,

so that the squared norm of each column of Γ is precisely the eigenvalue to which it corresponds.
It follows that

Γ∗ = ΓV − 1
2 = Σ

1
2 ′
Λ QV

− 1
2 ,

so that Q is now recovered as

Q= Σ− 1
2 ′

Λ Γ∗V
1
2 .

Note that, by the distinctness of the eigenvalues of ΣF ΣΛ, the matrix of orthonormal eigenvectors
Γ∗ is unique up to sign changes, and as such, the probability limit Q is also unique up to sign
changes.

66



1.5.3 The Rate of Convergence of F̃t − H̃ ′F 0
t

We know that

1
T

T∑
t=1

∣∣∣F̃t − H̃ ′F 0
t

∣∣∣2 = V −1
NT · 1

T

T∑
t=1

∣∣∣F̂t −H ′F 0
t

∣∣∣2,
where

H̃ ′ = V −1
NTH

′ = V −1
NT

(
F̃ ′F 0

T

)(
Λ0′Λ0

N

)
.

Since we showed above that V −1
NT = Op(1), and 1

T

∑T
t=1

∣∣∣F̂t −H ′F 0
t

∣∣∣2 = Op(δ−1
NT ) by the result of

section 2, we can see that

1
T

T∑
t=1

∣∣∣F̃t − H̃ ′F 0
t

∣∣∣2 = 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2

=Op(δ−1
NT )

as well.

Also recall that

F̃t − H̃ ′F 0
t = V −1

NT

[ 1
NT

F̃ ′F 0Λ0′et + 1
NT

F̃ ′eΛ0F 0
t + 1

NT
F̃ ′e ·et

]
.

for any t ∈N+. Now we investigate the rate of convergence of each term on the right:

1) 1
NT F̃

′F 0Λ0′et

Note that∣∣∣∣ 1
NT

F̃ ′F 0Λ0′et

∣∣∣∣2 ≤ 2 1
N2T 2

∣∣∣∣(F̃ −F 0H̃
)′
F 0Λ0′et

∣∣∣∣2 +2 1
N2T 2

∣∣∣H̃ ′F 0′F 0Λ0′et

∣∣∣2
≤ 2 1

N2T 2

∥∥∥F̃ −F 0H̃
∥∥∥2

·
∥∥∥F 0

∥∥∥2
·
∣∣∣Λ0′et

∣∣∣2 +2 1
N2T 2

∥∥∥H̃∥∥∥2
·
∥∥∥F 0

∥∥∥4
·
∣∣∣Λ0′et

∣∣∣2
≤ 2 1

N
·
( 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2
)

· tr
(
F 0′F 0

T

)
·
∣∣∣∣∣ 1√
N

N∑
i=1

λ0
i eit

∣∣∣∣∣
2

+2 1
N

·
∥∥∥H̃∥∥∥2

· tr
(
F 0′F 0

T

)2

·
∣∣∣∣∣ 1√
N

N∑
i=1

λ0
i eit

∣∣∣∣∣
2

.

We saw above that

1
T

∥∥∥F̃ −F 0H̃
∥∥∥2

=Op

( 1
min(N,T )

)
,
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and H̃, F 0′F 0

T are Op(1). Due to the nonrandomness of the factor loadings,

1√
N

N∑
i=1

λ0
i eit

d→N (0,γ(0) ·ΣΛ) .

Therefore,d 1√
N

∑N
i=1λ

0
i eit are Op(1), and we have

∣∣∣∣ 1
NT

F̃ ′F 0Λ0′et

∣∣∣∣2 ≤Op

( 1
N ·min(N,T )

)
+Op

( 1
N

)
=Op

( 1
N

)
.

By implication,

1
NT

F̃ ′F 0Λ0′et =Op

( 1√
N

)
.

2) 1
NT F̃

′eΛ0F 0
t

Once again, note that
∣∣∣∣ 1
NT

F̃ ′eΛ0F 0
t

∣∣∣∣2 ≤ 2 1
N2T 2

∣∣∣∣(F̃ −F 0H̃
)′
eΛ0F 0

t

∣∣∣∣2 +2 1
N2T 2

∣∣∣H̃ ′F 0′eΛ0F 0
t

∣∣∣2
≤ 2 1

N2T 2

∥∥∥F̃ −F 0H̃
∥∥∥2

·
∥∥∥eΛ0

∥∥∥2
·
∣∣∣F 0

t

∣∣∣2 +2 1
N2T 2

∥∥∥H̃∥∥∥2
·
∥∥∥F 0

∥∥∥2
·
∥∥∥eΛ0

∥∥∥2
·
∣∣∣F 0

t

∣∣∣2
≤ 2 1

N
·
( 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2
)

·
(

1
NT

T∑
s=1

∣∣∣Λ0′es

∣∣∣2) ·
∣∣∣F 0

t

∣∣∣2
+2 1

NT
·
∥∥∥H̃∥∥∥2

· tr
(
F 0′F 0

T

)
·
(

1
NT

T∑
s=1

∣∣∣Λ0′es

∣∣∣2) ·
∣∣∣F 0

t

∣∣∣2.
Since

∣∣F 0
t

∣∣2, F 0′F 0

T and

1
NT

T∑
s=1

∣∣∣Λ0′es

∣∣∣2 = 1
NT

T∑
s=1

∣∣∣∣∣
N∑

i=1
λ0

i eis

∣∣∣∣∣
2

are all Op(1),

∣∣∣∣ 1
NT

F̃ ′eΛ0F 0
t

∣∣∣∣2 =Op

( 1
N ·min(N,T )

)
+Op

( 1
NT

)
.

1
N ·min(N,T ) converges to 0 at a slower rate than 1

NT , so

∣∣∣∣ 1
NT

F̃ ′eΛ0F 0
t

∣∣∣∣2 =Op

( 1
N ·min(N,T )

)
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and as such

1
NT

F̃ ′eΛ0F 0
t =Op

(
1

min(N,
√
NT )

)
.

3) 1
NT F̃

′e ·et

We can expand the final term as

∣∣∣∣ 1
NT

F̃ ′e ·et

∣∣∣∣≤ 1
NT

∣∣∣∣∣
T∑

s=1
F̃s ·e′

set

∣∣∣∣∣
≤ 1
NT

∣∣∣∣∣
T∑

s=1

N∑
i=1

F̃s (eiteis −γ(t−s))
∣∣∣∣∣+ 1

T

∣∣∣∣∣
T∑

s=1
F̃sγ(t−s)

∣∣∣∣∣
≤ 1√

N

∣∣∣∣∣ 1
T ·

√
N

T∑
s=1

N∑
i=1

F̃s (eiteis −γ(t−s))
∣∣∣∣∣

+ 1
T

∣∣∣∣∣
T∑

s=1

(
F̃s − H̃ ′F 0

s

)
γ(t−s)

∣∣∣∣∣+ 1
T

∣∣∣∣∣
T∑

s=1
H̃ ′F 0

s γ(t−s)
∣∣∣∣∣

≤ 1√
N

∣∣∣∣∣ 1
T ·

√
N

T∑
s=1

N∑
i=1

F̃s (eiteis −γ(t−s))
∣∣∣∣∣

+ 1√
T

(
1
T

T∑
s=1

∣∣∣F̃s − H̃ ′F 0
s

∣∣∣2)
1
2
( ∞∑

z=−∞
γ(z)2

) 1
2

+ 1
T

∥∥∥H̃∥∥∥ ·
(

T∑
s=1

∣∣∣F 0
s

∣∣∣ · |γ(s− t)|
)
,

where the last inequality uses the Cauchy-Schwarz inequality.

Expanding the first term, we find that∣∣∣∣∣ 1
T ·

√
N

T∑
s=1

N∑
i=1

F̃s (eiteis −γ(t−s))
∣∣∣∣∣≤ 1

T ·
√
N

T∑
s=1

∣∣∣F̃s − H̃ ′F 0
s

∣∣∣ · ∣∣∣∣∣
N∑

i=1
(eiteis −γ(t−s))

∣∣∣∣∣
+ 1√

T

∥∥∥H̃∥∥∥ ·
∣∣∣∣∣ 1√
NT

T∑
s=1

N∑
i=1

F 0
s (eiteis −γ(t−s))

∣∣∣∣∣
≤
(

1
T

T∑
s=1

∣∣∣F̃s − H̃ ′F 0
s

∣∣∣2)
1
2
 1
NT

T∑
s=1

∣∣∣∣∣
N∑

i=1
(eiteis −γ(t−s))

∣∣∣∣∣
2

1
2

+ 1√
T

∥∥∥H̃∥∥∥ ·
∣∣∣∣∣ 1√
NT

T∑
s=1

N∑
i=1

F 0
s (eiteis −γ(t−s))

∣∣∣∣∣,
where the last inequality follows once again from the Cauchy-Schwarz inequality.
By assumption,

1√
NT

T∑
s=1

N∑
i=1

F 0
s (eiteis −γ(t−s)) =Op(1),
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and we showed that

1
NT

T∑
s=1

∣∣∣∣∣
N∑

i=1
(eiteis −γ(t−s))

∣∣∣∣∣
2

has bounded first moments and is thus Op(1) in section 3, so

∣∣∣∣∣ 1
T ·

√
N

T∑
s=1

N∑
i=1

F̃s (eiteis −γ(t−s))
∣∣∣∣∣=Op

(
1

min(
√
N,

√
T )

)
+Op

( 1√
T

)
=Op

(
1

min(
√
N,

√
T )

)
.

Meanwhile,

E
[

T∑
s=1

∣∣∣F 0
s

∣∣∣ · |γ(s− t)|
]

=
T∑

s=1
E
[∣∣∣F 0

s

∣∣∣ · |γ(s− t)|
]

≤
T∑

s=1

(
E
∣∣∣F 0

s

∣∣∣2) 1
2

· |γ(s− t)| (Hölder’s inequality)

≤
(

sup
s∈N+

E
∣∣∣F 0

s

∣∣∣2) 1
2

·
( ∞∑

z=−∞
|γ(z)|

)
.

By the absolute summability of γ(·) and the finiteness of sups∈N+ E
∣∣F 0

s

∣∣2, the term on the
right hand side is finite, so that

T∑
s=1

∣∣∣F 0
s

∣∣∣ · |γ(s− t)| =Op(1).

Therefore,

∣∣∣∣ 1
NT

F̃ ′e ·et

∣∣∣∣≤Op

(
1

min(N,
√
NT )

)
+Op

(
1

min(T,
√
NT )

)
+Op

( 1
T

)
.

Since 1
min(N,

√
NT ) and 1

min(T,
√

NT ) converge to 0 at a slower rate than 1
T ,

1
NT

F̃ ′e ·et =Op

(
1

min(N,
√
NT )

)
+Op

(
1

min(T,
√
NT )

)
.
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From the above results, we can infer that

F̃t − H̃ ′F 0
t =Op

( 1√
N

)
+Op

(
1

min(N,
√
NT )

)
+Op

(
1

min(N,
√
NT )

)
+Op

(
1

min(T,
√
NT )

)
.

Clearly, 1√
N

converges to 0 at a slower rate than 1√
N ·min(

√
N,

√
T ) as N,T → ∞, so

F̃t − H̃ ′F 0
t =Op

( 1√
N

)
+Op

(
1

min(T,
√
NT )

)
.

Suppose that
√

N
T → 0 as N,T → ∞. Then,

1
min(T,

√
NT )

1√
N

= 1
min

(
T√
N
,
√
T
) → 0

as N,T → ∞, implying that 1
min(T,

√
NT ) converges to 0 fasterthan 1√

N
. Therefore,

F̃t − H̃ ′F 0
t =Op

( 1√
N

)
,

and because the Op

(
1√
N

)
term corresponds to 1

NT F̃
′F 0Λ0′et, we have

√
N
(
F̃t − H̃ ′F 0

t

)
= V −1

NT

1√
NT

F̃ ′F 0Λ0′et +op(1)

= V −1
NT

(
F̃ ′F 0

T

)
Λ0′et√
N

+op(1).
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1.5.4 The Asymptotic Distribution of
√

N
(
F̃t − H̃ ′F 0

t

)
We showed above that

1√
N

N∑
i=1

λ0
i eit

d→N [0,γ(0) ·ΣΛ]

under assumptions 1 to 6. It follows by Slutsky’s theorem that

V −1
NT

(
F̃ ′F 0

T

)
Λ0′et√
N

d→N
[
0,γ(0) ·V −1Q′ΣΛQV

−1
]
,

and again that

√
N
(
F̃t − H̃ ′F 0

t

)
= V −1

NT

(
F̃ ′F 0

T

)
Λ0′et√
N

+op(1) d→N
[
0,γ(0) ·V −1Q′ΣΛQV

−1
]
.

To further simplify the expression above, recall that the probability limit Q of F 0′F̃
T is given as

Q= Σ− 1
2 ′

Λ Γ∗V
1
2 ,

where Γ∗ collects the unique (up to sign changes) orthonormal eigenbasis of Σ
1
2 ′
Λ ΣF Σ

1
2
Λ. Thus,

ΣΛQV
−1 = ΣΛΣ− 1

2 ′
Λ Γ∗V

1
2V −1 = Σ

1
2
ΛΓ∗V − 1

2 =Q′−1,

using the property that Γ∗−1 = Γ∗′. It follows that

V −1Q′ΣΛQV
−1 = V −1Q′Q′−1V −1 = V −2,

and the asymptotic distribution of F̃t becomes

√
N
(
F̃t − H̃ ′F 0

t

)
d→N

[
0,γ(0) ·V −2

]
.

In other words, the factors at time t are asymptotically independent with the asymptotic variance
of the ith factor being equal to the error variance γ(0) divided by the square of the ith largest
eigenvalue of ΣΛΣF . By implication, the more overall cross-sectional variation is explained by
a factor, the more precisely it is estimated.
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1.6 Asymptotic Theory for the Estimated Factor Loadings

The estimated factor loadings Λ̃ were seen to be given as

Λ̃′ = 1
T
F̃ ′X = 1

T
F̃ ′(F 0Λ0′ +e)

= 1
T
F̃ ′F 0Λ0′ + 1

T
F̃ ′e.

This implies that, for any i ∈N+,

λ̃i = 1
T
F̃ ′F 0λ0

i + 1
T
F̃ ′ei,

given that N > i. Writing F 0 − F̃ H̃−1 + F̃ H̃−1 in place of F 0, the above expression can be
further expanded as

λ̃i = 1
T
F̃ ′
(
F 0 − F̃ H̃−1

)
λ0

i + H̃−1λ0
i + 1

T
F̃ ′ei

= H̃−1λ0
i + 1

T
F̃ ′
(
F 0 − F̃ H̃−1

)
λ0

i + 1
T

(
F̃ −F 0H̃

)′
ei + 1

T
H̃ ′F 0′ei,

so that

λ̃i − H̃−1λ0
i = − 1

T
F̃ ′
(
F̃ −F 0H̃

)
H̃−1λ0

i + 1
T

(
F̃ −F 0H̃

)′
ei + 1

T
H̃ ′F 0′ei.

We will study the rate of convergence of each term on the right.
The easiest term to deal with is the rightmost term:

∣∣∣∣ 1T H̃ ′F 0′ei

∣∣∣∣≤ 1√
T

∥∥∥H̃∥∥∥ ·
∣∣∣∣∣ 1√
T

T∑
t=1

F 0
t eit

∣∣∣∣∣,
where

1√
T

T∑
t=1

F 0
t eit =Op(1)

by assumption 6, so

1
T
H̃ ′F 0′ei =Op

( 1√
T

)
.
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1.6.1 The Rate of Convergence of 1
T

(
F̃ −F 0H̃

)′
ei

Using equation (1), we can decompose the term 1
T

(
F̃ −F 0H̃

)′
ei as

1
T

(
F̃ −F 0H̃

)′
ei = V −1

NT

1
T

(
F̂ −F 0H

)′
ei

= V −1
NT

[ 1
NT 2 F̃

′F 0Λ0′e′ ·ei + 1
NT 2 F̃

′eΛ0F 0′ei + 1
NT 2 F̃

′ee′ ·ei

]
.

We study each term one by one:

1) 1
NT 2 F̃

′F 0Λ0′e′ ·ei

As in section 5, we decompose this term as follows:
∣∣∣∣ 1
NT 2 F̃

′F 0Λ0′e′ ·ei

∣∣∣∣2 ≤ 2 1
N2T 4

∣∣∣∣(F̃ −F 0H̃
)′
F 0Λ0′e′ ·ei

∣∣∣∣2 +2 1
N2T 4

∣∣∣H̃ ′F 0′F 0Λ0′e′ ·ei

∣∣∣2
≤ 2 1

N

( 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2
)

· tr
(
F 0′F 0

T

)
·
(

1
NT

T∑
t=1

∣∣∣Λ0′et

∣∣∣2) ·
(

1
T

T∑
t=1

e2
it

)

+2 1
NT

∥∥∥H̃∥∥∥2
· tr
(
F 0′F 0

T

)2

·
(

1
NT

T∑
t=1

∣∣∣Λ0′et

∣∣∣2) ·
(

1
T

T∑
t=1

e2
it

)
.

Note that

1
NT

T∑
t=1

∣∣∣Λ0′et

∣∣∣2 = 1
NT

T∑
t=1

∣∣∣∣∣∣
N∑

j=1
λ0

i eit

∣∣∣∣∣∣
2

=Op(1),

and that

E
∣∣∣∣∣ 1T

T∑
t=1

e2
it

∣∣∣∣∣= E
[

1
T

T∑
t=1

e2
it

]
= γ(0)<+∞,

implying that 1
T

∑T
t=1 e

2
it =Op(1). As such,

∣∣∣∣ 1
NT 2 F̃

′F 0Λ0′e′ ·ei

∣∣∣∣2 ≤Op

( 1
N ·min(N,T )

)
+Op

( 1
NT

)
=Op

( 1
N ·min(N,T )

)
,

which implies that

1
NT 2 F̃

′F 0Λ0′e′ ·ei =Op

(
1

min(N,
√
NT )

)
.
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2) 1
NT 2 F̃

′eΛ0F 0′ei

As is routine by now, we can see that
∣∣∣∣ 1
NT 2 F̃

′eΛ0F 0′ei

∣∣∣∣2 ≤ 2 1
N2T 4

∣∣∣∣(F̃ −F 0H̃
)′
eΛ0F 0′ei

∣∣∣∣2 +2 1
N2T 4

∣∣∣H̃ ′F 0′eΛ0F 0′ei

∣∣∣2
≤ 2 1

N
·
( 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2
)

·
(

1
NT

T∑
t=1

∣∣∣e′
tΛ0

∣∣∣2) · tr
(
F 0′F 0

T

)
·
(

1
T

T∑
t=1

e2
it

)

+2 1
NT

∥∥∥H̃∥∥∥2
· tr
(
F 0′F 0

T

)
·
(

1
NT

T∑
t=1

∣∣∣e′
tΛ0

∣∣∣2) ·
∣∣∣∣∣ 1√
T

T∑
t=1

F 0
t eit

∣∣∣∣∣
2

.

By assumption 6, 1√
T

∑T
t=1F

0
t eit =Op(1), and

1
NT

T∑
t=1

∣∣∣e′
tΛ0

∣∣∣2 = 1
NT

T∑
t=1

∣∣∣∣∣∣
N∑

j=1
λ0

i eit

∣∣∣∣∣∣
2

=Op(1),

so ∣∣∣∣ 1
NT 2 F̃

′eΛ0F 0′ei

∣∣∣∣2 ≤Op

( 1
N ·min(N,T )

)
+Op

( 1
NT

)
=Op

( 1
N ·min(N,T )

)
.

This tells us that

1
NT 2 F̃

′eΛ0F 0′ei =Op

(
1

min(N,
√
NT )

)
,

so that the two terms examined so far have the same rate of convergence.

3) 1
NT 2 F̃

′ee′ ·ei

Note that

F̃ ′ee′ ·ei =
T∑

t=1
F̃ ′e ·eteit =

T∑
t=1

T∑
s=1

F̃se
′
seteit

=
T∑

t=1

T∑
s=1

N∑
j=1

F̃s (ejtejs −γ(t−s))eit +N ·
T∑

t=1

T∑
s=1

γ(t−s)F̃seit,

so that

∣∣∣∣ 1
NT 2 F̃

′ee′ ·ei

∣∣∣∣≤ 1
NT 2

∣∣∣∣∣∣
T∑

t=1

T∑
s=1

N∑
j=1

F̃s (ejtejs −γ(t−s))eit

∣∣∣∣∣∣+ 1
T 2

∣∣∣∣∣
T∑

t=1

T∑
s=1

γ(t−s)F̃seit

∣∣∣∣∣.
We start with the easier second term.

75



The Second Term
Note that∣∣∣∣∣ 1
T 2

T∑
t=1

T∑
s=1

γ(t−s)F̃seit

∣∣∣∣∣≤
∣∣∣∣∣ 1
T 2

T∑
t=1

T∑
s=1

(F̃s − H̃ ′F 0
s )γ(t−s)eit

∣∣∣∣∣+∥∥∥H̃∥∥∥ ·
∣∣∣∣∣ 1
T 2

T∑
t=1

F 0
s γ(t−s)eit

∣∣∣∣∣.
By repeated applications of the Cauchy-Schwarz inequality,∣∣∣∣∣ 1
T 2

T∑
t=1

T∑
s=1

(F̃s − H̃ ′F 0
s )γ(t−s)eit

∣∣∣∣∣≤ 1
T 2

T∑
s=1

∣∣∣F̃s − H̃ ′F 0
s

∣∣∣ · ∣∣∣∣∣
T∑

t=1
γ(t−s)eit

∣∣∣∣∣
≤
(

1
T

T∑
s=1

∣∣∣F̃s − H̃ ′F 0
s

∣∣∣2)
1
2
 1
T 3

T∑
s=1

∣∣∣∣∣
T∑

t=1
γ(t−s)eit

∣∣∣∣∣
2

1
2

≤
( 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2
) 1

2
(

1
T 3

T∑
s=1

(
T∑

t=1
γ(t−s)2

)(
T∑

t=1
e2

it

)) 1
2

≤
( 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2
) 1

2
((

1
T 2

T∑
s=1

T∑
t=1

γ(t−s)2
)(

1
T

T∑
t=1

e2
it

)) 1
2

≤

√
Z

T
·
( 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2
) 1

2
(

1
T

T∑
t=1

e2
it

) 1
2

,

where Z =
∑∞

z=−∞ γ(z)2 <+∞ as usual. It follows that

∣∣∣∣∣ 1
T 2

T∑
t=1

T∑
s=1

(F̃s − H̃ ′F 0
s )γ(t−s)eit

∣∣∣∣∣=Op

(
1

min(T,
√
NT )

)
.

Meanwhile,

E
∣∣∣∣∣ 1
T 2

T∑
t=1

T∑
s=1

F 0
s γ(t−s)eit

∣∣∣∣∣≤ 1
T 2

T∑
t=1

T∑
s=1

γ(t−s)E
(∣∣∣F 0

s

∣∣∣|eit|
)

≤ 1
T 2

T∑
t=1

T∑
s=1

γ(t−s)
(
E
∣∣∣F 0

s

∣∣∣2) 1
2 (

E|eit|2
) 1

2

≤
(

sup
s∈N+

E
∣∣∣F 0

s

∣∣∣2) 1
2

·γ(0)
1
2 ·
(

1
T 2

T∑
t=1

T∑
s=1

γ(t−s)
)

≤
(

sup
s∈N+

E
∣∣∣F 0

s

∣∣∣2) 1
2

·γ(0)
1
2 · 1
T
Z.

