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Chapter 1

Topology and Preliminaries

In this chapter, we take some time to study topology and some results in analysis that will prove
indispensible in our development of measure theory. In particular, the definnition of a σ-algebra
is very reminiscent of the definition of a topology; as such, any practice working with topologies
will prove helpful when dealing with σ-algebras.

1.1 Topologies and Bases

Let X be an arbitrary set. Then, a topology τ on X is a collection of subsets of X satisfying
the following conditions:

i) ∅,X ∈ τ ; τ contains the empty set and the entire set

ii) For any A,B ∈ τ , A∩B ∈ τ as well; τ is closed under finite intersections

iii) For any collection {Aα} ∈ τ , ⋃αAα ∈ τ ; τ is closed under arbitrary unions

The elements of τ are called open sets, and the pair (X,τ) is referred to as a topological space.
Any set whose complement is open is called a closed set.

A base of X is a collection B of subsets of X such that:

i) B covers X, that is, X ⊂⋃B∈BB
ii) For any B1,B2 ∈ B and x ∈B1∩B2, there exists a B3 ∈ B such that x ∈B3 ⊂B1∩B2.

Let B be a base of X. Consider the collection τ of subsets of X satisfying the following properties:

i) ∅ ∈ τ

ii) τ contains any set U ⊂X such that, for any x∈U , there exists a B ∈B such that x∈B⊂U

Then, τ is a topology on X, and it is called the topology generated by the base B. Clearly, B is
contained in τ . We first show that the collection defined above is a topology:

5



Lemma 1.1 τ is a topology.

Proof) We show that τ satisfies all three conditions of a topology.

i) ∅ ∈ τ by definition. Since X ⊂ ⋃B∈BB, for any x ∈X there exists a B ∈ B such
that x ∈B, and because B is a subset of X, x ∈B ⊂X. Therefore, X ∈ τ as well.

ii) For any A,B ∈ τ , if A∩B = ∅, A∩B ∈ τ .
If A∩B 6= ∅, for any x ∈ A∩B, x ∈ A and x ∈ B, so there exist A1,B1 ∈ B such
that x ∈A1 ⊂A and x ∈B1 ⊂B.
By the property of a base of X, since x ∈ A1∩B1 and A1,B1 ∈ B, there exists a
C ∈ B such that x ∈ C ⊂A1∩B1.
Finally, since A1∩B1 ⊂A∩B, we have x∈C ⊂A∩B. This proves that A∩B ∈ τ .

iii) For any collection {Aα} ⊂ τ , denote A=⋃
αAα. If A= ∅, then A ∈ τ trivially.

Suppose A 6= ∅, and choose x ∈ A. Then, x ∈ Aa for some a, and because Aa ∈ τ ,
there exists a B ∈ B such that x ∈B ⊂Aa. Aa ⊂A, so x ∈B ⊂A; this shows that
A ∈ τ .

Therefore, τ is a topology on X.
Q.E.D.

A converse argument can also be made.

Lemma 1.2 Let τ be a topology on X, and B a collection of subsets of E. Suppose that:

i) B is contained in τ , that is, any subset in B is also in τ

ii) For any nonempty A ∈ τ and x ∈A, there exists a B ∈ B such that x ∈B ⊂A.

Then, B is a base on X that generates τ .

Proof) The proof proceeds in two steps. First, we must prove that B is a base of X. Then, we
must prove that B generates τ .

X ∈ τ by the definition of a topology. For any x∈X, by hypothesis there exists a B1 ∈B
such that x ∈B1 ⊂

⋃
B∈BB; this holds for any x ∈X, so X ⊂⋃B∈BB.

Now let B1,B2 ∈ B and consider x ∈B1∩B2. Since B is contained in τ and topologies
are closed under finite intersections, B1∩B2 ∈ τ . By hypothesis, this means that there
exists a B ∈ B such that x ∈B ⊂B1∩B2.
Therefore, B is a base of X.

It remains to show that B generates τ . However, this fact follows directly from the
hypothesis and the fact that any topology contains the empty set.
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Q.E.D.

Note that to each base there only exists a single topology that it generates (defined above),
while there can be mutliple bases that generate a single topology.

There are two other ways to characterize the topology generated by a base that will prove to
be much more useful. In fact, one characterization shows us how to construct any open set in
a topology given a base that generates it. The other characterization is purely abstract, and is
stated to emphasize the similiarities between topologies and σ-algebras.

Theorem 1.3 Let τ be a topology on X and B a base of X. Then, the following are equivalent:

i) τ is the topology generated by B.

ii) B is contained in τ and, for any B ∈ τ , there exist a collection {Bi}⊂B such that B=⋃iBi;
any set in τ can be represented as an arbitrary union of sets in B.

iii) τ is the smallest topology containing B, that is, τ is the intersection of every toplogy on
X that contains B.

Proof) We first show that i) implies ii). Let τ be the topology generated by B. Then, B is
trivially contained in τ .
For any B ∈ τ , if B = ∅, then B ⊂ B1 for any B1 ∈ B. If B 6= ∅, then for any x ∈ B,
there exists a Bx ∈ B such that x ∈Bx ⊂B by the definition of the topology generated
by B.
This holds for any x ∈B, so we can see that

B ⊂
⋃
x∈B

Bx.

On the other hand, since each Bx is a subset of B,

⋃
x∈B

Bx ⊂B.

It follows that B =⋃
x∈BBx, so that B can be expressed as the union of sets in B.

Now we show that ii) implies iii). Suppose that B ⊂ τ and that any B ∈ τ can be
expressed as the union of sets in B. Let {τs} be the collection of all topologies on X

that contain B, and choose any topology τs that contains B.
For any A ∈ τ , because A = ⋃

iBi for a collection {Bi} ⊂ B, and each Bi ∈ τs because
B⊂ τs, it follows from the closedness of topologies under arbitrary unions that

A=
⋃
i

Bi ∈ τs.
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This holds for any A∈ τ , so τ ⊂ τs. This in turn holds for any topology τs that contains
B, so

τ ⊂
⋂
s

τs.

Finally, since τ is also a topology on X that contains B, τ is one of the topologies
included in the colleciton {τs} and thus

⋂
s

τs ⊂ τ.

It follows that τ =⋂
s τs.

Lastly, we can show that iii) implies i). Let τ be the smallest topology on X containing
B, and denote by s the topology generated by B. It will be shown that τ = s.
It is immediately clear that τ ⊂ s, since s is a topology on X containing B. To see
the reverse inclusion, let A ∈ s. Because we have already shown that i)→ ii), and s is
the topology generated by B, A is the union of sets in B. But B is contained in τ and
topologies are closed under arbitrary unions, so it must be the case that A ∈ τ . This
holds for any A ∈ s, so s⊂ τ and τ = s, that is, τ is the topology generated by B.
Q.E.D.

It was shown above that the topology generated by a base can be represented as an arbitrary
intersection of topologies. It is also the case that any arbitrary intersection of topologies is also
a topology, as shown in the next result.

Lemma 1.4 The intersection of topologies is also a topology.

Proof) Let {τα} be an arbitrary collection of topologies on X, and define τ =⋂
α τα. We show

that τ satisfies the three conditions for a topology.

i) ∅,X ∈ τα for all α, so they are contained in τ as well.

ii) For any B1,B2 ∈ τ , because B1,B2 ∈ τα for all α as well, B1∩B2 ∈ τα since all the
τα are topologies on X. This implies that B1∩B2 ∈ τ .

iii) Let {Ai} ⊂ τ . Then, {Ai} ⊂ τα for all α as well, so that, by the properties of a
topology, ⋃iAi ∈ τα for all α. By implication, ⋃iAi ∈ τ .

Therefore, τ is a topology.
Q.E.D.
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1.2 Order Topologies

A special kind of topology which we will often encounter are order topologies. Suppose that E
is a totally ordered set such as the real line or the extended real line. Then, the order topology
on E is that generated by the base B that consists of rays

{x ∈ E | x < a}, {x ∈ E | x > b},

and the open intervals

{x ∈ E | a < x < b}

for any a,b ∈ E, provided that E has at least two elements.
In order for the above definition to make sense, B must be a base on X; this fact can be easily
but tediously shown, so the proof is omitted.

1.2.1 The Standard Topologies on R and [−∞,+∞]

The main order toplogies that we will use are those on R and R̄ = [−∞,+∞]. For the former,
the order topology τR on R is the topology generated by the base

B = {(−∞,a) | a ∈ R}
⋃
{(a,+∞) | a ∈ R}

⋃
{(a,b) | a,b ∈ R},

while for the latter, the order topology τ[−∞,+∞] on [−∞,+∞] is the one generated by the base

B̄ = {[−∞,a) | a ∈ R}
⋃
{(a,+∞] | a ∈ R}

⋃
{(a,b) | a,b ∈ R}.

Note that τR is also generated by the base (it is easily shown that the collection defined below
is actually a base) given as

B′ = {(a,b) | a,b ∈ R};

for any nonempty A ∈ τR, because τR is generated by B, by theorem 1.3 there exists a collection
{Bi} ⊂ B such that A = ⋃

iBi. However, any B ∈ B can in turn be represented as the union of
open intervals, since (−∞,a) = ⋃

n∈N+ (a−n,a) and (a,+∞) = ⋃
n∈N+ (a,a+n), so A can also

be expressed as the union of open intervals. B′ is contained in τR because B is, and therefore,
by theorem 1.3, τR is generated by the base B′.
We call the topologies τR and τ[−∞,+∞] the standard topologies on R and [−∞,+∞]. Their
relationships, as well as the relationships between the standard topology and other topologies
on R, will be considered later on.
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It is worth noting at this point that there actually exist countable bases that generate the
standard topology on R and [−∞,+∞]. Specifically, letting Q be the set of all rational numbers,
τR and τ[−∞,+∞] are generated by the countable bases

B = {(a,b) | a,b ∈Q}

and

B̄ = {[−∞,a) | a ∈Q}
⋃
{(a,+∞] | a ∈Q}

⋃
{(a,b) | a,b ∈Q}.

To show this, we can make use of lemma 1.2 and theorem 1.3 as follows:

Theorem 1.5 The standard topologies on R and [−∞,+∞] are generated by the countable
bases B and B̄.

Proof) We first consider τR. Since B ⊂ B′ ⊂ τR, τR contains the base B.
Now let A∈ τR be a nonempty set and choose any x∈A. Because B′ is a base generating
τR, there exists an (a,b) ∈ B′ such that

x ∈ (a,b)⊂A.

Because Q is dense in R and a < x < b, there exist q,r ∈Q such that a < q < x < r < b.
This indicates that

x ∈ (q,r)⊂ (a,b)⊂A,

where (q,r) ∈ B. Therefore, by lemma 1.2, B generates τR.

To show that τ[−∞,+∞] is generated by B̄, we proceed in much the same way. B̄ ⊂ B̄⊂
τ[−∞,+∞] tells us that τ[−∞,+∞] contains the base B̄.
For any nonempty A ∈ τ[−∞,+∞] and x ∈ A, because B̄ is a base generating τ[−∞,+∞],
there exists a B ∈ B̄ such that

x ∈B ⊂A.

We now consider three separate cases:

i) B = (a,b) for some a,b ∈ R
In this case, the denseness of Q in R shows, as above, that there exists a (q,r) ∈ B̄
such that x ∈ (q,r)⊂B ⊂A.

ii) B = [−∞,a) for some a ∈ R

10



In this case, choosing q ∈Q such that q < a, it follows that [−∞, q) ∈ B̄ and

x ∈ [−∞, q)⊂B ⊂A.

iii) B = (a,+∞] for some a ∈ R
In this case, choosing q ∈Q such that a < q, it follows that (q,+∞] ∈ B̄ and

x ∈ (q,+∞]⊂B ⊂A.

Thus, in any case, there exists a B′ ∈ B̄ such that

x ∈B′ ⊂B ⊂A.

Therefore, by lemma 1.2, B̄ generates τ[−∞,+∞].
Q.E.D.

As we will show later on, the above result allows us to conclude that τR and τ[−∞,+∞] are second
countable and thus define separable topological spaces.

1.3 Subspace Topologies

Let (E,τ) be a topological space. Sometimes we want to restrict the topology τ to a certain
subset F of E. To this end, we can define the subspace topology on F induced by τ as

τF = {A∩F |A ∈ τ}.

It is easy to check that τF is a well-defined topology on F ; we call (F,τF ) a subspace of (E,τ),
and the elements of τF as sets that are open in F . Generally, a subset A of F is said to possess
a topological property P in F if it possesses the property relative to the subspace topology τF .
For instance, a set A⊂ F is closed in F if its complement F \A is open in F .

11



1.4 Metric Topologies

Let (E,d) be a metric space. Then, the collection

B = {Bd(x,δ) | x ∈ E,δ > 0}

of open balls in E defines a base of E; to see this, note that, for any x ∈E, x ∈Bd(x,1), so that

E ⊂
⋃
x∈E

Bd(x,1)⊂
⋃
B∈B

B.

In addition, for any x,y ∈ E and δ1, δ2 > 0 such that Bd(x,δ1)∩Bd(y,δ2) 6= ∅, choose any z ∈
Bd(x,δ1)∩Bd(y,δ2); then, z ∈Bd(z,min(δ1−d(x,z), δ2−d(y,z)))⊂Bd(x,δ1)∩Bd(y,δ2), where

δ = min(δ1−d(x,z), δ2−d(y,z))> 0

because d(x,z)< δ1, d(y,z)< δ2, and Bd(z,δ) ∈ B. By definition, B is a base of E.
The metric topology on E induced by the metric d is the topology on E generated by the base
B of open balls in E.

Metric topologies provide an alternative way to characterize open sets.

Lemma 1.6 Let τ be the metric topology on E induced by the metric d. Then, a nonempty
A⊂ E is an open set if and only if, for any x ∈A, there exists an ε > 0 such that Bd(x,ε)⊂A.

Proof) Suppose A∈ τ . Then, for any x∈A, because the base B of open balls generates τ , there
exists a Bd(z,δ) ∈ B such that x ∈Bd(z,δ)⊂A, where z ∈E and δ > 0. Then, defining
ε= δ−d(x,z)> 0, for any w ∈Bd(x,ε)

d(w,z)≤ d(w,x) +d(x,z)< ε+d(x,z) = δ,

so that Bd(x,ε)⊂Bd(z,δ). As such,

Bd(x,ε)⊂Bd(z,δ)⊂A;

this holds for any x ∈A.

Conversely, suppose that, for any x ∈ A, there exists an ε > 0 such that Bd(x,ε) ⊂ A.
Then, becasue Bd(x,ε) ∈ B, this means that x ∈Bd(x,ε)⊂A. This holds for any x ∈A,
A is in the topology generated by B by definition. However, τ is the topology generated
by B, so A ∈ τ .
Q.E.D.
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The euclidean topology on Rn is defined as the metric topology induced by the euclidean metric
d on Rn. A useful property of the euclidean topology on R is that it is exactly the standard
topology on R.

Theorem 1.7 The standard topology τ and the euclidean topology τ e on R are equivalent.

Proof) Let B be the base of open balls under the euclidean metric, and B′ the base consisting
of open intervals in R. Note that any open interval (a,b) ∈ B′ can be seen as an open
ball (a,b) = Bd

(
a+b

2 , b−a2

)
, so that (a,b) ∈ B and thus B′ ⊂ B. Since B is contained in

τ e, so is B′. By theorem 1.3, τ is the smallest topology containing B′, so that τ ⊂ τ e.

Likewise, any open ball Bd(x,δ)∈B can be viewed as an open interval (x− δ,x+ δ)∈B′.
As such, B⊂B′ ⊂ τ , and since τ e is the smallest topology containing B and τ is a topol-
ogy containing B, τ e ⊂ τ . It follows that τ = τ e.
Q.E.D.
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1.5 Product Topologies

Let there be n topological spaces (E1, τ1), · · · ,(En, τn), and define the collection

B = {A1×·· ·×An |A1 ∈ τ1, · · · ,An ∈ τn}

of open rectangles in E=E1×·· ·×En. This collection is a base on E; E=E1×·· ·×En⊂
⋃
B∈BB

because E1×·· ·×En is an open rectangle. In addition, for any A=A1×·· ·×An,B =B1×·· ·×
Bn ∈ B such that

A∩B = (A1∩B1)×·· ·× (An∩Bn) 6= ∅,

Ai∩Bi for 1≤ i≤ n and each Ai∩Bi ∈ τi, so that, putting

C = (A1∩B1)×·· ·× (An∩Bn) ,

C ∈ B and C =A∩B. It follows that B is a base on E.

The product topology τ of the topologies τ1, · · · , τn is the topology on E generated by the
collection B of all open rectangles on E; it is often denoted as

τ =
n∏
i=1

τi = τ1×·· ·× τn.

The following result shows that the product of bases serves itself as a base of the product topol-
ogy.

Lemma 1.8 Let Bi be a base generating τi for 1≤ i≤ n. Then, the collection B of subsets of
E = E1×·· ·×En defined as

B = {B1×·· ·×Bn |B1 ∈ B1, · · · ,Bn ∈ Bn}

is a base on E generating τ = τ1×·· ·× τn.

Proof) We show first that B is indeed a base of E.
Choose any x= (x1, · · · ,xn)∈E. Each Bi is a base of Ei, so for any xi ∈Ei, there exists
a Bi ∈ Bi such that xi ∈Bi. As such, x ∈B1×·· ·×Bn ∈ B; this holds for any x ∈E, so
E ⊂

⋃
B∈BB.

Now choose A = A1 × ·· · ×An,B = B1 × ·· · ×Bn ∈ B such that A∩B 6= ∅, and let
x= (x1, · · · ,xn) ∈A∩B. Then, xi ∈Ai∩Bi for 1≤ i≤ n, and by the property of bases,
there exist C1 ∈ B1, · · · ,Cn ∈ Bn such that xi ∈ Ci ⊂Ai∩Bi for 1≤ i≤ n. Therefore,

x ∈ C1×·· ·×Cn ⊂A∩B,

where C1×·· ·×Cn ∈ B.
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It remains to be seen that B generates τ . For any nonempty A∈ τ and x= (x1, · · · ,xn)∈
A, because τ is generated by the base collecting all open rectangles on E, there exist
A1 ∈ τ1, · · · ,An ∈ τn such that

x ∈A1×·· ·×An ⊂A.

For each 1 ≤ i ≤ n, because τi is generated by Bi, there exists a Bi ∈ Bi such that
xi ∈Bi ⊂Ai; it follows that

x ∈B1×·· ·×Bn ⊂A1×·· ·×An ⊂A,

where B1×·· ·×Bn ∈ B.
This holds for any element of a nonempty set in τ , and B, being a subcollectin of open
rectangles on E, is clearly contained in τ , so by lemma 1.2, B is a base generating τ .
Q.E.D.

In the case of an arbitrary collection of topological spaces {(Ei, τi)}, the product topology
τ =∏i τi on the product space E =∏iEi is the topology generated by the base of open rectangles
B defined as follows:

B =
{∏

i

Ai | ∀i,Ai ∈ τi, and finitely many of the Ai are different from Ei
}
.

It is again easy to show that this constitutes a base on E.
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1.5.1 The Euclidean Topology on Rn

An important result concerning product topologies is that the euclidean topology τ en on Rn is
the product of n standard topologies of R, that is,

τ en = τR×·· ·× τR︸ ︷︷ ︸
n

= τnR .

To show this, we define the square metric ρ on Rn as

ρ(x,y) = max
1≤i≤n

|xi−yi|

for any x= (x1, · · · ,xn),y = (y1, · · · ,yn) ∈ Rn. ρ is indeed a metric on Rn:

i) ρ(x,x) = max1≤i≤n |xi−xi|= 0 for any x ∈ Rn.

ii) If x,y ∈ Rn and x 6= y, then there exists a 1 ≤ j ≤ n such that xj 6= yj , so ρ(x,y) =
max1≤i≤n |xi−yi| ≥ |xj−yj |> 0.

iii) For any x,y ∈ Rn,

ρ(x,y) = max
1≤i≤n

|xi−yi|= max
1≤i≤n

|yi−xi|= ρ(y,x).

iv) For any x,y,z ∈ Rn,

ρ(x,z) = max
1≤i≤n

|xi−zi| ≤ max
1≤i≤n

[|xi−yi|+ |yi−zi|]

≤ max
1≤i≤n

|xi−yi|+ max
1≤i≤n

|yi−zi|= ρ(x,y) +ρ(y,z).

Let dn be the euclidean metric on Rn and d the eucliden metric on R.

Theorem 1.9 Let the metric topology on Rn induced by dn be τ en, and that induced by ρ be
denoted τ sn. Then,

τ en = τ sn = τnR .

Proof) Denote by Be, Bs and Br the collection of open balls under dn, the collection of open
balls under ρ, and the collection of all open rectangles on Rn, respectively. Note that
Be, Bs and Br are bases of E that generate the topologies τ en, τ sn and τnR on E.

We first show that τ en = τ sn. For any nonempty A ∈ τ en and x ∈A, it was seen in lemma
1.6 that there exists a δ > 0 such that Bdn(x,δ)⊂A. For any z ∈Bρ

(
x, δn

)
,

dn(x,z) =

√√√√ n∑
i=1

(zi−xi)2 ≤
n∑
i=1
|zi−xi| ≤ n ·

[
max

1≤i≤n
|zi−xi|

]
= nρ(x,z)< δ,
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so that z ∈Bdn(x,δ). Therefore, letting ε= δ
n ,

Bρ (x,ε)⊂Bdn(x,δ)⊂A;

this shows us that, for any x ∈A, there exists a B ∈ Bs centered at x such that B ⊂A.
By lemma 1.6, this indicates that A ∈ τ sn, so that τ en ⊂ τ sn.

To see the reverse inclusion, choose any nonempty A ∈ τ sn. Then, for any x ∈ A, by
lemma 1.6 there exists a δ > 0 such that Bρ(x,δ) ⊂ A. For any z ∈ Bdn(x,δ), letting
ρ(x,z) =max1≤i≤n|xi−zi|= |xj−zj | for some 1≤ j ≤ n, we have

ρ(x,z) = |xj−zj | ≤

√√√√ n∑
i=1

(xi−zi)2 = d(x,z)< δ,

so that z ∈Bρ(x,δ) as well; this implies that

Bdn(x,δ)⊂Bρ(x,δ)⊂A.

This holds for any x ∈A, so by lemma 1.6, A ∈ τ en and τ sn ⊂ τ en.
Therefore, we have the relationship τ en = τ sn.

Next, we show that τ sn = τnR . For any nonempty A ∈ τ sn and x ∈ A, there exists a δ > 0
such that Bρ(x,δ)⊂A. Defining Ai = (xi−δ,xi+δ) for 1≤ i≤ n, for any z ∈A1×·· ·×
An, zi ∈ (xi− δ,xi+ δ) and thus |xi−zi|< δ for any 1≤ i≤ n, which implies that

ρ(z,x) = max
1≤i≤n

|zi−xi|< δ,

or z ∈Bρ(x,δ). As such,

x ∈A1×·· ·×An ⊂Bρ(x,δ)⊂A.

Since A1×·· ·×An ∈ Br, we have seen that, for any x ∈ A, there exists a B ∈ Br such
that x∈B⊂A. By definition of a topology generated by a base, this means that A∈ τnR ;
this holds for any nonempty A ∈ τ sn, so τ sn ⊂ τnR .

Likewise, for any nonempty A ∈ τnR and x ∈ A, there exists an open rectangle B =
A1× ·· ·×An ∈ Br such that x ∈ B ⊂ A. For 1 ≤ i ≤ n, since Ai ∈ τR and xi ∈ Ai, by
lemma 1.6 there exists a δi > 0 such that Bd(xi, δi) = (xi− δi,xi + δi) ⊂ Ai. Letting
δ = min1≤i≤n δi > 0, for any z ∈Bρ(x,δ) and 1≤ i≤ n,

|zi−xi| ≤ max
1≤j≤n

|zj−xj |= ρ(z,x)< δ,
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so that

zi ∈ (xi− δ,xi+ δ)⊂ (xi− δi,xi+ δi)⊂Ai.

Therefore, z ∈A1×·· ·×An =B, and

Bρ(x,δ)⊂B ⊂A.