All the terms on the right are finite constants except for 1
T , so the term inside the expec-

tations is Op

(
1
T

)
.

It follows that∣∣∣∣∣ 1
T 2

T∑
t=1

T∑
s=1

γ(t−s)F̃seit

∣∣∣∣∣=Op

(
1

min(T,
√
NT )

)
+Op

( 1
T

)
=Op

(
1

min(T,
√
NT )

)
.
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The First Term
As for the first term, note that

∣∣∣∣∣∣ 1
NT 2

T∑
t=1

T∑
s=1

N∑
j=1

F̃s (ejtejs −γ(t−s))eit

∣∣∣∣∣∣
≤ 1
NT 2

T∑
s=1

∣∣∣F̃s − H̃ ′F 0
s

∣∣∣ ·
∣∣∣∣∣∣

T∑
t=1

N∑
j=1

(ejtejs −γ(t−s))eit

∣∣∣∣∣∣
+
∥∥∥H̃∥∥∥ ·

 1
NT 2

T∑
t=1

∣∣∣∣∣∣
T∑

s=1

N∑
j=1

F 0
s (ejtejs −γ(t−s))

∣∣∣∣∣∣ · |eit|



≤ 1√
N

(
1
T

T∑
s=1

∣∣∣F̃s − H̃ ′F 0
s

∣∣∣2)
1
2

·

 1
NT 3

T∑
s=1

∣∣∣∣∣∣
T∑

t=1

N∑
j=1

(ejtejs −γ(t−s))eit

∣∣∣∣∣∣
2


1
2

+ 1√
NT

∥∥∥H̃∥∥∥ ·

 1
T

T∑
t=1

∣∣∣∣∣∣ 1√
NT

T∑
s=1

N∑
j=1

F 0
s (ejtejs −γ(t−s))

∣∣∣∣∣∣
2


1
2

·
(

1
T

T∑
t=1

e2
it

) 1
2

.

By assumption, there exists an M > 0 such that

E

∣∣∣∣∣∣ 1√
NT

T∑
s=1

N∑
j=1

F 0
s (ejtejs −γ(t−s))

∣∣∣∣∣∣
2

<M

for any t ∈N+ and N,T ∈N+, so

E

 1
T

T∑
t=1

∣∣∣∣∣∣ 1√
NT

T∑
s=1

N∑
j=1

F 0
s (ejtejs −γ(t−s))

∣∣∣∣∣∣
2
≤M

and therefore the rightmost term is Op

(
1√
NT

)
.

On the other hand, for any s ∈N+,

1
NT 2

∣∣∣∣∣∣
T∑

t=1

N∑
j=1

(ejtejs −γ(t−s))eit

∣∣∣∣∣∣
2

≤

 1
NT

T∑
t=1

∣∣∣∣∣∣
N∑

j=1
(ejtejs −γ(s− t))

∣∣∣∣∣∣
2
( 1

T

T∑
t=1

e2
it

)

by the Cauchy-Schwarz inequality, so that

1
NT 3

T∑
s=1

∣∣∣∣∣∣
T∑

t=1

N∑
j=1

(ejtejs −γ(t−s))eit

∣∣∣∣∣∣
2

≤

 1
T

T∑
s=1

 1
NT

T∑
t=1

∣∣∣∣∣∣
N∑

j=1
(ejtejs −γ(s− t))

∣∣∣∣∣∣
2

 ·
(

1
T

T∑
t=1

e2
it

)
.

We saw in section 3 that

E

 1
NT

T∑
t=1

∣∣∣∣∣∣
N∑

j=1
(ejtejs −γ(s− t))

∣∣∣∣∣∣
2
≤ µ4,
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for any s∈N+ andN,T ∈N+, so 1
T

∑T
s=1

[
1

NT

∑T
t=1

∣∣∣∑N
j=1 (ejtejs −γ(s− t))

∣∣∣2] has bounded
first moments for any N,T ∈N+ as well, which tells us that the term inside the expectation
is Op(1). It follows that

1
NT 3

T∑
s=1

∣∣∣∣∣∣
T∑

t=1

N∑
j=1

(ejtejs −γ(t−s))eit

∣∣∣∣∣∣
2

=Op(1),

so that∣∣∣∣∣∣ 1
NT 2

T∑
t=1

T∑
s=1

N∑
j=1

F̃s (ejtejs −γ(t−s))eit

∣∣∣∣∣∣=Op

(
1

min(N,
√
NT )

)
+Op

( 1√
NT

)
=Op

(
1

min(N,
√
NT )

)
.

Putting the two results together, we have

1
NT 2 F̃

′ee′ ·ei =Op

(
1

min(T,
√
NT )

)
+Op

(
1

min(N,
√
NT )

)
.

Results 1) to 3) reveal that

1
T

(
F̃ −F 0H̃

)′
ei =Op

(
1

min(T,
√
NT )

)
+Op

(
1

min(N,
√
NT )

)
.

Since

min(min(T,
√
NT ),min(N,

√
NT )) = min(N,T ),

we have

1
T

(
F̃ −F 0H̃

)′
ei =Op

( 1
min(N,T )

)
.
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1.6.2 The Rate of Convergence of 1
T

(
F̃ −F 0H̃

)′
F 0

We once again turn to the decomposition

1
T

(
F̃ −F 0H̃

)′
F 0 = V −1

NT

[ 1
NT 2 F̃

′F 0Λ0′e′F 0 + 1
NT 2 F̃

′eΛ0F 0′F 0 + 1
NT 2 F̃

′ee′F 0
]
.

We study each term one by one:

1) 1
NT 2 F̃

′F 0Λ0′e′F 0

Note that∥∥∥∥ 1
NT 2 F̃

′F 0Λ0′e′F 0
∥∥∥∥2

≤ 2 1
N2T 4

∥∥∥F̃ −F 0H̃
∥∥∥2

·
∥∥∥F 0

∥∥∥2
·
∥∥∥Λ0′e′F 0

∥∥∥2
+2 1

N2T 4

∥∥∥H̃∥∥∥2
·
∥∥∥F 0′F 0Λ0′e′F 0

∥∥∥2

≤ 2 1
NT

·
( 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2
)

· tr
(
F 0′F 0

T

)
·
( 1
NT

∥∥∥Λ0′e′F 0
∥∥∥2
)

+2 1
NT

∥∥∥H̃∥∥∥2
· tr
(
F 0′F 0

T

)2

·
( 1
NT

∥∥∥Λ0′e′F 0
∥∥∥2
)
.

Λ0′e′F 0 can be expressed as

Λ0′e′F 0 =
(
Λ0′e1 · · · Λ0′eT

)
F 0′

1
...
F 0′

T

=
T∑

t=1
Λ0′etF

0′
t ,

and since Λ0′et =
∑N

i=1λ
0
i eit for each t ∈N+, we have

Λ0′e′F 0 =
T∑

t=1

N∑
i=1

λ0
iF

0′
t eit.

By assumption 5,

1
NT

∥∥∥Λ0′e′F 0
∥∥∥2

= 1
NT

∥∥∥∥∥
T∑

t=1

N∑
i=1

λ0
iF

0′
t eit

∥∥∥∥∥
2

is Op(1), so

∥∥∥∥ 1
NT 2 F̃

′F 0Λ0′e′F 0
∥∥∥∥2

≤Op

( 1
NT ·min(N,T )

)
+Op

( 1
NT

)
=Op

( 1
NT

)
.

By implication,

1
NT 2 F̃

′F 0Λ0′e′F 0 =Op

( 1√
NT

)
.
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2) 1
NT 2 F̃

′eΛ0F 0′F 0

As usual, we majorize the above term as follows:
∥∥∥∥ 1
NT 2 F̃

′eΛ0F 0′F 0
∥∥∥∥2

≤ 2 1
N2T 4

∥∥∥F̃ −F 0H̃
∥∥∥2

·
∥∥∥eΛ0

∥∥∥2
·
∥∥∥F 0

∥∥∥4
+2 1

N2T 4

∥∥∥H̃∥∥∥2
·
∥∥∥F 0′eΛ0

∥∥∥2
·
∥∥∥F 0

∥∥∥4

≤ 2 1
N

( 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2
)

·

 1
NT

T∑
t=1

∣∣∣∣∣
N∑

i=1
λ0

i eit

∣∣∣∣∣
2 · tr

(
F 0′F 0

T

)2

+2 1
NT

∥∥∥H̃∥∥∥2
·
( 1
NT

∥∥∥F 0′eΛ0
∥∥∥2
)

· tr
(
F 0′F 0

T

)2

.

Since F 0′eΛ0 =
(
Λ0′e′F 0)′, all the components on the rightmost term except for 1

NT is
Op(1). By implication,

∥∥∥∥ 1
NT 2 F̃

′eΛ0F 0′F 0
∥∥∥∥2

≤Op

( 1
N ·min(N,T )

)
+Op

( 1
NT

)
=Op

( 1
N ·min(N,T )

)
,

and as such

1
NT 2 F̃

′eΛ0F 0′F 0 =Op

(
1

min(N,
√
NT )

)
.

3) 1
NT 2 F̃

′ee′F 0

The proof for this component almost exactly mirrors that of the previous subsection for
1

NT 2 F̃
′ee′ei. We re-state it for the sake of completeness:

Note that

F̃ ′ee′F 0 =
T∑

t=1
F̃ ′e ·etF

0′
t =

T∑
t=1

T∑
s=1

F̃se
′
setF

0′
t

=
T∑

t=1

T∑
s=1

N∑
j=1

F̃s (ejtejs −γ(t−s))F 0′
t +N ·

T∑
t=1

T∑
s=1

γ(t−s)F̃sF
0′
t ,

so that

∥∥∥∥ 1
NT 2 F̃

′ee′F 0
∥∥∥∥≤ 1

NT 2

∥∥∥∥∥∥
T∑

t=1

T∑
s=1

N∑
j=1

F̃s (ejtejs −γ(t−s))F 0′
t

∥∥∥∥∥∥+ 1
T 2

∥∥∥∥∥
T∑

t=1

T∑
s=1

γ(t−s)F̃sF
0′
t

∥∥∥∥∥.
Once again, we start with the easier second term.
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The Second Term
Note that∥∥∥∥∥ 1
T 2

T∑
t=1

T∑
s=1

γ(t−s)F̃sF
0′
t

∥∥∥∥∥≤
∥∥∥∥∥ 1
T 2

T∑
t=1

T∑
s=1

(F̃s − H̃ ′F 0
s )γ(t−s)F 0′

t

∥∥∥∥∥+
∥∥∥H̃∥∥∥ ·

∥∥∥∥∥ 1
T 2

T∑
t=1

F 0
s γ(t−s)F 0′

t

∥∥∥∥∥.
By repeated applications of the Cauchy-Schwarz inequality,∥∥∥∥∥ 1
T 2

T∑
t=1

T∑
s=1

(F̃s − H̃ ′F 0
s )γ(t−s)F 0′

t

∥∥∥∥∥≤ 1
T 2

T∑
s=1

∣∣∣F̃s − H̃ ′F 0
s

∣∣∣ · ∣∣∣∣∣
T∑

t=1
γ(t−s)F 0

t

∣∣∣∣∣
≤
(

1
T

T∑
s=1

∣∣∣F̃s − H̃ ′F 0
s

∣∣∣2)
1
2
 1
T 3

T∑
s=1

∣∣∣∣∣
T∑

t=1
γ(t−s)F 0

t

∣∣∣∣∣
2

1
2

≤
( 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2
) 1

2
(

1
T 3

T∑
s=1

(
T∑

t=1
γ(t−s)2

)(
T∑

t=1

∣∣∣F 0
t

∣∣∣2))
1
2

≤

√
Z

T
·
( 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2
) 1

2
tr
(
F 0′F 0

T

) 1
2

,

where Z =
∑∞

z=−∞ γ(z)2 <+∞. It follows that

∥∥∥∥∥ 1
T 2

T∑
t=1

T∑
s=1

(F̃s − H̃ ′F 0
s )γ(t−s)F 0′

t

∥∥∥∥∥=Op

(
1

min(T,
√
NT )

)
.

Meanwhile,

E
∥∥∥∥∥ 1
T 2

T∑
t=1

T∑
s=1

F 0
s γ(t−s)F 0′

t

∥∥∥∥∥≤ 1
T 2

T∑
t=1

T∑
s=1

γ(t−s)E
(∣∣∣F 0

s

∣∣∣∣∣∣F 0
t

∣∣∣)

≤
(

sup
s∈N+

E
∣∣∣F 0

s

∣∣∣2) ·γ(0)
1
2 ·
(

1
T 2

T∑
t=1

T∑
s=1

γ(t−s)
)

≤
(

sup
s∈N+

E
∣∣∣F 0

s

∣∣∣2) · 1
T
Z.

All the terms on the right are finite constants except for 1
T , so the term inside the expec-

tations is Op

(
1
T

)
.

It follows that∥∥∥∥∥ 1
T 2

T∑
t=1

T∑
s=1

γ(t−s)F̃sF
0′
t

∥∥∥∥∥=Op

(
1

min(T,
√
NT )

)
+Op

( 1
T

)
=Op

(
1

min(T,
√
NT )

)
.
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The First Term
As for the first term, note that

∥∥∥∥∥∥ 1
NT 2

T∑
t=1

T∑
s=1

N∑
j=1

F̃s (ejtejs −γ(t−s))F 0′
t

∥∥∥∥∥∥
≤ 1
NT 2

T∑
s=1

∣∣∣F̃s − H̃ ′F 0
s

∣∣∣ ·
∣∣∣∣∣∣

T∑
t=1

N∑
j=1

(ejtejs −γ(t−s))F 0
t

∣∣∣∣∣∣
+
∥∥∥H̃∥∥∥ ·

 1
NT 2

T∑
t=1

∣∣∣∣∣∣
T∑

s=1

N∑
j=1

F 0
s (ejtejs −γ(t−s))

∣∣∣∣∣∣ ·
∣∣∣F 0

t

∣∣∣


≤ 1√
N

(
1
T

T∑
s=1

∣∣∣F̃s − H̃ ′F 0
s

∣∣∣2)
1
2

·

 1
NT 3

T∑
s=1

∣∣∣∣∣∣
T∑

t=1

N∑
j=1

(ejtejs −γ(t−s))F 0
t

∣∣∣∣∣∣
2


1
2

+ 1√
NT

∥∥∥H̃∥∥∥ ·

 1
T

T∑
t=1

∣∣∣∣∣∣ 1√
NT

T∑
s=1

N∑
j=1

F 0
s (ejtejs −γ(t−s))

∣∣∣∣∣∣
2


1
2

· tr
(
F 0′F 0

T

) 1
2

.

We saw in the previous subsection that

1
T

T∑
t=1

∣∣∣∣∣∣ 1√
NT

T∑
s=1

N∑
j=1

F 0
s (ejtejs −γ(t−s))

∣∣∣∣∣∣
2

=Op(1),

so the rightmost term is Op

(
1√
NT

)
.

On the other hand, for any s ∈N+,

1
NT 2

∣∣∣∣∣∣
T∑

t=1

N∑
j=1

(ejtejs −γ(t−s))F 0
t

∣∣∣∣∣∣
2

≤

 1
NT

T∑
t=1

∣∣∣∣∣∣
N∑

j=1
(ejtejs −γ(s− t))

∣∣∣∣∣∣
2
tr

(
F 0′F 0

T

)

by the Cauchy-Schwarz inequality, so that

1
NT 3

T∑
s=1

∣∣∣∣∣∣
T∑

t=1

N∑
j=1

(ejtejs −γ(t−s))F 0
t

∣∣∣∣∣∣
2

≤

 1
T

T∑
s=1

 1
NT

T∑
t=1

∣∣∣∣∣∣
N∑

j=1
(ejtejs −γ(s− t))

∣∣∣∣∣∣
2

 · tr

(
F 0′F 0

T

)
.

Again, we saw in the previous subsection that

1
T

T∑
s=1

 1
NT

T∑
t=1

∣∣∣∣∣∣
N∑

j=1
(ejtejs −γ(s− t))

∣∣∣∣∣∣
2
=Op(1),

which tells us that

1
NT 3

T∑
s=1

∣∣∣∣∣∣
T∑

t=1

N∑
j=1

(ejtejs −γ(t−s))F 0
t

∣∣∣∣∣∣
2

=Op(1).
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Therefore,∥∥∥∥∥∥ 1
NT 2

T∑
t=1

T∑
s=1

N∑
j=1

F̃s (ejtejs −γ(t−s))F 0′
t

∥∥∥∥∥∥=Op

(
1

min(N,
√
NT )

)
+Op

( 1√
NT

)
=Op

(
1

min(N,
√
NT )

)
.

Putting the two results together, we have

1
NT 2 F̃

′ee′F 0 =Op

(
1

min(T,
√
NT )

)
+Op

(
1

min(N,
√
NT )

)
.

Results 1) to 3) reveal that, as in the previous subsection,

1
T

(
F̃ −F 0H̃

)′
F 0 =Op

(
1

min(T,
√
NT )

)
+Op

(
1

min(N,
√
NT )

)
+Op

( 1√
NT

)

=Op

(
1

min(T,
√
NT )

)
+Op

(
1

min(N,
√
NT )

)
.

Once again, this implies

1
T

(
F̃ −F 0H̃

)′
F 0 =Op

( 1
min(N,T )

)
.

We can now easily recover the rate of convergence of 1
T

(
F̃ −F 0H̃

)′
F̃ ;

1
T

(
F̃ −F 0H̃

)′
F̃ = 1

T

(
F̃ −F 0H̃

)′(
F̃ −F 0H̃

)
+ 1
T

(
F̃ −F 0H̃

)′
F 0H̃,

so ∥∥∥∥ 1
T

(
F̃ −F 0H̃

)′
F̃

∥∥∥∥≤ 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2

+ 1
T

∥∥∥∥(F̃ −F 0H̃
)′
F 0
∥∥∥∥∥∥∥H̃∥∥∥.

We already know that

1
T

∥∥∥F̃ −F 0H̃
∥∥∥2

=Op

( 1
min(N,T )

)
1
T

∥∥∥∥(F̃ −F 0H̃
)′
F 0
∥∥∥∥=Op

( 1
min(N,T )

)
;

therefore,

1
T

(
F̃ −F 0H̃

)′
F̃ =Op

( 1
min(N,T )

)

as well.
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1.6.3 The Asymptotic Distribution of
√

T
(
λ̃i − H̃−1λi

)
Return to the equation

λ̃i − H̃−1λ0
i = − 1

T
F̃ ′
(
F̃ −F 0H̃

)
H̃−1λ0

i + 1
T

(
F̃ −F 0H̃

)′
ei + 1

T
H̃ ′F 0′ei.

We have shown that:

1
T
F̃ ′
(
F̃ −F 0H̃

)
=Op

( 1
min(N,T )

)
,

1
T

(
F̃ −F 0H̃

)′
ei =Op

( 1
min(N,T )

)
,

1
T
H̃ ′F 0′ei =Op

( 1√
T

)
.

Therefore,

λ̃i − H̃−1λ0
i =Op

( 1
min(N,T )

)
+Op

( 1√
T

)
.

If
√

T
N → 0 as N,T → ∞, then

1
min(N,T )

1√
T

= 1
min

(
N√
T
,
√
T
) → 0

as N,T → ∞, meaning that 1
min(N,T ) converges to 0 faster than 1√

T
. Thus, in this case,

λ̃i − H̃−1λ0
i =Op

( 1√
T

)
,

and because the rightmost term in the original equation is the unique Op

(
1√
T

)
term, we can

write

√
T
(
λ̃i − H̃−1λ0

i

)
= 1√

T
H̃ ′F 0′ei +op(1).

By assumption,

1√
T
F 0′ei = 1√

T

T∑
t=1

F 0
t eit

d→N [0,Φi] ,

where

Φi = plim
T →∞

1
T

T∑
t=1

e2
itF

0
t F

0′
t ,
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and because

H̃ =
(

Λ0′Λ0

N

)(
F 0′F̃

T

)
V −1

NT ,

we have

H̃
p→ ΣΛQV

−1.

By Slutsky’s theorem,

√
T
(
λ̃i − H̃−1λ0

i

)
d→N

[
0,ΣΛQV

−1ΦiV
−1Q′ΣΛ

]
.

Again, we can further simplify the asymptotic variance above by noting that the probability
limit Q of F 0′F̃

T is given as

Q= Σ− 1
2 ′

Λ Γ∗V
1
2 ,

where Γ∗ collects the unique (up to sign changes) orthonormal eigenbasis of Σ
1
2 ′
Λ ΣF Σ

1
2
Λ. Thus,

ΣΛQV
−1 = ΣΛΣ− 1

2 ′
Λ Γ∗V

1
2V −1 = Σ

1
2
ΛΓ∗V − 1

2 =Q′−1,

using the property that Γ∗−1 = Γ∗′. The asymptotic distribution of λ̃i now becomes

√
T
(
λ̃i − H̃−1λ0

i

)
d→N

[
0,Q′−1ΦiQ

−1
]
.
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1.7 Asymptotic Theory: Summary

We now summarize our findings to this point.
Consider the factor model given as

Xit = λ0′
i F

0
t +eit

for any 1 ≤ i≤N , 1 ≤ t≤ T . Organizing the data into the full panel

X = F 0Λ0′ +e

as above, the estimator of F and Λ found by minimizing the objective function

1
NT

N∑
i=1

T∑
t=1

(
Xit −λ′

iFt
)2 = 1

NT
tr
(
(X−FΛ′)(X−FΛ)′)

with respect to F and Λ.

The following assumptions are made:

(1) Non-triviality of Scaled Factors
We assume that there exists a kmax ∈N+ such that r < kmax and the kmax largest eigen-
values of XX ′ are always positive. This implies that the k largest eigenvalues of XX ′

are always positive for 1 ≤ k ≤ kmax, and as such that, when we use the scaled factors
F̂ k = 1

NT XX
′F̃ k later on, the scaled factors are non-zero, or non-trivial.

Additionally, we assume the true number of factors r satisfies r < kmax.

(2) Second Moment Convergence of True Factors and Factor Loadings
We assume that there exists an M > 0 such that

sup
t∈N+

E
∣∣∣F 0

t

∣∣∣2 ≤M,

and that the factor loadings λ0
1, · · · ,λ0

N are nonrandom.
In addition, we assume that

F 0′F 0

T

p→ ΣF and Λ0′Λ0

T
→ ΣΛ

for some positive definite matrices ΣF .ΣΛ ∈ Rr×r.

(3) Exact Factor Model
We assume that the processes {eit}t∈Z are independent and identically distributed for any
i ∈N+.
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(4) Stationarity of Errors
We assume that {eit}t∈Z is weakly stationary with mean 0 and autocovariance function
γ : Z → R.
In addition, we assume that the autocovariances are absolutely summable and that the
time series has bounded fourth moments, that is, there exists an µ4 < +∞ such that
E
[
e4

it

]
< µ4 for any t ∈N+.

(5) Weak Dependence between Factors and Errors
There exists an M > 0 such that

E

 1
NT

N∑
i=1

∣∣∣∣∣
T∑

t=1
F 0

t eit

∣∣∣∣∣
2≤M

E
∣∣∣∣∣ 1√
NT

N∑
i=1

T∑
s=1

F 0
s (eiteis −γ(t−s))

∣∣∣∣∣
2

≤M (for any t ∈N+)

E
∥∥∥∥∥ 1√

NT

T∑
t=1

N∑
i=1

F 0
t λ

0′
i eit

∥∥∥∥∥
2

≤M

for any N,T ∈N+.

(6) CLT for Time Dimension
For any i ∈N+,

1√
T

T∑
t=1

F 0
t eit

d→N [0,Φi] ,

for the positive definite matrix

Φi = plim
T →∞

1
T

T∑
t=1

e2
itF

0
t F

0′
t .

(7) Sufficient Conditions for Factor Identification
The kmax largest eigenvalues of XX ′ are distinct for any N,T ∈N+ such that T ≥ kmax.
Likewise, the r× r matrix ΣΛΣF has distinct eigenvalues.

(8) The Probability Limit of F 0′F̃ k

T

We assume that, for any 1 ≤ k ≤ kmax, there exists an r×k matrix Qk of full rank such
that

F 0′F̃ k

T

p→Qk.
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1.7.1 Estimation and Determination of Number of Factors

Suppose we estimate 1 ≤ k ≤ kmax factors. Solving for Λ first, we obtain the concentrated
objective function

V (k,F ) = 1
NT

tr(XX ′)− 1
T

tr
(
X ′F (F ′F )−1F ′X

)
,

and finding the T ×k matrix F that minimizes this expression and satisfies F ′F
T is given as

F̃ k =
√
T ×The orthonormal eigenvectors of XX ′ corresponding to its k largest eigenvalues,

and the associated factor loading estimators are Λ̃k = 1
T X

′F̃ k.

On the other hand, solving for F first, we obtain the concentrated objective function

Ṽ (k,Λ) = 1
NT

tr(XX ′)− 1
T

tr
(
XΛ(Λ′Λ)−1Λ′X ′

)
,

and finding the N ×k matrix Λ that minimizes this expression and satisfies Λ′Λ
N is given as

Λ̄k =
√
N ×The orthonormal eigenvectors of X ′X corresponding to its k largest eigenvalues,

and the associated factor estimators are F̄ k = 1
NXΛ̄k.

To choose the number of factors, we can make use of information criteria of the form

PC(k) = V (k, F̃ k)+kg(N,T ) = 1
NT

tr
(
XX ′)− 1

NT

k∑
i=1

µi +kg(N,T ),

where µ1 ≥ ·· · ≥ µk > 0 are the k largest eigenvalues of 1
NT XX

′ and g(N,T ) is a penalty term.
Under the assumption that F̃ k′F 0

T converges in probability to some k× r matrix of full rank,
it can be shown that the value k∗ that minimizes the above information criterion consistently
estimates the true number of factors r if, as N,T → ∞,

• g(N,T ) → 0, and

• min(N,T ) ·g(N,T ) → +∞; g(N,T ) goes to 0 at a rate slower than 1
min(N,T ) .

The first condition ensures that k is not chosen to be smaller than r, while the second condition
is needed for k to not be chosen as a value larger than r.

To control for scale effects, the information criterion

IC(k) = log
(
V (k, F̂ k)

)
+k

log(δNT )
δNT

is proposed, where each δNT can be replaced by NT
N+T .
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1.7.2 Asymptotic Distributions of F̃t and λ̄i

Now suppose that the true number of factors r is known, and let F̃ = F̃ r and Λ̄ = Λ̄r. Under
the above assumptions, we can show that

VNT
p→ V,

where VNT collects the r largest eigenvalues of 1
NT XX

′, or equivalently 1
NT X

′X, and V the
eigenvalues of ΣΛΣF .
In addition, we obtain the following consisteny results:

1
T

T∑
t=1

∣∣∣F̃t − H̃ ′F 0
t

∣∣∣2 = 1
T

∥∥∥F̃ −F 0H̃
∥∥∥2

=Op(δ−1
NT ),

where

H̃ =
(

Λ0′Λ0

N

)(
F 0′F̃

T

)
V −1

NT

and δNT = min(N,T ). This tells us that the estimated factors are consistent up to a rotation
of the true factors and factor loadings, where the rotation is given by H̃. The failure of exact
consistency makes sense because the estimator F̃ is itself a normalized rotation out of an infinite
number of possible minimizers of the concentrated objective function.

The above consistency result can now be used to derive a tractable expansion of individual
factors. For any t ∈N+, we can see that

√
N
(
F̃t − H̃ ′F 0

t

)
= V −1

NT

(
F̃ ′F 0

T

) 1√
N

N∑
j=1

λ0
jejt

+op(1)

if
√

N
T → 0 as N,T → ∞.

Likewise for the factor loadings, for any i ∈N+,

√
T
(
λ̃i − H̃−1 ·λ0

i

)
= 1√

T
H̃ ′F 0′ei +op(1)

if
√

T
N → 0 as N,T → ∞.

It then follows that

√
N
(
F̃t − H̃ ′F 0

t

)
d→N

[
0,γ(0) ·V −2

]
√
T
(
λ̄i − Ḡ′λ0

i

)
d→N

[
0,Q′−1ΦiQ

−1
]
,
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where

Φi = plim
T →∞

1
T

T∑
t=1

e2
itF

0
t F

0′
t .

Note the Relative Growth Rate of N and T . In order for the above asymptotic results to hold,
N and T must satisfy

√
N

T
,

√
T

N
→ 0

as N,T → ∞. This tells us that N must not grow faster than T 2, nor should T grow faster than
N2. In other words, for the asymptotic results to hold N must not be significantly larger than
T , and vice versa.
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1.7.3 Asymptotic Principal Components as OLS

Using the fact that

H̃ ′
(

Λ0′Λ0

N

)−1

= V −1
NT

(
F̃ ′F 0

T

)
,

we can rewrite equation (1) as

√
N
(
F̃t − H̃ ′F 0

t

)
= H̃ ′

(
Λ0′Λ0

N

)−1 1√
N

Λ0′et +op(1)

=
√
N

[(
Λ0H̃ ′−1

)′(
Λ0H̃ ′−1

)]−1(
Λ0H̃ ′−1

)′
et +op(1).

Since

Xt = Λ0F 0
t +et = Λ0H̃ ′−1

(
H̃ ′F 0

t

)
+et,

and the estimator F̃t can be written as

F̃t = H̃ ′F 0
t +

[(
Λ0H̃ ′−1

)′(
Λ0H̃ ′−1

)]−1(
Λ0H̃ ′−1

)′
et +op(1)

=
[(

Λ0H̃ ′−1
)′(

Λ0H̃ ′−1
)]−1(

Λ0H̃ ′−1
)′
Xt +op(1),

F̃t can be interpreted as the OLS coefficient estimator from the regression of the dependent
variable Xt on the regressors Λ0H̃ ′−1. This is intuitively appealing because, as even Bai and Ng
(2002) pointed out, given the factor loadings Λ0 the equation

Xt = Λ0F 0
t +et

looks like your typical linear regression equation with true coefficients F 0
t . Since we can only

consistently estimate the rotation H̃ ′F 0
t of the true coefficients, the OLS estimator F̃t consistently

estimates the coefficients of the equation with rotated regressors

Xt = Λ0H̃ ′−1
(
H̃ ′F 0

t

)
+et.
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Asymptotics for Multilevel Models
Choi et al. (2018)

Now we turn to multilevel factor models, in which the observations are clustered into groups
and there exist factors affecting every observation and those that only affect observations in
some cluster. This model is mostly used to study cross-country models of the macroeconomy,
in which there are global factors affecting every obseration and country factors that affect only
the observations in each country.
Analysis of these kinds of models was pioneered in Choi et al. (2018), and involves much of the
same principal components machinery as in the usual factor models, except with the inclusion
of canonical correlation analysis when deriving the initial global factor estimate.

The model is formulated as follows. Let Xmit be the observation of individual i in country m

at time t, and assume that there are Nm individuals in country m, so that the total number of
cross-sectional observations is N =N1 + · · ·+Nm. Letting Gt be the collection of r global factors
at time t and Fmt the collection of rm country-specific factors for country m, with respective
factor loadings Γmi ∈ Rr and λmi ∈ Rrm , we assume Xmit is determined as

Xmit = γ′
miGt +λ′

miFmt +emit,

where emit is an idiosyncratic error term.
Collecting Xmt = (Xm1t, · · · ,Xm,Nm,t)′, Γm = (γm1, · · · ,γm,Nm)′, Λm = (λm1, · · · ,λm,Nm)′ and
emt = (em1t, · · · ,em,Nm,t)′, we can collect the observations for each country m into

Xmt︸︷︷︸
Nm×1

= Γm︸︷︷︸
Nm×r

· Gt︸︷︷︸
r×1

+ Λm︸︷︷︸
Nm×rm

· Fmt︸︷︷︸
rm×1

+ emt︸︷︷︸
Nm×1

=
(
Γm Λm

) Gt

Fmt

+emt

= Θm︸︷︷︸
Nm×r+rm

· Kmt︸︷︷︸
r+rm×1

+emt.

Further defining Xm = (Xm1, · · · ,XmT )′, G = (G1, · · · ,GT )′, Fm = (Fm1, · · · ,FmT )′, and em =
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(em1, · · · ,emT )′, we have

Xm︸︷︷︸
T ×Nm

= G︸︷︷︸
T ×r

·Γ′
m + Fm︸︷︷︸

T ×rm

·Λ′
m + em︸︷︷︸

T ×Nm

=
(
G Fm

)
·

Γ′
m

Λ′
m

+em

= Km︸︷︷︸
T ×r+rm

· Θ′
m︸︷︷︸

r+rm×Nm

+em,

where Km = (Km1, · · · ,KmT )′.
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2.1 Canonical Correlation Analysis

If PCA is aimed at recovering the linear combinations of a given set of data that best explains
the variation contained in that set of data, Canonical Correlation Analysis (CCA) is designed to
recover the linear combinations of two different sets of data that best captures the correlation
between them.

2.1.1 Population CCA

Formally, suppose that there exist two random vectors X and Y , each of dimension n1 and n2.
Let the covariance matrix of the n1 +n2-dimensional random vector (Y,X)′ be defined as

Σ =

 ΣY ΣY X

ΣXY ΣX

 ,
where ΣY X = Cov(Y,X) and ΣY ,ΣX are the covariance matrices of X and Y , and Σ, ΣX , ΣY

are assumed to be of full rank.
Choosing k≤ min(n1,n2), the goal is to find sets H = (h1, · · · ,hk) ∈ Rn1×k and R= (r1, · · · , rk) ∈
Rn2×k of weights such that:

H ′ΣY H = Cov(H ′Y ) = Ik

R′ΣXR= Cov(R′X) = Ik

H ′ΣY XR= Cov(H ′Y,R′X) =


ρ1 · · · 0
... . . . ...
0 · · · ρk

 where ρ2
1 ≥ ·· · ≥ ρ2

k

and ∑k
i=1 ρ

2
i is maximized. Since ρ1, · · · ,ρk can be interpreted as the correlation coefficients of

h′
iY , r′

iX for each 1 ≤ i≤ k given the normalization of their variances to 0, H ′Y and R′X can be
viewed as the collection of orthonormal linear combinations of Y and X that have the highest
correlations. The values ρ1, · · · ,ρk are therfore called the first k canonical correlations.

We now search for the weights H,R that satisfy the above conditions.
Assuming that n2 ≤n1, we first study some properties of the eigenvalues of the matrix ΣXY Σ−1

Y ΣY XΣ−1
X ;

let λ ∈ C be an eigenvalue of ΣXY Σ−1
Y ΣY XΣ−1

X .

• If λ ̸= 0, then λ ∈ (0,1)
Suppose that λ ̸= 0. Then, there exists a nonzero v ∈ Rn2 such that

(
ΣXY Σ−1

Y ΣY XΣ−1
X

)
v = λ ·v.
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Then, (
Σ− 1

2
X ΣXY Σ−1

Y ΣY XΣ− 1
2 ′

X

)(
Σ− 1

2
X v

)
= λ ·

(
Σ− 1

2
X v

)
,

where Σ− 1
2

X v ̸= 0 because otherwise,
(
ΣXY Σ−1

Y ΣY XΣ−1
X

)
v = 0 = λ · v, a contradiction.

Therefore, λ is also an eigenvalue of the positive semidefinite matrix Σ− 1
2

X ΣXY Σ−1
Y ΣY XΣ− 1

2
X

and thus a real non-negative value.
By the same line of logic, λ > 0 is also an eigenvalue of ΣY XΣ−1

X ΣXY Σ−1
Y .

We can also see that λ≤ 1. Note first that the determinant of Σ is

|Σ| =

∣∣∣∣∣∣
 ΣY ΣY X

ΣXY ΣX

∣∣∣∣∣∣= |ΣX | ·
∣∣∣ΣX −ΣXY Σ−1

Y ΣY X

∣∣∣ ̸= 0,

and because |ΣX | ̸= 0, it follows that ΣX −ΣXY Σ−1
Y ΣY X is a non-singular matrix. It is also

positive definite, since it is the inverse of the (1,1) block in Σ−1, which must be positive
definite by the positive definiteness of Σ−1. λ now satisfies
∣∣∣λ · In2 −ΣXY Σ−1

Y ΣY XΣ−1
X

∣∣∣= ∣∣∣Σ−1
X

∣∣∣ · ∣∣∣λ ·ΣX −ΣXY Σ−1
Y ΣY X

∣∣∣
=
∣∣∣Σ−1

X

∣∣∣ · ∣∣∣(λ−1) ·ΣX +
(
ΣX −ΣXY Σ−1

Y ΣY X

)∣∣∣
=
∣∣∣Σ−1

X

∣∣∣|ΣX | ·
∣∣∣∣(λ−1) · In2 +Σ− 1

2
X

(
ΣX −ΣXY Σ−1

Y ΣY X

)
Σ− 1

2 ′
X

∣∣∣∣
=
∣∣∣∣(λ−1) · In2 +Σ− 1

2
X

(
ΣX −ΣXY Σ−1

Y ΣY X

)
Σ− 1

2 ′
X

∣∣∣∣= 0,

so that λ−1 is an eigenvalue of the negative definite matrix −Σ− 1
2

X

(
ΣX −ΣXY Σ−1

Y ΣY X

)
Σ− 1

2 ′
X .

It follows that λ−1< 0, or that λ < 1.
We have thus seen that λ ∈ (0,1).

• ΣXY Σ−1
Y ΣY XΣ−1

X and Σ− 1
2

X ΣXY Σ−1
Y ΣY XΣ− 1

2 ′
X have the same number of eigenvalues

equal to 0

λ is a non-zero eigenvalue of ΣXY Σ−1
Y ΣY XΣ−1

X if and only if it is also a non-zero eigenvalue
of Σ− 1

2
X ΣXY Σ−1

Y ΣY XΣ− 1
2 ′

X . Since the two matrices are of the same dimensions, it follows
that they have the same number of eigenvalues equal to 0.

By implication, the matrices ΣXY Σ−1
Y ΣY XΣ−1

X and ΣY XΣ−1
X ΣXY Σ−1

Y share the exact same set
of eigenvalues, of which the non-zero ones lie in the interval (0,1).
If 0 ≤ r≤ n2 eigenvalues of ΣXY Σ−1

Y ΣY XΣ−1
X are equal to 0, then this means the rank of ΣXY is

n2 −r ≥ 0, and as such, the matrix Σ− 1
2

Y ΣY XΣ−1
X ΣXY Σ− 1

2 ′
Y has exactly n1 − (n2 −r) eigenvalues

equal to 0. Since the non-zero eigenvalues of Σ− 1
2

Y ΣY XΣ−1
X ΣXY Σ− 1

2 ′
Y and ΣY XΣ−1

X ΣXY Σ−1
Y are
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the same, this means that ΣY XΣ−1
X ΣXY Σ−1

Y also has n1 − (n2 − r) eigenvalues equal to 0.

In conclusion,

eign2

(
ΣXY Σ−1

Y ΣY XΣ−1
X

)
= eign2

(
Σ− 1

2
X ΣXY Σ−1

Y ΣY XΣ− 1
2 ′

X

)
∈ [0,1]n2

and

eign1

(
Σ− 1

2
Y ΣY XΣ−1

X ΣXY Σ− 1
2 ′

Y

)
= eign1

(
ΣY XΣ−1

X ΣXY Σ−1
Y

)

=

eign2

(
ΣXY Σ−1

Y ΣY XΣ−1
X

)′
,0, · · · ,0︸ ︷︷ ︸

n1−n2


′

∈ [0,1]n1 .

Now let us solve the maximization problem

max
H∈Rn1×k,R∈Rn2×k

k∑
i=1

(
h′

iΣY Xri
)2

subject to h′
iΣY hi = r′

iΣXri = 1 for any 1 ≤ i≤ k,

to find the weights h1, · · · ,hk ∈ Rn1×1 and r1, · · · , rk ∈ Rn2×1 normalized to h′
iΣY hi = r′

iΣXri = 1
such that ∑k

i=1 (h′
iΣY Xri)2 is maximized.

The Lagrangian to this problem is defined as

L(H,R,λ,µ) =
k∑

i=1

(
h′

iΣY Xri
)2 +

k∑
i=1

[
λi
(
1−h′

iΣY hi
)
+µi

(
1− r′

iΣXri
)]
.

Suppose H ∈ Rn1×k and R ∈ Rn2×k form a solution to the problem. The first order condition
for maximization tells us that

∂L
∂hi

= 2
(
h′

iΣY Xri
)
·ΣY Xri −2λi ·ΣY hi = 0,

∂L
∂ri

= 2
(
h′

iΣY Xri
)
·ΣXY hi −2µi ·ΣXri = 0,

h′
iΣY hi = r′

iΣXri = 1

for any 1 ≤ i≤ k. Rearranging the f.o.c.s above yields

(
h′

iΣY Xri
)
·ΣY Xri = λi ·ΣY hi(

h′
iΣY Xri

)
·ΣXY hi = µi ·ΣXri,

so premultiplying each equation by hi and ri gives us

(
h′

iΣY Xri
)2 = λi and

(
h′

iΣY Xri
)2 = µi,

96



implying that λi = µi ≥ 0 for any 1 ≤ i≤ k.
It follows that

λi ·ΣXY Σ−1
Y ΣY Xri = λi

(
h′

iΣY Xri
)
·ΣXY hi = λ2

i ΣXri

µi ·ΣY XΣ−1
X ΣXY hi = µi

(
h′

iΣY Xri
)
·ΣY Xri = µ2

i ΣY hi,

so we have

λi ·
(
λiΣX −ΣXY Σ−1

Y ΣY X

)
ri = 0

µi ·
(
µiΣY −ΣY XΣ−1

X ΣXY

)
hi = 0.

We now investigate two distinct cases:

• λi = µi ̸= 0
Suppose λi = µi ̸= 0. Then, the above redueces to

(
λiΣX −ΣXY Σ−1

Y ΣY X

)
ri = 0(

µiΣY −ΣY XΣ−1
X ΣXY

)
hi = 0,

for non-zero vectors ri and hi, so that
∣∣∣λiΣX −ΣXY Σ−1

Y ΣY X

∣∣∣= ∣∣∣λi · In2 −ΣXY Σ−1
Y ΣY XΣ−1

X

∣∣∣ · |ΣX | = 0∣∣∣µiΣY −ΣY XΣ−1
X ΣXY

∣∣∣= ∣∣∣µi · In1 −ΣY XΣ−1
X ΣXY Σ−1

Y

∣∣∣ · |ΣY | = 0

and therefore µi =λi is an eigenvalue of the matrices ΣXY Σ−1
Y ΣY XΣ−1

X and ΣY XΣ−1
X ΣXY Σ−1

Y .
By the results shown above, λi = µi ∈ (0,1).
Since

(
λiIn2 −ΣXY Σ−1

Y ΣY XΣ−1
X

)
(ΣXri) = 0,

ΣXri ∈ Rn2×1 is an eigenvector of ΣXY Σ−1
Y ΣY XΣ−1

X corresponding to λi, and likewise,
ΣY hi ∈ Rn1×1 is an eigenvector of ΣY XΣ−1

X ΣXY Σ−1
Y corresponding to µi.

In summation, if λi =µi > 0, then λi =µi ∈ (0,1) and ri, hi are Σ−1
X , Σ−1

Y times eigenvectors
of

ΣXY Σ−1
Y ΣY XΣ−1

X and ΣY XΣ−1
X ΣXY Σ−1

Y

corresponding to the eigenvalue λi = µi.
Equivalently, we are able to see that Σ

1
2 ′
X ri, Σ

1
2 ′
Y hi are orthonormal eigenvectors of the

symmetric matrices

Σ− 1
2

X ΣXY Σ−1
Y ΣY XΣ− 1

2 ′
X and Σ− 1

2
Y ΣY XΣ−1

X ΣXY Σ− 1
2 ′

Y
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corresponding to the eigenvalue λi = µi.

• λi = µi = 0
Suppose now that λi = µi = 0. It follows that the k largest eigenvalues of ΣXY Σ−1

Y ΣY XΣ−1
X

contain 0; otherwise, we can increase the value of the objective function ∑k
i=1λi by choos-

ing ΣXri to be an eigenvalue of some non-negative eigenvalue of ΣXY Σ−1
Y ΣY XΣ−1

X . This
in turn implies that ΣY XΣ−1

X ΣXY Σ−1
Y has the n1 −n2 more eigenvalues equal to 0 than

ΣXY Σ−1
Y ΣY XΣ−1

X , and that its k largest eigenvalues also contain 0.

When λi = µi = 0, then the first order conditions always hold, and we are able to choose
ri, hi as any vectors that satisfy r′

iΣXri = h′
iΣY hi = 1. Therefore, to maintain consistency

with the case above, we choose ri and hi as vectors satisfying

(
λiΣX −ΣXY Σ−1

Y ΣY X

)
ri = ΣXY Σ−1

Y ΣY Xri = 0(
µiΣY −ΣY XΣ−1

X ΣXY

)
hi = ΣY XΣ−1

X ΣXY hi = 0,

where the existence of ri and hi are guranteed by the observation above.
This means that ΣXri, ΣY hi are again orthonormal eigenvectors of

ΣXY Σ−1
Y ΣY XΣ−1

X and ΣY XΣ−1
X ΣXY Σ−1

Y

corresponding to the 0 eigenvalue of the above matrices.

We have thus seen that ri, hi are chosen so that ΣXri, ΣY hi are eigenvectors of ΣXY Σ−1
Y ΣY XΣ−1

X

and ΣY XΣ−1
X ΣXY Σ−1

Y corresponding to the eigenvalue λi for any 1 ≤ i≤ k, where

λi = (h′
iΣY Xri)2

for any 1 ≤ i≤ k. Therefore, h1, · · · ,hk and r1, · · · , rk are solutions to the maximization problem
only if λ1 ≥ ·· · ≥λk are the k largest ordered eigenvalues of ΣXY Σ−1

Y ΣY XΣ−1
X (or ΣY XΣ−1

X ΣXY Σ−1
Y ).

Note that h1, · · · ,hk and r1, · · · , rk can be chosen so that

{Σ
1
2 ′
Y h1, · · · ,Σ

1
2 ′
Y hk} and {Σ

1
2 ′
X r1, · · · ,Σ

1
2 ′
X rk}

are orthonormal sets of eigenvectors corresponding to λ1 ≥ ·· · ≥ λk for the symmetric positive
semidefinite matrices

Σ− 1
2

Y ΣY XΣ−1
X ΣXY Σ− 1

2 ′
Y and Σ− 1

2
X ΣXY Σ−1

Y ΣY XΣ− 1
2 ′

X .
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It follows that

H ′ΣY H =


h′

1Σ
1
2
X

...
h′

kΣ
1
2
X

(Σ
1
2 ′
Xh1 · · · Σ

1
2 ′
Xhk

)
= Ik,

and likewise, R′ΣXR= Ik.