This shows us that, for any x ∈A, there exists a B ∈ Bs centered at x such that B ⊂A.
By lemma 1.6, this indicates that A ∈ τ sn, so that τnR ⊂ τ sn and therefore τ sn = τnR .
It now follows that τ en = τ sn = τnR .
Q.E.D.
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1.6 Second Countability and Separability

Let (E,τ) be a topological space. An open neighborhood of x ∈E under τ is any open set A ∈ τ
such that x ∈A.
We say that a set A⊂E is dense in E under τ if, for any x∈E and open neighborhood N ∈ τ of
x, A∩N 6= ∅; in other words, if an element of A is present in any collection of points arbitrarily
close to x. Note that A need not be open.

(E,τ) is said to be second countable if there exists a countable base of E that generates τ .
On the other hand, (E,τ) is said to be separable if there exists a countable subset A of E that
is dense in E under τ .

We can show that second countability implies separability. The converse does not hold true in
general, but it is true for metrizable spaces, or topological spaces for which there exists a metric
such that the associated topology is induced by that metric.

Theorem 1.10 The following hold true:

i) If (E,τ) is second countable, then it is separable.

ii) Suppose (E,τ) is metrizable. In this case, if (E,τ) is separable, then it is second countable.

Proof) We prove the claims in turn.
Suppose (E,τ) is second countable. Then, there exists a countable base B of E that
generates τ ; due to the countability of B, we can arrange the elements of B into a
sequence {Bn}n∈N+ . Now construct the sequence A = {xn}n∈N+ as follows: for any
n ∈N+, if Bn = ∅, then let xn be any point in E, while if B 6= ∅, choose xn to be any
point in Bn. Then, A is a countable subset of E (that is not necessarily open).
Next, choose any x ∈ E and let N ∈ τ be any neighborhood of x. Because B generates
τ and x ∈N , by definition there exists a Bi ∈ B such that x ∈Bi ⊂N . Then,

xi ∈Bi ⊂N and xi ∈A,

so that {xi} ⊂ N ∩A and thus A∩N 6= ∅. This holds for any neighborhood of x and
any point x ∈ E, so by definition A is dense in E under τ . Because A is countable, by
definition (E,τ) is separable.

Now suppose (E,τ) is metrizable using the metric d on E, and that (E,τ) is separable.
By definition, there exists a countable A⊂E that is dense in E under τ ; by countability,
the elements of A can be arranged into a sequence {an}n∈N+ . Define the collection

B = {Bd (an, q) | n ∈N+, q ∈Q};
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then, B is a countable collection of open balls (we can construct a one-to-one corre-
spondence between B and the countable set N+×Q) and thus B is contained in τ (τ is
the metric topology induced by d and is thus generated by the base of all open balls).
For any nonempty B ∈ τ and x ∈ B, by lemma 1.6 there exists a δ > 0 such that
Bd(x,δ) ⊂ B. Because Bd

(
x, δ2

)
is an open neighborhood of x and A is dense in E

under τ , Bd
(
x, δ2

)
∩A 6= ∅.

Letting an ∈Bd
(
x, δ2

)
∩A, we can see that x ∈Bd

(
an,

δ
2

)
, and, by the denseness of Q

in R, we can choose a q ∈Q such that

d(x,an)< q <
δ

2 ,

so that x ∈Bd (an, q), where Bd (an, q) ∈ B.
For any z ∈Bd(an, q),

d(z,x)≤ d(z,an) +d(an,x)< 2q < δ,

so z ∈Bd(x,δ) and

x ∈Bd(an, q)⊂Bd(x,δ)⊂B.

Thus, B is a collection of subsets of E contained in τ such that, for any nonempty B ∈ τ
and x ∈B, there exists a B′ ∈ B such that x ∈B′ ⊂B. By lemma 1.2, B is a base of E
that generates τ . Since B was already seen to be countable, this proves that (E,τ) is
second countable.
Q.E.D.

Second countability is an especially desirable property because it is preserved across Cartesian
products.

Lemma 1.11 Let (E1, τ1), · · · ,(En, τn) be topological spaces, and τ =∏n
i=1 τi the product of

τ1, · · · , τn. If τ1, · · · , τn are second countable with countable bases B1, · · · ,Bn, then the countable
collection of open rectangles

B = {A1×·· ·×An |A1 ∈ B1, · · · ,An ∈ Bn}

is a base of τ . As a result, τ is also second countable.

Proof) This follows easily from lemma 1.8. Specifically, since B1, · · · ,Bn are bases of E1, · · · ,En
generating τ1, · · · , τn, the collection B generates the product τ of τ1, · · · , τn.
Q.E.D.
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1.7 Closures and Interiors of Sets

Let (E,τ) be a topological space. Recall that any set A⊂E is said to be closed if Ac ∈ τ , or Ac

is open. From this, it follows that:

• E, ∅ are closed sets; Ec = ∅ ∈ τ , and likewise, ∅c = E ∈ τ .

• For any arbitrary collection {Aα} of closed subsets of E, because Acα ∈ τ for each α,⋃
αA

c
α ∈ τ by the definition of a topology and thus

⋂
α

Aα =
(⋃
α

Acα

)c

is closed.

• For any finite collection {A1, · · · ,An} of closed subsets of E, because Aci ∈ τ for 1≤ i≤ n,⋂n
i=1A

c
i ∈ τ and thus

n⋃
i=1

Ai =
(

n⋂
i=1

Aci

)c

is also closed.

Note that closedness in subspace topologies has the same convenient characterization as
openness. Let F be a subset of E, and τF its subspace topology. For any set A that is closed
in F , note that A = F \V for some set V that is open in F , that is, contained in τF . By the
definition of τF , there exists a G ∈ τ such that V =G∩F , so we have

A= F \ (G∩F ) = F ∩ (Gc∪F c) = F ∩Gc,

where Gc is closed relative to the whole topology τ . Therefore, any set that is closed in F can
be represented as the intersection of F and a set closed relative to the whole topology.

For any A⊂ E, then, A is contained in at least one closed set E. Therefore, the collection

{B ⊂ E |A⊂B, B is closed}

is nonempty and therefore we can define the closure Ā of A as

Ā=
⋂

A⊂B, B is closed
B,

that is, as the intersection of all closed sets containing A. Since the intersection of closed sets is
also closed, Ā can be viewed as the smallest closed set containing A.
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Note that, if A is closed, then it is itself the smallest closed set containing A, and thus Ā= A.
On the other hand, if Ā = A, then A is closed because Ā is. It follows that a necessary and
sufficient condition for A to be closed is for Ā=A, or for A to be equal to its closure.

A related concept is the interior of a set. Let A ⊂ E. Since A contains at least one open set,
namely the empty set, it follows that the interior Ao of A is well-defined as

Ao =
⋃

B⊂A, B is open
B,

that is, as the union of all open sets contained in A. Since the union of open sets is also open,
Ao can be viewed as the largest open set contained in A.
Note that, if A is open, then it is itself the largest open set contained in A, and thus Ao = A.
On the other hand, if Ao = A, then A is open because Ao is. It follows that a necessary and
sufficient condition for A to be open is for Ao =A, or for A to be equal to its interior.

For any x ∈ E, we call any open set N ∈ τ containing x a neighborhood of x.
For any A ⊂ E and x ∈ E, x ∈ E a limit point of A if, for any neighborhood N ∈ τ of x,
A∩ (N \{x}) 6= ∅, that is, if we can find elements of A arbitrarily close to x. We denote the set
of all limit points of A by A′.
Given the concept of limit points, we can define the limit of any sequence {xn}n∈N+ ⊂ E. We
say that x ∈ E is a limit of the sequence {xn}n∈N+ ⊂ E if:

For any neighborhood N of x, there exists an N ∈N+ such that xn ∈N for any n≥N.

Note that this does not say anything about the uniqueness of the limit x or other familiar prop-
erty of limits.

Armed with these concepts, we can furnish the following characterizations of the closure and
interior of sets:

Lemma 1.12 Let (E,τ) be a topological space, and A⊂ E. Then,

Ā=A′∪A= {x ∈ E |A∩N 6= ∅ for any neighborhood N of x},

and

Ao = {x ∈ E | ∃N ∈ τ,N ⊂A such that x ∈N}.

Proof) We will first show that Ā=A′∪A.
Choose any x ∈ Ā. Suppose that x /∈A and that there exists some neighborhood N ∈ τ
of x such that A∩ (N \{x}) = A∩N = ∅, where the first equality follows from the as-
sumption that x /∈A. Then, N c is a closed set containing A, and Ā⊂N c by definition.
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Since x ∈ Ā, this means that x /∈N c, a contradiction.
Therefore, every neighborhood N ∈ τ of x must satisfy A∩ (N \{x}) 6= ∅, and by defi-
nition x ∈A′.
x is either contained in A or a limit point of A, so x ∈A∪A′. This holds for any x ∈ Ā,
so Ā⊂A′∪A.

To see the converse, let B be a closed set containing A. For any x ∈A′, suppose x /∈B.
This means that x ∈ Bc ∈ τ , so Bc is a neighborhood containing x; by the definition
of a limit point, there exists a y ∈ A∩ (Bc \{x}), so that y ∈ A and y ∈ Bc. This is a
contradiction because y ∈A and A⊂B necessarily imply that y ∈B.
Therefore, x ∈B, meaning that A′∪A⊂B. Ā is a closed set contaning A, so it follows
that A′∪A⊂ Ā, and finally that Ā=A′∪A.

It is easy to see that A′ ∪A = {x ∈ E | A∩N 6= ∅ for any neighborhood N of x}. Let
x∈A′∪A; if x∈A, then for any neighborhood N ∈ τ of x, x∈A∩N . On the other hand,
if x /∈A, then for any neighborhood N ∈ τ of x, by definition A∩N =A∩(N \{x}) 6= ∅.
Conversely, for any x∈E such that A∩N 6= ∅ for any neighborhood N of x, either x∈A
or, if x /∈A, then A∩(N \{x}) =A∩N 6= ∅ for any neighborhood N of x, so that x∈A′.

Finally, we prove the characterization of Ao.
For any A ⊂ E, let x ∈ Ao. Then, Ao is itself an open set containing x and contained
in A, so that x is an element of the set {y ∈ E | ∃N ∈ τ,N ⊂A such that y ∈N}.
Conversely, suppose that, for some x∈E, there exists a neighborhood N of x such that
N ⊂A. Then, N is an open set contained in A, meaning that N ⊂Ao by definition; it
follows that x ∈Ao.
Q.E.D.
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1.8 Compact Sets and Hausdorff Spaces

Let (E,τ) be a topological space. We say that some subset A of E is compact if, for any open
cover {Vα} of A, that is, a collection of open sets in E such that A⊂⋃αVα, there exists a finite
subset {Vα1 , · · · ,Vαn} of {Vα} such that

A⊂ Vα1 ∪·· ·∪Vαn .

The collection {Vα1 , · · · ,Vαn} is called a subcover of A; therefore, A is compact if any open cover
of A has a finite subcover.
We say that (E,τ) is a compact space if the entire set E is itself compact.

A related concept is local compactness. (E,τ) is a locally compact topological space if any x∈E
has a neighborhood N ∈ τ such that N̄ is compact.
Note that any compact space is also locally compact. To see this, let (E,τ) be a compact space
and choose any x ∈ E; then, E is a neighborhood of x whose closure is Ē = E because E is
closed, and E is compact by definition.
In addition, recall the Heine-Borel theorem, which posits that every closed and bounded subset
of a euclidean space Rn is compact. As such, for any x ∈ Rn, x is contained in an open set
(−|x|, |x|)n, which is contained in the closed and bounded and thus compact set [−|x|, |x|]n. This
tells us that any euclidean topological space is locally compact.

A topological space (E,τ) is said to be Hausdorff if, for any distinct points x,y ∈E, there exist
neighborhoods Nx,Ny ∈ τ of x,y such that Nx∩Ny = ∅. In other words, any two distinct points
in a Hausdorff space can be separated by open sets. This is called the separation, or T 2, property.
Every metric space (E,d) is Hausdorff under the metric topology τ induced by d. For any x,y ∈E
such that x 6= y, defining ε= d(x,y)> 0, the open balls Bd(x,ε/2) and Bd(y,ε/2) are open sets
containing x,y. If z ∈Bd(x,ε/2)∩Bd(y,ε/2), then

d(x,y)≤ d(z,x) +d(z,y)< ε,

a contradiction. Therefore, Bd(x,ε/2)∩Bd(y,ε/2) = ∅, showing us that (E,τ) has the separation
property.

Limits of sequences in Hausdorff spaces are unique; to see this, let {xn}n∈N+ be a sequence in
the Hausdorff space (E,τ), and let x,y ∈ E be limits of {xn}n∈N+ . Suppose x 6= y. Then, there
exist neighborhoods Nx,Ny ∈ τ of x,y such that Nx∩Ny = ∅ by the separation property. By the
definition of limits, there exist m1,m2 ∈N+ such that xn ∈Nx for any n≥m1 and xn ∈Ny for
any n≥m2. Then, for any n≥max(m1,m2), xn ∈Nx∩Ny = ∅, a contradiction. Therefore, x= y

and the limit of sequences are unique.
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1.8.1 Properties of Compact Sets

The following are properties of compact sets:

Theorem 1.13 Let (E,τ) be a topological space. The following hold true:

i) (Preservation of Compactness across Subspaces)
Let K,F be chosen so that K ⊂ F ⊂ E. K is compact in the subspace topology τF if and
only if it is compact in the whole topology τ .

ii) If a subset K of E is compact and F ⊂K is a closed subset of E, then F is also compact.

iii) (Finite Intersection Characterization of Compactness)
A subset K of E is compact if and only if, for any collection {Aα} of sets that are closed
in K such that every finite subcollection of {Aα} has a non-empty intersection, ∩αAα is
also non-empty.

iv) (Second Countability of Compact Metric Spaces)
If the compact space (E,τ) is metrizable, then it is second countable, that is, there exists
a countable base on E that generates τ .

v) (Regularity of Compact Hausdorff Spaces)
Let (E,τ) be a Hausdorff space. If K ⊂E is compact and x /∈K for some x∈E, then there
exist open sets A,B ∈ τ such that K ⊂A and x ∈B such that A∩B = ∅.

vi) Any compact subset K in a Hausdorff space (E,τ) is closed.

vii) For any compact subset K and closed subset F in a Hausdorff space (E,τ), F ∩K is
compact.

viii) Let (E,τ) be a Hausdorff space. If {Kα} is a collection of compact subsets of E with
∩αKα = ∅, then there exists a finite subcollection of {Kα} whose intersection is empty.

Proof) i) Suppose that K is compact in the entire topology τ . We must show that K is also
compact in the subspace topology τF . To this end, choose any cover {Vα} of K that
is open in the subspace topology τF ; by the definition of the subspace topology,
for any α there exist Gα ∈ τ such that Vα =Gα∩F . This means that {Gα} forms
a cover of K that is open in the entire topology τ , and by the compactness of K,
there exist α1, · · · ,αn such that

K ⊂Gα1 ∪·· ·∪Gαn .

As such,

K =K ∩F ⊂ (Gα1 ∪·· ·∪Gαn)∩F =
n⋃
i=1

Vαi ,
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and {Vα} has a finite subcover of K. This shows us that K is compact in the
subspace topology τF .

Conversely, suppose that K is compact in the subspace topology τF . We must
show that K is also compact in the entire topology τ , and to this end, choose
an open cover {Vα} ⊂ τ of K. Defining Gα = Vα ∩F for any α, we can see that
{Gα} ⊂ τF that covers K, since K is contained in F . As such, by the compactness
of K in τF , there exist α1, · · · ,αn such that

K ⊂Gα1 ∪·· ·∪Gαn = (Vα1 ∪·· ·∪Vαn)∩F.

Therefore, {Vα1 , · · · ,Vαn} covers K, which shows us that K is compact in τ .

ii) Suppose K is compact and let F be a closed subset of K. For any open cover {Vα}
of F , note that

K ⊂
(⋃
α

Vα

)
∪F c,

since every element of K is either in F or not in F . Since F c ∈ τ is open by
definition, it follows that {{Vα},F c} is an open cover of K, and by compactness,
there exists a finite subcover {Vα1 , · · · ,Vαn ,F c} of K. Since

F ⊂K ⊂
(

n⋃
i=1

Vαi

)
∪F c,

and F ∩F c = ∅, we have

F ⊂
n⋃
i=1

Vαi .

Therefore, any open cover of F has a finite subcover, meaning that F is compact.

iii) Let K be a compact subset of E, and choose any collection {Aα} of subsets of
K that are closed in K with non-empty finite intersections. We must show that
∩αAα 6= ∅. Suppose that this intersection is actually empty. Fixing any index α1,
note that Aα1 , being a closed subset of the comapct set K, is itself a compact set.
Furthermore, by the first result, this implies that Aα1 is also compact in K.
For any x ∈ Aα1 , there exists an αx such that x /∈ Aαx , since otherwise x belongs
to the intersection ∩αAα. This shows us that, in terms of the subspace topology
of K, {Acαx}x∈Aα1

is an open cover of the compact set Aα1 . By definition, there
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exist x1, · · · ,xn ∈Aα1 such that

Aα1 ⊂
n⋃
i=1

Acαxi
.

By implication,

Aα1 ∩Aαx1
∩·· ·∩Aαxn = ∅,

which contradicts the fact that {Aα} has non-empty finite intersections. As such,
∩αAα must be non-empty.

Conversely, suppose that, for any collection {Aα} of closed subsets of K that have
non-empty finite intersections, ∩αAα 6= ∅. We must show that K is compact. As
above, suppose the contrary, that K is not compact; then, there exists an open
cover {Vα} of K that has no finite subcover. Then, defining

Gα =K ∩V c
α

for any α, {Gα} is a collection of sets closed in K (each V c
α is closed relative to

the whole topology) with non-empty finite intersections; if there exists a finite
collection α1, · · · ,αn such that

Gα1 ∩·· ·∩Gαn =K ∩
(

n⋃
i=1

Vαi

)c

is empty, then {Vα1 , · · · ,Vαn} forms a finite subcover of K, a contradiction. By
assumption, ⋂αGα 6= ∅. Choosing any x ∈

⋂
αGα, we can see that x ∈ K but

x /∈ ∪αVα, which contradicts the fact that K is covered by {Vα}. Therefore, it
must be the case that K is compact.

iv) Let (E,d) be a compact metric space and τ the metric topology induced by d. For
any n ∈N+, {Bd(x,1/n)}x∈E forms an open cover of E, and by the compactness
of E, there exist a finite number of points x(n)

1 , · · · ,x(n)
mn ∈ E such that

E ⊂
mn⋃
i=1

Bd(x(n)
i ,1/n).

Defining

B = {Bd(x(n)
i ,1/n) | n ∈N+, 1≤ i≤mn},

B is a countable collection of open subsets of E that trivially covers E. We will
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show that B is a countable base of E that generates the metric topology τ .
For any A ∈ τ and x ∈ A, there exists an ε > 0 such that Bd(x,ε) ⊂ A. Let-
ting n ∈ N+ be chosen so that 1

n <
ε
2 , since E is covered by the finite collection

{Bd(x(n)
i ,1/n)}1≤i≤mn , there exists some 1≤ i≤mn such that

x ∈Bd(x(n)
i ,1/n).

Choose any z ∈Bd(x(n)
i ,1/n). Then,

d(x,z)≤ d(x,x(n)
i ) +d(x(n)

i ,z)< 2
n
< ε,

so that z ∈Bd(x,ε)⊂A. This shows us that

x ∈Bd(x(n)
i ,1/n)⊂A,

and since Bd(x(n)
i ,1/n) is an element of B, we can immediately see that B is a base

on E that generates τ .

v) Let (E,τ) be a Hausdorff space and assume K is a compact subset of E and x∈E
is not contained in K. If K = ∅, then E is a neighborhood of x and ∅ an open set
containing K such that ∅∩E = ∅, so the proof is complete.
On the other hand, let K 6= ∅. For any y ∈K, because x 6= y (otherwise, x ∈K,
a contradiction), by the separation property there exist neighborhoods Ay,By ∈ τ
of x,y such that Ay ∩By = ∅.
Then, {By}y∈K is an open cover of K, and by compactness there exist y1, · · · ,yn ∈
K such that

K ⊂By1 ∪·· ·∪Byn =B.

B is thus an open set containing K.
Define A= Ay1 ∩ ·· ·∩Ayn ; it is the finite intersection of open sets and thus open
itself. In addition, because each Ay is a neighborhood of x, A is also a neighbor-
hood of x. Finally, if z ∈ A∩B, then letting z ∈ Byi for some 1 ≤ i ≤ n, z ∈ Ayi
as well, which contradicts the fact that Ayi ∩Byi = ∅. Therefore, A∩B = ∅, which
concludes the proof.

vi) Let K be a compact subset in some Hausdorff space (E,τ), and let x ∈ K̄ but
x /∈ K. By the preceding result, there exist open sets A,B ∈ τ such that x ∈ A,
K ⊂ B and A∩B = ∅. By the characterization of the closure we derived earlier,
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A∩K 6= ∅, since x ∈ K̄ and A is a neighborhood of x; however, because K ⊂ B
and A∩B = ∅, A∩K = ∅, a contradiction. Therefore, x ∈K, and it follows that
K̄ ⊂K.
It follows by definition that K ⊂ K̄, so K = K̄. This shows us that K must be a
closed set.

vii) Let K and F be compact and closed subsets, respectively, in a Hausdorff space
(E,τ). Since K is closed by the preceding result, F ∩K is a closed subset of the
compact set K. It then follows from the very first result that F ∩K is also compact.

viii) Let (E,τ) be a Hausdorff space, and {Kα} a collection of compact subsets of E
whose intersection is empty. Choose some K1 ∈ {Kα}; for any x ∈ K1, because⋂
αKα = ∅, there exists an α such that x /∈Kα (otherwise, x ∈ ⋂αKα, a contra-

diction). Labeling the complement of that set Ax, it follows that x ∈Ax, and that
Ax ∈ τ , since compact sets in a Hausdorff space are closed.
Now {Ax}x∈K1 is an open cover of K1, and by compactness, there exist x1, · · · ,xn ∈
K1 such that

K1 ⊂Ax1 ∪·· ·∪Axn .

Then, letting the complement of Axi be Kxi for each 1≤ i≤ n, since each Kxi ∈
{Kα} and

Kx1 ∩·· ·∩Kxn = (Ax1 ∪·· ·∪Axn)c ⊂Kc
1,

the finite intersection

K1∩Kx1 ∩·· ·∩Kxn

is empty.

Q.E.D.

We now elaborate on some of the properties enumerated above. The first results shows us
that compactness is a topological property that is preserved across subspaces. This is important
because, in general, topological properties are not preserved across subspaces; for instance, given
a set F ⊂E, a subset of F open in F is generally not open in E unless F is an open subset of E.
As such, when we talk about compactness, we may discuss compact spaces instead of compact
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subsets of a larger set, since, if we are given any compact subset of a topological space, the
subspace induced by that compact subset becomes a compact space.

The third result is a useful characterization of compactness via the finite intersection property
(FIP). A collection of sets {Aα} is said to possess the FIP if any finite intersection is non-empty;
the characterization above states that K is compact if and only if any collection of sets that is
closed in K and has the FIP has a non-empty intersection. We may succinctly state this as the
characterization of K via the non-empty intersection property (NIP).

The fourth property states that any compact metric space is second countable. By the result
on second countability and separability shown in a previous section, we can also see that any
compact metric space is separable. This property is exploited in analysis to derive results on
equicontinuous functions.

The fifth property is labeled here as the regularity of compact Hausdorff spaces. The concept
of regular and normal spaces will be studied in more depth below.

We now derive a core property of locally compact Hausdorff spaces.

Theorem 1.14 Let (E,τ) be a locally compact Hausdorff space. Then, for any compact subset
K of E and an open set U ∈ τ such that K ⊂ U , there exists an open set V ∈ τ with compact
closure such that

K ⊂ V ⊂ V̄ ⊂ U.

Proof) Let K and U be compact and open subsets of the locally compact Hausdorff space
(E,τ) such that K ⊂ U . For any x ∈K, by the local compactness of (E,τ), there exists
a neighborhood Bx ∈ τ of x with compact closure. {Bx}x∈K then forms an open cover
of K, and by compactness, there exist x1, · · · ,xn ∈K such that

K ⊂Bx1 ∪·· ·∪Bxn =G.

G is contained in the closed set B̄x1 ∪ ·· ·B̄xn , so by definition Ḡ⊂ B̄x1 ∪ ·· ·B̄xn . Each
B̄xi is compact, and because the finite union of compact sets is compact (for any open
cover of the union, there exists a finite subcover for each set comprising the union,
and because the union is finite, the union of those finite subcovers is also finite), Ḡ
is a closed subset of a compact set. It follows from the previous result that Ḡ is also
compact.
G is an open set containing K with compact closure. Now we find a subset of G that
contains K and whose closure is contained in U .

For any x ∈ U c, because K ⊂ U implies that x /∈ K and (E,τ) is Hausdorff, by the
result proved earlier there exist open sets Ax,Cx ∈ τ such that x ∈ Cx, K ⊂ Ax and
Ax∩Cx = ∅.
Suppose that x ∈ Āx. Since x /∈ Ax, x must be a limit point of Ax in this case. Be-
cuase Cx is a neighborhood of x, this implies that Ax∩Cx =Ax∩ (Cx \{x}) 6= ∅, which
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contradicts the fact that Ax ∩Cx = ∅. Therefore, x /∈ Āx, so that Ax is an open set
containing K and whose closure does not contain x.
U c is a closed subset of E because U is open, and Ḡ is compact, as shown above. U c∩
Ḡ∩ Āx is a closed subset of the compact set Ḡ, from which it follows that U c∩ Ḡ∩ Āx
is itself compact.

{U c∩Ḡ∩Āx}x∈Uc is thus a collection of compact subsets in E. Suppose that the collec-
tion has a nonempty intersection, and denote by z ∈E an element of that intersection.
Then, z ∈ U c and z ∈ Āz as well, which contradicts the fact that z /∈ Āz by design.
Therefore, {U c∩ Ḡ∩ Āx}x∈Uc has an empty intersection, which implies, by lemma 4.2,
that there exist y1, · · · ,ym ∈ U c such that

m⋂
i=1

(
U c∩ Ḡ∩ Āyi

)
= U c∩ Ḡ∩ Āy1 ∩·· ·∩ ¯Aym = ∅.

Defining

V =G∩Ay1 ∩·· ·∩Aym ∈ τ,

since K ⊂G and K ⊂ Ayi for 1≤ i≤m, V is an open set containing K. Furthermore,
because

V̄ ⊂ Ḡ∩ Āy1 ∩·· ·∩ ¯Aym ⊂ U,

where the last inclusion follows from the fact that U c∩ Ḡ∩ Āy1 ∩·· ·∩ ¯Aym = ∅, V is an
open set such that

K ⊂ V ⊂ V̄ ⊂ U,

which is exactly the result we were looking for.
Finally, to show that V̄ is compact, note that it is a closed subset of the compact set
Ḡ. From lemma 4.2, we can conclude that V̄ is compact.
Q.E.D.
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1.8.2 Notions of Compactness in Metric Spaces

Compact sets in metric spaces possess convenient properties. To illustrate these, we introduce
some concepts related to compactness.

Let (E,τ) be a topological space and A a subset of E. A is

• Limit Point Compact
If any infinite set in A has a limit point in A

• Countably Compact
If any countable open cover of A has a finite subcover

• Sequentially Compact
If any sequence in A has a convergent subsequence with limit in A

• Relatively Compact
If the closure A of A is compact.

Clearly, a compact subset of a Hausdorff space is relatively compact (because it is closed and
thus is equivalent to its closure) and any compact set is countably compact.

A related concept is that of a Lindelöf Space. A topological space (E,τ) is Lindelöf if any
open cover of E has a countable subcover. Note how any compact space is also Lindelöf. We
state below some relevant results.

Theorem 1.15 The following hold true:

i) Compact sets are limit point compact.

ii) Limit point compact sets in a metric space are sequentially compact.

iii) Metrizable sequentially compact spaces are second countable.

iv) Second countable topological spaces are Lindelöf.

v) Sequentially compact sets are countably compact.

vi) A subset of a metric space is compact if and only if it is sequentially compact.

Proof) i) Let K be a compact subset in the toplogical space (E,τ). Choose any infinite set
A contained in K, and suppose that it does not have a limit point in K. Then,
for any x ∈K, since x is not a limit point of A, there exists a neighborhood Vx of
x such that (Vx \{x})∩A= ∅. The collection {Vx}x∈K forms an open cover of K,
and by the compactness of K, there exist x1, · · · ,xn ∈K such that

K ⊂
n⋃
i=1

Vxi .
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Since A⊂K and A is an infinite set, there exists an element y ∈A such that y 6= xi

for any 1≤ i≤ n. It follows that y ∈ Vxi for some 1≤ i≤ n, and since y 6= xi,

y ∈ Vxi ∩A= (Vxi \{xi})∩A.

This contradicts the fact that (Vxi \{xi})∩A = ∅ by design, so A must have a
limit point in K, meaning K is limit point compact.

ii) Let (E,d) be a metric space and K a limit point compact subset of E. Choose
any sequence {xn}n∈N+ in K. If {xn}n∈N+ contains a finite number of distinct
elements, then it trivially contains a convergent subsequence with limit in K,
since there must be infinitely many elements of the sequence that assume the
same value.
On the other hand, if A= {xn | n ∈N+} is an infinite set, then by the limit point
compactness of K (which follows from i)), A has a limit point x in K. We can
choose an n1 ∈N+ such that d(x,xn1)< 1. Suppose that we have chosen integers
n1 < · · ·< nk for some k ≥ 1. There then exists an nk+1 > nk such that

d(x,xnk+1)< 1
k+ 1 ,

where nk+1 can always be chosen to be larger than nk since the neighborhood of
x must contain infinitely many points in A. It follows that {xnk}k∈N+ is a subse-
quence of {xn}n∈N+ that converges to x, proving the sequential compactness of K.

iii) Let (E,d) be a sequentially compact metric space. We will show that (E,d) is sep-
arable; since separability and second countability is equivalent for metric spaces,
the second countability of (E,τ) then follows immediately.
Choose any n ∈ N+ and x

(n)
1 ∈ E. Assuming that x(n)

1 , · · · ,x(n)
k ∈ E have been

chosen for some k ≥ 1, choose x(n)
k+1 as a point in E such that

d(x(n)
i ,x

(n)
k+1)≥ 1

n

for any 1 ≤ i ≤ k if possible. Suppose that we are able to choose an infinite se-
quence {x(n)

i }i∈N+ in this manner. Since E is sequentially compact, there exists
a subsequence of {x(n)

i }i∈N+ that converges to some point x in E; for notational
brevity, suppose that the sequence {x(n)

i }i∈N+ itself converges to x. Then, there
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exists some N ∈N+ such that

d(x,x(n)
k )< 1

2n

for any k ≥N , which implies that

d(x(n)
N ,x

(n)
N+1)< d(x,x(n)

N ) +d(x,x(n)
N+1)< 1

n
.

However, this contradicts the fact that

d(x(n)
i ,x

(n)
N+1)≥ 1

n

for any 1 ≤ i ≤N . Therefore, we must only be able to choose a finite number of
points x(n)

i in the above manner; that is, there must exist some mn ∈ N+ such
that, for any x ∈ E,

d(x(n)
i ,x)< 1

n

for any 1≤ i≤mn.
Define the countable set A as

A= {x(n)
i | 1≤ i≤mn,n ∈N+}.

We now show that A is dense in E, and thus that E is separable. Choose any
x ∈E and δ > 0. For any n ∈N+ such that 1

n < δ, note that, from the way that we
chose x(n)

1 , · · · ,x(n)
mn , there must exist some 1≤ i≤mn such that d(x(n)

i ,x)< 1
n < δ,

which implies that

x
(n)
i ∈Bd(x,δ)∩A

and thus that Bd(x,δ)∩A 6= ∅. This holds for any δ > 0, so it follows that x ∈ A.
This in turn holds for any x ∈ E, so E ⊂ A. The reverse inclusion is trivial, and
we can conclude that E =A.

iv) Let (E,τ) be a second countable space with countable base B⊂ τ . By the count-
ability of B, its elements can be arranged into a sequence B = {Bn}n∈N+ . Choose
any open cover {Vα} of E. For any x ∈E, there exists some αx such that x ∈ Vαx ,
and since Vαx is an open subset of E, there exists some nx ∈N+ such that

x ∈Bnx ⊂ Vαx .

This shows us that E is covered by the collection {Bnx}x∈E , and by extension the
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subcollection {Vαx}x∈E of {Vα}. Since {Bnx}x∈E is a subset of B, it is a countable
collection, which makes {Vαx}x∈E countable as well. Therefore, E is covered by a
countable subcollection of {Vα}, making it a Lindelöf space.

v) Let (E,τ) be a topological space and K a sequentially compact subset of E. Choose
a countable open cover {Vn}n∈N+ of K, and suppose that no finite collection of
sets in {Vn}n∈N+ can cover K. Define the sequence {Fn}n∈N+ of subsets of E as

Fn = (V1∪·· ·∪Vn)c .

Clearly, {Fn}n∈N+ is a sequence of decreasing closed sets, and by assumption, each
Fn contains a point in K. Choose xn ∈ Fn for any n ∈ N+; then, {xn}n∈N+ is a
sequence in K, and by the sequential compactness of K, there exists a subsequence
{xnk}k∈N+ that converges to a point x in K. {Vn}n∈N+ covers K, so there exists
some n ∈N+ such that x ∈ Vn, and by the definition of a limit, there also exists
an N ∈ N+ such that xnk ∈ Vn for any k ≥ N . This means that xnk /∈ Fn, and
since there must exist a k ≥ N such that nk > n, we can see that xnk ∈ Fnk but
xnk /∈ Fn for this k. However, the first inclusion indicates, together with Fnk ⊂ Fn,
that xnk ∈ Fn, a contradiction. Therefore, there must exist a finite subcollection
of {Vn}n∈N+ that covers K, and by definition, K is countably compact.

vi) This result now follows from those proven above. Let (E,d) be a metric space and
let K be a subset of E. Suppose initially that K is compact. Then, by i) and ii),
it is limit point compact and thus sequentially compact.
Conversely, suppose that K is sequentially compact. Then, by iii) and iv), the
space (K,d) is Lindelöf, meaning that any open cover {Vα} of K contains a count-
able subcover. Finally, since K is also countably compact by v), this countable
subcover contains a finite subcover of K. This proves that K is compact.

Q.E.D.

Corollary to Theorem 1.15 (Bolzano-Weierstrass Theorem)
Let F = Rn or C. Then, any bounded sequence {xn}n∈N+ in F contains a convergent subse-
quence.

Proof) First let F = Rn. Since {xn}n∈N+ is bounded, there exists an M < +∞ such that
|xn| ≤ M for any n ∈ N+. This tells us that {xn}n∈N+ is contained in the n-cell
[−M,M ]n ⊂ F . Since n-cells are known to be compact, {xn}n∈N+ is contained in a
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compact subset of F ; theorem 2.6 then implies that {xn}n∈N+ contains a convergent
subsequence.
Now let F = C. Then, {Re(xn)}n∈N+ is a bounded sequence in R, and by the pre-
ceding result, there exists a convergent subsequence {Re(xnk)}k∈N+ of {Re(xn)}n∈N+ .
Similarly, since {Im(xnk)}k∈N+ is a bounded sequence of R, it has a convergent subse-
quence {Im(xnkm )}m∈N+ . Then, the sequence {xnkm}m∈N+ is a convergent subsequence
of {xn}n∈N+ .
Q.E.D.

We have also shown in the course of proving the above lemma that any compact set in a metric
space has a countably dense subset, and that it is covered by countably many open balls centered
at some point in the countably dense subset. We refer to this property as the separability of
compact sets in metric spaces, and it will repeatedly come in handy below.

The following is the characterization of relative compactness in metric spaces:

Theorem 1.16 Let (E,d) be a metric space, and A a subset of E. Then, A is relatively
compact if and only if any sequence in A has a convergent subsequence.

Proof) Suppose that A is relatively compact. By definition, the closure A of A is compact;
by the previous result, this means that A is sequentially compact. Any sequence in
A is also a sequence in A, so sequential compactness tells us that the sequence has a
convergent subsequence.

Conversely, suppose that any sequence in A has a convergent subsequence. We will show
that A is sequentially compact; by the previous result, this implies the compactness of
A and thus the relative compactness of A.
Choose any sequence {xn}n∈N+ in A. For any n ∈ N+, since xn ∈ A there exists an
yn ∈A such that

d(yn,xn)< 1
n
.

Now consider the sequence {yn}n∈N+ in A. By assumption, {yn}n∈N+ has a convergent
subsequence {ynk}k∈N+ ; letting x ∈E be the limit of the sequence, because {ynk}k∈N+

takes values in A, it must be the case that x ∈A.
It now holds that, for any k ∈N+,

d(xnk ,x)≤ d(xnk ,ynk) +d(ynk ,x)< 1
nk

+d(ynk ,x).

Taking k→∞ on both sides now tells us that {xnk}k∈N+ is a subsequence of {xn}n∈N+

that converges to x ∈A. Therefore, by definition, A is sequentially compact.
Q.E.D.
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1.9 Continuous Functions

Let (E,τ) and (F,s) be topological spaces, and f : E → F a function mapping E into F . f is
called a continuous function relative to τ and s if:

For any A ∈ s, the inverse image f−1(A) ∈ τ .

Note that, if s is generated by some base B of F , then it suffices to check the above definition
for the elements of B. To see this, assume that f−1(B) ∈ τ for every B ∈ B. Then, for any A ∈ s,
because A can be expressed as the aribtrary union ⋃iBi of sets in B by theorem 1.3, it follows
that

f−1(A) =
⋃
i

f−1(Bi) ∈ τ,

where the last inclusion follows because each f−1(Bi) ∈ τ and topologies are closed under arib-
trary unions. Therefore, f is continuous relative to τ and s by definition.
The following are some alternative characterizations of continuous functions.

Lemma 1.17 Let (E,τ) and (F,s) be topological spaces and f :E→ F a function. Then, the
following are equivalent:

i) f is continuous relative to τ and s.

ii) f−1(B) is closed in τ for any B ⊂ F closed in s.

iii) For any x ∈ E and neighborhood V ∈ s of f(x), there exists a neighborhood U ∈ τ of x
such that f(U)⊂ V .

Proof) Suppose f is continuous relative to τ and s. Then, for any subset B of F that is closed
under s, since Bc = F \B ∈ s, we can see that

f−1(B) = f−1 (F \ (F \B)) = f−1(F )\f−1(Bc) = E \f−1(Bc) = f−1(Bc)c.

Since Bc ∈ s, f−1(Bc) ∈ τ by continuity, and as such f−1(Bc)c is closed under τ . This
holds for any closed set B under s, so that i) implies ii).
Conversly, suppose that f−1(B) is closed under τ for any B ⊂ F closed under s. Then,
for any A ∈ s, Ac = F \A is closed under s and

f−1(A) = f−1 (F \ (F \A)) = f−1(F )\f−1(Ac) = E \f−1(Ac) = f−1(Ac)c,

where f−1(Ac) is closed under τ by hypothesis and thus f−1(Ac)c ∈ τ . This holds for
any A ∈ s, and as such, f is continuous relative to τ and s by definition.
Therefore, the statements i) and ii) are equivalent.
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Now suppose that f is continuous relative to τ and s, and choose any x ∈ E and a
neighborhood V ∈ s around f(x). Then, because f−1(V ) ∈ τ and x ∈ f−1(V ), letting
U = f−1(V ), U ∈ τ is a neighborhood around x. In addition, for any y ∈ f(U), there
exists a z ∈ U such that f(z) = y; since z ∈ f−1(V ) and thus f(z) ∈ V , it follows that
y ∈ V and thus f(U)⊂ V . Therefore, i) implies iii).
Conversely, suppose that, iii) holds. For any A ∈ s, if f−1(A) = ∅, then f−1(A) ∈ τ
trivially. On the other hand, if f−1(A) 6= ∅, then we can choose some x ∈ f−1(A); since
f(x) ∈ A, A is a neighborhood around f(x) and thus, by hypothesis, there exists a
neighborhood Nx ∈ τ around x such that f(Nx) ⊂ A, or Nx ⊂ f−1(A). This holds for
any x ∈ f−1(A), so

f−1(A) =
⋃

x∈f−1(A)
Nx ∈ τ,

where the last inclusion follows because each Nx ∈ τ and topologies are closed under
arbitrary unions. Therefore, for any A ∈ s, f−1(A) ∈ τ and f is continuous relative to
τ and s by definition.
Q.E.D.

We can also show that continuity is preserved under composition.

Lemma 1.18 Let (E,τ), (F,s) and (G,γ) be topological spaces, and f : E → F , g : F → G

functions that are continuous relative to τ and s, and s and γ, respectively. Then, the function
h : E→G defined as h= g ◦f is continuous relative to τ and γ.

Proof) Let A∈ γ. By the definition of continuity, g−1(A)∈ s. Likewise, because f is continuous,
f−1(g−1(A)) ∈ τ . Therefore,

h−1(A) = (g ◦f)−1 (A) = f−1(g−1(A)) ∈ τ.

This holds for any A ∈ γ, so by definition, h is continuous relative to τ and γ.
Q.E.D.

Many of the properties of continuous functions studied so far will have direct counterparts
when it comes to measurable functions. In this sense, topological spaces and topology-preserving
functions (continuous functions) are analogous to measurable spaces and σ-algebra-preserving
functions (measurable functions).
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A very important property of continuous functions is that they preserve openness aover inverse
images and compactness over images. This is shown below:

Lemma 1.19 Let (E,τ) and (F,s) be topological spaces and f :E→F a continuous function.
Then, for any compact set K in E, the image f(K)⊂ F is a compact set in F .

Proof) Let K be a compact set in E, and {Vα} ⊂ s an open cover of f(K). It then holds that

K ⊂
⋃
α

f−1(Vα);

if x ∈K, then f(x)⊂ f(K)⊂ Vα for some α, so x ∈ f−1(Vα).
Because f is continuous, each of the sets f−1(Vα) is an open set in τ . This means
that {f−1(Vα)} forms an open cover of K, and by the compactness of K, there exist
α1, · · · ,αn such that

K ⊂ f−1(Vα1)∪·· ·∪f−1(Vαn).

Then,

f(K)⊂ Vα1)∪·· ·∪Vαn ;

for any y ∈ f(K), there exists an x ∈K such that y = f(x), and because x ∈ f−1(Vαi)
for some 1≤ i≤ n, it follows that y = f(x) ∈ Vαi .
Thus, {Vα} has a finite subcover of f(K), which implies that f(K) is compact in F .
Q.E.D.
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Consider metric spaces (E,d), (F,ρ) and let τ , s be the metric topologies on E, F induced by
d, ρ. Then, we can show that the familiar ε− δ definition of continuity holds.

Lemma 1.20 Let f : E→ F be a function. Then, the following are equivalent.

i) f is continuous relative to τ and s

ii) For any x ∈ E and ε > 0, there exists a δ > 0 such that

ρ(f(x),f(y))< ε for any y ∈ E such that d(x,y)< δ.

Proof) Suppose f is continuous relative to τ and s. Choose any x ∈ E and ε > 0; then,
Bρ(f(x),ε) ∈ s, so that

f−1 (Bρ(f(x),ε)) ∈ τ.

Because f(x) ∈ Bρ(f(x),ε), x ∈ f−1 (Bρ(f(x),ε)), and by lemma 1.6, there exists a
δ > 0 such that Bd(x,δ)⊂ f−1 (Bρ(f(x),ε)). This means that, for any y ∈ E such that
d(x,y)< δ, or y ∈Bd(x,δ), we have y ∈ f−1 (Bρ(f(x),ε)), or f(y) ∈Bρ(f(x),ε), that is,
ρ(f(x),f(y))< ε.
This shows that i) implies ii).

Conversely, suppose that ii) holds. Choose any A ∈ s. If f−1(A) = ∅, then f−1(A) ∈ τ
trivially.
Suppose that f−1(A) 6= ∅. Then, there exists an x∈ f−1(A), or f(x)∈A; by lemma 1.6,
there exists an ε > 0 such that Bρ(f(x),ε)⊂A. By hypothesis, there then also exists a
δ > 0 such that Bd(x,δ)⊂ f−1(Bρ(f(x),ε)). Denoting Nx =Bd(x,δ), it follows that

Nx =d (x,δ)⊂ f−1(Bρ(f(x),ε))⊂ f−1(A).

This holds for any x ∈ f−1(A), so

f−1(A) =
⋃

x∈f−1(A)
Nx ∈ τ,

where the last inclusion follows because each Nx ∈ τ and topologies are closed under
arbitrary unions. Therefore, for any A ∈ s, f−1(A) ∈ τ and f is continuous relative to
τ and s by definition.
Q,E.D.
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1.10 Homeomorphisms

Let (E,τ) and (F,s) be topological spaces. A function f :E→ F is said to be a homeomorphism
if

i) f is continuous relative to τ and s

ii) f is a bijection, so that its inverse f−1 : E→ F exists

iii) f−1 is continuous relative to s and τ .

If f is a homeomorphism, then, for any open B ∈ s, the inverse mapping f−1(B) ∈ τ by the
continuity of f . However, unlike ordinary continuous functions, the image of open sets under a
homeomorphism is also open, since, for any A ∈ τ ,

f(A) = (f−1)−1(A) ∈ s

by the continuity of f−1.

Heuristically, the above means that any topological property of a set in E is preserved under a
homeomorphism.
For instance, if A ∈ τ , then f(A) ∈ s, while if f(A) ∈ s, then f−1(f(A)) = A ∈ τ , so that A is
open in E if and only if f(A) is open in F .
Likewise, an arbitrary subset B of E is closed in E if and only if f(B) is closed in E as well.
Furthermore, if K is compact in E, then f(K) is compact in F by the property of continuous
functions, while if f(K) is compact in F , then f−1(f(K)) =K is compact in E, again by conti-
nuity. This tells us that a subset K of E is compact if and only if f(K) is compact in F .

The preservation of topological properties under homeomorphisms also extends to the continuity
of functions. Consider topological spaces (E,τ), (F,s) and (G,γ), and suppose that there exists
a homeomorphism h : F →G. Then, if f :E→ F is continuous relative to τ and s, the function
h◦f : E→G is continuous by the preservation of continuity across compositions, and if h◦f :
E→G is continuous relative to τ and γ, then

f = h−1 ◦ (h◦f)

is continuous relative to τ and s because h−1 is continuous relative to γ and s. We have thus
seen that f is continuous if and only if h◦f is.

We have seen that a homeomorphism between two topological spaces (E,τ) and (F,s) allow
them, in a sense, to share topological properties. As such, we might identify these spaces, or at
least say that the spaces are homeomorphic.
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1.10.1 The Standard Topology on C

As an application of the results on homeomorphisms, we conside topologies on the complex
plane. Letting |·|c be the euclidean norm on C, defined as

|z|c =
√
a2 + b2

for any z = a+ ib ∈ C, we define the standard topology τC on C as the metric topology induced
by the metric induced by the above norm.
The norm |·|c is very reminiscent of the euclidean norm on R2, which assigns the value

√
a2 + b2

to the 2-dimensional vector (a,b). Indeed, letting ρ and d2 be the metrics induced by the eu-
clidean norms on C and R2, and denoting the euclidean topology on R2 induced by d2 as τR2 ,
we can see that the topological spaces (C, τC) and (R2, τR2) are homeomorphic.

To see this, let ρ and d2 be the metrics induced by the euclidean norms on C and R2. We first
define the function f : C→ R2 as

f(z) = (Re(z), Im(z))

for any z ∈ C. We can now show that f is a homeomorphism:

Lemma 1.21 The function f defined above is a homeomorphism of (C, τC) and (R2, τR2).

Proof) We first prove that f is continuous by using the ε−δ characterization of continuity on
metric spaces.

For any u,z ∈ C, note that

d2(f(u),f(z)) = |(Re(u), Im(u))− (Re(z), Im(z))|= |z−u|c = ρ(u,z).