Finally, for any 1 ≤ i≤ k, we denote

h′
iΣY Xri = ρi =

√
λi or −

√
λi,

which represents the ith largest possible correlation between linear combinations of X and Y .
For any 1 ≤ i ̸= j ≤ k such that λi > 0, since

ρi ·ΣY Xri = λi ·ΣY hi

by the first order conditions, premultiplying both sides by h′
j yields

ρi ·h′
jΣY Xri = λi ·h′

jΣY hi = 0,

where the last equality follows because H ′ΣY H = Ik. Since λi > 0, we have

h′
jΣY Xri = 0.

Meanwhile, if λi = 0, then note that ri is chosen so that

ΣXY Σ−1
Y ΣY Xri = 0;

premultiplying the above equation by r′
i yields

(ΣY Xri)′Σ−1
Y (ΣY Xri) = 0,

and since Σ−1
Y is positive definite, ΣY Xri = 0 and

h′
jΣY Xri = 0.

The above analysis applies to the case where n2 ≥ n1 as well, since we have restricted k ≤
min(n1,n2).
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In summary, for any k≤ min(n1,n2), if we choose H = (h1, · · · ,hk) ∈Rn1×k and R= (r1, · · · , rk) ∈
Rn2×k such that:

• 1 ≥ λ1 ≥ ·· ·λk ≥ 0 are the k largest solutions to the equations
∣∣∣λ ·ΣY −ΣY XΣ−1

X ΣXY

∣∣∣= 0,

or equivalently,
∣∣∣λ ·ΣX −ΣXY Σ−1

Y ΣY X

∣∣∣= 0,

• {Σ
1
2 ′
Y h1, · · · ,Σ

1
2 ′
Y hk} is a set of orthonormal eigenvectors of the matrix

Σ− 1
2

Y ΣY XΣ−1
X ΣXY Σ− 1

2 ′
Y

corresponding to λ1, · · · ,λk

• {Σ
1
2 ′
X r1, · · · ,Σ

1
2 ′
X rk} is a set of orthonormal eigenvectors of the matrix

Σ− 1
2

X ΣXY Σ−1
Y ΣY XΣ− 1

2 ′
X

corresponding to λ1, · · · ,λk,

then we have

H ′ΣY H =


h′

1ΣY h1 · · · h′
1ΣY hk

... . . . ...
h′

kΣY h1 · · · h′
kΣY hk

= Ik

R′ΣXR=


r′

1ΣXr1 · · · r′
1ΣXrk

... . . . ...
r′

kΣXr1 · · · r′
kΣXrk

= Ik

H ′ΣY XR=


h′

1ΣY Xr1 · · · h′
1ΣY Xrk

... . . . ...
h′

kΣY Xr1 · · · h′
kΣY Xrk

=


ρ1 · · · 0
... . . . ...
0 · · · ρk,

 where ρ2
1 = λ1, · · · ,ρ2

k = λk.

ρ1, · · · ,ρk ∈ [−1,1] can be interpreted as the k largest correlations (in magnitude) achievable
between linear combinations of X and Y .
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2.1.2 Sample CCA

The problem we studied above was canonical correlation analysis for the population. To conduct
the same analysis for the sample, suppose X∈RT ×n2 and Y∈RT ×n1 are data matrices collecting
T sample observations of the random vectors X and Y such that

SX = 1
T
X′X p→ ΣX ,

SY = 1
T
Y′Y p→ ΣY , and

SY X = 1
T
Y′X p→ ΣY X ,

as T → ∞, where we define SXY = S′
Y X . Then, the first k ≤ min(n1,n2) sample canonical

correlations can be found as the k largest eigenvalues 1 ≥ λ̂1 ≥ ·· · ≥ λ̂k ≥ 0 that solve the
equation

∣∣∣λ ·SY −SY XS
−1
X SXY

∣∣∣= 0,

or equivalently
∣∣∣λ ·SX −SXY S

−1
Y SY X

∣∣∣= 0.

The sample weights Ĥ and R̂ that take values in Rn1×k and Rn2×k are found as S− 1
2 ′

Y and S− 1
2 ′

X

times a set of orthonormal eigenvectors of

S
− 1

2
Y SY XS

−1
X SXY S

− 1
2 ′

Y

and

S
− 1

2
X SXY S

−1
Y SY XS

− 1
2 ′

X

corresponding to λ̂1 ≥ ·· · ≥ λ̂k.

Then, we have

Ĥ ′SY Ĥ = Ik

R̂′SXR̂= Ik

Ĥ ′SY XR̂=


ρ̂1 · · · 0
... . . . ...
0 · · · ρ̂k

 , where ρ̂2
1 = λ̂1, · · · , ρ̂2

k = λ̂k,

by much the same process as above.
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By the continuity of ordered eigenvalues and the probability limits stated above, we can see that

λ̂i
p→ λi

for 1 ≤ i≤ k, so that the squared sample canonical correlations are consistent for their popula-
tion counterparts.
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2.2 Assumptions and Preliminaries

We retain much of the same assumptions as in the unilevel factor model studied above, tailored
for the presence of global and country-specific factors.
As usual, the superscript 0 indicates true values. This time, the assumptions will be given in
blocks:

I) Block 1: Relationship between Global and Country Factors

(1) Relationship between Global and Country-Specific Factors
The processes {G0

t }t∈Z,{F 0
1t}t∈Z, · · · ,{F 0

Mt}t∈Z are independent processes.

(2) Time Series Properties of Global and Country-Specific Factors
We assume that {G0

t }t∈Z,{F 0
1t}t∈Z, · · · ,{F 0

Mt}t∈Z are weakly stationary mean zero
processes such that the covariance matrix of K0

mt =
(
G0′

t ,F
0′
mt

)′ is given as

Σm =

ΣG O

O ΣF,m

 ,
where both ΣG and ΣF,m are positive definite.

(3) Rate of Convergence of Cross Products
For any two countries m,n, we assume that

1
T

T∑
t=1

K0
mtK

0′
nt −E

[
K0

mtK
0′
nt

]
=Op

( 1√
T

)
.

(4) Magnitude of Country-Specific Cross Sectional Observations
We assume that N = N1 + · · · +NM and each Nm is of the same magnitude ( N

Nm
=

Op(1) for each m). In other words, the number of cross-sectional observations from
one country does not dominate those of other countries.
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II) Block 2: Asymptotics of the Factor Estimators of Each Country

(1) Non-Triviality of Global Factors
For any country m, we assume that the r+ rm largest eigenvalues of XmX

′
m are al-

ways positive. This implies that the r+rm largest eigenvalues of X ′
mXm are the same

as those of XmX
′
m and thus also positive. We collect the r+ rm largest eigenvalues

of 1
NmT XmX

′
m in VNm,T .

(2) Second Moment Convergence of True Factors and Factor Loadings
Define

θ0′
mi =

(
γ0′

mi λ0′
mi

)
for any 1 ≤m≤M and 1 ≤ i≤Nm, which is the ith row of Θ0

m.
We assume that, for any 1 ≤ m ≤ M , the factor loadings θ0

m1, · · · ,θ0
m,Nm

are non-
random, and that there exists a constant K > 0 such that

sup
t∈N+

E
∣∣∣K0

mt

∣∣∣2 ≤K

sup
i∈N+

∣∣∣θ0
mi

∣∣∣2 ≤K.

In addition, for any country m, we assume that

Θ0′
mΘ0

m

Nm

p→ ΣΘ,m and K0′
mK

0
m

T

p→ ΣK,m,

where ΣΘ,m,ΣK,m ∈ R(r+rm)×(r+rm) are positive definite matrices.

(3) Exact Factor Model
We assume that the processes {emit}t∈Z are independent and identically distributed
across m and i.

(4) Stationarity of Errors
For any m and i, we assume that the process {emit}t∈Z is weakly stationary with
mean 0 and autocovariance function γ : Z → R.
In addition, we assume absolutely summable autocovariances ( ∑∞

z=−∞ |γ(z)|<+∞),
and that the process has bounded fourth moments, that is, supt∈ZE

[
e4

mit

]
≤µ4 <+∞.

(5) Weak Dependence between Factors and Errors
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For any 1 ≤m≤M , we assume that there exists a constant K > 0 such that

E

 1
NmT

Nm∑
i=1

∣∣∣∣∣
T∑

t=1
K0

mtemit

∣∣∣∣∣
2≤K

E
∣∣∣∣∣ 1√
NmT

T∑
s=1

Nm∑
i=1

K0
mt (emitemis −γ(t−s))

∣∣∣∣∣
2

≤K (for any t ∈N+)

E
∥∥∥∥∥ 1√

NmT

T∑
t=1

Nm∑
i=1

K0
mitθ

0′
miemit

∥∥∥∥∥
2

≤K

for any Nm,T ∈N+.

(6) CLT for Time Dimension
For any 1 ≤m≤M and i ∈N+,

1√
T

T∑
t=1

K0
mtemit

d→N [0,Φmi]

where

Φmi = plim
T →∞

1
T

T∑
t=1

e2
mitK

0
mtK

0′
mt.

(7) Sufficient Conditions for Factor Identification
We assume that the r+rm eigenvalues collected in VNm,T , as well as those of ΣΘ,mΣK,m,
are distinct.

(8) The Probability Limit of K0′
mK̃m

T

For any 1 ≤ m ≤ M and the estimator K̃m =
(
K̃ ′

m1, · · · , K̃ ′
mT

)′
of the factors Km

defined below, there exists a nonsingular r× r matrix Qm such that

K0′
mK̃m

T

p→Qm.
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2.3 Step 1: The Initial Estimation of Global Factors

The estimation of the global and country-specific factors proceeds in steps. In the initial step,
data on only two countries are used to derive rudimentary estimators of the global factors, and
in the subsequent step the country-specific factors are estimated by treating the estimators of
the global factors derived in the previous step as if they were the true global factors.
The factors estimated as such rely only on data on two countries, so to make use of the full data,
the global factors are re-estimated, this time using the country-specific factor estimators derived
in the second step in place of the true country-specific factors. Finally, the country-specific fac-
tors are re-estimated using the newly estimated global factors in place of the true global factors.
In this section we focus on the first step of the estimation, which uses canonical correlation
analysis to estiamte the global factors. The next three steps all rely on familiar principal com-
ponents analysis used in Bai and Ng (2002) and Bai (2003).

We now proceed in steps:

2.3.1 Estimation of Factors Affecting Each Country

Recall the concatenated model

Xmt = Θ0
m ·K0

mt +emt,

where

Θ0
m =

(
Γ0

m Λ0
m

)
and K0

mt =

G0
t

F 0
mt

 .
For any country m,

Xmt = Θ0
m ·K0

mt +emt

for 1 ≤ t ≤ T and Nm cross-sectional observations resembles the usual unilevel factor model
studied in previous sections. Therefore, we can estimate the factors Kmt and factor loadings
Θm by minimizing the objective function

1
NmT

Nm∑
i=1

T∑
t=1

Xmit −
(
γ′

mi λ′
mi

) Gt

Fmt

2

= 1
NmT

tr
((
Xm −KmΘ′

m

)(
Xm −KmΘ′

m

)′)

with respect to Km = (Km1, · · · ,KmT )′ and Θm. Denote these estimates by Θ̄m and K̃m.
From what we know of the unilevel factor model, assuming that we concentrate out Θm first
and then estimate the factors Km, under the usual factor identification condition K̃′

mK̃m

T = Ir,
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the estimators K̃m and Θ̃m are given by:

K̃m =
√
T ×The orthonormal eigenvectors of XmX

′
m corresponding to its r largest eigenvalues

Θ̃m = 1
T
X ′

mK̃m.

From the second block of assumptions we made, the result on unilevel factor models that we
derived earlier tells us that:

• Consistency of the Factors

1
T

T∑
t=1

∣∣∣K̃mt − H̃ ′
mK

0
mt

∣∣∣2 = 1
T

∥∥∥K̃m −K0
mH̃m

∥∥∥2
=Op

( 1
min(Nm,T )

)
,

where

H̃m =
(

Θ0′
mΘ0

m

Nm

)(
K0′

mK̃m

T

)
V −1

Nm,T

• Consistency of VNm,T and K0′
mK̃m

T

VNm,T
p→ Vm,

where Vm collects the r eigenvalues of ΩΘ,mΩK,m, which are assumed to be all positive
and distinct. By implication,

H̃m
p→ ΣΘ,mQmV

−1
m :=H0

m.

• Rate of Convergence of the Factor Estimator
For any t ∈ T ,

K̃mt − H̃ ′
mK

0
mt =Op

( 1√
Nm

)
+Op

( 1
min(Nm,T )

)
=Op

(
1

min(
√
Nm,T )

)
.

• Rate of Convergence of the Factor Loading Estimator
For any i ∈N+,

θ̃mi − H̃−1
m θ0

mi =Op

( 1√
T

)
+Op

( 1
min(Nm,T )

)
=Op

(
1

min(Nm,
√
T )

)
.
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From the consistency result we have

1√
T

(
K̃m −K0

mH̃m

)
=Op

(
1

min(
√
Nm,

√
T )

)
.

Meanwhile, since

∥∥∥∥ 1√
T
K0

mH̃m

∥∥∥∥2
≤
( 1
T

∥∥∥K0
m

∥∥∥2
)(∥∥∥H̃m

∥∥∥)= tr
(
K0′

mKm

T

)
·
∥∥∥H̃m

∥∥∥,
where both terms on the right hand side are Op(1), we can tell that

1√
T
K0

mH̃m =Op(1).
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2.3.2 Canonical Correlation Analysis with Two Countries

Select two countries, with indices m= 1,2 for convenience.
Once the above estimation has been completed for m= 1,2, we now note that the global factors
G0

t form the first r elements of each combined factor K0
1t and K0

2t, while the latter r1 and r2

elements, F 0
1t and F 0

2t, are assumed to be uncorrelated. As such, the first r canonical correlations
of K0

1t and K0
2t must be 1, with the weights being the first r standard basis vectors in Rr+r1 and

Rr+r2 , while the remaning min(r1, r2) canonical correlations must be 0. We now confirm this
intuition.

Population CCA

By assumption, the covariance matrix of K0
mt is

Σm =

ΣG O

O ΣF,m

 ,
where both ΣG and ΣF,m are positive definite. Moreover,

Σ12 = E
[
K0

1tK
0′
2t

]
=

ΣG O

O O

 ∈ R(r+r1)×(r+r2).

Letting r1 = min(r1, r2) without loss of generality, the r+ r1 squared canonical correlations
ρ2

1 ≥ ·· · ≥ ρ2
r+r1 of K0

1t and K0
2t are the first r+ r1 ordered eigenvalues solving the equation

∣∣∣ρ2
i ·Σ1 −Σ12Σ−1

2 Σ′
12

∣∣∣= 0,

or equivalently,
∣∣∣ρ2

i ·Σ2 −Σ′
12Σ−1

1 Σ12
∣∣∣= 0,

for 1 ≤ i≤ r+ r1.
Note that, for any 1 ≤ i≤ r+ r1,

ρ2
i ·Σ1 −Σ12Σ−1

2 Σ′
12 =

ρ2
i ·ΣG −ΣG O

O ρ2
i ·ΣF,1

 ,
so that

∣∣∣ρ2
i ·Σ1 −Σ12Σ−1

2 Σ′
12

∣∣∣= ∣∣∣(ρ2
i −1)ΣG

∣∣∣ · ∣∣∣ρ2
i ·ΣF,1

∣∣∣
= (ρ2

i −1)r(ρ2
i )r1 |ΣG| · |ΣF,1|.

It follows that ρ2
1 = · · · = ρ2

r = 1 and ρ2
r+1 = · · · = ρ2

r+r1 = 0.
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Sample Estimators of the Covariance Matrices

Define

S̃m = 1
T

T∑
t=1

K̃mtK̃
′
mt = 1

T
K̃ ′

mK̃m

for m= 1,2, and let

S̃12 = 1
T

T∑
t=1

K̃1tK̃
′
2t = 1

T
K̃ ′

1K̃2.

Since

1√
T
K̃m = 1√

T
K0

mH̃m +Op

(
1

min(
√
Nm,

√
T )

)

and

1√
T
K0

mH̃m =Op(1),

for any m= 1,2 we have

S̃m = 1
T

T∑
t=1

K̃mtK̃
′
mt

=
( 1√

T
K̃m

)′( 1√
T
K̃m

)

=
(

1√
T
K0

mH̃m +Op

(
1

min(
√
Nm,

√
T )

))′( 1√
T
K0

mH̃m +Op

(
1

min(
√
Nm,

√
T )

))

= H̃ ′
m

(
K0′

mK
0
m

T

)
H̃m +Op

(
1

min(
√
Nm,

√
T )

)
.

Likewise,

S̃12 = H̃ ′
1

( 1
T
K0′

1 K
0
2

)
H̃2 +Op

(
1

min(
√
N1,

√
N2,

√
T )

)
.

Defining

Sm = 1
T

T∑
t=1

K0
mtK

0′
mt = 1

T
K0′

mK
0
m

S12 = 1
T

T∑
t=1

K0
1tK

0′
2t = 1

T
K0′

1 K
0
2

110



for m= 1,2, we can see that

S̃m = H̃ ′
mSmH̃m +Op

(
1

min(
√
Nm,

√
T )

)

S̃12 = H̃ ′
1S12H̃2 +Op

(
1

min(
√
N1,

√
N2,

√
T )

)
.

By implication,

S̃m − H̃ ′
mSmH̃m

p→ 0

and

H̃ ′
mSmH̃m

p→H0′
mΣK,mH

0
m,

where the limit is an r× r matrix of full rank, we have

S̃m
p→H0′

mΣK,mH
0
m

and therefore

(
S̃m

)−1
,
(
H̃ ′

mSmH̃m

)−1 p→
(
H0′

mΣK,mH
0
m

)−1

by the CMT. This tells us that
(
S̃m

)−1
,
(
H̃ ′

mSmH̃m

)−1
are Op(1), and as such, the decompo-

sition ∥∥∥∥S̃−1
m −

(
H̃ ′

mSmH̃m

)−1
∥∥∥∥≤

∥∥∥S̃m − H̃ ′
mSmH̃m

∥∥∥ ·
∥∥∥S̃−1

m

∥∥∥ ·
∥∥∥∥(H̃ ′

mSmH̃m

)−1
∥∥∥∥

implies that

S̃−1
m − H̃−1

m S−1
m H̃ ′−1

m =Op

(
1

min(
√
Nm,

√
T )

)
.

The above results imply that

S̃−1
1 S̃12S̃

−1
2 S̃′

12 = H̃−1
1

(
S−1

1 S12S
−1
2 S′

12

)
H̃1 +Op

(
1

min(
√
N1,

√
N2,

√
T )

)
.

It remains to find the rate of convergence of H̃−1
1

(
S−1

1 S12S
−1
2 S′

12

)
H̃1.

Because

Sm −Σm =Op

( 1√
T

)
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by assumption, and
∥∥∥S−1

m −Σ−1
m

∥∥∥≤
∥∥∥S−1

m

∥∥∥∥∥∥Σ−1
m

∥∥∥ · ∥Sm −Σm∥,

where S−1
m

p→ Σ−1
m implies that S−1

m =Op(1), we can see that

S−1
m −Σ−1

m =Op

( 1√
T

)
.

In addition, by assumption

S12 −Σ12 =Op

( 1√
T

)
,

so that

S−1
1 S12S

−1
2 S′

12

=
(
Σ−1

1 +
(
S−1

1 −Σ−1
1

))
(Σ12 +(S12 −Σ12))

(
Σ−1

2 +
(
S−1

2 −Σ−1
2

))
(Σ12 +(S12 −Σ12))′

= Σ−1
1 Σ12Σ−1

2 Σ′
12 +Op

( 1√
T

)
.

Therefore,

H̃−1
1

(
S−1

1 S12S
−1
2 S′

12

)
H̃1 = H̃−1

1

(
S−1

1 S12S
−1
2 S′

12 −Σ−1
1 Σ12Σ−1

2 Σ′
12

)
H̃1 + H̃−1

1 Σ−1
1 Σ12Σ−1

2 Σ′
12H̃1

= H̃−1
1 Σ−1

1 Σ12Σ−1
2 Σ′

12H̃1 +Op

( 1√
T

)
,

which implies that

S̃−1
1 S̃12S̃

−1
2 S̃′

12 − H̃−1
1 Σ−1

1 Σ12Σ−1
2 Σ′

12H̃1 =Op

( 1√
T

)
+Op

(
1

min(
√
N1,

√
N2,

√
T )

)

=Op

(
1

min(
√
N1,

√
N2,

√
T )

)
.

This also tells us that

S̃−1
1 S̃12S̃

−1
2 S̃′

12
p→H0−1

1 Σ−1
1 Σ12Σ−1

2 Σ′
12H

0
1 .
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Let µ̃ and ṽ be the first r sample canonical correlation weights of K̃1 and K̃2, that is,

µ̃′S̃1µ̃= Ir

ṽ′S̃2ṽ = Ir

µ̃′S̃12ṽ =


ρ̃1 · · · 0
... . . . ...
0 · · · ρ̃r,

=DN1,N2,T

(
S̃12S̃

−1
2 S̃′

12 − ρ̃2
i · S̃1

)
µ̃i = 0 for any 1 ≤ i≤ r(

S̃′
12S̃

−1
1 S̃12 − ρ̃2

i · S̃2
)
ṽi = 0 for any 1 ≤ i≤ r

where ρ̃2
1 ≥ ·· · ≥ ρ̃2

r are the r largest eigenvalues that solve the equation
∣∣∣λ · S̃1 − S̃12S̃

−1
2 S̃′

12

∣∣∣= 0,

or equivalently,
∣∣∣λ · S̃2 − S̃′

12S̃
−1
1 S̃12

∣∣∣= 0.

Since

S̃−1
1 S̃12S̃

−1
2 S̃′

12
p→H0−1

1 Σ−1
1 Σ12Σ−1

2 Σ′
12H

0
1 ,

by the continuity of ordered eigenvalues, ρ̃2
1 ≥ ·· · ≥ ρ̃2

r converge in probability to the r largest
eigenvalues that solve the equation

∣∣∣H0−1
1 Σ−1

1 Σ12Σ−1
2 Σ′

12H
0
1 −λ · Ir+r1

∣∣∣= 0.

Equivalently,
∣∣∣Σ12Σ−1

2 Σ′
12 −λ ·Σ1

∣∣∣= 0.

We saw above that the r+ r1 solutions to this problem are 1, · · · ,1︸ ︷︷ ︸
r

,0, · · · ,0︸ ︷︷ ︸
r1

, so

ρ̃2
i

p→ 1

for 1 ≤ i≤ r.
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We can also study the rate of convergence of µ̃, µ̃ is Op(1) but not op(1). Its Op(1) nature
follows from the fact that

∥µ̃∥ =
∥∥∥∥µ̃′S̃

1
2
1 S̃

− 1
2

1

∥∥∥∥
≤
∥∥∥∥S̃− 1

2
1

∥∥∥∥ ·
∥∥∥∥µ̃′S̃

1
2
1

∥∥∥∥
≤
∥∥∥S̃−1

1

∥∥∥ 1
2
∥∥∥µ̃′S̃1µ̃

∥∥∥
=
∥∥∥S̃−1

1

∥∥∥ 1
2 ,

where S̃1
p→H0′

1 Σ1H
0
1 , implies that S̃−1

1 =Op(1).
On the other hand, if µ̃= op(1), then taking limits on both sides of µ̃′S̃1µ̃= Ir, we have

Ir =O′Σ1O =O,

a contradiction, so µ̃ must be Op(1) but not op(1).
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2.3.3 The Initial Estimator of the Global Factors

Our initial estimator Ĝ(1) =
(
Ĝ

(1)
1 · · · Ĝ

(1)
T

)′
of the global factors G is defined as

Ĝ(1) = K̃1µ̃,

which is the collection of linear combinations of the columns of K̃1 with weights assigned by µ̃.
Heuristically, the columns of K̃1µ̃ are the r linear combinations of the columns of K̃1 that yield
the highest correlation with similar combinations of the columns of K̃2, that is, our estimator of
G isolates the parts of K̃1 that are most highly correlated with K̃2. Since the columns of K̃1 rep-
resent the estimated time series of each factor in K0

1t = (G0′
t ,F

0′
1t)′, which shares the global factor

G0
t with K0

2t, out choice of Ĝ(1) as the estimator of G means that we identify the global factor as
that the part of K0

1t and K0
2t that is correlated. It follows then that the country-specific factors

in K0
1t and K0

2t are identified as the parts of K0
1t and K0

2t that are uncorrelated with one another.