This means that, for any ε > 0, ρ(u,z)< ε implies

d2(f(u),f(z)) = ρ(u,z)< ε,

so f is uniformly continuous on C. In fact, it is Lipschitz continuous with Lipschitz
constant equal to 1.

Note also that f is a bijection. If f(z) = f(u) for some z,u∈C, then Re(z) =Re(u) and
Im(z) = Im(u), so that z = u; f is an injective mapping. On the other hand, for any
(a,b) ∈ R2, f(a+ ib) = (a,b), so f is also a surjective mapping onto R2, which shows
that f is a bijection. Therefore, it has an inverse function f−1 : R2→ C.

We can now show that the inverse mapping f−1 is continuous relative to τR2 and τC,

42



again through the ε− δ characterization. As in the case of f , for any x,y ∈ R2,

ρ(f−1(x),f−1(y)) = |(x1 + i ·x2)− (y1 + i ·y2)|c = |x−y|= d2(x,y),

so f−1 is also Lipschitz continuous with Lipschitz constant equal to 1.
By definition, f is a homeomorphism.
Q.E.D.

Denote the above homeomorphism by φ : C→ R2. Due to the preservation of continuity under
homeomorphisms, for any topological space (E,τ) and function f : E → C, f is continuous
relative to τ and τC if and only if φ◦f :E→R2 is continuous relative to τ and τR2 . The function
φ◦f is specifically defined as

(φ◦f)(x) = φ(f(x)) = (Re(f(x)), Im(f(x)))

for any x ∈E. This relationship allows us to obtain a very simple characterization of continuous
complex functions:

Theorem 1.22 A function f : E→ C is continuous relative to τ and τC if and only if Re(f)
and Im(f) are continuous relative to τ and τR.

Proof) Denote h= φ◦f for notational brevity.
Suppose that Re(f) and Im(f) are real-valued functions continuous relative to τ and
τR. Then, for any A,B ∈ τR,

h−1(A×B) = (Re(f))−1(A)∩ (Im(f))−1(B) ∈ τ

by the definition of continuity. Since the set of open rectangles is a base generating
τ2
R = τR2 , it follows that h is continuous relative to τ and τR2 , and therefore that f is

continuous relative to τ and τC.

Conversely, suppose that f is continuous relative to τ and τC. Then, h is continuous
relative to τ and τR2 . For any A ∈ τR,

(Re(f))−1(A) = (Re(f))−1(A)∩ (Im(f))−1(R) = h−1(A×R) ∈ τ,

where (Im(f))−1(R) = E and A×R is an open rectangle on R2. It follows that Re(f)
is continuous relative to τ and τR, and by the same process, so is Im(f).
Q.E.D.
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1.11 Real and Complex Continuous Functions

1.11.1 Preservation of Continuity under Arithmetic Operations

Let (E,τ) be a topological space, and let f : E → R be a numerical function. By the previous
observaiton that a necessary and sufficient condition for continuity is for the inverse image of
any member of a base generating τR to be contained in τ , we have that f is continuous if and
only if f−1((a,b)) ∈ τ for any open interval (a,b) with rational endpoints, since the collection of
such sets generates τR.

Real-valued continuous functions are of special interest in that the addition, scalar multiplica-
tion and product of such functions are still continuous real valued functions. This is stated below:

Lemma 1.23 Let (E,τ) be a topological space, and let f,g :E→ R be real-valued functions
continuous relative to τ and the standard topology τR on R. The following hold true:

i) f +g is a continuous function.

ii) For any c ∈ R, cf is a continuous function.

iii) The product fg is a continuous function.

Proof) Define h : R2→ R as

h(x,y) = x+y

for any (x,y) ∈ R2. We will show that h is continuous relative to τ2
R and R.

Choose any open interval (a,b)⊂ R with rational endpoints. Then,

h−1((a,b)) = {(x,y) ∈ R2 | a < h(x)< b}= {(x,y) ∈ R2 | a < x+y < b}

= {(x,y) ∈ R2 | a−y < x < b−y}

= {(x,y) ∈ R2 | a−y < x}∩{(x,y) ∈ R2 | x < b−y}

=
⋃
r∈R

([(r,+∞)× (a− r,+∞)]∩ [(−∞, b− r)× (−∞, r)]) .

Each set on the right hand side is the intersection of two open rectangles, so each such
set is in τ2

R, and because topologies are closed under unions, h−1((a,b)) ∈ τ2
R.

Because the set of all open intervals with rational endpoints is a base of R generating
τR, by the characterization of continuity stated above, h is continuous relative to τ2

R

and R.

Now define the function φ : E→ R2 as

φ(x) = (f(x),g(x))
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for any x ∈ E. Then, for any A,B ∈ τR,

φ−1(A×B) = f−1(A)∩g−1(B) ∈ τ

by the continuity of f and g, and because the set of all open rectangles is a base on R2

generating τ2
R, it follows that φ is continuous relative to τ and τ2

R.

Finally,

f +g = h(f,g) = h◦φ;

by the preservation of continuity across compositions, f +g is continuous relative to τ
and τR.

Now choose some c ∈R. If c= 0, then cf = 0 is trivially continuous. Assume that c > 0.
Then, for any open interval (a,b)⊂ R,

(cf)−1((a,b)) = {x ∈ E | a < cf(x)< b}= {x ∈ E | a
c
< f(x)< b

c
}= f−1

((
a

c
,
b

c

))
∈ τ,

so that cf is continuous relative to τ and τR.
If c < 0, then similarly, for any open interval (a,b)⊂ R,

(cf)−1((a,b)) = {x ∈ E | a < cf(x)< b}= {x ∈ E | b
c
< f(x)< a

c
}= f−1

((
b

c
,
a

c

))
∈ τ,

so that cf is again continuous relative to τ and τR.

Finally, note that

fg = 1
2
(
(f +g)2−f2−g2

)
.

Since the mapping x 7→ x2 is continuous on R, and continuity is preserved across com-
positions and over addition and scalar multiplication, we can see that fg is continuous
relative to τ and τR.
Q.E.D.
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Let f :E→C be a complex-valued function. We saw in the previouss section that f is continuous
relative to τ and τC (denoted in brief as ”continuous relative to τ”) if and only if its real and
imaginary parts Re(f), Im(f) are continuous relative to τ and τR. The following shows that the
sum, scalar multiple and product of continuous complex functions are also continuous:

Lemma 1.24 Let (E,τ) be a topological space, and let f,g : E → C be complex-valued
functions continuous relative to τ . The following hold true:

i) For any c ∈ C, cf +g is a continuous function.

ii) The product fg is a continuous function.

Proof) For any c ∈ C, letting c= a+ ib for a,b ∈ R, we have

cf +g = (a+ ib) · (Re(f) + i · Im(f)) +Re(g) + i · Im(g)

= (aRe(f)− bIm(f)) + i · (bRe(f) +aIm(f)) +Re(g) + i · Im(g)

= (aRe(f)− bIm(f) +Re(g)) + i · (bRe(f) +aIm(f) + Im(g)) .

Since the continuity of real valued functions is preserved over addition and scalar mul-
tiplication, aRe(f)−bIm(f)+Re(g) and bRe(f)+aIm(f)+Im(g) are continuous rel-
ative to τ and τR. It follows that cf +g is a complex function continuous relative to τ .

As for the product, note that

fg = (Re(f) + i · Im(f))(Re(g) + i · Im(g))

=Re(f)Re(g)− Im(f)Im(g) + i · (Im(f)Re(g) +Re(f)Im(g)) .

Since the continuity of real valued functions is preserved over products, Re(f)Re(g)−
Im(f)Im(g) and Im(f)Re(g) +Re(f)Im(g) are continuous relative to τ and τR. It
follows that fg is a complex function continuous relative to τ .
Q.E.D.
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1.11.2 Semicontinuity

We say that a real-valued function f : E→ R is upper semicontinuous if

{x ∈ E | f(x)< a}= f−1((−∞,a)) ∈ τ

for any a ∈ R.
Likewise, we say that f is lower semicontinuous if

{x ∈ E | f(x)> a}= f−1((a,+∞)) ∈ τ

for any a ∈ R.
Note that f is continuous if and only if it is both upper and lower semicontinuous: if f is
continuous, then because (a,+∞) and (−∞,a) are all open sets in τR for any a ∈ R,

f−1((−∞,a)),f−1((a,+∞)) ∈ τ

for any a ∈ R, so that f is both upper and lower semicontinuous, while if f is both upper and
lower semicontinuous, then for any rational a,b ∈Q such that a < b,

f−1((a,b)) = f−1((−∞, b))∩f−1((a,+∞)) ∈ τ,

so that f is continuous.

The following result shows that the indicator of open sets and closed sets are lower and upper
semicontinuous, respectively:

Lemma 1.25 Let (E,τ) be a topological space. The following hold true:

i) For any open set A ∈ τ , the indicator IA is lower semicontinuous.

ii) For any closed subset A of E, the indicator IA is upper semicontinuous.

Proof) i) Suppose A ∈ τ . Then, for any a ∈ R,

(IA)−1((a,+∞)) =


∅ if 1≤ a

A if 0≤ a < 1

E if a < 0

,

so that (IA)−1((a,+∞)) ∈ τ and IA is lower semicontinuous.
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ii) Suppose A is closed, so that Ac ∈ τ . Then, for any a ∈ R,

(IA)−1((−∞,a)) =


E if 1< a

Ac if 0< a≤ 1

∅ if a≤ 0

,

so that (IA)−1((a,+∞)) ∈ τ and IA is upper semicontinuous.

Q.E.D.

We can also see that upper and lower semicontinuity are preserved under suprema and infima:

Lemma 1.26 Let (E,τ) be a topological space, and {fn}n∈N+ a sequence of real functions on
E such that supn∈N+ fn(x) and infn∈N+ fn(x) exist in R for any x ∈E. The following hold true:

i) If each fn is lower semicontinuous, supn∈N+ fn is also lower semicontinuous.

ii) If each fn is upper semicontinuous, infn∈N+ fn is also upper semicontinuous.

Proof) Suppose that {fn}n∈N+ is a sequence of lower semicontinuous functions, and define
f = supn∈N+ fn; note that f is real-valued by hypothesis. Then, for any a ∈ R,

f−1((a,+∞)) = {x ∈ E | f(x)> a}=
⋃
n

{x ∈ E | fn(x)> a},

and because each {x ∈ E | fn(x) > a} ∈ τ by lower semicontinuity, it follows that
f−1((a,+∞)) ∈ τ as well. Therefore, f is lower semicontinuous.

On the other hand, suppose {fn}n∈N+ is a sequence of upper semicontinuous functions,
and define f = infn∈N+ fn; note that f is real-valued by hypothesis. Then, for any a∈R,

f−1((−∞,a)) = {x ∈ E | f(x)< a}=
⋃
n

{x ∈ E | fn(x)< a},

and because each {x ∈ E | fn(x) < a} ∈ τ by upper semicontinuity, it follows that
f−1((−∞,a)) ∈ τ as well. Therefore, f is upper semicontinuous.
Q.E.D.
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1.12 Connectedness

Another important topological property, of great importance even outside the context of metric
spaces, is connectedness. Let (E,τ) be a topological space. Any two subsets A,B of E are said
to be separated if A∩B = ∅ and A∩B = ∅, that is, if each set does not intersect with the closure
of the other. A subset of E is said to be connected if it cannot be represented as the union of
two nonempty separated sets. The empty set is trivially connected.

A related notion is path-connectedness. A path between two points x,y in a topological
space (E,τ) is defined as a continuous function (with respect to the standard topology on R
and τ) f : [0,1]→ E such that f(0) = x and f(1) = y. A non-empty subset A of E is said to be
path-connected if there exists a path between any two points x,y in A.

Also important to the study of connected sets is the concept of a linear continuum, which
generalizes the properties of intervals and rays on the real line that render it connected. An
ordered set L is said to be a linear continuum if

1) It has the least upper bound property, and

2) For any x,y ∈ L such that x < y, there exists a z ∈ L such that x < z < y.

Note that any interval or ray on the real line is a linear continuum. There exists a very
convenient characterization of connected subsets of a linear continuum.

Theorem 1.27 Let L be a linear continuum and τ the order topology on L. A nonempty
subset K of L is connected if and only if, for any x,y ∈K such that x < y, x < z < y implies
z ∈K.

Proof) Necessity
Let K be a subset of L, and suppose that there exist x,y ∈ K and z ∈ L such that
x < z < y but z /∈K. Define

A=K ∩ (−∞,z), B =K ∩ (z,+∞),

where (−∞,z) is shorthand for the open ray {w ∈ L | w < z}. Then, K = A∪B, and
A,B are non-empty sets (they contain x and y, respectively). Furthermore, suppose
that w ∈A∩B. Note that w ∈B, so that z < w. In addition,

w ∈A⊂ (−∞,z] := {u ∈ L | u≤ z}.

We are left with w ≤ z < w, a contradiction, so it must be the case that A∩B = ∅.
A symmetric process reveals that A∩B = ∅, and it follows that K is the union of
nonempty separated sets A and B. Thus, K is not connected.

Sufficiency
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Let K be a subset of L, and suppose that K is not connected. Then there exists
nonempty separated sets A,B ⊂ L such that K = A∪B. Choose x ∈ A and y ∈ B,
and assume without loss of generality that x < y (they cannot be equal since A and B
are disjoint). Define the set C = A∩ [x,y]; C is a nonempty (contains x) and bounded
subset of L (bounded above by y), so by the least upper bound property of L, C has a
supremum α in L.

By definition, x≤α≤ y, and examine what happens when α∈B. Since the supremum of
a set is contained in its closure, we can see that α∈C ⊂A. Under the above supposition,
this means that α is in the intersection of A and B, which contradicts the fact that A
and B are separated. Therefore, α /∈B and α < y.

We now consider two cases. If α /∈ A, then x < α < y and α is not contained in either
A or B, meaning that it is not contained in K. Thus, in this case, we put z = α. On
the other hand, if α ∈ A, then α /∈ B by the separation property. This means that α
is not a limit point of B, that is, there exists some neighborhood V of α such that
V ∩B = ∅. The collection of all rays and open intervals in L form a base generating
the order topology τ of L, so there must exist a ray or open interval b ⊂ L such that
α ∈ b⊂ V . We consider the following cases:

– Case 1: b= {w ∈ L | r < w} for some r ∈ L
In this case, b is the ray bounded below by r. Since α ∈ b, it must be the case that
b < α, and because α < y, y is also contained in the ray b. By implication, y ∈ V
and y /∈B, a contradiction. Therefore, b cannot be a ray that is bounded below.

– Case 2: b= {w ∈ L | w < r} for some r ∈ L
In this case, b is the ray bounded above by r. This indicates that α < r, and if
y < r, we must have y ∈ V and y /∈B, another contradiction. Therefore, r≤ r, and
by the property of linear continuums, there exists a z ∈ L such that α< z < y ≤ r;
this z is contained in b, so it is not an element of B.

– Case 3: b= (r,s) for some r,s ∈ L
In this case, b is an open interval, and r < α < s. Again, y < s implies that y /∈B,
so we must have r < α < s ≤ y. By the same process as above, this allows us to
choose a z ∈ L such that α < z < y and z /∈B.

We have shown that, in any case, we can choose some z ∈ L such that x < α < z < y

and z /∈ B. This z cannot be an element of A, since in this case it is contained in C

and we have the contradiction α= supC < z. As such, we have found a z ∈L such that
x < z < y and z /∈K.

Q.E.D.
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The above result shows us that the real line equipped with its standard topology, as well as
any intervals or rays contained in R, are all connected. Connectedness is also a property, along
with compactness, that is preserved by the image of continuous functions, as we show below:

Theorem 1.28 Let (E,τ) and (F,s) be topological spaces and f :E→ F a continuous func-
tion. If E is a connected space, then the image f(E)⊂ F is a connected subset of F .

Proof) Suppose that the image f(E) is not connected. Then, there exist nonempty separated
sets A,B ⊂ F such that f(E) = A∪B. Define A0 = f−1(A) and B0 = f−1(B). By the
continuity of f , the inverse image f−1(A) is a closed set containing f−1(A), so it follows
that A0 ⊂ f−1(A). Therefore,

A0∩B0 ⊂ f−1(A∩B) = ∅,

where the final equality follows because A∩B = ∅ by separatedness. Similarly, we can
show that A0∩B0 = ∅, and A0,B0 are nonempty separated subsets of E. It follows that

E ⊂ f−1(f(E)) = f−1(A∪B) =A0∪B0.

Conversely, because E is the domain of f , A0 and B0 are subsets of E. We can see
that E = A0∪B0, or that it is the union of two nonempty separated subsets of E. By
definition, E is not connected, and the claim of the theorem follows by contraposition.

Q.E.D.

The famous intermediate value theorem follows from combining the two preceding results.

Theorem 1.29 (Intermediate Value Theorem)
Let f : [a,b]→ R be a continuous function such that f(a)< f(b). Then, for any z ∈ R such that
f(a)< z < f(b), there exists a c ∈ (a,b) such that f(c) = z.

Proof) Since f is a continuous function and the closed interval [a,b] is a connected set in the
standard topology on the real line, the image f([a,b]) is a connected set, also in the
standard topology. The points f(a) and f(b) are clearly contained in f([a,b]), and since
f([a,b]) is a connected set on the real line, which is a linear continuum, by the char-
acterization of connected sets on linear continuums proven above any z ∈ R such that
f(a) < z < f(b) is also contained in the connected set f([a,b]). Therefore, there must
exist a c ∈ (a,b) such that f(c) = z.

Q.E.D.
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As a brief aside, we can actually prove the intermediate value theorem without taking re-
course to connectedness by making use of the binary search algorithm. Intuitively, given a con-
tinuous function f : [a,b]→R such that f(a)< f(b) and some f(a)< c< f(b), to find a z ∈ (a,b)
such that f(z) = c we continuously bisect the interval (a,b) and move into the interval on which
the sign of f−c is different on the endpoints. Taking the limit then leads us to the desired value z.

Theorem 1.29 (Alternate Proof) (Intermediate Value Theorem)
Let f : [a,b]→ R be a continuous function such that f(a)< f(b). Then, for any z ∈ R such that
f(a)< z < f(b), there exists a c ∈ (a,b) such that f(c) = z.

Proof) We will construct two sequences {xn}n∈N and {yn}n∈N taking values in [a,b] as follows.
First, we put x0 = a and y0 = b. Suppose that we have defined xn ≤ yn for some n ∈ N
so that f(xn) ≤ c and f(yn) > c. Defining mn = xn+yn

2 , the midpoint of the interval
[xn,yn] at which f(xn)≤ c and f(yn)≤ c, we let

xn+1 =

mn if f(mn)≤ c

xn if f(mn)> c
, yn+1 =

yn if f(mn)≤ c

mn if f(mn)> c
.

Heuristically, when we move from [xn,yn] to [xn+1,yn+1], we are moving onto the inter-
val on which the first endpoint is below c and the other is above c. To see this formally,
note that, if f(mn)≤ c, then f(xn+1) = f(mn)≤ c, while f(yn+1) = f(yn)> c. On the
other hand, if f(mn)> c, then f(xn+1) = f(xn)≤ c, while f(yn+1) = f(mn)> c.

The sequence {[xn,yn]}n∈N of intervals constructed inductively as above satisfies the
condition

f(xn)≤ c < f(yn)

for any n ∈N+. Since {xn}n∈N and {yn}n∈N take values in the compact set [a,b], there
exist subsequences {xnk}k∈N+ and {ynk}k∈N+ that converge to points x and y in [a,b]1.
By the continuity of f ,

f(x) = lim
n→∞

f(xn)≤ c and f(y) = lim
n→∞

f(yn)≥ c.

Furthermore, since for any n ∈N+ we have

|xn+1−yn+1|=
∣∣∣∣xn−yn2

∣∣∣∣,
it follows that

|xn−yn|=
1
2 |xn−1−yn−1|= · · ·2−n|x0−y0|= 2−n(b−a)

1The indices {nk}k∈N+ can be taken as the same across the wo subsequences by first taking the subsequence of
{xn}n∈N and then the subsequence of the subsequence of {yn}n∈N defined on the indices of the earlier subsequence.
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for any n ∈N+. Taking n→∞ on both sides, we can see that

lim
n→∞

|xn−yn|= 0,

so that their limits x and y are equal; put x= y = z ∈ [a,b]. It follows that

c≤ f(z)≤ c,

so that f(z) = c. Finally, since f(a)<f(z) = c < f(b), it must be the case that z ∈ (a,b).

Q.E.D.

We conclude our study of connectedness by stating the relationship between path-connectedness
and connectedness. The notion of path-connectedness also gives rise to a generalization of the
intermediate value theorem.

Theorem 1.30 The following hold true:

i) Path-connected sets are connected.

ii) Convex sets are path-connected.

iii) (Generalization of Intermediate Value Theorem)
Let (E,τ) be a topological space and A a path connected subset of A. Let f :A→ R be a
continuous function, and a,b ∈ A points such that f(a) < f(b). Then, for any c ∈ R such
that f(a)< c < f(b), there exists a z ∈A such that f(z) = c.

Proof) i) Let (E,τ) be a topological space, and letK be a (nonempty) path-connected subset
of E. Suppose that K is not connected, so that there exist nonempty separated
subsets A,B of E such that K = A∪B. Choose x ∈ A and y ∈ B. By the path-
connectedness of K, there exists a continuous function f : [0,1]→ K such that
f(0) = x and f(1) = y. Define

A0 = f−1(A), B0 = f−1(B).

by the same process as the proof above, we can see that A0 and B0 are nonempty
separated subsets of [0,1] such that [0,1] =A0∪B0. However, this contradicts the
connectedness of the interval [0,1], so it must be the case that K is connected.

ii) Let Rn be the n-dimensional euclidean space with the euclidean topology, and K

a convex subset of Rn. Choose any x,y ∈K and define the function f : [0,1]→Rn
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as

f(t) = tx+ (1− t)y

for any t ∈ [0,1]. Then, f takes values in K by convexity and is trivially contin-
uous. This holds for any x,y ∈K, so K is path connected. In fact, by the above
result, K is also connected.

iii) Let (E,τ) be a topological space and A a path connected subset of E. Let f :A→R
and a,b ∈ A be chosen so that f is a continuous function such that f(a) < f(b).
Choose any c ∈ R such that f(a) < c < f(b). We want to find a z ∈ A such that
f(z) = c.
By the path-connectedness of A, there exists a continuous function g : [0,1]→ A

such that g(0) = a and g(1) = b. Defining h = f ◦ g : [0,1]→ R, h is continuous
because continuity is preserved across compositions. Since

h(0) = f(g(0)) = f(a)< c < f(b) = f(g(1)) = h(1),

by the IVT there exists a t ∈ (0,1) such that h(t) = c. Defining z = g(t) ∈ A, this
immediately tells us that f(z) = c.

Q.E.D.

Putting together the last two claims of the above theorem, we can formulate a version of
the intermediate value theorem for convex sets on euclidean spaces. Given a convex set A⊂ Rn

and a function f : A→ R, suppose that f(x)< f(y) for some x,y ∈ A. For any c ∈ R such that
f(x)< c< f(y), there then exists some z ∈A such that f(z) = c, since the convexity of A implies
that it is path-connected.
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1.13 Urysohn’s Lemma for Locally Compact Hausdorff Spaces

Let (E,τ) be a topological space, and f : E→ C a complex continuous function relative to τ .
The support of f is defined as the closure of the set {x ∈E | f(x) 6= 0}, that is, the set on which
it is non-zero. Now define the following set:

Cc(E,τ) = {f : E→ C | f is continuous relative to τ and has compact support}

It is easy to see that Cc(E,τ) is a vector space over C; because the space of all complex functions
on E is known to be a vector space over C, we need only verify that Cc(E,τ) is a subspace of the
larger function space. To this end, note that the zero function is contained in Cc(E,τ) because
it is trivially continuous and has support ∅, which is compact.
Furthermore, for any a ∈C and f,g ∈Cc(E,τ), af +g is a complex continuous function relative
to τ . To see that it has compact support, note that

{f = 0}∩{g = 0} ⊂ {cf +g = 0},

so that

{cf +g 6= 0} ⊂ {f 6= 0}∪{g 6= 0};

because f,g have compact support, and the finite union of compact sets is compact, {f 6= 0}∪
{g 6= 0} is a compact set in E. Thus, the support of cf + g is a closed set contained in the
compact set {f 6= 0}∪{g 6= 0}; it follows that it is itself compact.
This shows that cf + g is a continuous function with compact support and thus contained in
Cc(E,τ). This in turn completes the proof that Cc(E,τ) is a subspace of the entire function
space and thus a vector space over the complex field.

For any f ∈Cc(E,τ), the fact that f has compact support imparts on f many useful properties.
For instance, letting A= {f 6= 0} be the support of f , the range of f is given as f(E) = f(A)∪{0}.
Because the image of a compact set is compact, f(A) is compact in C, and since the singleton
{0} is also compact, f(E) is compact.
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Before proving the main result of this section, we define some notations:
For any set K ⊂ E and function f : E→ C, we denote K ≺ f to represent:

f ∈ Cc(E,τ), K is compact, 0≤ f(x)≤ 1 for any x ∈ E, f(x) = 1 for any x ∈K.

Likewise, for any set V ⊂ E, we denote f ≺ V to represent:

f ∈ Cc(E,τ), V is open, 0≤ f(x)≤ 1 for any x ∈ E, the support of f lies in V .

Note that {f 6= 0} ⊂ V implies that {f 6= 0} ⊂ V and thus that f(x) = 0 for any x /∈ V .
We denote K ≺ f ≺ V if K ≺ f and f ≺ V .
The following is Urysohn’s lemma for locally compact Hausdorff spaces, which shows that any
indicator function can be approximated by continuous functions in Cc(E,τ) with an arbitrary
degree of precision:

Theorem 1.31 (Urysohn’s Lemma for Locally Compact Hausdorff Spaces)
Let (E,τ) be a locally compact Hausdorff space. For any compact set K and open set V such
that K ⊂ V , there exists a function f ∈ Cc(E,τ) such that

K ≺ f ≺ V,

that is, f is a complex continuous function with compact support such that

f(x) ∈


{0} if x /∈ V

[0,1] if x ∈ V \K

{1} if x ∈K

.

By implication, IK ≤ f ≤ IV .

Proof) First, we arrange the elements of the countable set Q∩(0,1) into the sequence {rn}n∈N+ ,
and put r−1 = 1, r0 = 0. By theorem 1.14, because K is a compact set contained in
the open set V , there exists a V1 ∈ τ with compact closure such that K ⊂ V1 ⊂ V̄1 ⊂ V .
Since V̄1 is itself a compact set contained in V , we can apply theorem 1.14 once again
to find a V0 ∈ τ such that V̄1 ⊂ V0 ⊂ V̄0 ⊂ V . Putting these together, we have the result

K ⊂ V1 ⊂ V̄1 ⊂ V0 ⊂ V̄0 ⊂ V.

Suppose, for some n≥ 0, that we have found Vr−1 ,Vr0 , · · · ,Vrn ∈ τ with compact closure
such that

Vrj ⊂ Vri if rj > ri for any −1≤ i, j ≤ n.

Since rn+1 ∈ (0,1), there exist −1≤ i, j ≤ n such that ri < rn+1 < rj when r−1, · · · , rn+1
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are ordered in ascending order; the existence of such ri and rj can be ascertained by
noting that rn+1 cannot be the smallest or largest member of {r−1, · · · , rn+1}, since 0
and 1 are contained in it as well.
Since Vrj ⊂ Vri by the inductive hypothesis (ri < rj), by theorem 1.14 there exists a
Vrn+1 ∈ τ with compact closure such that

Vrj ⊂ Vrn+1 ⊂ Vrn+1 ⊂ Vri .

Constructing the sequence {Vr}r∈Q∩[0,1] in this manner, we end up with a sequence of
open sets such that

Vr ⊂ Vq if r > q for any r,q ∈Q∩ [0,1] and

K ⊂ V1 ⊂ V̄1 ⊂ V0 ⊂ V̄0 ⊂ V.

Using the sets constructed above, define the sequence {fr}r∈Q∩[0,1] and {gr}r∈Q∩[0,1] of
functions on E as follows:

fr(x) =

r if x ∈ Vr
0 if x /∈ Vr

and gr(x) =

1 if x ∈ V̄r
r if x /∈ V̄r

for any x ∈ E and r ∈Q∩ [0,1]. Note that, for any r ∈Q∩ [0,1], we can write

fr = r · IVr and gr = IV̄r + r · IV̄rc .

For any a ∈ R,

f−1
r ((a,+∞)) =


∅ if r ≤ a

Vr if 0≤ a < r

E if a < 0

and g−1
r ((−∞,a)) =


E if 1< a

V̄ c
r if r < a≤ 1

∅ if a≤ r

,

so f−1
r ((a,+∞)),g−1

r ((−∞,a)) ∈ τ . This implies that fr is lower semicontinuous, while
gr is upper semicontinuous.
Define

f = sup
r∈Q∩[0,1]

fr and g = inf
r∈Q∩[0,1]

gr,

where f,g are well-defined and take values in [0,1] because for each r ∈Q∩ [0,1], fr and
gr take values in [0,1]. Since f and g are the supremum and infimum of lower semicon-
tinuous and upper semicontinuous real valued functions, respectively, by lemma 1.24
we have f and g are lower and upper semicontinuous functions.
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We now study the properties of the function f : by design,

0≤ f(x)≤ 1 for any x ∈ E.

Moreover, for any r ∈Q∩ [0,1], since fr(x) = 0 for any x ∈ V c
r , and V c

0 ⊂ V c
r , it follows

that

f(x) = sup
r∈Q∩[0,1]

fr(x) = 0 for any x /∈ V0.

This implies that {f 6= 0} ⊂ V0, and because {f 6= 0} ⊂ V̄0 ⊂ V , where V̄0 is a compact
set and {f 6= 0} a closed one, {f 6= 0} is compact. Thus, f has compact support that
lies in the open set V .
Finally, if x ∈K, then x ∈ V1 ⊂ Vr for any r ∈Q∩ [0,1], which tells us that

f(x) = sup
r∈Q∩[0,1]

fr(x) = sup
r∈Q∩[0,1]

r = 1.

It remains to see that f is continuous relative to τ ; this can be done by showing
that f = g, at which point f will be both upper and lower semicontinuous and thus
continuous.
For any r,q ∈Q∩ [0,1], suppose fr(x)> gq(x) for some x∈E. Then, it must be the case
that x ∈ Vr (otherwise fr(x) = 0), x /∈ V̄q (otherwise gq(x) = 1, and

r = fr(x)> gq(x) = q.

However, q < r implies that Vr ⊂ V̄r ⊂ Vq ⊂ V̄q, so that, if x ∈ Vr, then x must also be
contained in V̄q. This is clearly a contradiction, so fr(x) ≤ gq(x) for any x ∈ E, which
implies that

f = sup
r∈Q∩[0,1]

fr ≤ inf
r∈Q∩[0,1]

gq = g.

To see the reverse inequality, suppose that f(x) < g(x) for some x ∈ E. Then, be-
cause Q is dense in R, there exist r,q ∈ Q such that f(x) < r < q < g(x), and because
f(x),g(x) ∈ [0,1], it must be the case that r,q ∈Q∩ [0,1].
Since fr(x)≤ f(x)< r, it must be the case that x /∈ Vr, while q < g(x)≤ gq(x) implies
that x ∈ V̄q. However, because r < q, by design we have V̄q ⊂ Vr, so that x ∈ V̄q implies
x ∈ Vr, a contradiction. It follows that f(x) = g(x) for any x ∈ E, and the proof is
complete.
Q.E.D.

Any such f as in the theorem above is called a Urysohn function.
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We conclude by proving an important corollary to Urysohn’s lemma, the familiar partition of
unity. The theorem can be viewed as a generalization of Urysohn’s lemma in the case where a
compact set is covered not by a single open set, but by a finite union of open sets.

Theorem 1.32 (Partition of Unity)
Let (E,τ) be a locally compact Hausdorff space. Let V1, · · · ,Vn ∈ τ be open sets and K a compact
set such that

K ⊂ V1∪·· ·∪Vn.

Then, there exist functions h1, · · · ,hn ∈ Cc(E,τ) such that hi ≺ Vi for any 1≤ i≤ n and

K ≺
n∑
i=1

hi.

Proof) If n= 1, this is just Urysohn’s lemma, so we assume n≥ 2.

For any x ∈ K, x ∈ Vi(x) for some 1 ≤ i(x) ≤ n. Because {x} is a compact subset
contained in the open set Vi(x), by theorem 1.14 there exists an open set Ux ∈ τ with
compact closure such that

x ∈ Ux ⊂ Ūx ⊂ Vi(x).

The collection {Ux}x∈K is an open cover of K, and as such, by compactness there exist
x1, · · · ,xm ∈K such that

K ⊂ Ux1 ∪·· ·∪Uxm .

For any 1≤ i≤ n, define ιi = {1≤ j ≤m | i(xj) = i}; if ιi 6= ∅, then put

Hi =


⋃
j∈ιi Ūxj if ιi 6= ∅

∅ if ιi = ∅.

Since Ūxj ⊂ Vi for any j ∈ ιi because i(xj) = i, it follows that Hi is a compact set con-
tained in Vi (this holds even if Hi = ∅, since the empty set is compact and contained in
any set).

Therefore, for any 1≤ i≤ n, by Urysohn’s lemma there exists a function gi ∈ Cc(E,τ)
such that

Hi ≺ gi ≺ Vi.
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Define h1, · · · ,hn as h1 = g1 and

hi =

i−1∏
j=1

(1−gj)

gi
for 2≤ i≤ n. By design, h1 = g1 ≺ V1.
For any 2≤ i≤ n, because hi is the product of continuous functions, it is also continuous
relative to τ . Furthermore,i−1⋃

j=1
{gj = 1}

∪{gi = 0} ⊂ {hi = 0},

it stands to reason that

{hi 6= 0} ⊂

i−1⋂
j=1
{gj 6= 1}

∩{gi 6= 0} ⊂ {gi 6= 0};

because gi has compact support, and {hi 6= 0} ⊂ {gi 6= 0}, hi also has compact support,
meaning that hi ∈ Cc(E,τ).
For any x ∈ E, because g1(x), · · · ,gi(x) ∈ [0,1],

hi(x) =

i−1∏
j=1

(1−gj(x))

gi(x) ∈ [0,1],

and because {gi 6= 0} lies in Vi, we have

{hi 6= 0} ⊂ {gi 6= 0} ⊂ Vi.

As such, by definition, hi ≺ Vi.

It remains to show that K ≺∑i=1 6nhi.
We first derive an expression for the sum in terms of g1, · · · ,gn by induction on n.
Suppose n= 2. Then, h1 +h2 = g1 + (1−g1)g2 = 1− (1−g1)(1−g2).
Now suppose that

h1 + · · ·+hk = 1−
k∏
i=1

(1−gi)

for some 2≤ k ≤ n−1. Then,

h1 + · · ·+hk+1 = 1−
k∏
i=1

(1−gi) +hk+1 = 1−
k∏
i=1

(1−gi) +
(

k∏
i=1

(1−gi)
)
gk+1

= 1−
k+1∏
i=1

(1−gi).
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By induction,

h1 + · · ·+hn = 1−
n∏
i=1

(1−gi).

Being the sum of functions in Cc(E,τ), ∑n
i=1hi ∈Cc(E,τ) because Cc(E,τ) is a vector

space.
For any x ∈E, since gi(x) ∈ [0,1] and 1−gi(x) ∈ [0,1] because gi is a Urysohn function,
so that

n∏
i=1

(1−gi(x)) ∈ [0,1]

and thus

h1(x) + · · ·+hn(x) = 1−
n∏
i=1

(1−gi(x)) ∈ [0,1]

as well.
For any x ∈K, because

K ⊂ Ux1 ∪·· ·∪Uxm ,

x ∈ Uxj for some 1≤ j ≤m. Letting i= i(xj), it follows that

x ∈ Uxj ⊂Hi ≺ gi ≺ Vi,

so that gi(x) = 1. By implication,

h1(x) + · · ·+hn(x) = 1−
n∏
l=1

(1−gl(x)) = 1.

Therefore, ∑n
i=1hi is a function in Cc(E,τ) taking values in [0,1] such that h1(x) +

· · ·+hn(x) = 1 for any x ∈K. By definition, K ≺∑n
i=1hi and the proof is complete.

Q.E.D.

The collection {h1, · · · ,hn} constructed above is called a partition of unity on K with respect to
the cover {V1, · · · ,Vn}.
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1.14 Urysohn’s Lemma for Normal Spaces

Urysohn’s lemma in the previous section was formulated in terms of an open set and a compact
set contained in that open set. It is also possible to obtain a formulation of Urysohn’s lemma that
relaxes the compactness assumption by strengthening the separation axiom of the underlying
space.

So far, we have worked under the Hausdorff T 2 separation axiom: recall that a topological
space (E,τ) is Hausdorff if, for any distinct points x,y ∈E, there exist disjoint open sets A,B ∈ τ
such that x ∈A and y ∈B. This is called a separation axiom because it posits how two distinct
points can be separated by open sets.

We can also work under two other separation axioms, the T 3 and T 4 axioms. A topological
space (E,τ) in which one-point sets are closed is said to be:

• Regular, or T 3,
if for any point x ∈ E and a closed set B such that x /∈ B, there exist disjoint open sets
A1,A2 ∈ τ such that x ∈A1 and B ⊂A2.

• Normal, or T 4,
if for any two disjoint closed sets B1,B2, there exist disjoint open sets A1,A2 ∈ τ such that
Bi ⊂Ai for i= 1,2.

Simply put, the T 2 axiom deals with the separation of points, the T 3 axiom with the sep-
aration of a point and a closed set, and the T 4 axiom with the separation of closed sets. The
numbers appended to the separation axioms represent how general each axiom is; under the
assumption that one-point sets are closed, we can see that a normal space is regular, and that
a regular space is Hausdorff. For this reason, we sometimes call regular (normal) spaces regular
Hausdorff (normal Hausdorff) spaces.

The following furnishes simple characterizations of regularity and normality similar to the-
orem 1.14:

Theorem 1.33 (Characterization of Regularity and Normality)
Let (E,τ) be a topological space where one-point sets are closed. Then,

i) E is regular if and only if, for any x ∈ E and a neighborhood U ∈ τ of x, there exists a
neighborhood V ∈ τ of x such that x ∈ V ⊂ V ⊂ U .

ii) E is normal if and only if, for any closed set A and an open set U such that A⊂ U , there
exists an open set V such that A⊂ V ⊂ V ⊂ U .

Proof) We prove the second claim; the first claim follows by replacing the closed set in question
with a single point x∈E, since one-point sets are closed by assumption. Suppose (E,τ)
is a normal space, and let A be a closed set that is contained in some open set U . In
this case, since A and U c are disjoint closed sets, there exist disjoint open sets W,V
such that A ⊂W and U c ⊂ V by the normality property. Since W,V are disjoint, so
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is W and V ; to see this, let x ∈W , and suppose that x ∈ V as well. Then, because V
is a neighborhood of x, the characterization of the closure in lemma 1.12 tells us that
V ∩W 6= ∅, a contradiction. It follwos that W ∩V = ∅. This, together with the fact that
V c ⊂ U , shows us that

A⊂W ⊂W ⊂ V c ⊂ U.

Conversely, suppose that, for any closed set A and an open set U containing A, there
exists an open set V such that A ⊂ V ⊂ V ⊂ U . Then, for any disjoint closed subsets
B1,B2 of E, Bc

2 is an open set containing the closed set B1, and as such there exists an
open set V such that

B1 ⊂ V ⊂ V ⊂Bc
2.

V and V c are disjoint open sets such that B1 ⊂ V and B2 ⊂ V
c, so (E,τ) is normal by

definition.

Q.E.D.

Normal spaces are particularly useful, since most of the spaces that we work with are normal,
including metric spaces. This is shown in the following result:

Theorem 1.34 (Ubiquity of Normal Spaces)
The following hold true:

i) Every second countable regular space is normal.

ii) Every compact Hausdorff space is normal.

iii) Every metrizable space is normal.

Proof) i) Let (E,τ) be a second countable regular space, and B⊂ τ the countable base on
E that generates τ . Choose any two disjoint closed sets A,B. For any x ∈ A, the
disjointness of A and B implies that x /∈ B, and by regularity, there exists some
Wx ∈ τ such that x ∈Wx and Wx ∩B = ∅. By the characterization of regularity
shown above, there exists an open set Tx ∈ τ such that x ∈ Tx ⊂ Tx ⊂Wx. Finally,
by the definition of a generating base, we can choose some Ux ∈ B such that

x ∈ Ux ⊂ Tx ⊂ Tx ⊂Wx ⊂Bc.

The collection {Ux}x∈A of open sets covers A, and because B is countable, we can
index the collection using the natural numbers as {Un}n∈N+ . Note that the union⋃
nUn is an open set that does not intersect B, since each Un is contained in Bc.
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We can similarly construct a countable open covering {Vn}n∈N+ of B whose union⋃
nVn is an open set that does not intersect A. It remains to restrict each Un and

Vn so that their respective unions do not intersect one another. To this end, for
any n ∈N+ define

U ′n = Un \
(

n⋃
i=1

Vi

)
and V ′n = Vn \

(
n⋃
i=1

Ui

)
,

and let

U =
⋃
n

U ′n and V =
⋃
n

V ′n.

We can immediately see that each U ′n and V ′n are open sets because they involve
the intersection of an open set and a finite intersection of open sets (which is also
open); by implication, U and V are also open. Furthermore, because Ui ⊂ Bc for
each i ∈N+, it follows that, for any n ∈N+,

B ⊂
n⋂
i=1

Ui
c
,

which implies that

B ⊂ Vn∩
(

n⋂
i=1

Ui
c

)
= V ′n.

Therefore, B is contained in V , and likewise, A is conatined in U . Finally, suppose
that x ∈ U ∩V . Then, there exists some n,m ∈N+ such that x ∈ U ′n and x ∈ V ′m.
Letting n≥m without loss of generality, note that this implies

x ∈
n⋂
i=1

Vi
c and x ∈ Vm,

and in particular that x /∈ Vm and x∈ Vm at the same time. This is a contradiction,
so it must be the case that U and V are disjoint. We have thus shown that any
two disjoint closed sets must be contained in disjoint open sets, or that the space
(E,τ) is normal.

ii) Let (E,τ) be a compact Hausdorff space. We show first that (E,τ) is regular. Let
B be a closed subset of E and x a point that is not contained in B. Since the
closed subsets of a compact set is also compact, B is a compact set. For any y ∈B,
since x 6= y, the Hausdorff property implies that there exists a neighborhood Ay

of y such that x /∈ Ay. The collection {Ay}y∈A forms an open cover of B, and by
the compactness of B, there exists a finite subcollection Ay1 , · · · ,Ayn of open sets
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such that

B ⊂Ay1 ∪·· ·∪Ayn .

Defining

U =Ay1 ∪·· ·∪Ayn and V =Ay1
c∩·· ·∩Ayn

c
,

U and V are disjoint open sets such that U contains B and V contains x. This
shows us that (E,τ) is regular.
We can prove in a similar manner that (E,τ) is normal. Choose any disjoint closed
sets A,B; for any x ∈ A, by regularity there exists an open set Vx containing x

such that Vx∩B = ∅. {Vx}x∈A is an open cover of A, and by the compactness of
A, there exists a finite number of points x1, · · · ,xn ∈A such that

A⊂ Vx1 ∪·· ·∪Vxn .

Then, defining V = Vx1 ∪ ·· ·∪Vxn and U = Vx1
c∩ ·· ·∩Vxn

c, U and V are disjoint
open sets such that V contains A and U contains B. This shows us that (E,τ)
is normal. Notice in both cases how the finite subcover furnished by compactness
allows us to construct an open set via taking a finite intersection of open sets.

iii) Let (E,τ) be a metrizable topological space, and let d be the metric that induces
τ . Choose any disjoint closed subsets A,B of E. For any x∈A, because x is a point
in the open set Bc, there exists some εx > 0 such that Bd(x,εx) ⊂ Bc. Likewise,
for any y ∈ B, since y ∈ Ac where Ac is open, there exists a δy > 0 such that
Bd(y,δy)⊂Ac. Define

U =
⋃
x∈A

Bd(x,εx/2) and V =
⋃
y∈B

Bd(y,δy/2).

Both U and V are open, and they contain A and B, respectively. It remains to
show that U and V are disjoint. To this end, suppose z ∈ U ∩V . Then, there exist
x ∈ A and y ∈ B such that z ∈ Bd(x,εx/2) and z ∈ Bd(y,δy/2). Suppose without
loss of generality that εx ≤ δy. Then,

d(x,y)≤ d(x,z) +d(y,z)< εx
2 + δy

2 ≤ δy,

so that x ∈Bd(y,δy). Thus, x ∈Bd(y,δy)∩A and Bd(y,δy)∩A 6= ∅, which contra-
dicts the fact that Bd(y,δy)⊂Ac. As such, U and V are disjoint, and the proof is
complete.
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Q.E.D.

Note that one-point sets are closed in all three cases: for regular spaces, compact spaces and
metrizable spaces.

We are now ready to present the more general version of Urysohn’s lemma for normal spaces.
This is usually the theorem that is referred to as Urysohn’s lemma.

Theorem 1.35 (Urysohn’s Lemma)
Let (E,τ) be a normal space. For any closed set F and open set V such that F ⊂ V , there exists
a continuous function f : E→ R such that

f(x) ∈


{0} if x /∈ V

[0,1] if x ∈ V \F

{1} if x ∈ F

for any x ∈ E. This function is called a Urysohn function, and satisfies IF ≤ f ≤ IV .

Proof) The proof mirrors the proof for the locally compact Hausdorff case almost one for one.
For the sake of completeness, we re-state the proof here.

First, we obtain a set of decreasing sets indexed by the rationals. Let {rn}n∈N+ be the
rationals in (0,1) arranged in a sequence (which is possible due to the countability of
Q), and denote r−1 = 1, r0 = 0. By the characterization of normality, there exists an
open set V1 such that

F ⊂ V1 ⊂ V1 ⊂ V.

Since V1 is itself a closed subset of V , by the characterization again, there exists an
open set V0 such that

F ⊂ V1 ⊂ V1 ⊂ V0 ⊂ V0 ⊂ V.

Suppose that open sets Vr−1 ,Vr0 ,Vr1 , · · · ,Vrn have been chosen for some n≥ 0 so that

Vr ⊂ Vq for any r,q ∈ {r−1, · · · , rn} such that q < r.

Considered the set Qn = {r−1, · · · , rn, rn+1} of rationals in [0,1]. Then, rn+1 must cannot
be the maximal or minimal element of this set, since 0 and 1 are both contained in
it. It follows that there exist −1 ≤ i, j ≤ n such that ri < rn+1 < rj , and no rational
number in Qn lies between ri and rn+1, nor between rn+1 and rj . Since Vj ⊂ Vi, by the
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characterization of normality again, there exists an open set Vn+1 such that

Vj ⊂ Vn+1 ⊂ Vn+1 ⊂ Vi.

It follows that, once we have chosen Vn+1 in this manner, Vr ⊂ Vq for any r,q ∈
{r−1, · · · , rn+1} such that q < r.

Continuing on in this fashion, we obtain a sequence {Vr}r∈Q∩[0,1] of open sets such that

Vr ⊂ Vq if q < r

and F ⊂ V1 ⊂ V1 ⊂ V0 ⊂ V0 ⊂ V .

Now we define the sequences {fr}r∈Q∩[0,1] and {gr}r∈Q∩[0,1] of functions on E as follows:

fr(x) =

r if x ∈ Vr
0 if x /∈ Vr

, gr(x) =

1 if x ∈ Vr
r if x /∈ Vr

for any r ∈Q∩ [0,1] and x∈E. These functions are both bounded below by 0 and above
by 1, and each fr (gr) is lower (upper) semicontinuous. To see this, note that

{x ∈ E | a < fr(x)}=


E if a < 0

Vr if 0≤ a < r

∅ if r ≤ a

{x ∈ E | gr(x)< a}=


E if 1< a

Vr
c if r < a≤ 1

∅ if a≤ r

are both open sets regardless of the value of a ∈ R.