Consistency of Mean Squared Global Factor Estimates

To show that these global factor estimators are consistent, note that

(
S̃−1

1 S̃12S̃
−1
2 S̃′

12

)
µ̃= µ̃DN1,N2,T ,

so that

Ĝ(1)DN1,N2,T ,= K̃1µ̃DN1,N2,T ,= K̃1
(
S̃−1

1 S̃12S̃
−1
2 S̃′

12

)
µ̃

Since

S̃−1
1 S̃12S̃

−1
2 S̃′

12 − H̃−1
1 Σ−1

1 Σ12Σ−1
2 Σ′

12H̃1 =Op

(
1

min(
√
T ,

√
N1,

√
N2)

)
,

we can write

1√
T
Ĝ(1)DN1,N2,T ,=

( 1√
T
K̃1

)(
S̃−1

1 S̃12S̃
−1
2 S̃′

12

)
µ̃

=
( 1√

T
K̃1

)(
H̃−1

1 Σ−1
1 Σ12Σ−1

2 Σ′
12H̃1

)
µ̃+Op

(
1

min(
√
T ,

√
N1,

√
N2)

)
,

owing to the fact that 1√
T
K̃1 is Op(1).

Note that

1√
T
K̃1 = 1√

T
K0

1H̃1 +Op

(
1

min(
√
N1,

√
T )

)
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and that H̃1, µ̃ are Op(1). We then have

1√
T
Ĝ(1)DN1,N2,T ,=

( 1√
T
K̃1

)(
H̃−1

1 Σ−1
1 Σ12Σ−1

2 Σ′
12H̃1

)
µ̃+Op

(
1

min(
√
T ,

√
N1,

√
N2)

)

= 1√
T
K0

1

(
Σ−1

1 Σ12Σ−1
2 Σ′

12

)
H̃1µ̃+Op

(
1

min(
√
T ,

√
N1,

√
N2)

)
.

We know that

DN1,N2,T
p→ Ir

by the convergence of the canonical correlations. Defining

Q̃=
(
Σ−1

1 Σ12Σ−1
2 Σ′

12

)
H̃1µ̃ ·D−1

N1,N2,T ,

which is a random matrix taking values in R(r+r1)×r, it follows that

1√
T
Ĝ(1) = 1√

T
K0

1Q̃+Op

(
1

min(
√
T ,

√
N1,

√
N2)

)

because DN1,N2,T =Op(1). Therefore,

1√
T

∥∥∥Ĝ(1) −K0
1Q̃
∥∥∥=Op

(
1

min(
√
T ,

√
N1,

√
N2)

)
,

and we have

1
T

∥∥∥Ĝ(1) −K0
1Q̃
∥∥∥2

=Op

( 1
min(N1,N2,T )

)
,

which is the familiar consistency result.
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Note now that

Σ−1
1 Σ12Σ−1

2 Σ′
12 =

Σ−1
G O

O Σ−1
F,1

ΣG O

O O

=

Ir O

O O

 .
Therefore,

Q̃= ·

Ir O

O O

 · H̃1µ̃ ·D−1
N1,N2,T =

Q̃(1)

O

 ,
where Q̃(1) collects the first r rows of Q̃, and is defined as

Q̃(1) =
(

Γ0′
1 Θ0

1
N1

)(
K0′

1 K̃1
T

)
V −1

N1,T µ̃D
−1
N1,N2,T ,

which tells us that Q̃(1) =Op(1).

Since K0
1 can be decomposed as,

K0
1 =

(
G0 F 0

1

)
,

we have

1
T

∥∥∥Ĝ(1) −G0Q̃(1)
∥∥∥2

=Op

( 1
min(N1,N2,T )

)
,

or equivalently,

1
T

T∑
t=1

∣∣∣Ĝ(1)
t − Q̃(1)′G0

t

∣∣∣2 =Op

( 1
min(N1,N2,T )

)
.

This result tells us that the initial global factor estimator is consistent for a rotation of the true
global factors, and that the global factors are thus identified.
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Consistency of Individual Global Factor Estimates

So far we have seen that the mean square of the factor estimates is consistent for some rotation
of the global factors. We can now show a stronger result that says the individual factor esti-
mates are consistent for some rotation of the corresponding global factor. The derivation follows
similarly to the above.

For any t ∈N+, note as before that

Ĝ
(1)
t =D−1

N1,N2,T · µ̃′
(
S̃−1

1 S̃12S̃
−1
2 S̃′

12

)′
K̃1t.

We already know that

K̃1t − H̃ ′
1K

0
1t =Op

(
1

min(
√
N1,T )

)
,

and because this implies that K̃1t
p→H0′

1 K
0
1t as N1,T → ∞, K̃1t =Op(1).

Therefore,

Ĝ
(1)
t =D−1

N1,N2,T · µ̃′
(
S̃−1

1 S̃12S̃
−1
2 S̃′

12

)′
K̃1t

=D−1
N1,N2,T · µ̃′

(
H̃−1

1 Σ−1
1 Σ12Σ−1

2 Σ′
12H̃1

)′
K̃1t +Op

(
1

min(
√
T ,

√
N1,

√
N2)

)

=D−1
N1,N2,T · µ̃′

(
H̃−1

1 Σ−1
1 Σ12Σ−1

2 Σ′
12H̃1

)′
H̃ ′

1K
0
1t +Op

(
1

min(
√
N1,T )

)
+Op

(
1

min(
√
T ,

√
N1,

√
N2)

)

=D−1
N1,N2,T · µ̃′H̃ ′

1

(
Σ−1

1 Σ12Σ−1
2 Σ′

12

)′
K0

1t +Op

(
1

min(
√
T ,

√
N1,

√
N2)

)

= Q̃′ ·K0
1t +Op

(
1

min(
√
T ,

√
N1,

√
N2)

)
.

Since

K0
1t =

G0
t

F 0
1t

 and Q̃=

Q̃(1)

O

 ,
we have Q̃′K0

1t = Q̃(1)′G0
t and

Ĝ
(1)
t − Q̃(1)′G0

t =Op

(
1

min(
√
T ,

√
N1,

√
N2

)
.

This tells us that, for any t ∈ N+, the estimate of the global factor Ĝ(1)
t at time t is consistent

for some rotation of the true factors G0
t .

In contrast to factor estimates of unilevel factor models, the rate of convergence depends on
√
T

instead of T .
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2.4 Step 2: The Initial Estimation of Country-Specific Factors

Now that we have obtained initial estimators of the global factors Ĝ(1), we use them as proxies
for the true global factors G0 in the factor equation

Xmt = Γ0
m ·Gt +Λ0

m ·F 0
mt +emt.

The estimators of F1t and F2t are extracted from this model by solving the usual asymptotic
principal components problem

min
Fm,Λm,Γm

1
NmT

Nm∑
i=1

T∑
t=1

(
Xit −Γm · Ĝ(1)

t −Λm ·Fmt

)2

= 1
NmT

tr
((
Xm − Ĝ(1)Γ′

m −Fm ·Λ′
m

)(
Xm − Ĝ(1)Γ′

m −Fm ·Λ′
m

)′
)
.

Given Fm and Λm, the minimizer Γm(Fm,Λm) of the above function becomes

Γm(Fm,Λm) =
(
Xm −Fm ·Λ′

m

)′
Ĝ(1)

(
Ĝ(1)′Ĝ(1)

)−1
,

in analogy with the case of unilevel factor models.

The concentrated objective function becomes

1
NmT

tr
((
Xm − Ĝ(1)Γm(Fm,Λm)′ −Fm ·Λ′

m

)(
Xm − Ĝ(1)Γm(Fm,Λm)′ −Fm ·Λ′

m

)′
)

= 1
NmT

tr
((
Xm −Fm ·Λ′

m

)′
MĜ(1)

(
Xm −Fm ·Λ′

m

))
,

where MĜ(1) = IT − Ĝ(1)
(
Ĝ(1)′Ĝ(1)

)−1
Ĝ(1)′ is the residual maker corresponding to Ĝ(1).

Given Fm, the minimizer Λm(Fm) of the concentrated function becomes

Λm(Fm) =X ′
mMĜ(1)Fm

(
F ′

mMĜ(1)Fm
)−1

,

again in analogy with the case of unilevel factor models.

The finalized concentrated objective function becomes

1
NmT

tr
((
Xm −Fm ·Λm(Fm)′)′MĜ(1)

(
Xm −Fm ·Λm(Fm)′))

= 1
NmT

tr
(
X ′

mMĜ(1)MFMĜ(1)Xm
)
,

where MF = IT −MĜ(1)Fm
(
F ′

mMĜ(1)Fm
)−1

F ′
mMĜ(1) is the residual maker corresponding to

MĜ(1)Fm.

119



Defining XG
m =MĜ(1)Xm and FG

m =MĜ(1)Fm, this function can be rewritten as

1
NmT

tr
(
XG′

m XG
m

)
− 1
NmT

tr
(
XG′

m FG
m

(
FG′

m FG
m

)−1
FG′

m XG
m

)
,

so normalizing F G′
m F G

m
T = Irm , our analysis of unilevel factor models tells us that the estimator

F̃G
m of FG

m is

F̃G
m =

√
T ×The collection of rm orthonormal eigenvectors of XG

mX
G′
m

corresponding to its rm largest eigenvalues,

where we collect the rm largest eigenvalues of 1
NmT X

G
mX

G′
m in the matrix V G

Nm,T .
Our estimator of the country specific factors Fm is now given by

F̃ (1)
m = F̃G

m .

Note that this is not an estimator of Fm per se, but rather the quantity MĜ(1)Fm. We will
show below that, nevertheless, F̃ (1)

m consistently estimates a rotation of the true country specific
factors F 0

m.

Before moving on, we note an observation that will make our lives much easier:

Ĝ(1)′Ĝ(1) = µ̃′K̃ ′
1K̃1µ̃

= T · µ̃′
( 1
T
K̃ ′

1K̃1

)
µ̃

= T · µ̃′S̃1µ̃= T,

since µ̃ is chosen so that µ̃′S̃1µ̃= Ir.
This means that

MĜ(1) = IT − 1
T
Ĝ(1)Ĝ(1)′,

where

1
T
Ĝ(1)Ĝ(1)′ = 1

T
G0Q̃(1)Q̃(1)′G0′ +Op

( 1
min(N1,N2,T )

)
.

Since ∥∥∥∥ 1
T
G0Q̃(1)Q̃(1)′G0′

∥∥∥∥≤ tr
(
G0′G0

T

)
·
∥∥∥Q̃(1)

∥∥∥2
,

1
T G

0Q̃(1)Q̃(1)′G0′ =Op(1), and by implication, so is 1
T Ĝ

(1)Ĝ(1)′.
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2.4.1 Transforming the Model

We can transform the true model as follows:

Xm =G0Γ0′
m +F 0

mΛ0′
m +em

=G0Q̃(1)
(
Q̃(1)

)−1
Γ0′

m +F 0
mΛ0′

m +em

= Ĝ(1)
(
Q̃(1)

)−1
Γ0′

m +F 0
mΛ0′

m +em −
(
Ĝ(1) −G0Q̃(1)

)(
Q̃(1)

)−1
Γ0′

m.

Premultiplying both sides by MĜ(1) yields

XG
m =MĜ(1)F

0
m︸ ︷︷ ︸

F G0
m

Λ0′
m +MĜ(1)em +MĜ(1)

(
Ĝ(1) −G0Q̃(1)

)(
Q̃(1)

)−1
Γ0′

m︸ ︷︷ ︸
am

.

The original paper uses this expansion to prove that F̃G
m is consistent for some rotation of F 0

m.
However, because the eigenvectors µ̃ do not converge to some quantity in this case (due to the
non-uniqueness of eigenvalues at the limit), we cannot establish that

(
Q̃(1)

)−1
is Op(1), which

means that the proof in the original paper falls apart.

Fortunately, given that

F̃G
mt − Ω̃′

mF
G0
mt = op(1)

for some Op(1) rotation Ω̃m, we can easily establish that F̃G
mt is consistent for some rotation of

F 0
mt as well.

To see this, first note that FG0
m =MĜ(1)F 0

m = F 0
m − 1

T Ĝ
(1)Ĝ(1)′F 0

m by definition, so

FG0
mt = F 0

mt − 1
T
F 0′

mĜ
(1)Ĝ

(1)
t .

Since

F 0′
mĜ

(1) = F 0′
m

(
Ĝ(1) −G0Q̃(1)

)
+F 0′

mG
0Q̃(1),

we have

1
T
F 0′

mĜ
(1) − F 0′

mG
0

T
Q̃(1) =

( 1√
T
F 0′

m

)( 1√
T

(
Ĝ(1) −G0Q̃(1)

))
= op(1).

Furthermore,

F 0′
mG

0

T

p→O,
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so that

1
T
F 0′

mĜ
(1)Ĝ

(1)
t = op(1).

As such,

FG0
mt −F 0

mt = op(1),

and because Ω̃m =Op(1), we have

F̃G
mt − Ω̃′

mF
0
mt = op(1).

122



Factor-Augmented Vector Autoregres-
sions
Bernanke et al. (2005)

In Bernanke et al. (2005), the authors introduce a Factor-Augmented Vector Autoregression
(FAVAR) model, in which the factors, which include both observable and unobservable vari-
ables, are assumed to follow a VAR and serve as the common factors in a unilevel factor model.

3.1 Motivation for Factor Augmentation

To motivate the use of a factor-augmented version of the VAR model instead of the usual SVAR
model, the authors of the paper cite three shortcomings of traditional SVAR analyses:

• Discrepancies in Information Sets
While policymakers usually make their decision based on a multitude of macroeconomic
variables, SVAR models only include a select few of those variables, necessarily leading to
omitted variable bias. In other words, the information set implied by the VAR model and
used in actual policymaking are vastly different.

• Measurement Errors
It is often unclear whether single variables such as GDP or inflation can sufficiently rep-
resent economic concepts such as real activity or the nominal side of the economy. In
addition, even if they can represent such concepts, there are a multitude of measurement
errors associated with these variables, which can distort analysis. For this reason, it seems
inappropriate to conduct VAR analysis exclusively with observable variables, as in tradi-
tional models.

• Limitations in Analysis
In traditional SVAR models, we can conduct impulse response analysis or variance de-
composition for those variables that are included in the VAR system. Thus, a model
that enables us to study the responses of a variety of macroeconomic variables to certain
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shocks, such as monetary policy shocks, will serve as an improvement upon traditional
SVAR models.

In light of the above limitations of the standard SVAR model, the authors suggest estimating
a factor-augmented VAR model, in which unobserved factors affecting a plethora of macro
variables are included in the VAR system alongside the usual observable variables.
To motivate this specific setup, a simple backward-looking model of the economy is introduced
as follows:

πt = δπt−1 +κ(yt−1 −yn
t−1)+st (Phillips Curve)

yt = yn
t−1 −ψ (it−1 −πt−1)+dt (IS Curve)

yn
t = ρyn

t−1 +ηt (Evolution of Natural Output)

st = αst−1 +vt (Evolution of Cost-push Shocks)

it = βπt +γ(yt −yn
t )+εt. (Monetary Policy Rule)

This model can be seen as the solution to a traditional NK model with shocks evolving according
to an AR(1) process.
In this model, there are five endogenous variables, the inflation rate πt, output yt, natural output
yn

t , the cost-push shock st, and the nominal interest rate it, that jointly follow a VAR process.
Of these, natural output and the cost-push shock are unobserved, while the other variables are
observed, so it stands to reason that we should estimate a VAR model with two unobsered
factors yn

t ,st and three observed variables yt,πt and it.
However, even this might be insufficient, since yt and πt often represent the real and nominal
sides of the economy in a NK model, and there is reason to believe that GDP and inflation
might be insufficient proxies for these economic concepts. Therefore, it is reasonable to think of
the model as a VAR with four unobserved variables yn

t ,st,yt,πt and a single observed variable,
the central bank’s policy instrument it. This is the main FAVAR specification used in the paper.
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3.2 The FAVAR Model

Formally, consider k unobservable factors Ft and m observable macro variables Yt that are
jointly generated by a VAR process specified as follows:

Φ(L) ·

Ft

Yt

= vt,

where Φ(L) = Ik+m −Φ1L−·· ·−ΦpL
p is an AR lag polynomial of some lag order p, and vt is a

white noise process with covariance matrix Σ.

Ft and Yt are then assumed to be common factors affecting a wide variety of macroeconomic
variables. Specifically, let there be N ”informational” macro variables, and that the ith such
variable is determined as

Xit = λf ′
i ·Ft +λy′

i ·Yt +εit,

where λf
i ∈Rk and λy

i ∈Rm are the factor loadings of xit on Ft and Yt. Heuristically, X1t, · · · ,XNt

may be taken to be ”noisy measures of the unobserved factors”.
Defining Xt = (X1t, · · · ,XNt)′, Λf = (λf

1 , · · · ,λ
f
N )′ ∈ RN×k, Λy = (λy

1, · · · ,λy
m)′ ∈ RN×m, and εt =

(ε1t, · · · ,εNt)′, we now have the concatenated model

Xt = Λf ·Ft +Λy ·Yt +εt.

Note that this setup is virtually identical to the unilevel factor model studied above, except that
now we explicitly specify the dynamics of the factors, namely that they follow a VAR process.

The FAVAR model is now determined by the following equations (where the lag order is set to
1 for notational simplicity):

Xt = Λf ·Ft +Λy ·Yt +εt (Measurement equation)Ft

Yt

= Φ ·

Ft−1

Yt−1

+vt (Transition Equation)
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3.3 Estimating the FAVAR Model

The authors propose two ways to estimate this model:

The first estimation method is a two-step approach, in which the factors Ft,Yt are first estimated
via principal components as if the measurement equation represented a unilevel factor model, as
in Bai (2003), and then the estimated factors are plugged into the transition equation to recover
the VAR parameters. This has the advantage of being semi-parametric and thus applicable to
more general settings, but suffers from the problem of generated regressors in the second step.
Furthermore, we do not use the fact that Yt is observable in the first step.
As noted above when discussing the models in Bai and Ng (2002) and Bai (2003), the principal
components estimator of the factors in the measurement equations consistenly estimate a rota-
tion of the true factors Ft,Yt under regularity assumptions; therefore, in order to recover the
estimator of Ft from the estimator of Ft,Yt, we must devise a means of extracting the part of
the latter that is independent of Yt. This is done by imposing identification restrictions in the
second step of the estimation procedure.

The second estimation method is a one-step, or joint estimation, approach, in which the factors
Ft and the parameters of the model are estimated at once by estimating the state-space model
given byXt

Yt

=

Λf Λy

O Im

Ft

Yt

+

εt

0

 , where εt ∼ iidN(0,Ω) (Measurement equation)

Ft

Yt

= Φ ·

Ft−1

Yt−1

+vt where vt ∼ iidN(0,Σ), (Transition Equation)

which explicitly imposes the restriction that Yt are observed and that the errors are iid nor-
mal, unlike in the two-step approach. Because this model does not suffer from the generated
regressors problem, it is more robust in terms of estimation, but because the dimension N of
Xt is large, we must rely on Bayesian priors to smooth the likelihood function, which makes
computation very costly.
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3.4 Identification of the FAVAR Model

Before estimating the model, it is necessary to impose some restrictions on the model parameters.
There are two types of these restrctions: restrictions that identify the unobserved component
Ft and those that help identify the structural shocks. We discuss each restriction in turn.

3.4.1 Identifying Ft in the One-Step Approach

Because Ft is unobserved, if we do not impose any restrictions on the model, we are unable
to obtain a unique estimate of Ft. Specifically, consider a non-singular matrix H ∈ Rk×k and
B ∈ Rk×m, and define

F ∗
t =HFt +BYt.

Then, F ∗
t is also a k-vector of unobserved factors such that Ft =H−1F ∗

t −H−1BYt and thus

Xt = Λf ·Ft +Λy ·Yt +εt

= Λf ·
(
H−1F ∗

t −H−1BYt

)
+Λy ·Yt +εt

=
(
Λf ·H−1

)
F ∗

t +
(
Λy −ΛfH−1B

)
Yt +εt

= Λf∗ ·F ∗
t +Λy∗ ·Yt +εt,

so that Xt retains the same linear factor model structure as before.
Furthermore, sinceFt

Yt

=

H−1F ∗
t −H−1BYt

Yt

=

H−1 −H−1B

O Im

F ∗
t

Yt

 ,
defining

Φ∗ =

H−1 −H−1B

O Im

−1

Φ

H−1 −H−1B

O Im

 ,
ut =

H−1 −H−1B

O Im

−1

vt and Σ∗ =

H−1 −H−1B

O Im

−1

Σ

H−1 −H−1B

O Im

′−1

tells us that F ∗
t

Yt

= Φ∗

F ∗
t−1

Yt−1

+ut.

Therefore, the new factors F ∗
t constructed as a linear combination of Ft and Yt also satisfy the
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equations

Xt = Λf∗ ·F ∗
t +Λy∗ ·Yt +εt,F ∗

t

Yt

= Φ∗

F ∗
t−1

Yt−1

+ut,

where ut ∼WN (0,Σ∗).
Because Ft and F ∗

t are both unobserved components, the likelihood of the model will be the
same under the original parameters Λf ,Λy,Φ,Σ,Ω and the new paramters Λf∗,Λy∗,Φ∗,Σ∗,Ω.
This means that the model is unidentified, and that estimators of Ft will not be consistent
under the one-step estimation approach. We now survey the restrictions that must be imposed
in order for estimates of the factors to consistently estimate the true factors in the one-step
approach.

Suppose we do not want to impose any restrictions on the VAR parameters Φ and Σ governing
the factor dynamics. Then, Λf and Λy must be required to satsify some restrictions in a manner
such that, if F ∗

t =HFt +BYt is a transformation of the factors that yields the same value of the
likelihood as Ft, then H = In and B =O.
The authors propose imposing the restriction that

Λf =

 Ik

Λf(2)

 ∈ RN×k and Λy =

Ok×m

Λy(2)

 ∈ RN×m.