Heuristically, we may view {fr}r∈Q∩[0,1] as a sequence of functions that rises closer to
1 as its support becomes narrower, and {gr}r∈Q∩[0,1] as a sequence of functions whose
peak and trough move away from each other as the area on which they equal 1 widens.
Since the area on which these functions equal 1 cannot be larger than V and cannot
be narrower than F , a little bit of visualization shows us how

f = sup
r∈Q∩[0,1]

fr and g = inf
r∈Q∩[0,1]

gr

can serve as the candidates for our Urysohn function. The values of f and g are both
contained in the set [0,1], and the lower semicontinuity of {fr} and the upper semicon-
tinuity of {gr} imply that f and g are lower and upper semicontinuous, respectively.
Furthermore, for any x ∈ F , since x ∈ Vr and thus fr(x) = r for any r ∈ Q∩ [0,1], we
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have

f(x) = sup
r∈Q∩[0,1]

fr(x) = sup
r∈Q∩[0,1]

r = 1.

Likewise, for any x /∈ V , since x /∈ Vr and thus fr(x) = 0 for any r ∈Q∩ [0,1], we have

f(x) = sup
r∈Q∩[0,1]

fr(x) = 0.

This shows us that f takes values in {1} on F , {0} on V , and [0,1] on V \F . It remains
to show that f is continuous, which can be done easily if we just show that f = g, since
in this case f would be both lower and upper semicontinuous.

We first show that fr ≤ gq for any r,q ∈Q∩ [0,1]. Suppose that the contrary holds, so
that there exist r,q ∈ Q∩ [0,1] and x ∈ E such that fr(x) > gq(x). In this case, fr(x)
cannot be equal to 0, so that x ∈ Vr, and gq(x) cannot be equal to 1, so that x /∈ Vq.
Therefore, we must have

r = fr(x)> gq(x) = q,

which implies by our choice of the open sets Vr and Vq that Vr ⊂ Vq. This implies that
x ∈ Vq but x /∈ Vq, a contradiction, so it follows that fr ≤ gq for any r,q ∈Q∩ [0,1], and
thus that

f = sup
r∈Q∩[0,1]

fr ≤ inf
q∈Q∩[0,1]

gq = g

on E.

To see that the reverse inequality holds, suppose that there exists some x∈E such that
f(x)< g(x). In this case, we can choose rational numbers r < q such that

0≤ f(x)< r < q < g(x)≤ 1.

By the definition of f and g,

fr(x)≤ f(x)< r and q < g(x)≤ gq(x),

so we must have x /∈ Vr and x ∈ Vq. However, r < q implies Vq ⊂ Vr, so that x ∈ Vr, a
contradiction. It follows that f(x) = g(x) for any x ∈ E, completing the proof.

Q.E.D.

68



1.15 Urysohn’s Lemma for Metric Spaces

We can formulate an even stronger version of Urysohn’s lemma if we further restrict the un-
derlying space to a metric space. Of central importance is the distance function, which we will
define shortly.

Let (E,d) be a metric space. For any x∈E and non-empty A⊂E, we can define the distance
from the point x to the set A as

d(x,A) = inf
y∈A

d(x,y).

Note that the infimum is well-defined and exists in [0,+∞) by the least upper bound property
of the real line because the set {d(x,y) | y ∈ A} is non-empty and bounded below by 0. The
distance function associated with the set A is the mapping d(·,A) :E→ [0,+∞). Below are the
main properties of the distance function:

Lemma 1.36 Let (E,d) be a metric space and A a non-empty subset of E. Then, the following
hold true:

i) d(x,A) = 0 if and only if x ∈A.

ii) The distance function d(·,A) is continuous on E.

Proof) i) Let A be a closed set. Suppose d(x,A) = 0 for some x ∈A. Then, for any n ∈N+,
because 0 = d(x,A)< 1

n , there exists an xn ∈A such that

0≤ d(x,xn)< 1
n
.

The sequence {xn}n∈N+ is contained in A and, taking n→∞ above, we can see
that it converges to x. This means that x is a limit point of A, that is, x is
contained in the closure A of A.
Conversely, suppose that x ∈A, and assume d(x,A)> 0. Then, letting n ∈N+ be
chosen so that 1

n < d(x,A), because x is in the closure of A,

Bd(x,1/n)∩A 6= ∅.

Choosing y ∈Bd(x,1/n)∩A, y is a point in A such that d(x,y)< 1
n <d(x,A). This

contradicts the definition of d(x,A) as the infimum of {d(x,y) | y ∈A}, so d(x,A)
must be equal to 0.

ii) Choose any x,y ∈E. Assume without loss of generality that d(x,A)≥ d(y,A). For
any n ∈ N+, since d(y,A) < d(y,A) + 1

n , by the definition of the infimum there
exists a zn ∈ A such that d(y,A) ≤ d(y,zn) < d(y,A) + 1

n . For this zn, we have
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d(x,A)≤ d(x,zn), since the infimum is itself a lower bound. Therefore,

|d(x,A)−d(y,A)|= d(x,A)−d(y,A)≤ d(x,zn)−d(y,zn) + 1
n
≤ d(x,y) + 1

n
,

where the last inequality follows from the triangle inequality. Taking n→∞ on
both sides now shows us that

|d(x,A)−d(y,A)| ≤ d(x,y).

This holds for arbitrary x,y ∈ E, so we have actually proven the stronger result
that d(·,A) is Lipschitz continuous on E with Lipschitz constant 1.

Q.E.D.

We can now present the strongest version of Urysohn’s lemma. In the theorem, we use the
distance function to directly construct the necessary Urysohn function.

Theorem 1.37 (Urysohn’s Lemma for Metric Spaces)
Let (E,d) be a metric space. For any closed set F and open set V such that F ⊂ V , therre exists
a continuous function f : E→ R such that

f(x) ∈


{0} if x /∈ V

[0,1] if x ∈ V \F

{1} if x ∈ F

for any x ∈ E.
In addition, if the distance between F and V c is bounded below by a non-zero value, that

is, if there exists a δ > 0 such that d(x,y)≥ δ for any x ∈ F and y ∈ V c, then we can choose f
to be Lipschitz continuous.

Proof) We define f : E→ R as

f(x) = d(x,V c)
d(x,V c) +d(x,F )

for any x ∈ E. For any x ∈ E, if d(x,V c) = 0 then x ∈ V c due to the closedness of V c,
which implies that x /∈ F and thus d(x,F ) > 0. Conversely, if d(x,F ) = 0 then x ∈ F
and x /∈ V c, so that d(x,V c)> 0. As such, d(x,V c)+d(x,F )> 0 for any choice of x∈E,
which shows us that f is well-defined.

f clearly takes values in [0,1]. If x ∈ F , then d(x,F ) = 0 and f(x) = 1. On the other
hand, if x ∈ V c, then d(x,V c) = 0 and f(x) = 0. Finally, because the distance functions
involved are continuous, and continuity is preserved across arithmetic operations, f is

70



itself continuous. We have thus shown that f is our desired Urysohn function.

Now suppose that there exists a δ > 0 such that d(x,y)≥ δ for any x ∈ F and y ∈ V c.
For any x,y ∈ E, assume without loss of generality that f(x)≥ f(y). Then,

|f(x)−f(y)|=
∣∣∣∣ d(x,V c)
d(x,V c) +d(x,F ) −

d(y,V c)
d(y,V c) +d(y,F )

∣∣∣∣
=
∣∣∣∣d(x,V c)(d(y,V c) +d(y,F ))−d(y,V c)(d(x,V c) +d(x,F ))

(d(x,V c) +d(x,F ))(d(y,V c) +d(y,F ))

∣∣∣∣
=
∣∣∣∣ d(x,V c)d(y,F )−d(y,V c)d(x,F )
(d(x,V c) +d(x,F ))(d(y,V c) +d(y,F ))

∣∣∣∣
=
∣∣∣∣d(x,V c)d(y,F )−d(x,V c)d(x,F ) +d(x,V c)d(x,F )−d(y,V c)d(x,F )

(d(x,V c) +d(x,F ))(d(y,V c) +d(y,F ))

∣∣∣∣
≤ d(x,V c)|d(y,F )−d(x,F )|

(d(x,V c) +d(x,F ))(d(y,V c) +d(y,F )) + d(x,F )|d(x,V c)−d(y,V c)|
(d(x,V c) +d(x,F ))(d(y,V c) +d(y,F ))

≤ (d(x,V c) +d(x,F ))d(x,y)
(d(x,V c) +d(x,F ))(d(y,V c) +d(y,F ))

= d(x,y)
d(y,V c) +d(y,F ) ,

where we used the fact that |d(x,F )−d(y,F )| ≤ d(x,y) due to the Lipschitz continuity
of the distance function.

Suppose that d(y,V c)+d(y,F )<δ. Then, d(y,V c)<δ−d(y,F ), so there exists a z1 ∈V c

such that d(y,z1)< δ−d(y,F ). This in turn implies that d(y,F )< δ−d(y,z1), so there
exists a z2 ∈ F such that d(y,z2)< δ−d(y,z1). By the triangle inequality, we now have

d(z1,z2)≤ d(y,z1) +d(y,z2)< δ.

Since z1 ∈ V c and z2 ∈ F , this is a contradiction, so it must be the case that d(y,V c)+
d(y,F )≥ δ. By implication,

|f(x)−f(y)| ≤ d(x,y)
d(y,V c) +d(y,F ) ≤

1
δ
d(x,y),

and since this holds for any x,y ∈E, f is Lipschitz continuous with Lipschitz constant
equal to 1

δ .

Q.E.D.
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1.16 The Axiom of Choice

For our last (topological) topic, we study one of the most fundamental axioms in mathematics,
the axiom of choice, and show how it is equivalent to Zorn’s lemma and the Hausdorff maximality
principle. We conclude by showing that these imply Tychonoff’s theorem, which states that the
Cartesian product of compact sets is also compact.

Let X be some set and F a collection of subsets of X. The axiom of choice posits that there
exists a choice function f : F →X such that f(S) ∈ S for any S ∈ F . In other words, given any
collection of sets, we can formulate a rule to choose an element from each set.

1.16.1 Zorn’s Lemma and the Hausdorff Maximality Principle

Given the axiom of choice, we can prove two deep results in mathematics, Zorn’s lemma and the
Hausdorff Maximality Principle. First, some notation. A set X is said to be partially ordered by
the order relation ≤ if

• (Reflexivity) For any x ∈X, x≤ x

• (Antisymmetry) For any x,y ∈X such that x≤ y and y ≤ x, we have x= y

• (Transitivity) For any x,y,z ∈X, if x≤ y and y ≤ z, then x≤ z

Note that not all elements of X may be comparable. If every element of a partially ordered set
X is comparable, then we say that it is totally ordered by the order relation ≤. Clearly, any
collection F of subsets of some set X is partially ordred by the set inclusion operation ⊂; any
subcollection of F that is totally ordered by ⊂ is called a subchain of F . The union of any
subchain of F refers to the union of all elements contained in that subchain.

Let X be a partially ordered set with the order relation ≤. We say that m ∈X is a maximal
element of X if, for any x∈X, m≤ x implies m= x. In other words, there is no element of X that
is comparable to m and larger than m. Since a maximal element of X need not be comparable
with every element of X, a partially ordered set X may admit more than one maximal element.
Clearly, if X is totally ordered, then it has at most one maximal element. A related but distinct
concept is that of an upper bound of a set; a subset E of X has upper bound x ∈X if y ≤ x for
any y ∈ E. Note that an upper bound of a set must be comparable with every element of that
set, while a maximal element need not be.

The final concept we need is that of the maximal totally ordered subset. A subset E of X is
said to be a maximal totally ordered subset of X if it is a totally ordered subset of X that, if
expanded in any way, ceases to be totally ordered. Formally, the totally ordered subset E of X
is maximal if, for any x ∈X such that x /∈ E, E∪{x} is not totally ordered.

We can now state Zorn’s lemma and the Hausdorff Maximality Principle:

• (Zorn’s Lemma) Let X be a partially ordered set, and assume that every totally ordered
subset of X has an upper bound. Then, X has at least one maximal element.
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• (Hausdorff’s Maximality Principle) Let X be a partially ordered set. Then, it contains
a maximal totally ordered set.

While Zorn’s lemma deals with maximal elements and the maximality principle with maxi-
mal subsets, they are in fact equivalent, as we now show:

Theorem 1.38 Zorn’s lemma and Hausdorff’s Maximality Principle are equivalent.

Proof) Suppose that Zorn’s lemma holds, and let X be a partially ordered set under the order
relation ≤. Define C(X) as the collection of all totally ordered subsets of X; then,
C(X) is partially ordered under set inclusion. Let a subcollection F of C(X) be to-
tally ordered under set inclusion, and define M =⋃A∈F A. Choose any x,y ∈M ; letting
x ∈ A and y ∈ B for A,B ∈ F , since F is totally ordered, we can assume without loss
of generality that A⊂B. Therefore, x,y ∈B, and because B is a totally ordered subset
of X, either x≤ y or y ≤ x. This shows us that any two elements of M are comparable
using ≤, or that M is a totally ordered subset of X; by definition, M ∈ C(X). In ad-
dition, A ⊂M for any A ∈ F , making M an upper bound of F . We have shown that,
under set inclusion, any totally ordered subset of C(X) has an upper bound in C(X).
By Zorn’s lemma, C(X) has a maximal element U . This U is a totally ordered subset
of X, and suppose that there exists an x ∈X such that U ∪{x} is also totally ordered.
By implication, U ∪{x} ∈C(X), U ⊂U ∪{x} but U 6=U ∪{x}; this contradicts the fact
that U is a maximal element of C(X), so U must be a maximal totally ordered subset
of X. This proves Hausdorff’s maximality principle.

Conversely, suppose that Hausdorff’s maximality principle holds, and let X be a par-
tially ordered set under the order relation ≤ such that any totally ordered subset of
X has an upper bound. By the maximality principle, X has a maximal totally ordered
subset E, which has upper bound m by assumption. We will now show that m is a max-
imal element of X. Let x∈X satisfy m≤ x, and suppose that m<x. In this case, x /∈E
(m is an upper bound of E), and by the maximality of E, and for any y ∈E, y ≤m<x

by transitivity. This makes E ∪{x} a totally ordered subset of E, which contradicts
the maximality of E. Therefore, we must have m= x, and m is a maximal element of X.

Q.E.D.

The two results above follow from the axiom of choice; we show this by demonstrating how
the axiom of choice leads to the maximality principle. First, a lemma:

Lemma 1.39 Let X be a nonempty set and F a nonempty collection of subsets of X such
that the union of every subchain in F is also contained in F . Let g : F →F be a function such
that, for any A ∈ F , A⊂ g(A) and g(A)\A consists of at most one element. Then, there exists
an A ∈ F such that g(A) =A.
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Proof) We first introduce the concept of towers. Choose any A0 ∈ F ; we call a subcollection
F ′ ⊂F a tower if

– A0 ∈ F ′

– The union of any subchain in F ′ is contained in F ′

– g(F ′)⊂F ′, that is, for any A ∈ F ′, we have g(A) ∈ F ′.

Note that the set of all towers is non-empty, since it contains the entire collection F
itself. We can also see that the collection

F1 = {A ∈ F |A0 ⊂A}

is a tower; the first two conditions are clearly satisfied, and for any A ∈ F1, A0 ⊂ A⊂
g(A), so that g(A) ∈ F1 as well.

Define F0 as the intersection of all towers. F0 is also a tower because, first, A0 is
contained in every tower and thus in F0 as well; second, any subchain of F0 is contained
in every tower, so that its union is also contained in every tower and thus in F0 as well;
and third, for any A ∈ F0, A is contained in every tower, so that g(A) is also contained
in every tower and thus in F0. In addition, because F0 ⊂F1, A0 ⊂A for any A ∈ F0.

Suppose F0 is a subchain of F , that is, it is totally ordered under set inclusion. Seeing
as how F0 is its own subchain in this case, its union A∗ will be contained in F0 and
therefore g(A∗) ∈ F0 by the properties of a tower. This implies that g(A∗) ⊂ A∗, and
because A∗ ⊂ g(A∗) by definition, we have g(A∗) =A∗, completing our proof. Thus, we
need only show that F0 is a subchain of F .

To this end, we define Γ as a subcollection of F0 that collects every set in F0 that is
comparable to any other set in F0 under set inclusion. If Γ =F0, this means that every
set of F0 is comparable to any other set in F0, and therefore that F0 is totally ordered
under set inclusion. To establish this equality, we need only show that Γ is a tower,
implying that F0 ⊂ Γ. We thus focus on showing that Γ is a tower.

Γ satisfies the first two conditions of a tower: A0 ∈ Γ because A0 is contained in every
set in F0. Furthermore, for any subchain in Γ and some A ∈ F0, if there exists at least
one set in that subchain that contains A, then its union contains A, while if every set
in the subchain is contained in A, then its union is contained in A. In any case, the
union of the subchain is comparable with A ∈ F0, and since A was chosen arbitrarily,
this indicates that the union is contained in Γ.

The third condition is trickier to establish; we must show that, for any A ∈ Γ, g(A) ∈ Γ
as well. First fix A ∈ Γ, and define Φ(A) as the subcollection of F0 consisting of sets
B such that either B ⊂ A or g(A) ⊂ B; that is, Φ(A) is the collection of all sets in
F0 comparable to g(A). If we can show that Φ(A) is a tower, then Φ(A) = F0 and
B ⊂A⊂ g(A) or g(A)⊂B for any B ∈F0; in other words, g(A) is comparable to every
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set in F0. This shows us that g(A) ∈ Γ, and it follows that Γ is a tower. Therefore, the
final step of our proof involves proving that Φ(A) is a tower.

Φ(A) satisfies the first two conditions of a tower: A0 ∈ Φ(A) because A ∈ Γ ⊂ F0 and
thus A0 ⊂ A ⊂ g(A), making A0 comparable to g(A). For any subchain in Φ(A), if
at least one set in the subchain contains g(A), then its union contains g(A), while if
every set in the subchain is contained in A, then its union is also contained in A. This
shows us that the union of this subchain is also contained in Φ(A). Finally, choose any
B ∈ Φ(A); we must show that g(B) ∈ Φ(A) as well. Since either B ⊂ A or g(A) ⊂ B,
we consider the following cases:

– B is a proper subset of A
If g(B) =B, then g(B)⊂ A. If B is a proper subset of g(B), then A cannot be a
proper subset of g(B); otherwise g(B) \B contains at least two elements, a con-
tradiction. A ∈ Γ, which means that it is comparable to any set in F0, so we must
have g(B)⊂A if A is not a proper subset of g(B). In any case, g(B)⊂A.

– B =A

In this case, g(B) = g(A), so that g(A)⊂ g(B) trivially.

– g(A)⊂B
In this case, g(A)⊂ g(B) trivially, since B ⊂ g(B).

Thus, we can see that either g(B)⊂A or g(A)⊂ g(B). By definition, g(B) ∈Φ(A), and
since this holds for any B ∈ Φ(A), Φ(A) is a tower, completing our proof.

Q.E.D.

The lemma allows us to prove the maximality principle in conjunction with the axiom of
choice:

Theorem 1.40 (Hausdorff’s Maximality Principle)
If the axiom of choice holds, then so does Hausdorff’s Maximality Principle.

Proof) Choose any partially ordered set X under the order relation ≤. We must show that X
contains a maximally totally ordered subset. If X is empty, then the maximality prin-
ciple is trivially satisfied. Suppose now that X is non-empty. Let F be the collection
of any subset of X that is totally ordered under ≤. Then, F is non-empty because any
singleton is trivially totally ordered. Choose any subchain Φ of F , and let A be its
union. Then, for any x,y ∈A, there exist Bx,By ∈Φ such that x∈Bx and y ∈By. Since
Φ is totally ordered under set inclusion, without loss of generality we can assume that
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Bx ⊂By, so that x,y ∈By. Finally, since By is a totally ordered set by design under ≤,
x and y are comparable under ≤. This shows us that A is totally ordered under ≤, so
that A ∈ F . Therefore, the union of any subchain of F is also contained in F .

Let f : F → X be a choice function, that is, a function such that f(A) ∈ A for any
A ∈ F ; such a function exists by the axiom of choice. Now we can define the function
g : F →F in the following way: for any A ∈ F , define

A∗ = {x ∈X | x ∈Ac, A∪{x} ∈ F};

if A∗ = ∅, we put g(A) =A, while if A∗ 6= ∅, we put g(A) =A∪{f(A∗)} ∈ F . Then, g is
exactly the type of function described in lemma 2.17, and F satisfies the conditions of
lemma 2.17. as well. As such, by that lemma, there exists a A ∈ F such that g(A) =A.
This indicates that A∗ = ∅, or that there exists no x∈X not contained in A that makes
A∪{x} a totally ordered set.

Q.E.D.

1.16.2 Existence of Basis for Vector Spaces

Zorn’s lemma and the maximality principle have plenty of applications; famously, Zorn’s lemma
can be used to show that every vector space has a basis.

Theorem 1.41 Let V be a vector space over a field F . Then, V has a basis, that is, a linearly
independent subset of V that spans V .

Proof) If V is an empty set, then the empty set itself is a linearly independent collection that
spans V , and the proof is completed.

Now suppose that V is non-empty, and let F be the collection of all linearly indepen-
dent sets in V . Note that F is partially ordered by set inclusion. To use Zorn’s lemma,
we will first show that every totally ordered set in F has an upper bound. Let F0 be
a subset of F that is totally ordered by set inclusion, and define B as the subset of V
that contains all the elements of F0. We will show that B is an upper bound of F0.
Clearly, all the sets in F0 are contained in B, so that B dominates the sets in F0 under
the set inclusion order. It remains to show that B ∈ F , or that B is a collection of
linearly independent vectors. Suppose not. In this case, there exists a finite collection
{v1, · · · ,vk} of linearly dependent vectors in B. Since v1, · · · ,vk are elements of B, there
exist S1, · · · ,Sk ∈ F0 such that vi ∈ Si for any 1≤ i≤ k. F0 is totally ordered in the set
inclusion order, so there exists a 1 ≤ j ≤ k such that Si ⊂ Sj for any 1 ≤ i ≤ k. This
implies that the linearly dependent set {v1, · · · ,vk} is contained in the linearly indepen-
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dent set Sj , a contradiction. Therefore, it must be the case that B ∈ F0, making B an
upper bound of F0 in F .

We can now apply Zorn’s lemma to F to conclude that F has a maximal element M .
It remains to show that M spans V to conclude that M is a basis of V . Suppose not.
Letting v ∈ V be a non-zero vector that is not spanned by M (and thus not contained
in M), choose any finite subcollection {v1, · · · ,vk} of M and assume that there exist
scalars a1, · · · ,ak,a ∈ F such that

a1v1 + · · ·+akvk +av = 0.

If a 6= 0, then v is spanned by {v1, · · · ,vk}, contradicting the assumption that v is
unspanned by M . Thus, a= 0, and since this implies that

a1v1 + · · ·+akvk = 0,

and v1, · · · ,vk are linearly independent, we must have a1 = · · ·= ak = 0 as well. By def-
inition, {v1, · · · ,vk,v} is a linearly independent set, and since this holds for any finite
subcollection {v1, · · · ,vk} of M , the set M ∪{x} is a linearly independent set. However,
this contradicts the maximality of M , and as such M is a basis of V .

Q.E.D.

1.16.3 Tychonoff’s Theorem

Zorn’s lemma can also be used to prove a fundamental theorem in topology stating that the
Cartesian product of compact spaces is compact relative to the corresponding product topology.
This result is stated below:

Theorem 1.42 (Tychonoff’s Theorem)
Let {(Ei, τi)} be an arbitrary collection of compact topological spaces. Then, the Cartesian
product E =∏

iEi is compact in the product topology τ =∏
i τi.

Proof) We rely on the FIP characterization of compactness to prove that E is compact. That
is, we choose some collection A= {Aα} of subsets of E that are closed in τ and possess
the finite intersection property, and show that their intersection ∩αAα is non-empty.

We first use Zorn’s lemma to furnish a maximal collection of subsets of E with the FIP.
Define

P = {B | A ⊂ B ⊂ 2E , B has the FIP}.
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Note that P is a partially ordered set under set inclusion, where we treat subsets of
E as the “elements” of the collections B ∈ P . To apply Zorn’s lemma, we need only
show that every totally ordered subset of P has an upper bound in P . Choose any
(nonempty) totally ordered subset {Bi} of P , and define

B =
⋃
i

Bi,

that is, we let B be the collection of subsets of E that contains every subset of E
contained in each Bi. Clearly, each Bi ⊂ B. It remains to prove that B is contained in
P , that is, it has the FIP and includes every subset contained in A. The latter point
is trivial, since A⊂ Bi ⊂ B for any i. For the former, choose any A1, · · · ,An ∈ B; then,
for any 1≤ i≤ n, there must exist an mi such that Ai ∈ Bmi . {Bm} is totally ordered
under set inclusion, so there must exist some 1 ≤ j ≤ n such that Bmi ⊂ Bmj for any
1 ≤ i ≤ n; this implies that A1, · · · ,An ∈ Bmj , and because Bmj possesses the FIP, the
intersection A1∩·· ·∩An 6= ∅. As such, B has the FIP, and is contained in B.

By Zorn’s lemma, there exists a maximal element D = {Dβ} of P , that is, a collection
of subsets of E with the FIP such that every set in A is also contained in D and
any extension of D fails to have the FIP. Now the claim is proven if the intersection
D=∩βDβ is non-empty, since A, being a collection of closed sets, is contained in {Dβ}.

One useful property of the maximality of D that we use below is that the intersection of
any finite colleciton of sets in D (which is non-empty by the FIP of D) is also contained
in D. To see this, choose any D1, · · · ,Dn ∈ D and define

A=D1∩·· ·∩Dn.

Consider the extension D1 =D∪{A}. By the FIP of D, D1 also possesses the FIP, and
it contains A because D does. Therefore, by the maximality of D, A must be a set
contained in D.

For any i, let πi : E→ Ei be the natural projection of E onto Ei, that is,

πi ((xj)j) = xi

for any (xj)j ∈ E. This function is clearly continuous relative to the product topology
τ and the marginal topology τi, since the inverse image of any Ai ∈ τi with respect to
πi is an open rectangle on E. Note that {πi(Dβ)}β is a collection of closed subsets of
Ei that has the FIP, since D has the FIP. Therefore, by the compactness of Ei and the
FIP characterization of compactness, there exists an

xi ∈
⋂
β

πi(Dβ).
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We can show that, for any index i and neighborhood Ni ∈ τi of xi, the set π−1
i (Ni) is

contained in the collection D. For any β, since xi ∈ πi(Dβ), it follows that Ni∩πi(Dβ) 6=
∅. This means that there exists some y ∈Dβ such that πi(y) = yi ∈Ni; this allows us
to write y ∈ π−1

i (Ni), so that

y ∈ π−1
i (Ni)∩Dβ,

making π−1
i (Ni)∩Dβ 6= ∅. This holds for any β, so π−1

i (Ni) intersects every set in D.

We can now show that the collection D1 = D∪{π−1
i (Ni)} has the FIP. For any finite

collection of sets D1, · · · ,Dn in D1, if D1, · · · ,Dn are contained in D, then D1∩·· ·∩Dn 6=
∅ by the FIP of D. On the other hand, if, say, D1 = π−1

i (Ni), then

D1∩D2∩·· ·∩Dn =
(

n⋂
i=2

Di

)
∩π−1

i (Ni).

By the maximality of D, ⋂ni=2Di, being a finite intersection of elements of D, is also
contained in D. Furthermore, since π−1

i (Ni) intersects every element of D, it follows
that D1∩D2∩·· ·∩Dn 6= ∅, and D1 has the FIP. D1 contains A because D does, so by
the maximality of D, it follows that

π−1
i (Ni) ∈ D.

Finally, defining x = (xi)i ∈ E, we shall prove that x ∈D. Suppose that x /∈D. Then,
there exists some β such that x /∈Dβ, which in turn implies that there exists a neigh-
borhood N ∈ τ of x such that N ∩Dβ = ∅. The base of all open rectangles generates τ ,
so there exists some open rectangle ∏iNi such that

x ∈
∏
i

Ni ⊂N,

implying that ∏iNi ∩Dβ = ∅. Letting i1, · · · , in be the indices such that Ni 6= Ei, we
can express the open rectangle ∏iNi as

∏
i

Ni =
n⋂
j=1

π−1
ij

(
Nij

)
.

Since Nij is an open neighborhood of xij , each π−1
ij

(
Nij

)
∈ D by the result above. As

such,

∏
i

Ni∩Dβ =

 n⋂
j=1

π−1
ij

(
Nij

)∩Dβ,

being a finite intersection of elements of D, must be non-empty, which contradicts the
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fact that ∏iNi∩Dβ = ∅ under our assumption. It follows that

x ∈D =
⋂
β

Dβ,

and as such, ⋂αAα 6= ∅.
Q.E.D.
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1.17 Sequences and Subsequences

This section deals with the analysis of subsequences, which is, strictly speaking, not a subject
of topology. Nevertheless, it is of much use to measure theory, so we introduce some important
results. First, note the selection theorem for subsequences, which is a fundamental result we
exploit often to prove the convergence of sequences.

Lemma 1.43 (The Selection Theorem)
Let (E,d) be a metric space, and {xn}n∈N+ a sequence in E. {xn}n∈N+ converges to some x ∈E
if and only if every subsequence of {xn}n∈N+ has a further subsequence that converges to x.

Proof) Necessity follows easily because, if {xn}n∈N+ converges to x ∈ E, then every subse-
quence of {xn}n∈N+ also converges to x (the “further subsequence” mentioned in the
statement of the theorem can be chosen to be the subsequence itself).

As for sufficiency, let every subsequence of {xn}n∈N+ have a further subsequence that
converges to x ∈ E, and suppose that {xn}n∈N+ does not itself converge to x. By def-
inition, there exists an ε > 0 such that, for any N ∈N+, d(x,xn) ≥ ε for some n ≥N .
Choose n1 ∈ N+ so that d(x,xn1) ≥ ε. Assuming that n1 < · · · < nk have been chosen
for some k ≥ 1, choose nk+1 ≥ nk + 1 so that d(x,xnk+1) ≥ ε. Then, {xnk}k∈N+ is a
subsequence of {xn}n∈N+ such that d(x,xnk)≥ ε for any k ∈N+. This indicates that no
subsequence of the subsequence {xnk}k∈N+ can converge to x, which is a contradiction.
Therefore, {xn}n∈N+ converges to x.

Q.E.D.

Let (E,d) be a metric space, and {xn}n∈N+ a sequence in E. The set of all limits of subse-
quences of {xn}n∈N+ is called the set of subsequential limits of {xn}n∈N+ , and we denote it by
S∗. If S∗ = ∅, then the sequence {xn}n∈N+ has no convergent subsequences.

1.17.1 Sequences on the Extended Real Line

Unlike the real line, the extended real line [−∞,+∞] does not admit a metric, which makes
the study of convergence of sequences taking values in [−∞,+∞] difficult. As such, we extend
the concept of convergence of real sequences, which is well-defined because the real line is a
metric space under the euclidean metric, to define the convergence of sequences taking values
in [−∞,+∞]. This is important because later on we deal with the (pointwise) convergence of
so-called non-negative functions, which are functions taking values in [0,+∞].

First, we define the suprema and infima of subsets of [−∞,+∞]. For any non-empty set
A ⊂ [−∞,+∞], we let supA be equal to the supremum of A∩R if A has a real valued upper
bound, and to +∞ if otherwise. In any case, supA is well-defined, which shows us that supA
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exists in [−∞,+∞] for any non-empty subset A of the extended real line. This is arguably a
stronger version of the least upper bound property of the real line, since subsets of the extended
real line need not have a real upper bound to admit a supremum. The infimum of subsets of the
extended real line are defined in a similar manner.

Suppose {xn}n∈N+ is a sequence that takes values in [−∞,+∞]. We say that this sequence
converges to some x ∈R if it converges to x in the usual way, that is, if for any ε > 0 there exists
an N ∈N+ such that |xn−x|< ε for any n≥N . On the other hand, we say that this sequence
converges to +∞ (−∞) if, for any M ∈ R, there exists an N ∈N+ such that xn >M (xn <M)
for any n≥N . If {xn}n∈N+ is a real valued sequence, we are essentially defining convergence to
+∞ (−∞) as divergence to to +∞ (−∞).

Lemma 1.44 Any increasing (decreasing) sequence {xn}n∈N+ taking values in the extended
real line converges to its supremum (infimum).

Proof) Let {xn}n∈N+ be a monotonically increasing sequence taking values in [−∞,+∞], and
denote x= supn∈N+ xn ∈ [−∞,+∞]. If x∈R, then for any ε > 0, there exists an N ∈N+

such that

x− ε < xN ≤ x,

and since xN ≤ xn ≤ x for any n≥N , we can see that

|xn−x|= x−xn < ε

for any n≥N . This shows us that {xn}n∈N+ converges to x.

On the other hand, if x= +∞, then the set {xn | n ∈N+} does not admit a real upper
bound, meaning that, for any M ∈R, there exists an N ∈N+ such that xN >M . Since
xn ≥ xN for any n ≥N , this shows us that xn >M for any n ≥N , and by definition,
{xn}n∈N+ converges to x.

Finally, if x = −∞, then xn = −∞ for any n ∈ N+ and {xn}n∈N+ trivially converges
to x. In any case, {xn}n∈N+ converges to its supremum x; the proof for monotonically
decreasing sequences is almost identical.

Q.E.D.

We say that the sequence {xn}n∈N+ taking values in [−∞,+∞] is not bounded above (be-
low) if there exists an M ∈ R and an N ∈ N+ such that xn ≤M (M ≤ xn) for any n ≥ N .
Suppose {xn}n∈N+ is a sequence taking values in [−∞,+∞], and S∗ ⊂ [−∞,+∞] the set of its
subsequential limits.
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Lemma 1.45 Let {xn}n∈N+ be a sequence taking values in the extended real line and S∗

the set of its subsequential limits. S∗ contains +∞ (−∞) if and only if it is not bounded above
(below).

Proof) Suppose that S∗ contains +∞ and that {xn}n∈N+ is bounded above. LetM ∈R be a real
number and N ∈N+ a natural number such that xn ≤M for any n≥N . Furthermore,
let {xnk}k∈N+ be a subsequence that converges to +∞; then, there must exist an k ∈N+

such that nk >N and xnk >M , which contradicts the fact that xn ≤M for any n≥N .
Thus, {xn}n∈N+ must not be bounded above.

Conversely, suppose that {xn}n∈N+ is not bounded above. Then, there exists an n1 ∈N+

such that xn1 > 1, since 1 is an upper bound of {xn}n∈N+ otherwise. Suppose that
n1 < · · · < nk have been chosen for some k ∈ N+. We can then choose nk+1 > nk + 1
so that xnk+1 > k+ 1, since xn ≤ k+ 1 for any n≥ nk + 1 otherwise, which contradicts
the assumption that {xn}n∈N+ is not bounded above. The subsequence {xnk}k∈N+

constrcuted in such a manner satisfies xnk > k for any k ∈ N+, which shows us that
{xnk}k∈N+ converges to +∞. It follows that +∞∈ S∗.

The proof for when S∗ contains −∞ and {xn}n∈N+ is not bounded below can be shown
similarly.

Q.E.D.

By implication, if {xn}n∈N+ is not bounded in any direction, then S∗ is non-empty. On
the other hand, if {xn}n∈N+ is bounded both above and below, then {xn}n≥N becomes a real
sequence for some N ∈ N+ and, by the Bolzano-Weierstrass theorem, it contains a convergent
subsequence. It follows that S∗ 6= ∅, and thus that S∗ 6= ∅ for any sequence {xn}n∈N+ taking
values in [−∞,+∞].

We define the values s∗,s∗ ∈ [−∞,+∞] as follows:

s∗ = supS∗, s∗ = inf S∗.

These values are well-defined because S∗ is a non-empty subset of the extended real line. We
can derive the following results concerning S and S∗:

Lemma 1.46 Let {xn}n∈N+ be a sequence taking values in [−∞,+∞], and S∗ be as defined
above. Letting S = S∗ \{−∞,+∞}⊂ R, the following hold true:

i) S is closed in the standard topology on R.

ii) s∗,s∗ ∈ S∗, that is, there exist subsequences of {xn}n∈N+ that converge to s∗ and s∗.
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Proof) i) If S = ∅, then S is trivially closed. Suppose S 6= ∅, and let s be a limit point of
S. Then, there exists an s1 ∈ S such that |s−s1| < 1. Since s1 is the limit of a
subsequence of {xn}n∈N+ , there must exist some n1 ∈N+ such that |xn1−s1|< 1.
Assume now that n1 < · · · < nk have been chosen for some k ≥ 1. Again, since s
is a limit point of S, there exists a sk+1 ∈ S such that |s−sk+1| < 1

k+1 . There
exists a subsequence of {xn}n∈N+ that converges to sk+1, so we can choose a
natural number nk+1 >nk such that

∣∣sk+1−xnk+1

∣∣< 1
k+1 . Letting the subsequence

{xnk}k∈N+ be chosen in this manner, we can see that

|xnk −s| ≤ |xnk −sk|+ |sk−s|<
2
k

for any k ∈N+, so that {xnk}k∈N+ converges to s. This makes s a real subsequen-
tial limit of S, so that s ∈ S; it follows that S is closed.

ii) We consider s∗; the claim follows symmetrically for s∗. Suppose s∗ ∈ R. Then,
{xn}n∈N+ must be bounded above, so that +∞ is not an element of S∗, and S

non-empty, so that the supremum of S∗ is not −∞. Consider an open interval
(a,b) that contains s∗. a < s∗, and since s∗ = supS∗, there exists an s ∈ S∗ such
that a < s≤ s∗. This s cannot be equal to −∞, and S∗ does not contain +∞, so
s ∈ S. This shows us that a < s≤ s∗ < b, or that s ∈ S∩ (a,b). We have just shown
that, for any open interval (a,b) on the real line containing s∗, (a,b)∩S 6= ∅. The
collection of all open intervals forms a base generating the standard topology on
R, so this result tells us that s∗ is contained in the closure of S with respect to
the standard topology. We saw in i) that S is closed with respect to this topology,
so we ultimately have s∗ ∈ S ⊂ S∗.

Now supose that s∗ = +∞, and that {xn}n∈N+ is bounded above. This implies the
existence of some M ∈ R and N ∈N+ such that xn ≤M for any n≥N , and that
S∗ does not contain +∞. If S∗ only contains −∞, then s∗ = supS∗ =−∞, so S∗

must also contain some real value s, or S 6= ∅. For any s ∈ S, if s >M + 1, then

|xn−s|= s−xn > 1

for any n ≥ N , indicating that not subsequence of {xn}n∈N+ can converge to s,
which contradicts the fact that s is a subsequential limit of {xn}n∈N+ . It follows
that S∗ is bounded above by M + 1, so that

s∗ = supS∗ ≤M + 1.

This contradicts the fact that s∗ = +∞, so {xn}n∈N+ must not be bounded above;
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by implication S∗ must contain +∞, so that s∗ ∈ S∗.

Finally, let s∗ =−∞. This indicates that S∗ contains only the element −∞ (since
it cannot be non-empty). Thus, s∗ ∈ S∗ in this case as well.

Q.E.D.

We define the limit superior and inferior of a sequence {xn}n∈N+ taking values in the extended
real line as

limsup
n→∞

xn = s∗, liminf
n→∞

xn = s∗.

In what follows, we show that this definition is equivalent to the traditional definition using
suprema and infima:

Theorem 1.47 Let {xn}n∈N+ be a sequence taking values in [−∞,+∞]. Then,

limsup
n→∞

xn = lim
n→∞

sup
k≥n

xk

liminf
n→∞

xn = lim
n→∞

inf
k≥n

xk.

Proof) Define S and S∗ as above, and let s∗ = limsupn→∞xn. Defining yn = supk≥nxk for any
n ∈N+, the sequence {yn}n∈N+ is a decreasing sequence, so that it converges to some
y ∈ [−∞,+∞]; we can express y as

y = lim
n→∞

sup
k≥n

xk.

We proved above that s∗ ∈S∗, so there exists some subsequence {xnm}m∈N+ of {xn}n∈N+

that converges to s∗. For any m ∈N+,

xnm ≤ sup
k≥nm

xk = ynm ,

so taking m→∞ on both sides yields s∗ ≤ y. If s∗ = +∞, it immediately follows that
s∗ = y = +∞.

If s∗ ∈ R, then {xn}n∈N+ is bounded above because S∗ does not contain +∞. By
definition, there exist M ∈ R and N ∈N+ such that xn ≤M for any n≥N . It follows
that

yn = sup
k≥n

xk ≤M
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for any n ≥ N as well, which shows us that y = infn∈N+ yn ≤M < +∞. In addition,
since −∞< s∗ ≤ y, y is real valued.

Suppose that s∗ < y. Choosing r ∈Q such that s∗ < r < y, there exists an N1 ∈N+ such
that N1 ≥N and

y−yn ≤ |yn−y|< y− r,

or

r < yn = sup
k≥n

xk

for any n≥N1. Since r < supk≥N1 xk, there exists some n1 ≥N1 such that

r < xn1 ≤ sup
k≥N1

xk = yN1 ≤M

Suppose that we have found n1 < · · ·<nm for some m∈N+. Similarly, because nm+1≥
N1, we have r < supk≥nm+1xk and we can find some nm+1 ≥ nm+ 1 such that

r < xnm+1 ≤ sup
k≥nm+1

xk = ynm+1 ≤M.

Constructing the subsequence {xnm}m∈N+ in this manner, we can see that

r < xnm ≤M

for any m ∈N+. In other words, {xnm}m∈N+ is a bounded real-valued sequence, so by
the Bolzano-Weierstrass theorem, it admits a convergent subsequence. Denoting this
subsequential limit by z ∈ S∗, we can see that

s∗ < r ≤ z ≤M.

This contradicts the definition of s∗ as the supremum of S∗, so we must have s∗ = y.

Finally, if s∗ = −∞, then from the previous theorem, it follows that S∗ = {−∞}, and
that {xn}n∈N+ is bounded above (otherwise, +∞∈ S∗, a contradiction). From this we
can again tell that the sequence {yn}n∈N+ is bounded above, that is, there exist M ∈R
and N ∈N+ such that yn ≤M for any n≥N ; in particular, y <+∞. Suppose y ∈ R.
Since y ≤ yn for any n ∈N+, we can see that

−∞< y ≤ yn ≤M

for any n≥N , so that yn ∈ R for any n≥N .
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By the definition of the supremum yN = supk≥N xk, we can choose an n1 ≥N such that

yN −1< xn1 ≤ yN .

Assume now that n1 < · · ·<nm have been chosen for some m≥ 1. Then, we can choose
an nm+1 ≥ nm+ 1 such that

ynm+1−
1

m+ 1 < xnm+1 ≤ ynm+1.

The subsequence {xnm}m∈N+ constructed in this way satisfies

∣∣xnm+1−ynm+1
∣∣< 1

m+ 1

for any m ∈N+. Since {ynm+1}m∈N+ converges to y, by implication {xnm}m∈N+ con-
verges to y as well. This means that y is a subsequential limit of {xn}n∈N+ and is thus
contained in S∗. But this contradicts the fact that S∗ consists only of the element −∞,
so it must be the case that s∗ = y =−∞.

The claim for limit inferior follows by observing that

liminf
n→∞

xn =− limsup
n→∞

(−xn)

=− lim
n→∞

(
sup
k≥n

(−xk)
)

= lim
n→∞

(
−sup
k≥n

(−xk)
)

= lim
n→∞

inf
k≥n

xk.

Q.E.D.

The main use of limit superior and inferior in analysis arises when proving the existence of
the limit of a sequence taking values in the extended real line. We show now that a sequence in
[−∞,+∞] converges to the limit superior (inferior) if and only if the two values are equal. This
furnishes us with a convenient characterization of convergence of sequences taking values in the
extended real line that still holds for real valued sequences.

Theorem 1.48 Let {xn}n∈N+ be a sequence taking values in [−∞,+∞]. For any −∞≤ x≤
+∞, {xn}n∈N+ conveges to x if and only if

limsup
n→∞

xn = liminf
n→∞

xn = x.
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Proof) Sufficiency
Note that S∗ = {x} if

limsup
n→∞

xn = liminf
n→∞

xn = x.

We consider three cases. First, suppose that x ∈ R. In this case, {xn}n∈N+ is both
bounded above (otherwise +∞ ∈ S∗) and below (otherwise −∞ ∈ S∗). We can tell
from this that there exists some N ∈N+ such that {xn}n≥N is real-valued, and can be
considered a sequence in the metric space (R,d), where d is the euclidean metric on R.

Consider any subsequence of {xn}n≥N ; it is a bounded real sequence, so by Bolzano-
Weierestrass, this subsequence has at least one convergent subsequence, and its limit
is x because it is also a subsequence of {xn}n∈N+ and x is the only subsequential limit.
Therefore, any subsequence of the real sequence {xn}n≥N has a further subsequence
that converges to x, and by the selection theorem, {xn}n≥N itself converges to x, which
is the same as saying that {xn}n∈N+ itself converges to x.

On the other hand, suppose that x= +∞. In this case,

liminf
n→∞

xn = sup
n∈N+

inf
k≥n

xk = +∞.

For any M ∈ R, this means that there exists some N ∈N+ such that

xk ≥ inf
k≥N

xk >M

for any k ≥N . This holds for any M ∈R, so by definition {xn}n∈N+ converges to +∞.
We can show similarly that the same result holds when x=−∞ by making use of the
limit superior.

Necessity
Suppose that {xn}n∈N+ converges to x. This indicates that every subsequence of {xn}n∈N+

converges to x (checking this is very easy for the three cases x ∈ R, x = +∞ and
x=−∞). Thus, S∗ = {x} and

limsup
n→∞

xn = supS∗ = x= inf S∗ = liminf
n→∞

xn.

Q.E.D.
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1.17.2 Completeness of Euclidean Spaces

The limits superior and inferior can be used to easily prove that the euclidean spaces Rn are
complete metric spaces, that is, any Cauchy sequence in Rn is also convergent. We first prove
this for the real line R equipped with the euclidean metric.

Theorem 1.49 (Completeness of the Real Line)
The real line R is a complete metric space under the euclidean metric.

Proof) Let {xn}n∈N+ be a Cauchy sequence in R. It is easy to see that {xn}n∈N+ is bounded;
by definition, there exists an N ∈N+ such that |xn−xm|< 1 for any n,m≥N , so

|xn| ≤ |xn−xN |+ |xN |< 1 + |xN |

for any n≥N . Defining

M = max(1 + |xN |, |x1|, · · · , |xN−1|)<+∞,

we can now see that

|xn| ≤M

for any n ∈ N+, implying that {xn}n∈N+ is a bounded sequence. Therefore, its limit
superior and inferior are both real numbers:

s∗ = limsup
n→∞

xn, s∗ = liminf
n→∞

xn ∈ R.

We need only show that s∗ = s∗ to show, in light fo the preceding theorem, that
{xn}n∈N+ converges to this common (real) value.

For any ε > 0, by the Cauchy property of {xn}n∈N+ and the fact that

s∗ = inf
n∈N+

sup
k≥n

xk, s∗ = sup
n∈N+

inf
k≥n

xk,

there exists an N ∈N+ such that

|xn−xm|< ε

and ∣∣∣∣∣sup
k≥n

xk−s∗
∣∣∣∣∣< ε, and

∣∣∣∣ inf
k≥n

xk−s∗
∣∣∣∣< ε

for any n,m≥N .
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Fix n≥N . Then, for any k ≥ n, since k,n≥N , we have

xk−xn ≤ |xk−xn|< ε,

so that

sup
k≥n

(xk−xn) = sup
k≥n

xk−xn ≤ ε.

Similarly, since

xn−xk ≤ |xk−xn|< ε

for any k ≥N , it follows that

sup
k≥n

(xn−xk) = xn− inf
k≥n

xk ≤ ε

as well. Adding together the two inequalities shows us that

0≤ sup
k≥n

xk− inf
k≥n

xk ≤ 2ε.