If Λf , Λf∗, Λy and Λy∗ satisfy the above restrictions, then H = Ik and B = O, so that F ∗
t = Ft

and the model is identified.
The above restirctions imply that the first k variables included in Xt are determined as

X1t

...
Xkt

= Ft +


ε1t

...
εkt

 ,

so that they are precisely the unobserved factors Ft with additional noise represented by ε1t, · · · ,εkt.
Therefore, under the proposed restrictions, we are identifying the unobserved factors by assum-
ing that the first k variables in Xt incorporate information about Ft and Ft alone; simply put,
Ft and Yt are distinguished by assuming that the former can affect the first k variables, but the
latter cannot.
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3.4.2 Identifying the Factors in the Two-Step Approach

In the two-step estimation approach, the difficulty of recovering a unique estimator of the factors
can be circumvented by simply estimaing the principal components under the normalization
presented in Bai and Ng (2002) and Bai (2003). Specifically, letting X = (X1, · · · ,XT )′, provided
that the k largest eigenvalues of XX ′ and the probability limit of 1

N

N∑
i=1

λf
i

λy
i

(λf ′
i λy′

i

) 1
T

T∑
t=1

Ft

Yt

(F ′
t Y ′

t

)
are distinct for any N,T , the k unobsered factors in Ft can be estimated uniquely up to sign
changes by Ĉ = (Ĉ1, · · · , ĈT )′, where

Ĉ =
√
T ×The orthonormal eigenvectors corresponding to the k largest eigenvalues of XX ′,

so that Ĉ′Ĉ
T = Ik.

Furthermore, as we have seen above, under appropriate regularity assumptions Ĉt is consistent
for some rotation of the true factors Ft,Yt.
It is then up to restrictions imposed in the second step of the estimation procedure to separate
the part of Ĉt due to Yt, so that the resulting estimator of Ft truly represents the unobserved
factors Ft.
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3.4.3 Identifying the Monetary Policy Shock in the One-Step Approach

In this paper, the authors identify the monetary policy shock in the usual recursive manner, by
assuming that the factors cannot contemporaneously affect the policy instrument it, which is
the only variable comprising Yt. They emphasize that this means the unobserved factors Ft do
not have to be separately identified, unlike with other identification approaches.

To achieve identification of the state space model used for one-step estimation under this identi-
fication scheme for monetary policy shocks, we need only impose the restriction that B0 is lower
triangular in the structural factor dynamics

B0

Ft

Yt

=B0Φ

Ft−1

Yt−1

+B0vt,

where B−1
0 B′−1

0 = Σ, alongside the restrictions on Λf and Λy prposed above.
Under the suggested identificaiton scheme for monetary policy shocks, factors are slow-moving
(do not contemporaneously respond to the interest rate, which means that they respond ”slowly”
to changes in policy) in contrast to other fast-moving variables, which respond contemporane-
ously to the interest rate and thus respond relatively ”quickly” to changes in policy. Since the
first k variables in Xt are just the unobserved factors Ft with noise, this means that the first
k variables in Xt must be slow-moving; otherwise, we would have a model where fast moving
variables are determined by slow moving variables plus noise, which is unreasonable.
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3.4.4 Identifying the Monetary Policy Shock in the Two-Step Approach

To achieve identification of the model under the two-step estimation approach with the identi-
fication scheme for monetary policy shocks proposed above, we must find a way to separate the
effects of Yt from Ĉ in the initial step. This is because, as is, Ĉ represents a linear combination
of the true factors Ft and it.
To make the necessity of this separation clearer, suppose that Ĉt is used as a proxy for Ft to
estimate the VAR parameters. Since there exist random matrices H1, H2 taking values in Rk×k

and Rk×m such that

Ĉt ≈HF ·Ft +Hy · it,

for large N,T , in this case Ĉt would respond contemporaneously to changes in it through the
term Hy · it. Since Ft are characterized by their slow response to it, in this case Ĉt cannot be
viewed as a true estimator of Ft.
In addition, Ĉt could not be used instead of Ft to estimate the VAR model. Specifically, since Ĉt

responds contemporaneously to it, this means that we cannot impose the recursive identification
assumption to the VAR system with endogenous variables Ĉt, it, and therefore that the VAR
model in the second step of the estimation procedure remains unidentified.

A possible way of partialling out the effect of it in Ĉt is to regress Ĉt on Ĉ∗
t , a measure of the

common factors other than it, and it in the linear model

Ĉt = bc · Ĉ∗
t + bi · it +et.

Then, using the OLS estimator b̂c and b̂i of bc and bi, the residual

F̂t = Ĉt − b̂i · it

would be used as the estimator of Ft. This regression in effect represents separating Ĉt into the
part depending directly on it and the part with no direct dependence on it, so that Ĉt − b̂i · it
represents the part of Ĉt that is not directly determined by it.

The reason we do not directly regress Ĉt on it is because, in general, Ft and it may be correlated,
so that removing every part of Ĉt that is correlated with it could end up removing the parts of
Ft correlated with it as well.
Instead, the above linear model allows us to separate from Ĉt the part that is directly correlated
with it, while leaving intact the part that is indirectly correlated with it through Ft.

As a measure of Ĉ∗
t , the authors propose using the principal components from the truncated

version of Xt consisting only of slow-moving variables. This method makes use of the identifi-
cation assumption that Ft are the slow-moving variables themselves and thus that much of the
information in Ft is contained in the slow-moving variables comprising Xt.
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The reason Ĉt∗ is not used as a direct estimator of Ft is because, even though it represents much
of the information in Ft, it does not reflect all the information in Ft since it was derived only
using slow-moving variables, whereas information on Ft could potentially be contained in the
fast-moving variables if their loading on Ft is non-zero.
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Interactive Fixed Effects Models
Bai (2009)

Bai introduces the interactive fixed effects model in his 2009 paper, which imposes a factor
structure on the unobserved individual/time effects in a fixed effects model and exploits the
large N , large T framework to estimate the model.

4.1 Interactive Fixed Effects

Consider a typical panel data model with dependent variable Yit, independent variable Xit,
individual/time effects δit and idosyncratic errors eit that are related as

Yit =X ′
itβ+ δit +eit

for any 1 ≤ i ≤ N , 1 ≤ t ≤ T . In the fixed effects literature, it is customary to assume large N
and small T , and impose an additive structure on the fixed effects δit, that is, to assume that

δit = αi +εt.

This allows the individual effects αi to be removed via within-sample demeaning or first differ-
encing, and the time effects to be controlled for via time dummies.

However, there are cases in which the additive structure may be inappropriate, and instead an
interactive effects framework, in which the individual/time effects are represented as

δit = λ′
iFt

for an r-dimensional vector λi and Ft, is needed. Note that this specification nests the additive
frameworks, since we need only let

λi =

αi

1

 and Ft =

1
εt


for the additive structure to be represented in terms of interactive effects.
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To illustrate the usefulness of the interactive effects structure, consider, for instance, a panel
model for wages with time-varying prices for the unobserved components. Specifically, suppose
that Yit stands for the wage of individual i with aget, Xit a vector of exogenous variables that
affect the wage Yit, and λi an r-vector of unobserved individual characteristics such as ability
and social awareness. The traditional fixed effects model, in which

Yit =X ′
itβ+λi +eit,

implicitly assumes that the price of each unobserved component in λi does not vary across
cohorts and thus is normalized to 1. However, if the price of each unobserved component varies
across cohorts and is represented in the vector Ft, then the interactive fixed effects framework

Yit =X ′
itβ+λ′

iFt +eit

becomes more appropriate.

Before moving onto estimation, we first organize the model into a vector/matrix form as we did
for the unilevel and multilevel factor models.
Suppose that there are r unobserved factors and k observed exogenous variables, so that λi, Ft

are r-dimensional vectors and Xit, β are k-dimensional.
Defining Xi = (Xi1, · · · ,XiT )′, Yi = (Yi1, · · · ,YiT )′, ei = (ei1, · · · ,eiT )′ and F = (F1, · · · ,FT )′, the
model can be written as

Yi︸︷︷︸
T ×1

= Xi︸︷︷︸
T ×k

· β︸︷︷︸
k×1

+ F︸︷︷︸
T ×r

· λi︸︷︷︸
r×1

+ ei︸︷︷︸
T ×1

.

On the other hand, combining the data by time, so that Yt = (Y1t, · · · ,YNt), Xt = (X1t, · · · ,XNt),
et = (e1t, · · · ,eNt) and Λ = (λ1, · · · ,λN )′, we have

Yt︸︷︷︸
N×1

= Xt︸︷︷︸
N×k

· β︸︷︷︸
k×1

+ Λ︸︷︷︸
N×r

· Ft︸︷︷︸
r×1

+ et︸︷︷︸
N×1

.
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4.2 Estimation of the Interactive Effects Model

The estimators of β, Λ and F are found as the minimizers of the average sum of squared errors

SSR(β,F,Λ) = 1
NT

N∑
i=1

T∑
t=1

(
Yit −X ′

itβ−λ′
iFt
)2

= 1
NT

N∑
i=1

(Yi −Xiβ−Fλi)′(Yi −Xiβ−Fλi)

subject to the normalizations F ′F
T = Ir and diagonal Λ′Λ.

4.2.1 Concentrating out Λ

We first concentrate out Λ; for any 1 ≤ i ≤ N , given β and F the minimizer λi(β,F ) of the
objective function with respect to λi satisfies the f.o.c.

F ′(Yi −Xiβ−Fλi(β,F )) = 0.

Therefore, we have

λi(β,F ) = (F ′F )−1F ′(Yi −Xiβ),

and substituting this into the objective function, we have the concentrated version

V (β,F ) = 1
NT

N∑
i=1

[
Yi −Xiβ−F (F ′F )−1F ′(Yi −Xiβ)

]′ [
Yi −Xiβ−F (F ′F )−1F ′(Yi −Xiβ)

]

= 1
NT

N∑
i=1

(Yi −Xiβ)′MF (Yi −Xiβ),

where MF = IT −F (F ′F )−1F ′ is the residual maker associated with the T × r matrix F . We
define the projection matrix PF = F (F ′F )−1F ′ for later use.
Since MF is symmetric and idempotent, its rank is given by

rank(MF ) = tr(MF ) = T − r.

4.2.2 Estimating β and F

The estimators of β and F are obtained as the minimizers of V (β,F ).
First, assume that F is known. Then, the minimizer β(F ) of V (β,F ) satsifeis the f.o.c.

N∑
i=1

X ′
iMF (Yi −Xi ·β(F )) = 0,

135



so that β(F ) is the least squares estimator

β(F ) =
[

N∑
i=1

X ′
iMFXi

]−1 N∑
i=1

X ′
iMFYi.

On the other hand, if β is known, then defining Wi = Yi −Xiβ and W = (W1, · · · ,WN ), the
objective function can be written as

1
NT

N∑
i=1

W ′
iMFWi = 1

NT
tr(W ′MFW )

= 1
NT

tr(W ′W )− 1
NT

tr(W ′F (F ′F )−1F ′W ).

The minimizer of the above function with respect to F subject to the normalization F ′F
T = Ir is

the solution to the maximization problem

max
F ∈RT ×r

tr(F ′WW ′F )

subject to F ′F

T
= Ir.

We already proved, in our study of unilevel factor models, that tr(F ′WW ′F ) is bounded above
by the sum of the r largest eigenvalues of the positive semidefinite matrix WW ′, and this upper
bound is attained when we set F equal to

√
T times the r orthonormal eigenvectors corresponding

to the r largest eigenvalues of WW ′. Therefore, as is par for the course by now in factor models,
we set

F (β) =
√
T ×Orthonormal eigenvectors of WW ′ corresponding to its r largest eigenvalues .

We also denote by VNT the r×r diagonal matrix collecting the r largest eigenvalues of 1
NT WW ′

as its diagonal elements, as is also customary by now. It follows that( 1
NT

WW ′
)

·F (β) = F (β)VNT ,

and by definition, F (β) can also be characterized as the T × r matrix that satisfies the above
equation along with the normalization F (β)′F (β)

T = Ir.

4.2.3 The Estimators of β,F,Λ

So far, we have derived the estimators of β and F assuming that the other was given. Suppose
that β̂ and F̂ are minimizers of V (β,F ). Then, by definition,

β̂ = β(F̂ ) and F̂ = F (β̂).
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To see why this is the case, suppose that β̂ ̸= β(F̂ ). Then, by the definition of β(F ) for an
arbitrary T × r matrix valued random matrix F , it follows that

V (β̂, F̂ )> V (β(F̂ ), F̂ ),

which contradicts the assumption that β̂ and F̂ minimize V (β,F ).
It follows from a similar line of reasoning that F̂ = F (β̂) must also hold true.
Therefore, β̂ and F̂ must satisfy the nonlinear equations

[
N∑

i=1
X ′

iMF̂Xi

]−1 N∑
i=1

X ′
iMF̂Yi = β̂

(
1
NT

N∑
i=1

(Yi −Xiβ̂)(Yi −Xiβ̂)′
)

· F̂ = F̂ VNT ,

F̂ ′F̂

T
= Ir.

The estimator of each λi is then given as

λ̂i = λi(β̂, F̂ ) = 1
T
F̂ ′(Yi −Xiβ̂)

for every 1 ≤ i≤N .

We have estimated β,F,Λ by first concentrating out Λ, but of course it is possible to concentrate
out F first and then jointly estimate β and Λ. The method chosen in Bai (2009) is because his
primary interest is in the common factors Ft instead of the individual unobserved components
λi.
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4.3 Assumptions and Preliminaries

To establish consistency of the estimators β̂, F̂ above, and later their rates of convergence, we
require the following assumptions. They are mostly the same as the assumptions in Bai (2003)
used to prove the asymptotic properties of the factor and factor loading estimators, along with
some assumptions that takes into consideration the additional term X ′

itβ that is not present in
pure factor models.

To make the proofs as simple as possible, we assume that the idiosyncratic errors are i.i.d. across
both the cross-sectional and time dimensions. The specific assumptions are as follows:

(1) Bounded Moments of Exogenous Variables
We assume that there exists an M <+∞ such that

sup
i∈N+,t∈N+

E|Xit|4 <M.

Since E|Xit|2 ≤
(
E|Xit|4

) 1
2 for any i, t ∈N+ by Jensen’s inequality, we have

sup
i∈N+,t∈N+

E|Xit|2 <M

as well.

(2) Identification of β
Let F ′ be the set of all full rank T × r matrices. For any F ∈ F ′, define

D(F ) = 1
NT

N∑
i=1

X ′
iMFXi − 1

N2T

N∑
i=1

N∑
j=1

X ′
iMFXiaij ,

where

aij = λ0′
i

(
Λ0′Λ0

N

)−1

λ0
j

for any i, j ∈N+.
We assume that, there exists a ρmin > 0 such that the minimum eigenvalue of D(F ) for
any F ∈ F ′ is always greater than or equal to ρmin. This ensures that D(F ) is positive
definite for any F ∈ F ′.
In addition, we assume that the parameter space of β is bounded.
These ensure that the objective function has a unique minimum at the true value β0 of β,
hence the name of the assumption.

(3) Non-triviality of Scaled Factors
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We assume that the r largest eigenvalues of XX ′ are always positive. This implies that
the r largest eigenvalues of XX ′ are always positive, and as such that, when we use the
scaled factors F̂ = 1

NT XX
′F̃ later on, the scaled factors are non-zero, or non-trivial.

(4) Second Moment Convergence of True Factors and Factor Loadings
We assume that {

∣∣F 0
t

∣∣ | t ∈N+} and {
∣∣λ0

i

∣∣ | i ∈N+} are L2-bounded and that

F 0′F 0

T

p→ ΣF and Λ0′Λ0

T
→ ΣΛ

for some positive definite matrices ΣF ,ΣΛ ∈ Rr×r.
The factor loadings λi are also assumed to be stochastic this time around because they
can represent unobserved individual characteristics in the fixed effects model framework.

(5) I.I.D. Idiosyncratic Errors
We assume that the process {eit}i∈N+,t∈N+ is independent and identically distributed with
finite fourth moment

E
[
e4

it

]
= µ4 <+∞.

This implies that the second moment is also finite;

E
[
e2

it

]
= σ2 <+∞.

(6) Independence of Errors
We assume that eit is independent of Xjs,λj ,Fs for any j,s ∈N+.

139



We can consider the following implications of the above assumptions:

• The Rates of Convergence of Xi,Xt

Note that

1
T

∥Xi∥2 ≤ 1
T

T∑
t=1

|Xit|2;

since

E
[

1
T

T∑
t=1

|Xit|2
]

= 1
T

T∑
t=1

E|Xit|2 <M,

it follows that 1
T ∥Xi∥2 is Op(1).

Likewise, 1
N ∥Xt∥2 is also Op(1), and because

1
NT

N∑
i=1

∥Xi∥2 ≤ 1
NT

N∑
i=1

T∑
t=1

|Xit|2,

it follows that 1
NT

∑N
i=1 ∥Xi∥2 =Op(1) as well.

140



• The Rate of Convergence of the Product of Exogenous Variables and Errors

It is also true that

1√
NT

N∑
i=1

X ′
iei =Op(1).

To see this, note that

1√
NT

N∑
i=1

X ′
iei = 1√

NT

N∑
i=1

T∑
t=1

Xiteit,

and recall that

sup
i,t∈N+

E|Xit|2 <M

for some M > 0. Therefore,

E
∣∣∣∣∣ 1√
NT

N∑
i=1

X ′
iei

∣∣∣∣∣
2

= 1
NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
[
eitejsX

′
itXjs

]
= 1
NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E [eitejs]E
[
X ′

itXjs
]

= σ2 1
NT

N∑
i=1

T∑
t=1

E|Xit|2

≤ σ2M,

so that

1√
NT

N∑
i=1

X ′
iei =Op(1).
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• The Rate of Convergence of the Product of Factors and Errors

Let F be the set of all T × r matrices F such that F ′F
T = Ir. Letting F1, · · · ,FT be the

rows of any F ∈ F , we can show that

sup
F ∈F

 1
N

N∑
i=1

∣∣∣∣∣ 1T
T∑

t=1
Fteit

∣∣∣∣∣
2=Op

(
1

min(
√
N,T )

)
,

that is, 1
N

∑N
i=1

∣∣∣ 1
T

∑T
t=1Fteit

∣∣∣2 converges at a uniform rate in F .

We first expand the above term as

1
N

N∑
i=1

∣∣∣∣∣ 1T
T∑

t=1
Fteit

∣∣∣∣∣
2

= 1
NT

N∑
i=1

T∑
t=1

T∑
s=1

eiteisF
′
tFs

= 1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

(eiteis −E [eiteis])F ′
tFs +σ2 · 1

NT 2

N∑
i=1

T∑
t=1

|Ft|2,

where the last term follows because E [eiteis] = 0 if t ̸= s and E [eiteis] = σ2 if t= s.

By the Cauchy-Schwarz inequality, we can see that

1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

(eiteis −E [eiteis])F ′
tFs ≤ 1

NT

T∑
t=1

T∑
s=1

∣∣∣∣∣
N∑

i=1
(eiteis −E [eiteis])

∣∣∣∣∣∣∣F ′
tFs

∣∣
≤ 1
NT 2

 T∑
t=1

T∑
s=1

∣∣∣∣∣
N∑

i=1
(eiteis −E [eiteis])

∣∣∣∣∣
2

1
2

·
[

T∑
t=1

T∑
s=1

∣∣F ′
tFs

∣∣2] 1
2

= 1√
N

(
1
T

T∑
t=1

|Ft|2
) 1

T 2

T∑
t=1

T∑
s=1

∣∣∣∣∣ 1√
N

N∑
i=1

(eiteis −E [eiteis])
∣∣∣∣∣
2

1
2

= r√
N

 1
T 2

T∑
t=1

T∑
s=1

∣∣∣∣∣ 1√
N

N∑
i=1

(eiteis −E [eiteis])
∣∣∣∣∣
2

1
2

,

since

1
T

T∑
t=1

|Ft|2 = tr
(
F ′F

T

)
= r.

We will show below that there exists an M <+∞ such that

E
∣∣∣∣∣ 1√
N

N∑
i=1

(eiteis −E [eiteis])
∣∣∣∣∣
2

<M
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for any t,s ∈N+; it follows that

E

 1
T 2

T∑
t=1

T∑
s=1

∣∣∣∣∣ 1√
N

N∑
i=1

(eiteis −E [eiteis])
∣∣∣∣∣
2<M

as well, which implies that

1
NT 2

N∑
i=1

T∑
t=1

T∑
s=1

(eiteis −E [eiteis])F ′
tFs ≤ r√

N
Op(1).

The second term can be written as

σ2 · 1
NT 2

N∑
i=1

T∑
t=1

|Ft|2 = σ2 · r
T
.

Taken together, we have

1
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1
2

,

where the last term is Op(1). Since none of the terms on the right hand side depend on
F , it follows that

sup
F ∈F

 1
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N∑
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,

and as such
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 1
N

N∑
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.

To show that 1
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0
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∣∣∣2 = op(1), we need only note that
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• The Rate of Convergence of the Product of Common Component and Errors

We now investigate the rate of convergence of

1√
NT

N∑
i=1

T∑
t=1

λ0′
i F

0
t eit.

To do so, recall that we assumed {
∣∣F 0

t

∣∣ | t ∈ N+} and {
∣∣λ0

i

∣∣ | i ∈ N+} are L2-bounded, so
that there exists an M <+∞ such that

sup
t∈N+

E
∣∣∣F 0

t

∣∣∣2, sup
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E
∣∣∣λ0

i

∣∣∣2 <M.

It then follows that
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E
[
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i F
0
t F

0′
t λi
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≤ σ2 · 1
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(
E
∣∣∣F 0′

t

∣∣∣2) 1
2
(
E
∣∣∣λ0

i

∣∣∣2) 1
2

(Hölder’s inequality)

≤ σ2M,

so that

1√
NT

N∑
i=1

T∑
t=1

λ0′
i F

0
t eit =Op(1).

144



• Rate of Convergnece of the Product of Factor Loadings and Errors

Here we study the rate of convergence of

1√
NT

N∑
i=1

∥∥∥eiλ
0′
i

∥∥∥.
To do so, let λ0

ik be the kth element of λ0
i for 1 ≤ k ≤ r, so that

∥∥∥eiλ
0′
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∥∥∥=

∥∥∥∥∥∥∥∥∥
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0
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... . . . ...
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0
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0
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
∥∥∥∥∥∥∥∥∥≤
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∣∣∣eitλ
0
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∣∣∣.

It follows that
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∥∥∥≤ 1√
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∣∣∣eitλ
0
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∣∣∣.
Recall that

sup
i∈N+

E
∣∣∣λ0

i

∣∣∣2 <M

for some M <+∞. Now we have

E
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t=1

∣∣∣eitλ
0
ik

∣∣∣∣∣∣∣∣
2

= 1
NT

N∑
i=1

N∑
j=1

r∑
k=1

r∑
l=1

T∑
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0
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r∑
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E
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0
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T∑
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E
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∣∣∣2 (Hölder’s inequality)

≤ σ2M · 1
NT

NT · r2 = σ2Mr2,

which implies that

1√
NT

N∑
i=1
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k=1

T∑
t=1

∣∣∣eitλ
0
ik

∣∣∣=Op(1)

and therefore that

1√
NT

N∑
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∥∥∥eiλ
0′
i
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• Rate of Convergence of Squared Errors

We will investigate the rate of convergence of

1
NT

N∑
i=1

T∑
t=1

e2
it;

since

E
∣∣∣∣∣ 1
NT

N∑
i=1

T∑
t=1

e2
it

∣∣∣∣∣= σ2,

1
NT

∑N
i=1
∑T

t=1 e
2
it =Op(1).

• The Rate of Convergence of Error Cross Products
For any t,s ∈N+, note that

E
∣∣∣∣∣ 1√
N

N∑
i=1

(eiteis −E [eiteis])
∣∣∣∣∣
2

= 1
N

N∑
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N∑
j=1

Cov(eiteis,ejtejs)

= 1
N

N∑
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E
[
(eiteis −E [eiteis])2

]

=

σ
4 if t ̸= s

µ4 −σ4 if t= s
<+∞.

Therefore, there exists an M <+∞ such that

E
∣∣∣∣∣ 1√
N

N∑
i=1

(eiteis −E [eiteis])
∣∣∣∣∣
2

<M

for any t,s ∈N+.
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• The Rates of Convergence of the Covariance of Error Cross Products
Choose any t,s ∈N+ and i, j,k, l ∈N+. Then, we can consider the following cases:

(1) t= s

In this case,

Cov(eitejt,eks,els) = E [eitejtektelt]−E [eitejt] ·E [ektelt]

=


µ4 −σ4 if i= j = k = l

σ4 if i= k ̸= j = l or i= l ̸= j = k

0 otherwise

.

(2) t ̸= s

In this case,

Cov(eitejt,eks,els) = E [eitejt] ·E [eksels]−E [eitejt] ·E [eksels] = 0

for any i, j,k, l.

Therefore, we can see that

∑
1≤t,s≤T

∑
1≤i,j,k,l≤N

|Cov(eitejt,eks,els)| ≤ T (N |µ4 −σ4|+2N(N −1)σ4).

By implication,

1
TN2

∑
1≤t,s≤T

∑
1≤i,j,k,l≤N

|Cov(eitejt,eks,els)| → 2σ4

as N,T → ∞, meaning that the sequence

{ 1
TN2

∑
1≤t,s≤T

∑
1≤i,j,k,l≤N

|Cov(eitejt,eks,els)|}N,T ∈N+

is bounded.

By a symmetric argument, it follows that the sequence

{ 1
NT 2

∑
1≤i,j≤N

∑
1≤t,s,u,v≤T

|Cov(eiteis,ejuejv)|}N,T ∈N+

is also bounded.
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4.4 Consistency of the Least Squares Estimators of β,F

4.4.1 Preliminary Results

As before, let F be the set of all T × r matrices F such that F ′F
T = Ir. Then, we can show the

following:

• supF ∈F

∣∣∣ 1
NT

∑N
i=1X

′
iMF ei

∣∣∣= op(1)

Note that, for any F ∈ F with rows F1, · · · ,FT , we can decompose the above expression as

1
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X ′
iMF ei = 1
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N∑
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NT 2

N∑
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where we used the fact that

F (F ′F )−1F ′ = 1
T
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Focusing on the second term, we have∣∣∣∣∣ 1
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∥∥ ·
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≤ ∥F∥ 1

NT 2

(
N∑

i=1
∥Xi∥2

) 1
2

·

 N∑
i=1

∣∣∣∣∣
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t=1
Fteit

∣∣∣∣∣
2

1
2

= 1√
T

∥F∥ ·
(

1
NT

N∑
i=1

∥Xi∥2
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·
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≤
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2
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where we used the Cauchy-Schwarz inequality and the fact that

1√
T

∥F∥ ≤
[
tr
(
F ′F

T

)] 1
2

=
√
r.

Therefore,
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We proved above that

1√
NT

N∑
i=1

X ′
iMF ei =Op(1),

1
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N∑
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∥Xi∥2 =Op(1)
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so
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• supF ∈F

∣∣∣ 1
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0′F 0′MF ei

∣∣∣= op(1)

As above, note that
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NT

N∑
i=1

λ′
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for any F ∈ F with rows F1, · · · ,FT .
The second term can further be majorized as∣∣∣∣∣ 1
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Therefore, we have
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We assumed and proved above that

1√
NT

N∑
i=1

λ′
iF

0′ei =Op(1)

Λ0′Λ0

N
=Op(1)

sup
F ∈F

1
N

N∑
i=1

∣∣∣∣∣
T∑

t=1
Fteit

∣∣∣∣∣
2

=Op

(
1

min(
√
N,T )

)
,

so we can conclude that
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• supF ∈F

∣∣∣ 1
NT

∑N
i=1 e

′
iPF ei

∣∣∣
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and because the term on the right is op(1), so is

sup
F ∈F

∣∣∣∣∣ 1
NT

N∑
i=1

e′
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4.4.2 Convergence of the Objective Function

Let B ⊂ Rk be the parameter space for β.
Recall that (β̂, F̂ ) is a point in the parameter space B×F that minimizes the objective function

V (β,F ) = 1
NT

N∑
i=1

(Yi −Xiβ)′MF (Yi −Xiβ).

Since 1
NT

∑N
i=1 e

′
iMF 0ei is a term that does not depend on β,F , we can also say that (β̂, F̂ )

minimizes the function
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N∑
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N∑
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N∑
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iMF 0ei.

We call S(β,F ) the ”centered” objective function.

For any 1 ≤ i≤N ,

Yi =Xiβ
0 +F 0λ0

i +ei,

so we can decompose the centered SSR S(β,F ) as
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S(β,F ) can now be expressed as

S(β,F ) = S̃(β,F )+2(β−β0)′ 1
NT
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+2 1
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0′MF ei + 1
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By assumption, the parameter space B of β is bounded; that is, there exists an M <+∞ such
that, for any β ∈ B, |β|<M .

From the preliminary results, we can see that
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where the first term is Op(1) and the latter op(1).
Therefore,
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4.4.3 The Identification Condition for β and F 0

We now show that the uniform convergence of the objective function defined above implies that
β̂ converges to β. As with the usual consistency result for extremum estimators, we must first
show that the true parameters are the unique minimizers of the objective function, in this case
S̃(β,F ).

It is clear that, for any r× r nonsingular matrix valued H, because

F 0H(H ′F 0′F 0H)−1H ′F 0′ = F 0(F 0′F 0)−1F 0′,

we have MF 0 =MF 0H and thus

S̃(β0,F 0H) = tr
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0′MF 0F 0

T

)
= 0,

since MF 0F 0 =O.

We can also show the converse, namely that

S̃(β,F ) = 0

implies that β = β0 and F = F 0H for some nonsingular r× r random matrix H.
To this end, note that

tr
(

Λ0′Λ0

N
· F

0′MFF
0

T

)
= 1
NT

N∑
i=1

λ0′
i F

0′MFF
0λ0

i

= 1
NT

N∑
i=1

vec
(
MFF

0λ0
i

)′
vec

(
MFF

0λ0
i

)

= 1
NT

N∑
i=1

vec
(
MFF

0
)′(

λ0
i

⊗
IT

)(
λ0′

i

⊗
IT

)
vec

(
MFF

0
)

= vec
(
MFF

0
)′
[

1
NT

N∑
i=1

(
λ0

iλ
0′
i

⊗
IT

)]
vec

(
MFF

0
)

= vec
(
MFF

0
)′
(

Λ0′Λ0

NT

⊗
IT

)
vec

(
MFF

0
)

and

1
NT

N∑
i=1

X ′
iMFF

0λ0
i = 1

NT

N∑
i=1

vec
(
X ′

iM
′
F ·MFF

0λ0
i

)

=
[

1
NT

N∑
i=1

(
λ0′

i

⊗
X ′

iM
′
F

)]
vec

(
MFF

0
)
,
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defining

A= 1
NT

N∑
i=1

X ′
iMFXi

B = Λ0′Λ0

NT

⊗
IT

C = 1
NT

N∑
i=1

(
λ0

i

⊗
MFXi

)
η = vec

(
MFF

0
)
,

we can express S̃(β,F ) as

S̃(β,F ) = (β−β0)′A(β−β0)+η′Bη+2(β−β0)′C ′η.

The first two terms are immediately recognizable as squares of (β−β0) and η, so letting X and
Y satisfy

S̃(β,F ) = [η+X]′B [η+X]+ (β−β0)′(A+Y )(β−β0)

= (β−β0)′A(β−β0)+η′Bη+2(β−β0)′C ′η,

we can see that X ′Bη = (β−β0)′C ′η, so that

X =B−1C(β−β0),

and since

X ′BX+(β−β0)′Y (β−β0) = (β−β0)′
[
C ′B−1C+Y

]
(β−β0) = 0,

we finally have

S̃(β,F ) =
[
η+B−1C(β−β0)

]′
B
[
η+B−1C(β−β0)

]
+(β−β0)′(A−C ′B−1C)(β−β0).

Expanding terms, A−C ′B−1C is revealed to be

A−C ′B−1C = 1
NT

N∑
i=1

X ′
iMFXi −T

[
1
NT

N∑
i=1

(
λ0

i

⊗
MFXi

)]′(Λ0′Λ0

N

)−1⊗
IT

[ 1
NT

N∑
i=1

(
λ0

i

⊗
MFXi

)]

= 1
NT

N∑
i=1

X ′
iMFXi − 1

N2T

N∑
i=1

N∑
j=1

λ0′
i

(
Λ0′Λ0

N

)−1

λ0
j

⊗
X ′

iMFXi


= 1
NT

N∑
i=1

X ′
iMFXi − 1

N2T

N∑
i=1

N∑
j=1

X ′
iMFXiaij

=D(F ),
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where aij = λ0′
i

(
Λ0′Λ0

N

)−1
λ0

j as defined in assumption 1.
Therefore,

S̃(β,F ) = (β−β0)′D(F )(β−β0)+
[
η+B−1C(β−β0)

]′
B
[
η+B−1C(β−β0)

]
,

and because D(F ) and B are both positive definite for any F ∈ F ′,

S̃(β,F ) ≥ 0,

where equality holds if and only if β = β0 and η =B−1C(β−β0) = 0.

Suppose that S̃(β,F ) = 0. Then, by the statement shown above, β = β0. This implies that η= 0
and thus

MFF
0 = F 0 −F (F ′F )−1F ′F 0 =O;

because F ′F
T = Ir, F is of full rank r and thus F ′F 0 is nonsingular. This implies that

F = F 0(F ′F 0)−1F ′F = F 0H,

where H = (F ′F 0)−1F ′F is a nonsingular r× r random matrix.

We have thus shown that

S̃(β,F ) ≥ 0

for any (β,F ) ∈ B×F ′, and that

S̃(β,F ) = 0

if and only if β = β0 and there exists a nonsingular r× r random matrix such that F = F 0H.
This means that S̃(β,F ) is minimized precisely at β0 and rotations F 0H of the true factors F 0.
This proves that S̃(β,F ) satisfies the identification condition for extremum estimation.
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4.4.4 Consistency of β̂

Given the uniform convergence of the centered objective function and the identification condi-
tion above, we can prove that β̂ is consistent for β0.

We currently have the following conditions:

• (Extremum Estimator) (β̂, F̂ ) is a minimizer of S(β,F ) on B×F ′

• (Identification Condition) For any r× r nonsingular H, (β0,F 0H) is the unique mini-
mizer of S̃(β,F ) on B×F ′

• (Convergence of Centered Objective Function) S(β,F ) converges uniformly in prob-
ability to S̃(β,F ) on B×F , that is,

sup
β∈B,F ∈F

∣∣∣S(β,F )− S̃(β,F )
∣∣∣= op(1).

We now utilize all three conditions above to show that β̂ is consistent for β0. We proceed in
steps to emphasize the role of each condition in the proof:

Step 1: Using the Identification Condition

Choose any δ > 0, and suppose that
∣∣∣β̂−β0

∣∣∣> δ.

for some β ∈ B. Then, because β̂ ̸= β0 and S̃(β,F ) is uniquely minimized at β0,F 0H, we can
see that

S̃(β̂, F̂ )> S̃(β0,F 0) = 0.

To procure a specific positive lower bound for S̃(β̂, F̂ ) that depends on δ, we note that

S̃(β̂, F̂ ) ≥ (β̂−β0)′D(F̂ )(β̂−β0)

=
∣∣∣β̂−β0

∣∣∣2 ·

 β̂−β0∣∣∣β̂−β0
∣∣∣
′

D(F̂ )

 β̂−β0∣∣∣β̂−β0
∣∣∣


≥
∣∣∣β̂−β0

∣∣∣2 ·ρmin > δ2 ·ρmin > 0,

where ρmin > 0 was defined as the minimum possible eigenvalue of D(F ) for any F ∈ F ′.
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Therefore, for any δ > 0,

{
∣∣∣β̂−β0

∣∣∣> δ} ⊂ {S̃(β̂, F̂ )> δ2 ·ρmin}.

Step 2: Using the Extremum Property of the Estimators

We can easily see that

{S̃(β̂, F̂ )> δ2 ·ρmin} ⊂
{
S̃(β̂, F̂ )−S(β̂, F̂ )> δ2 ·ρmin

2

}
∪
{
S(β̂, F̂ )> δ2 ·ρmin

2

}
.

Note that, because

S(β0,F 0) = 1
NT

N∑
i=1

(Yi −Xiβ
0)′MF 0(Yi −Xiβ

0)− 1
NT

N∑
i=1

e′
iMF 0ei

= 1
NT

N∑
i=1

(F 0λ0
i +ei)′MF 0(F 0λ0

i +ei)− 1
NT

N∑
i=1

e′
iMF 0ei = 0

and (β̂, F̂ ) minimizes S(β,F ) on B×F ′,

S(β̂, F̂ ) ≤ S(β0,F 0) = 0,

meaning that

{
S(β̂, F̂ )> δ2 ·ρmin

2

}
= ∅.

Step 3: Using the Uniform Convergence Result

On the other hand, because β̂ ∈ B and F̂ ∈ F ,
∣∣∣S(β̂, F̂ )− S̃(β̂, F̂ )

∣∣∣≤ sup
β∈B,F ∈F

∣∣∣S(β,F )− S̃(β,F )
∣∣∣,

which implies that
∣∣∣S(β̂, F̂ )− S̃(β̂, F̂ )

∣∣∣= op(1).

By definition, this means that

P
(∣∣∣S̃(β̂, F̂ )−S(β̂, F̂ )

∣∣∣> δ2 ·ρmin
2

)
→ 0

as N,T → ∞.
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Putting all the results above together, we can see that

P
(∣∣∣β̂−β0

∣∣∣> δ
)

≤ P
(
S̃(β̂, F̂ )> δ2 ·ρmin

)
≤ P

(
S̃(β̂, F̂ )−S(β̂, F̂ )> δ2 ·ρmin

2

)
+P

(
S(β̂, F̂ )> δ2 ·ρmin

2

)

≤ P
(
S̃(β̂, F̂ )−S(β̂, F̂ )> δ2 ·ρmin

2

)
→ 0

as N,T → ∞. This holds for any δ > 0, so by definition,

β̂
p→ β0.
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4.4.5 Convergence of PF̂

As we have seen multiple times during our study of unilevel and multilevel factor models, be-
cause the dimension of F̂ increases to infinity as T → ∞, we cannot establish the consistency of
F̂ through traditional means. Here we establish the convergence of the norm of the difference
of the projection matrices PF̂ and PF 0 ; in the next section, we will establish the consistency of
F̂ akin to that proved in Bai and Ng (2002) and Bai (2003).

First recall that

S(β̂, F̂ ) ≤ S(β0,F 0) = 0,

which we showed above. We also saw that

S(β̂, F̂ )− S̃(β̂, F̂ ) = op(1),

where

S̃(β̂, F̂ ) ≥ S̃(β0,F 0) = 0

by the identification condition. These three results imply that, for any ε > 0,

P
(∣∣∣S̃(β̂, F̂ )

∣∣∣> ε
)

= P
(
S̃(β̂, F̂ )> ε

)
≤ P

(
S̃(β̂, F̂ )−S(β̂, F̂ )> ε

2

)
+P

(
S(β̂, F̂ )> ε

2

)
≤ P

(∣∣∣S̃(β̂, F̂ )−S(β̂, F̂ )
∣∣∣> ε

2

)
→ 0

as N,T → ∞. It follows that

S̃(β̂, F̂ ) = op(1).

By definition,

S̃(β̂, F̂ ) = (β̂−β0)′
(

1
NT

N∑
i=1

X ′
iMF̂Xi

)
(β̂−β0)

+tr
(

Λ0′Λ0

N

F 0′MF̂F
0

T

)
+2(β̂−β0)′ 1

NT

N∑
i=1

X ′
iMF̂F

0λ0
i .

We can easily show that

1
NT

N∑
i=1

X ′
iMF̂Xi and 1

NT

N∑
i=1

X ′
iMF̂F

0λ0
i
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are Op(1); since β̂−β0 = op(1) by the previous consistency result, we have

tr
(

Λ0′Λ0

N

F 0′MF̂F
0

T

)
= S̃(β̂, F̂ )− (β̂−β0)′

(
1
NT

N∑
i=1

X ′
iMF̂Xi

)
(β̂−β0)

−2(β̂−β0)′ 1
NT

N∑
i=1

X ′
iMF̂F

0λ0
i

= op(1).

The matrix Λ0′Λ0

N converges to ΣΛ, a nonsingular matrix, so it is Op(1) but not op(1). Therefore,
it must be the case that

F 0′MF̂F
0

T
= F 0′F 0

T
− F 0′F̂ F̂F 0

T 2 = op(1).

By assumption, F 0′F 0

T

p→ ΣF , an r× r matrix of full rank, so the above implies that

F 0′F̂ F̂F 0

T 2
p→ ΣF

as well.
Now we have

∥∥PF̂ −PF 0
∥∥2 ≤ tr

(
(PF̂ −PF 0)2

)
= tr

(
PF̂ +PF 0

)
−2tr

(
F̂ ′PF 0F̂

T

)

= 2r−2tr

 F̂ ′F 0

T

(
F 0′F 0

T

)−1
F 0′F̂

T


= 2r−2tr

(F 0′F 0

T

)−1
F 0′F̂ F̂ ′F 0

T 2


p→ 2r−2tr(Σ−1

F ΣF ) = 0.
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4.5 The Rate of Convergence of β̂

In the last section we proved that the least squares estimator β̂ is consistent for the true coeffi-
cients β0, and that the projectio matrix PF̂ is consistent for PF 0 . We are now in a position to
investigate the rate at which these estimators converge. The process is long and arduous, so we
proceed in small steps.

4.5.1 The Convergence of VNT and Consistency of F

Recall that the least squares estimators β̂ and F̂ are characterized by the equations

[
N∑

i=1
X ′

iMF̂Xi

]−1 N∑
i=1

X ′
iMF̂Yi = β̂

(
1
NT

N∑
i=1

(Yi −Xiβ̂)(Yi −Xiβ̂)′
)
F̂ = F̂ VNT

and F̂ ′F̂
T = Ir. Using the fact that

Yi −Xiβ̂ =Xi(β0 − β̂)+F 0λ0
i +ei

for any 1 ≤ i≤N , we can expand the second equation as follows:

F̂ VNT =
(

1
NT

N∑
i=1

(Yi −Xiβ̂)(Yi −Xiβ̂)′
)
F̂

=
[

1
NT

N∑
i=1

(Xi(β0 − β̂)+F 0λ0
i +ei)(Xi(β0 − β̂)+F 0λ0

i +ei)′
]
F̂

= 1
NT

N∑
i=1

Xi(β0 − β̂)(β0 − β̂)′XiF̂︸ ︷︷ ︸
I1

+ 1
NT

N∑
i=1

Xi(β0 − β̂)λ0′
i F

0′F̂︸ ︷︷ ︸
I2

+ 1
NT

N∑
i=1

Xi(β0 − β̂)e′
iF̂︸ ︷︷ ︸

I3

+ 1
NT

N∑
i=1

ei(β0 − β̂)′X ′
iF̂︸ ︷︷ ︸

I4

+ 1
NT

N∑
i=1

eiλ
0′
i F

0′F̂︸ ︷︷ ︸
I5

+ 1
NT

N∑
i=1

eie
′
iF̂︸ ︷︷ ︸

I6

+ 1
NT

N∑
i=1

F 0λ0
i (β0 − β̂)′X ′

iF̂︸ ︷︷ ︸
I7

+ 1
NT

N∑
i=1

F 0λ0
i e

′
iF̂︸ ︷︷ ︸

I8

+ 1
NT

N∑
i=1

F 0λ0
iλ

0′
i F

0′F̂ .

The last term on the right hand side can be written as

1
NT

N∑
i=1

F 0λ0
iλ

0′
i F

0′F̂ = F 0
(

1
N

N∑
i=1

λ0
iλ

0′
i

)
F 0′F̂

T

= F 0
(

Λ0′Λ0

N

)(
F 0′F̂

T

)
,
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so we can see that

F̂ VNT −F 0
(

Λ0′Λ0

N

)(
F 0′F̂

T

)
= I1+ ·+ I8.

We now investigate the rate of convergence of each of the terms I1, · · · , I8.

• 1√
T
I1

Note that
∥∥∥∥ 1√

T
I1
∥∥∥∥=

∥∥∥∥∥ 1
NT 3/2

N∑
i=1

Xi(β0 − β̂)(β0 − β̂)′XiF̂

∥∥∥∥∥
≤
(

1
NT

N∑
i=1

∥Xi∥2
)∣∣∣β0 − β̂

∣∣∣2 1√
T

∥∥∥F̂∥∥∥.
Since 1

NT

∑N
i=1 ∥Xi∥2 =Op(1) and

1√
T

∥∥∥F̂∥∥∥≤
[
tr
(
F̂ ′F̂

T

)] 1
2

=
√
r,

we can see that

1√
T
I1 =Op

(∣∣∣β0 − β̂
∣∣∣2)= op

(∣∣∣β0 − β̂
∣∣∣) ,

where the last equality follows because
∣∣∣β0 − β̂

∣∣∣= op(1).

• 1√
T
I2

We can see that

∥∥∥∥ 1√
T
I2
∥∥∥∥=

∥∥∥∥∥ 1
NT 3/2

N∑
i=1

Xi(β0 − β̂)λ0′
i F

0′F̂

∥∥∥∥∥
≤
(

1
NT

N∑
i=1

∥Xi∥2
) 1

2
(

1
N

N∑
i=1

∣∣∣λ0
i

∣∣∣2)
1
2 ∣∣∣β0 − β̂

∣∣∣F 0′F̂

T

by the Cauchy-Schwarz inequality. All terms except
∣∣∣β0 − β̂

∣∣∣ on the right hand side are
Op(1), so

1√
T
I2 =Op

(∣∣∣β0 − β̂
∣∣∣) .

• 1√
T
I3
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As above, we have

∥∥∥∥ 1√
T
I3
∥∥∥∥=

∥∥∥∥∥ 1
NT 3/2

N∑
i=1

Xi(β0 − β̂)e′
iF̂

∥∥∥∥∥
≤
(

1
NT

N∑
i=1

∥Xi∥2
) 1

2
(

1
NT

N∑
i=1

|ei|2
) 1

2 ∣∣∣β0 − β̂
∣∣∣ · 1√

T
F̂ .

Again, every term except
∣∣∣β0 − β̂

∣∣∣ on the right hand side are Op(1), which means that

1√
T
I3 =Op

(∣∣∣β0 − β̂
∣∣∣) .

• 1√
T
I4

As should be familiar by now,

∥∥∥∥ 1√
T
I4
∥∥∥∥=

∥∥∥∥∥ 1
NT 3/2

N∑
i=1

ei(β0 − β̂)′X ′
iF̂

∥∥∥∥∥
≤
(

1
NT

N∑
i=1

∥Xi∥2
) 1

2
(

1
NT

N∑
i=1

|ei|2
) 1

2 ∣∣∣β0 − β̂
∣∣∣ · 1√

T
F̂ .

The term on the right hand side is exactly the same as the one appearing in the case of
I3, so

1√
T
I4 =Op

(∣∣∣β0 − β̂
∣∣∣) .

• 1√
T
I7

Finally, we can see that

∥∥∥∥ 1√
T
I7
∥∥∥∥=

∥∥∥∥∥ 1
NT 3/2

N∑
i=1

F 0λ0
i (β0 − β̂)′X ′

iF̂

∥∥∥∥∥
≤
(

1
NT

N∑
i=1

∥Xi∥2
) 1

2
(

1
N

N∑
i=1

∣∣∣λ0
i

∣∣∣2)
1
2 ∣∣∣β0 − β̂

∣∣∣ · 1√
T

∥∥∥F̂∥∥∥ · 1√
T

∥∥∥F 0
∥∥∥.

The term on the right hand side is almost exactly the same as the one appearing in the
case of I2, so

1√
T
I7 =Op

(∣∣∣β0 − β̂
∣∣∣) .
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• 1√
T
I5

This time, we follow the same process as in Bai and Ng (2002). Note that

∥∥∥∥ 1√
T
I5
∥∥∥∥=

∥∥∥∥∥ 1
NT 3/2

N∑
i=1

eiλ
0′
i F

0′F̂

∥∥∥∥∥
≤ 1√

N

(
1√
NT

N∑
i=1

∥∥∥eiλ
0′
i

∥∥∥) ·
∥∥∥∥∥F 0′F̂

T

∥∥∥∥∥.
Since

F 0′F̂

T
=Op(1), 1√

NT

N∑
i=1

∥∥∥eiλ
0′
i

∥∥∥=Op(1),

we can see that

1√
T
I5 =Op

( 1√
N

)
.

• 1√
T
I8

The exposition for this term follows that of the above term almost exactly.

∥∥∥∥ 1√
T
I8
∥∥∥∥=

∥∥∥∥∥ 1
NT 3/2

N∑
i=1

F 0λ0
i e

′
iF̂

∥∥∥∥∥
≤ 1√

T

∥∥∥F 0
∥∥∥ · 1√

T

∥∥∥F̂∥∥∥ ·
(

1√
NT

N∑
i=1

∥∥∥λ0
i e

′
i

∥∥∥) · 1√
N
,

so as above,

1√
T
I8 =Op

( 1√
N

)
.

• 1√
T
I6

We now move onto our final and most troublesome term. Note that

∥∥∥∥ 1√
T
I6
∥∥∥∥=

∥∥∥∥∥ 1
NT 3/2

N∑
i=1

eie
′
iF̂

∥∥∥∥∥
=
∥∥∥∥∥ 1
NT 3/2

N∑
i=1

T∑
t=1

eieitF̂
′
t

∥∥∥∥∥
≤
∥∥∥∥∥ 1
NT 3/2

N∑
i=1

T∑
t=1

(eieit −E [eieit]) F̂ ′
t

∥∥∥∥∥+
∥∥∥∥∥ 1
NT 3/2

N∑
i=1

T∑
t=1

E [eieit] · F̂ ′
t

∥∥∥∥∥.
We study each term in turn.
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By the Cauchy-Schwarz inequality,∥∥∥∥∥ 1
NT 3/2

N∑
i=1

T∑
t=1

(eieit −E [eieit]) F̂ ′
t

∥∥∥∥∥≤ 1
NT 3/2

T∑
t=1

∣∣∣∣∣
N∑

i=1
(eieit −E [eieit])

∣∣∣∣∣∣∣∣F̂ ′
t

∣∣∣
≤ 1√

N

 1
NT 2

T∑
t=1

∣∣∣∣∣
N∑

i=1
(eieit −E [eieit])

∣∣∣∣∣
2

1
2 (

1
T

T∑
t=1

∣∣∣F̂t

∣∣∣2)
1
2

.

Since

N∑
i=1

(eieit −E [eieit]) =


∑N

i=1(ei1eit −E [ei1eit])
...∑N

i=1(eiT eit −E [eiT eit])

 ,

we have

1
NT 2

T∑
t=1

∣∣∣∣∣
N∑

i=1
(eieit −E [eieit])

∣∣∣∣∣
2

= 1
T 2

T∑
t=1

T∑
s=1

∣∣∣∣∣ 1√
N

N∑
i=1

(eiseit −E [eiseit])
∣∣∣∣∣
2

.

We showed above that there exists an M <+∞ such that

E
∣∣∣∣∣ 1√
N

N∑
i=1

(eiseit −E [eiseit])
∣∣∣∣∣
2

<M

for any t,s ∈N+; it follows that

E

 1
NT 2

T∑
t=1

∣∣∣∣∣
N∑

i=1
(eieit −E [eieit])

∣∣∣∣∣
2= 1

T 2

T∑
t=1

T∑
s=1

E
∣∣∣∣∣ 1√
N

N∑
i=1

(eiseit −E [eiseit])
∣∣∣∣∣
2

<M

for any N,T ∈N+, so that

1
NT 2

T∑
t=1

∣∣∣∣∣
N∑

i=1
(eieit −E [eieit])

∣∣∣∣∣
2

=Op(1).

Therefore,

∥∥∥∥∥ 1
NT 3/2

N∑
i=1

T∑
t=1

(eieit −E [eieit]) F̂ ′
t

∥∥∥∥∥≤ 1√
N
Op(1) · tr

(
F̂ ′F̂

T

) 1
2

= 1√
N
Op(1)

√
r.

As for the second term, we can see that

∥∥∥∥∥ 1
NT 3/2

N∑
i=1

T∑
t=1

E [eieit] F̂ ′
t

∥∥∥∥∥≤ 1√
T

·

 1
N2T

T∑
t=1

∣∣∣∣∣
N∑

i=1
E [eieit]

∣∣∣∣∣
2

1
2 (

1
T

T∑
t=1

∣∣∣F̂t

∣∣∣2)
1
2
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by applying the Cauchy=Schwarz inequality in the same manner as above. Since

N∑
i=1

E [eieit] =


∑N

i=1E [ei1eit]
...∑N

i=1E [eiT eit]

 ,

by the definition of the euclidean metric we have

1
N2T

T∑
t=1

∣∣∣∣∣
N∑

i=1
E [eieit]

∣∣∣∣∣
2

= 1
N2T

T∑
t=1

T∑
s=1

∣∣∣∣∣
N∑

i=1
E [eiseit]

∣∣∣∣∣
2

= 1
N2T

T∑
t=1

∣∣∣∣∣
N∑

i=1
E
[
e2

it

]∣∣∣∣∣
2

= 1
N2T

σ2(N2T ) = σ2.

Therefore,

∥∥∥∥∥ 1
NT 3/2

N∑
i=1

T∑
t=1

E [eieit] F̂ ′
t

∥∥∥∥∥≤ σ2
√
T

· tr
(
F̂ ′F̂

T

) 1
2

= σ2√
r√
T
.

Putting the results together,
∥∥∥∥ 1√

T
I6
∥∥∥∥≤ 1√

N
Op(1)

√
r+ σ2√

r√
T
,

so that

1√
T
I6 =Op

(
1

min(
√
N,

√
T )

)
.
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We have seen above that 1√
T

times I1, · · · , I4, I7 are all Op

(∣∣∣β0 − β̂
∣∣∣), and that 1√

T
times the

terms I5, I6, I8 are Op

(
1

min(
√

N,
√

T )

)
. Therefore,

1√
T

(I1+ · · ·+ I8) =Op

(∣∣∣β0 − β̂
∣∣∣)+Op

(
1

min(
√
N,

√
T )

)
,

and because
∣∣∣β0 − β̂

∣∣∣, 1
min(

√
N,

√
T ) are op(1), it follows that 1√

T
(I1+ · · ·+ I8) = op(1) as well.

The Probability Limit of VNT

We now assume, as in our study of the unilevel factor model, that there exists a nonsingular
r× r matrix Q such that

F 0′F̂

T

p→Q.

This assumption is for the sake of simplifying the proofs.

Since

F̂ VNT −F 0
(

Λ0′Λ0

N

)(
F 0′F̂

T

)
= I1+ ·+ I8,

premultiplying both sides by F̂ ′
√

T
and using the fact that F̂ ′F̂

T = Ir implies that

VNT − F̂ ′F 0

T

(
Λ0′Λ0

N

)
F 0′F̂

T
= op(1).

Because

F̂ ′F 0

T

(
Λ0′Λ0

N

)
F 0′F̃

T

p→Q′ΣΛQ,

it follows that

VNT
p→ V =Q′ΣΛQ,

where V is positive definite because Q has full rank and ΣΛ is positive definite, and is diagonal
because VNT is diagonal for any N,T . In addition, the diagonal entries of V are ordered because
the diagonal entries of VNT are ordered.
By the continuous mapping theorem,

V −1
NT

p→ V −1.
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To derive the specific form of V , we proceed as follows.
Premultiplying both sides of the equation above by F 0′

√
T

=Op(1) yields the equation

F 0′F̂

T
VNT −

(
F 0′F 0

T

)(
Λ0′Λ0

N

)
F 0′F̃

T
= op(1).

From our assumptions, we have[(
F 0′F 0

T

)(
Λ0′Λ0

N

)]
F 0′F̂

T

p→ ΣF ΣΛQ,

or equivalently, [(
F 0′F 0

T

)(
Λ0′Λ0

N

)]
F 0′F̂

T
−ΣF ΣΛQ= op(1).

Likewise, we have

F 0′F̂

T
VNT −QV = op(1).

By implication,

ΣF ΣΛQ−QV = op(1),

and because the left hand side is deterministic, this means

ΣF ΣΛQ−QV =O.

By definition, V is a diagonal matrix with diagonal entries equal to the eigenvalues of ΣF ΣΛ.
Because ΣF and ΣΛ are positive definite, the eigenvalues of ΣF ΣΛ are exactly those of ΣΛΣF .
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The Consistency of F

With the above result, we can now establish the mean square consistency of F̂ in the usual way.
Defining

H =
(

Λ0′Λ0

N

)(
F 0′F 0

T

)
V −1

NT ,

since

F̂ VNT −F 0HVNT = I1+ · · ·+ I8,

we have

1√
T

(
F̂ −F 0H

)
= 1√

T
(I1+ · · ·+ I8)V −1

NT .

Therefore,

1√
T

∥∥∥F̂ −F 0H
∥∥∥≤

(∥∥∥∥ 1√
T
I1
∥∥∥∥+ · · ·+

∥∥∥∥ 1√
T
I8
∥∥∥∥) ·

∥∥∥V −1
NT

∥∥∥.
By the result established above,

V −1
NT

p→ V −1,

so that V −1
NT =Op(1). Since

∥∥∥∥ 1√
T
I1
∥∥∥∥+ · · ·+

∥∥∥∥ 1√
T
I8
∥∥∥∥=Op

(∣∣∣β0 − β̂
∣∣∣)+Op

(
1

min(
√
N,

√
T

)
,

it stands to reason that

1√
T

∥∥∥F̂ −F 0H
∥∥∥=Op

(∣∣∣β0 − β̂
∣∣∣)+Op(δ−1/2

NT ),

where δNT = min(N,T ).

Finally, we are able to see that

1
T

∥∥∥F̂ −F 0H
∥∥∥2

=Op

(∣∣∣β0 − β̂
∣∣∣2)+Op(δ−1

NT )+Op

(∣∣∣β0 − β̂
∣∣∣ · δ−1/2

NT

)
;

since

min(
∣∣∣β0 − β̂

∣∣∣2, δ−1
NT ) ≤

∣∣∣β0 − β̂
∣∣∣ · δ−1/2

NT ,

we can write

1
T

∥∥∥F̂ −F 0H
∥∥∥2

=Op

(∣∣∣β0 − β̂
∣∣∣2)+Op(δ−1

NT ).
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4.6 Testing Additive Effects against Interactive Effects

One might be interested in testing the additive fixed effect specification

Yit =X ′
itβ+αi +εt +eit

against the interactive fixed effects specification

Yit =X ′
itβ+λ′

iFt +eit.

Let β̂ be the iterated least squares estimator of β under the interactive effects model and β̃

the LSDV estimator for β in the additive effects model. We saw above that β̂ is consistent
and asymptotically normal when the fixed effects are interactive, and since the additive effects
model is a special case of the interactive effects model, β̂ remains consistent and asymptotically
normal under the additive effects model.
On the other hand, since the errors eit are assumed to be homoskedastic, i.i.d. and uncorrelated
with the regressors, under the additive effects model the OLS estimator β̃ of β is consistent,
asymptotically normal, and in fact the asymptotically efficient estimator of β.

In summary,

• Under the additive effects model, β̃ is a consistent, asymptotically normal and asymptot-
ically efficient estimator of β.
β̂ is a consistent and asymptotically normal estimator of β.

• Under the interactive effects model, β̂ is a consistent, asymptotically normal estimator of
β, but β̃ is inconsistent.

Therefore, given that β̃ and β̂ are jointly asymptotically normal under the additive effects
model, the conditions for the Hausman test to be asymptotically chi-squared under the null of
the additive effects model and consistent under the alternative of the interactive effects model are
satisfied. The Hausman test can be formulated as the test with null and alternative hypotheses

H0 : The True Model is the Additive Effects Model

H1 : The True Model is the Interactive Effects Model

and the test statistic

ĤNT =NT · (β̂− β̃)′
(
V̂ (β̂)− V̂ (β̃)

)†
(β̂− β̃) d→ χ2

k,

where V̂ (β̂) and V̂ (β̃) are consistent estimators for the asymptotic variances of β̂ and β̃, and

(
V̂ (β̂)− V̂ (β̃)

)†
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is a type of pseudoinverse of V̂ (β̂) − V̂ (β̃) that equals its inverse when V̂ (β̂) − V̂ (β̃) is nonsin-
gular. The specific form of this pseudoinverse will be derived in time.

Below we study the Hausman test in detail, and investigate which assumptions are needed for it
to have the desired asymptotic distribution under the null and consistency under the alternative.

4.6.1 The Hausman Test

Assumptions

Let there be two models M1 and M2 with the same set of k parameters β, and let β̂ and β̃

be estimators of β in models 1 and 2. Suppose we want to test for the null and alternative
hypotheses

H0 : M1 is the true model H0 : M2 is the true model.

Letting {aN }N∈N+ be some sequence of real numbers increasing to +∞, assume that:

i) Consistency, Asymptotic Normality and Efficiency Under the Null
Under M1,

aN ·

β̂−β

β̃−β

 d→N

0,

A1 A12

A21 A2


︸ ︷︷ ︸

A


as N → ∞, where A2 is the asymptotically efficient covariance matrix.

ii) Behavior Under the Alternative
Under M2,

β̂
p→ β,

while

β̃
p→ γ ̸= β

as N → ∞.

iii) Consistent Variance Estimators
Let V̂ (β̂) and V̂ (β̃) be estimators of the asymptotic variance of β̂ and β̃. We assume that

V̂ (β̂) p→A1, V̂ (β̃) p→A2
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under M1, and that

V̂ (β̂)− V̂ (β̃) p→W

under M2, where W ∈ Rk×k is a postivie definite matrix.

iv) Regularity Assumptions for Estimation
The rank of V̂ (β̂)− V̂ (β̃) and A1 −A2 are constant at 0< r ≤ k for any N ∈N+.
Moreover, the r non-zero eigenvalues of V̂ (β̂)− V̂ (β̃) and A1 −A2 are all distinct.

We will now construct the Hausman test statistic and show that it is asymptotically chi-squared
under the null and that it defines a consistent test under the alternative.

The Covariance Structure under the Null

For now, suppose that M1 is the true model, that is, assume that the null is true. We will
show that the asymptotic covariance of the efficient estimator β̃ and the difference β̂− β̃ of the
estimators must be zero.

By joint asymptotic normality, under M1,

aN

(
β̂− β̃

)
= aN ·

(
1 −1

)β̂−β

β̃−β

 d→
(
1 −1

)
N(0,A) =N

0,A1 −A21 −A12 +A2︸ ︷︷ ︸
Σ

 .
Because β̃ is asymptotically efficient, we can now show that the asymptotic covariance A12 of β̂
and β̃ is equal to the minimal asymptotic variance A2.

Define

q̂ = β̂− β̃.

By assumption, q̂ p→ 0 under M1.
Suppose that A12 ̸=A2, and define a new estimator β̌ as

β̌(r) = β̃+ rCq̂,

for any r ∈ R, where

C = −(A21 −A2) ̸=O.
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Then,

aN

(
β̌(r)−β

)
= aN ·

(
β̃−β

)
+aN · rCq̂

= aN ·
(
β̃−β

)
+aN · rC

(
(β̂−β)− (β̃−β)

)
= aN ·

(
rC Ik − rC

)β̂−β

β̃−β

 d→N [0,V (r)] ,

where

V (r) =A2 + r2CΣC ′ + r (A21 −A2)C ′ + rC (A12 −A2) .

As such, β̌(r) is a consistent and asymptotically normal estimator of β for any r ∈ R, and by the
minimality of A2, it must be the case that V (r)−A2 ≥ 0, that is, it must be positive semidefinite.

For any r ∈ R, using the fact that C = −(A21 −A2), we have

V (r) =A2 + r2CΣC ′ −2r ·CC ′.

We also assumed that C ′ ̸= O, so C ′ has non-zero rank and thus there exists some non-zero
vector α ∈ Rk such that u= C ′α ̸= 0. By implication,

f(r) = α′V (r)α= α′A2α+ r2 ·u′Σu−2r ·u′u,

where u′u > 0. Note that f(0) = α′A2α, and that f is differentiable on R with first order
derivative

f ′(r) = 2
(
r ·u′Σu−u′u

)
for any r ∈ R.
u′Σu ≥ 0 because Σ is a covariance matrix and thus positive semidefinite; if u′Σu = 0 then
f ′(r) = −2u′u < 0 for any r ∈ R, while if u′Σu > 0 then f ′(r) < 0 for any 0 ≤ r < u′u

u′Σu , where
u′u

u′Σu > 0. In any case, there exists a x > 0 such that f ′(r)< 0 for any r ∈ [0,x).
We can now conclude, from the mean value theorem, that there exists a y ∈ (0,x) such that

f(0)−f(x) = f ′(y) ·x < 0,

where the last inequality follows because f ′(r)< 0 for any r ∈ (0,x). By implication,

α′A2α= f(0)< f(x) = α′V (x)α,

which contradicts the fact that A2 −V (x) should be positive semidefinite.
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Therefore, it must be the case that A12 =A2, and as such that

Σ =A1 −A12 −A21 +A2 =A1 −A2.

That is, the asymptotic covariance matrix of β̂− β̃ is simply the difference of their asymptotic
covariance matrices.
To obtain an equivalent formulation, note that

aN ·

 q̂

β̃−β

= aN ·

Ik −Ik

O Ik

β̂−β

β̃−β

 d→N

0,

 Σ A12 −A2

A21 −A2 A2

 ,
which tells us that A21 −A2 is the asymptotic covariance of β̃ and q̂. The result we derived
above thus tells us that asymptotically, the asymptotically efficient estimator and the difference
q̂ of the estimators must be uncorrelated.

The Test Statistic and its Asymptotic Distribution

So far, we have seen that

aN · (β̂− β̃) d→N

0,A1 −A2︸ ︷︷ ︸
Σ

 .
We now construct and derive the asymptotic distribution of the Hausman test statistic.

Because Σ is symmetric positive semidefinite, it has an eigendecomposition

Σ = PDP ′,

where P is a k×k orthogonal matrix and D a diagonal matrix with diagonal entries equal to the
eigenvalues λ1 ≥ ·· ·λk ≥ 0 of Σ. Suppose that the rank of Σ is 0< r ≤ k, so that Σ has exactly
r non-zero eigenvalues λ1 ≥ ·· · ≥ λr > 0. Defining

D̄ =


λ1 · · · 0
... . . . ...
0 · · · λr

 ∈ Rr×r,

and letting P̄ ∈ Rk×r collect the first r columns of P , we can easily see that

Σ = P̄ D̄P̄ ′,

where P̄ ′P̄ = Ir. Since the diagonal elements of D̄ are all positive, its matrix square root D̄ 1
2
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exists, and we can define

Σ
1
2 = P̄ D̄

1
2 ∈ Rk×r,

with its generalized inverse

Σ
1
2 † =

(
Σ

1
2 ′Σ

1
2
)−1

Σ
1
2 ′ = D̄− 1

2 P̄ ′ ∈ Rr×k.

Define Σ† as

Σ† = Σ
1
2 †′Σ

1
2 † = P̄ D̄−1P̄ ′,

and let X ∼N [0,Σ]. Since

Z = Σ
1
2 †X ∼N (0, Ir) ,

we can obtain the following distribution:

X ′Σ†X =X ′Σ
1
2 †′Σ

1
2 †X = Z ′Z ∼ χ2

r .

Under our regularity assumptions, provided that the vector of signs s is fixed, we can uniquely
recover the r orthonormal eigenvectors of V̂ (β̂) − V̂ (β̃) corresponding to its r non-zero ordered
eigenvalues; they are given by the k× r random matrix

P̂N = eigvecs
k,r

(
V̂ (β̂)− V̂ (β̃)

)
.

Letting λ̂1 ≥ ·· · ≥ λ̂r > 0 be the r non-zero ordered eigenvalues of V̂ (β̂)− V̂ (β̃), by the continuity
of ordered eigenvalues and eigenvecctors, and the fact that

V̂ (β̂)− V̂ (β̃) p→A1 −A2 = Σ,

the continuous mapping theorem tells us that

λ̂i
p→ λi for any 1 ≤ i≤ r,

P̂N
p→ eigvecs

k,r(Σ) = P̄ ,

where the last equality follows because the distribution of X ′Σ†X does not depend on the sign
of P̄ .
As such, defining

D̂N =


λ̂1 · · · 0
... . . . ...
0 · · · λ̂r


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and

(
V̂ (β̂)− V̂ (β̃)

)†
= P̂ND̂

−1
N P̂N ,

by the continuous mapping theorem again we have

(
V̂ (β̂)− V̂ (β̃)

)† p→ P̄ D̄−1P̄ = Σ†.

The Hausman test statistic is then defined as

ĤN = a2
N · (β̂− β̃)′

(
V̂ (β̂)− V̂ (β̃)

)†
(β̂− β̃),

and we can see that

ĤN
d→X ′Σ†X ∼ χ2

r .

Note that, if Σ has full rank, then
(
V̂ (β̂)− V̂ (β̃)

)†
is simply the inverse of V̂ (β̂) − V̂ (β̃), which

shows us that the above case is a generalization of the usual Wald-type statistics.

The Consistency of the Hausman Test

Now that we have constructed the Hausman test statistic and derived its asymptotic distribution
under the null, it remains to verify whether this statistic defines a consistent test, that is, a test
whose power goes to 1 under the alternative.

Suppose that M2, not M1, is the true model.
We first provide a heuristic explanation as to why the test must be consistent. Because β̂ consis-
tently estimates the true parameter β but β̃ does not under model M2, the difference between
the two estimators will be large, meaning that the Hausman test statistic, which is defined as a
quadratic form involving the difference between the two estimators, will also tend to infinity as
the sample size increases. This indicates that the test will be consistent.

Formally, we assumed that

β̂− β̃
p→ β−γ

under M2, and that

V̂ (β̂)− V̂ (β̃) p→W,
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where W is a positive definite k×k matrix. By implication,

(β̂− β̃)′
(
V̂ (β̂)− V̂ (β̃)

)−1
(β̂− β̃) p→ (β−γ)′W (β−γ)> 0,

and as such,

ĤN = a2
N · (β̂− β̃)′

(
V̂ (β̂)− V̂ (β̃)

)−1
(β̂− β̃) p→ +∞

as N → ∞. This implies that

lim
N→∞

P
(
ĤN < c

)
= 0

for any c ∈ R, so that the probability of rejecting goes to 1 as N → ∞.

Note that we made the very strong assumption that V̂ (β̂)− V̂ (β̃) converges to a positive definite
matrix under M2 to prove consistency. This requires V̂ (β̃) to always be ”smaller” than V̂ (β̂)
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