In addition, we can also see that, since n≥N ,∣∣∣∣∣sup
k≥n

xk−s∗
∣∣∣∣∣< ε, and

∣∣∣∣ inf
k≥n

xk−s∗
∣∣∣∣< ε.

It follows that

|s∗−s∗| ≤
∣∣∣∣∣sup
k≥n

xk−s∗
∣∣∣∣∣+
∣∣∣∣∣sup
k≥n

xk− inf
k≥n

xk

∣∣∣∣∣+
∣∣∣∣ inf
k≥n

xk−s∗
∣∣∣∣≤ 4ε.

This holds for any ε > 0, so we can conclude that s∗ = s∗ = s ∈ R, and therefore that
{xn}n∈N+ converges to s.

Q.E.D.

Since the convergence of sequences in Rn is equivalent to the convergence of each of its co-
ordinates in R, the completeness of arbitrary euclidean spaces follows as a simple corollary of
the preceding result:

Corollary to Theorem 1.49 (Completeness of Euclidean Spaces)
The eucliean n-space Rn is a complete metric space under the euclidean metric.

Proof) Let {xk}k∈N+ be a Cauchy sequence in Rn, and denote each xk as xk = (x1,k, · · · ,xn,k)∈
Rn. Note that each sequence {xi,k}k∈N+ in R is a Cauchy sequence; this is because, for
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any k,m ∈N+,

|xi,k−xi,m| ≤

 n∑
j=1
|xj,k−xj,m|2

 1
2

= |xk−xm|

for any 1 ≤ i ≤ n. By the completeness of R, for any 1 ≤ i ≤ n there exists an x∗i ∈ R
such that xi,k→ x∗i as k→∞. Defining x∗ = (x∗1, · · · ,x∗n) ∈ Rn, note that

|xk−x∗|=
(

n∑
i=1
|xi,k−x∗i |

2
) 1

2

,

so that taking k→∞ on both sides shows us {xk}k∈N+ converges to x∗.

Q.E.D.

1.17.3 The Heine-Borel Theorem and Extreme Values

The completeness of euclidean spaces allows us to recover the Heine-Borel theorem as a special
case of the Borel-Lebesgue lemma. To understand this theorem, we need to introduce the concept
of ε-nets of sets. Given a metric space (E,d) and a set A⊂ E, we say that the set B ⊂ E is an
ε-net of A for some ε > 0 if

A⊂
⋃
x∈B

Bd(x,ε),

that is, we can approximate A with accuracy ε using the points in B. Note that we need not
require the points in B to be contained in A; this is convenient, because it shows that any ε-net
of a set A is also an ε-net of any subset of A. To see this, let A and A′ be sets such that A′ ⊂A,
and let B ⊂ E be an ε-net of A. In this case,

A′ ⊂A⊂
⋃
x∈B

Bd(x,ε),

so that B is also an ε-net of A′.
We say that B is a finite ε-net of A if B is a finite set. If a set A has a finite ε-net for any

ε > 0, then we say that A is totally bounded.

Theorem 1.50 (Borel-Lebesgue Lemma)
Let (E,d) be a metric space. If a subset A of E is compact, then it is closed and totally bounded.
If, in addition, (E,d) is complete, then the converse holds as well.

Proof) Necessity

Suppose that A is a compact set. Since metric spaces are Hausdorff spaces, A is a closed
set. Suppose that there exists some ε > 0 such that A has no finite ε-net. Choose any
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x1 ∈ A. Then, assuming that we have chosen x1, · · · ,xk ∈ A for some k ≥ 1, we can
choose xk+1 ∈A as

xk+1 ∈A\
(

k⋃
i=1

Bd(xi, ε)
)

;

we can find such an yk+1 because otherwise, A would have {x1, · · · ,xk} as a finite ε-net.
Having constructed {xk}k∈N+ ⊂ A as such, note that, for any n,m ∈ N+, assuming
n <m without loss of generality,

d(xm,xn)≥ ε,

since otherwise, xm ∈Bd(xn, ε), a contradiction. On the other hand, since {xk}k∈N+ is
a sequence in the compact (and thus sequentially compact) set A, it has a subsequence
that converges to some point in x ∈ A. This subsequence, being convergent, must also
be Cauchy, but we just proved above that no subsequence of {xk}k∈N+ can be Cauchy
(the distance between any two elements in the sequence is bounded below by ε). This
results in a contradiction, and thus it must be the case that A has a finite ε-net for any
ε > 0.

Sufficiency

Now suppose that A is closed and totally bounded. We use the sequential compactness
characterization to prove that A is compact. Choose any sequence {xn}n∈N+ in A.
Then, there must exist an y1 ∈ E such that the open ball Bd(x,1) contains infinitely
many elements of {xn}n∈N+ ; otherwise, A admits no finite 1-net, which contradicts our
initial assumption.

Assume that we have chosen y1, · · · ,yk ∈ E for some k ≥ 1 such that ⋂ki=1Bd(yi,1/i)
contains infinitely many elements of {xn}n∈N+ . Then, we choose yk+1 so that the in-
tersection

k+1⋂
i=1

Bd(yi,1/i)

also contains in infinitely many elements in {xn}n∈N+ . To see why this choice is possible,
note that ⋂ki=1Bd(yi,1/i) contains infinitely many elements of {xn}n∈N+ ; thus there
exists an N ∈N+ such that {xn}n≥N ⊂

⋂k
i=1Bd(yi,1/i). Then, {xn}n≥N , being a subset

of A, is also totally bounded and therefore it has a finite 1
k+1 -net by assumption. In

other words, at least one of the 1
k+1 -balls that covers {xn}n≥N must contain infinitely

many elements of {xn}n≥N .

Now we choose n1 ∈N+ so that xn1 ∈Bd(y1,1); this is possible because Bd(y1,1) con-
tains elements of {xn}n∈N+ . Assume that we have chosen n1 < · · ·< nk for some k ≥ 1;
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then, choose nk+1 > nk so that

xnk+1 ∈
k+1⋂
i=1

Bd(yi,1/i).

Again, we can choose to make the index nk+1 larger than nk because the intersection on-
the right hand side contains infinitely many elements of {xn}n∈N+ . Having constructed
the subsequence {xnk}k∈N+ as above, note that, for any k, l ∈N+ such that l > k,

xnk ,xnl ∈
k⋂
i=1

Bd(yi,1/i)⊂Bd(yk,1/k),

and as such

d(xnk ,xnl)≤ d(xnk ,yk) +d(xnl ,yk)<
2
k
.

Thus,

lim
k,l→∞

d(xnk ,xnl) = 0,

making {xnk}k∈N+ a sequence that is Cauchy in d. By the completeness of (E,d), it
follows that this subsequence converges to some point x∗ ∈E, and since {xnk}k∈N+ is a
sequence in A, a closed set, x∗ ∈A. We have shown that any sequence in A has a sub-
sequence that converges to some point in A; by definition, A is sequentially compact,
and since we are working with metric spaces, A is compact as well.

Q.E.D.

The Heine-Borel theorem now follows easily:

Theorem 1.51 (Heine-Borel Theorem)
A subset A of the euclidean n-space Rn is compact if and only if it is closed and bounded.

Proof) Let d denote the euclidean metric on Rn. It suffices, in light of the Borel-Lebesgue
theorem, to show that A is totally bounded if and only if it is bounded. Suppose that
A has a finite ε-net for any ε > 0. Then, there exists a finite set {x1, · · · ,xk} ⊂ Rn such
that

A⊂
k⋃
i=1

Bd(xi,1).

Defining M = max(|x1|+ 1, · · · , |xk|+ 1) < +∞, note that, for any x ∈ A, letting x ∈
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Bd(xi,1) for some 1≤ i≤ k,

|x| ≤ |x−xi|+ |xi|< 1 + |xi| ≤M.

As such, A is a bounded set.

Conversely, suppose that A is a bounded set. Then, there exists an 0<M <+∞ such
that |x| ≤M for any x ∈ A, so that A is contained in the n-cell [−M,M ]n. For any
ε > 0, choose N ∈N+ so that 1

N < ε√
n

. Then, let E be the set

E =
{
x ∈ Rn | ∀1≤ i≤ k, xi =−M + 1

N
· j for some 0≤ j ≤ 2MN

}
.

In other words, we are subdividing the n-cell [−M,M ]n into identically sized cubes
whose edge length is 1

N . Clearly, E is a finite subset of Rn. We can then see that

A⊂
⋃
y∈E

Bd(y,ε);

to see this, choose any x ∈A. Then, there exist j1, · · · , jn ∈ {0, · · · ,2MN} such that

x ∈
n∏
i=1

[
−M + 1

N
· ji, −M + 1

N
· (ji+ 1)

]
.

Defining

y =
(
−M + 1

N
· j1, · · · ,−M + 1

N
· jn
)
∈ E,

for any 1≤ i≤ n we have

|xi−yi| ≤
1
N
<

ε√
n
,

so that

|x−y|=
(

n∑
i=1
|xi−yi|2

) 1
2

< ε

and x ∈ Bd(y,ε). We can construct such a cover of A for any ε > 0, so by definition A

is totally bounded.

Since (Rn,d) is a complete metric space, A is compact if and only if A is closed and
totally bounded by the Borel-Lebesgue lemma. Since the second condition and the
boundedness of A are equivalent for euclidean spaces, it follows that A is compact if
and only if A is closed and bounded.

Q.E.D.
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The Heine-Borel theorem is of interest in its own right, but it is also of practical use; most
notably, it can be used to prove the extreme value theorem, one of the theorems that appears
the most often in probability and economics.

Theorem 1.52 (Weierstrass Extreme Value Theorem)
Let (E,τ) be a topological space and f : E → R a continuous function on E. Then, for any
compact subset K of E, there exist x∗,x∗ ∈ E such that

f(x∗) = sup
x∈K

f(x), f(x∗) = inf
x∈K

f(x).

Thus, in this case the supremum and infimum above can be written as a maximum and minimum.

Proof) Since f is a continuous function, the image f(K) of K under f is a compact subset of
R. By the Heine-Borel theorem, f(K) is then closed and bounded. By boundedness,

α∗ = supf(K) and α∗ = inf f(K)

exist in R, and by closedness, α∗,α∗ are contained in f(K). This indicates that there
exists some x∗,x∗ ∈ E such that

f(x∗) = α∗, f(x∗) = α∗,

which is exactly the result we desire.

Q.E.D.

95



Chapter 2

Measure Spaces and Measurable
Functions

2.1 Measurable Spaces and Borel Spaces

2.1.1 Measurable Spaces and Generating Sets

Let E be any set, and A a collection of subsets of E. A is said to be an algebra on E if it satisfies
the following properties:

i) E ∈ A; A contains the entire set

ii) For any A ∈ A, Ac = E \A ∈ A; A is closed under complements

iii) For any finite collection {A1, · · · ,An} ⊂ A, the union A = ⋃n
i=1Ai ∈ A; A is closed under

finite unions.

It follows that, ∅ = Ec ∈ A because A is closed under complementation, and that, for a finite
collection of sets {A1, · · · ,An} ⊂ A,

n⋂
i=1

Ai =
(

n⋃
i=1

Aci

)c
∈ A

because A is closed under complementation and finite unions. Therefore, A is also closed under
finite intersections.

The collection E of subsets of E is said to be a σ-algebra on E if it satisfies the following
properties:

i) E ∈ E ; E contains the entire set

ii) For any A ∈ E , Ac = E \A ∈ E ; E is closed under complements

iii) For any countable collection {An}n∈N+ ⊂ E , the union A = ⋃
nAn ∈ E ; E is closed under

countable unions
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Clearly, E is simply an algebra on E that is closed under countable unions as well as finite
unions.
The elements of E are called measurable sets, and the pair (E,E) is called a measurable space.

Let (E,E) be a measurable space. The following directly follow from the definition of a σ-algebra:

• ∅ ∈ E because ∅= E \E, E ∈ E and E is closed under complements

• For any A1, · · · ,An ∈ E , defining Ai = ∅ for any i≥ n+ 1,

n⋃
i=1

Ai =
⋃
m

Am ∈ E

because each Ai ∈ E and E is closed under countable unions.

• For any countable collection {An}n∈N+ , because Acn ∈ E for any n ∈N+,

⋂
n

An =
(⋃
n

Acn

)c
∈ E .

By the same logic as the point above, E is also closed under finite intersections.

• For any A,B ∈ E ,

A\B =A∩Bc ∈ E

because E is closed under finite intersections and complements.

Like with topologies, we often characterize σ-algebras using some collection of subsets contained
in E . The exact sense in which the characterization is possible is explained below.

Lemma 2.1 The intersection of σ-algebras is also a σ-algebra.

Proof) Let {Eα} be an arbitrary collection of σ-algebras on E, and define E =⋂
αEα.

We now show that E satisfies the three conditions for a σ-algebra:

i) The entire set E is contained in each Eα, so it is contained in their intersection E
as well.

ii) For any A ∈ E , since A ∈ Eα for all α, the complement Ac =E \A ∈ Eα as well. As
such, Ac ∈ E .

iii) For any countable collection {An}n∈N+ ∈ E , since {An}n∈N+ ∈ Eα for all α, the
union A=⋃

nAn ∈ Eα as well. As such, A ∈ E .

Therefore, by definition, E is a σ-algebra on E.
Q,E.D.
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For any collection F of subsets of E, the σ-algebra generated by F is defined as the intersection
of all σ-algebras on E that contain F , and denoted σF .
It is in this sense that σF is the smallest σ-algebra containing F .

2.1.2 Borel Spaces

Let (E,τ) be a topological space. Then, the σ-algebra generated by the collection τ of subsets
of E is called the Borel σ-algebra on (E,τ), and denoted B(E,τ). The elements of B(E,τ) are
referred to as Borel sets.
We will often encounter the Borel σ-algebras B(R, τR), B([−∞,+∞], τ[−∞,+∞]) and B(Rn, τ en)
on euclidean spaces. For the sake of notational convenience, we now denote them as B(R),
B([−∞,+∞]) and B(Rn).

The following relates the base of a second countable topological space and the Borel σ-algebra
it generates; it is an example of the usefulness of second countability.

Lemma 2.2 Let (E,τ) be a second countable topological space and B a countable base of E
that generates τ . Then, B(E,τ) = σB, that is, the base B generates the Borel σ-algebra B(E,τ).

Proof) Let E be the σ-algebra generated by B. We must show that E = B(E,τ).
Since τ is contained in the σ-algebra B(E,τ) and B is contained in τ , B(E,τ) is
a σ-algebra contaning B. E is the smallest σ-algebra containing B by definition, so
E ⊂ B(E,τ).

To see the reverse inclusion, choose any A ∈ τ . Because B is a base that generates τ ,
by theorem 1.3, A=⋃

iBi for some colleciton {Bi} ⊂ B; but B is countable, so that A
must be the countable union of sets in B. Sets in B are also contained in E , so A is
the countable union of sets in E . Finally, σ-algebras are closed under countable unions,
which means that A ∈ E .
This holds for any A ∈ τ , so τ ⊂ E . By definition, B(E,τ) is the smallest σ-algebra
containing τ , so it must be the case that B(E,τ)⊂ E .
Therefore, B(E,τ) = E = σB.
Q.E.D.

It follows from the above result and theorem 1.5 that the collection of all open intervals with
rational endpoints generates B(R).
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2.1.3 The π−λ Theorem and Monotone Classes of Sets

Here we introduce special concepts related to measurable spaces that are frequently used in
probability theory.
Let E be an arbitrary set. We say that a collection E0 of subsets of E is a π-system if it is closed
under finite intersections, that is, if:

For any A,B ∈ E0, A∩B ∈ E0.

On the other hand, we say that a collection M of subsets of E is a λ-system if:

i) E ∈M

ii) For any A,B ∈M such that A⊂B, B \A ∈M

iii) For any sequence {An}n∈N+ ∈M such that An⊂An+1 for any n∈N+, the set A=⋃nAn ∈
M.

Note that any σ-algebra is both a π-system and a λ-system.
We can prove the converse of this statement as well, namely that, if a collection of subsets of E
is both a π-system and a λ-system, then it is a σ-algebra on E.

Lemma 2.3 Let E be a set and E a collection of subsets of E. If E is both a π-system and a
λ-system, then it is a σ-algebra on E.

Proof) We will check the criteria for a σ-algebra one by one:

i) E ∈ E because E is a λ-system.

ii) Let A ∈ E . Since E ∈ E and A⊂E, by the second property of a λ-system we have
Ac = E \A ∈ E .

iii) Let {An}n∈N+ be an arbitrary collection of sets in E . Define {Bn}n∈N+ as B1 =A1

and

Bn =An \
(
n−1⋃
i=1

Ai

)

for any n ≥ 2. Then, {Bn}n∈N+ is an increasing sequence of sets, where B1 ∈ E
trivially. For any n≥ 2, because

Bn =An∩
(
n−1⋃
i=1

Ai

)c
=An∩

(
n−1⋂
i=1

Aci

)
,

Bn ∈ E because it is closed under complements (ii) above) and finite intersections
(E is a π-system).
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Therefore, {Bn}n∈N+ ⊂E , and by the third property of λ-systems,⋃nAn =⋃nBn ∈
E .

By definition, E is a σ-algebra on E.
Q.E.D.

The next result, the π−λ Theorem, furnishes us with a convenient way to verify that a σ-algebra
is part of some collection of subsets. First, note that the intersection of π- and λ-systems are also
π- and λ-systems, much like how the intersection of topologies and σ-algebras are also topologies
and σ-algebras.

Theorem 2.4 (The π−λ Theorem)
Let E be a set and E0 a π-system on E. IfM is a λ-system on E that contains E0, thenM also
contains the σ-algebra E = σE0 generated by E0.

Proof) LetM0 be the smallest λ-system containing E0, that is, the intersection of all λ-systems
containing E0. We will show that M0 is precisely the σ-algebra E generated by E0, at
which point the proof will be complete.

Suppose that M0 is a π-system. Then, the preceding lemma tells us that M0 is a σ-
algebra on E. M0 contains E0, so that E ⊂M0 Conversely, E is a λ-system containing
E0, so M0 ⊂ E by the definition of M, which shows that M0 = E = σE0.

Therefore, the proof will be complete if we just show that M0 is a π-system. To this
end, choose any A ∈ E0, and define

MA = {B ⊂ E |A∩B ∈M0}.

We can show that MA is a λ-system on E:

i) E ∈MA because E∩A=A ∈M0.

ii) For any B1,B2 ∈MA such that B1 ⊂B2,

A∩ (B2 \B1) = (A∩B2)\ (A∩B1);

because A∩B2,A∩B1 ∈M0, A∩B1 ⊂A∩B2 andM0 is a λ-system, their differ-
ence is also in M0. Therefore, B2 \B1 ∈MA.

iii) For any increasing sequence {Bn}n∈N+ ∈MA, define B =⋃
nBn. Then,

A∩B =A∩
(⋃
n

Bn

)
=
⋃
n

(A∩Bn) .
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Since each A∩Bn ∈M0, A∩Bn ⊂ A∩Bn+1 and M0 is a λ-system, A∩B ∈M0

as well, and B ∈MA.

MA is thus a λ-system on E that contains the π-system E0. By the definition of
M0, M0 ⊂MA, so that A∩B ∈ M0 for any B ∈ M0. Thsi holds for any A ∈ E0,
so A∩B ∈M0 for any A ∈ E0 and B ∈M0.

Now define the collection

M1 = {A⊂ E |A∩B ∈M0 for any B ∈M0}.

We can show that this is also a λ-system on E:

i) E∩B =B ∈M0 for any B ∈M0, so E ∈M1.

ii) For any A1,A2 ∈M1 such that A1 ⊂A2, for any B ∈M0 we have

B∩ (A1 \A2) = (B∩A1)\ (B∩A2).

Because A1∩B,A2∩B ∈M0, A1∩B ⊂ A2∩B and M0 is a λ-system, their dif-
ference is also in M0. Therefore, A2 \A1 ∈M1.

iii) For any increasing sequence {An}n∈N+ ∈M1, define A=⋃
nAn and choose some

B ∈M0. Then,

A∩B =
(⋃
n

An

)
∩B =

⋃
n

(An∩B) .

Since each An∩B ∈M0, An∩B ⊂ An+1∩B and M0 is a λ-system, A∩B ∈M0

as well, and A ∈M1.

M1 is thus a λ-system containing E0; therefore, as before, we can see that M0 ⊂M1,
or that A∩B ∈M0 for any A,B ∈M0. It follows thatM0 is a π-system, and the proof
is complete.
Q.E.D.
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Finally, we introduce the mathematical object known as a monotone class. The collectionM of
subsets of E is said to be a monotone class of sets if:

i) For any sequence {An}n∈N+ in M such that An ⊂An+1 for any n ∈N+,

⋃
n

An ⊂M.

ii) For any sequence {Bn}n∈N+ in M such that Bn+1 ⊂Bn for any n ∈N+,

⋂
n

Bn ⊂M.

In other words, M is a monotone class of sets if it is closed under increasing countable unions
and decreasing countable intersections. Clearly, σ-algebras are monotone classes, since they are
closed under arbitrary countable unions and intersections.
As with σ-algebras and λ-systems, the arbitrary intersection of montone classes is also a mono-
tone class (this can be shown very easily, through the same process as in lemma 2.1). As such,
for any collection A of subsets of E, we can define the smallest monotone class containing A as
the intersection of all montone classes containing A.
Montone classes of sets are useful because of the following result, which is called the monotone
class theorem; it can be shown as a corollary to the π−λ theorem.

Corollary to Theorem 2.4 (The Montone Class Theorem)
Let E be a set and A an algebra on E. If M is the smallest monotone class containing A, then
M is precisely the σ-algebra generated by A.

Proof) The σ-algebra generated by A is a monotone class containing A and therefore contains
M.

To show the reverse inclusion, we first note that M possess the following properties:

– Because A ⊂M and E ∈ A by the definition of an algebra on E, it follows that
E ∈M as well.

– For any increasing sequence of sets {An}n∈N+ ⊂M, letting A=⋃
nAn, A ∈M by

definition of a montone class of sets.

Therefore, we need only show that B \A ∈M for any A,B ∈M such that A ⊂ B for
M to be a λ-system on E.

To this end, let A ∈ A and define

M1 = {B ⊂ E |B \A ∈M}.
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For any increasing sequence {Bn}n∈N+ ⊂M, letting B = ⋃
nBn, because Bn \A ∈M

for any n ∈N+ and {Bn \A}n∈N+ is an increasing sequence of sets in M, by the first
property of montone classes we have

B \A=
⋃
n

(Bn \A) ∈M.

Likewise, for any decreasing sequence {Bn}n∈N+ ⊂ M, letting B = ⋂
nBn, because

Bn \A ∈M for any n ∈N+ and {Bn \A}n∈N+ is an decreasing sequence of sets in M,
by the second property of montone classes we have

B \A=
⋂
n

(Bn \A) ∈M.

By definition, M1 is a monotone class of sets on E, and because

B \A=B∩Ac ∈ A⊂M

for any B ∈ A, M1 is a monotone class containing the algebra A. By the definition of
M as the smallest monotone class containing A, we haveM⊂M1, so that B \A ∈M
for any B ∈M.

Now define

M2 = {A⊂ E |B \A ∈M for any B ∈M}.

Let {An}n∈N+ be an increasing sequence of sets in M2 with limit A= ⋃
nAn. Choose

any B ∈M. Then, because B \An ∈M for any n ∈N+, {B \An}n∈N+ is a decreasing
sequence of sets in M with limit B \A. It follows by the definition of a montone class
that B \A ∈M. Therefore, A ∈M2.
Likewise, for any decreasing sequence of sets {An}n∈N+ in M2 with limit A, for any
B ∈M, {B \An}n∈N+ is an increasing sequence of sets inM, so that its limit B \A is
also in M. As such, A ∈M2, and M2 is a monotone class on E.
Since A⊂M2 as shown above, by the definition of M as the smallest monotone class
containing A, we have M⊂M2, so that B \A ∈M for any B,A ∈M.

It now follows that M is a λ-system on E containing A. Since A is closed under finite
intersections and thus a π-system, by the π−λ theorem the σ-algebra generated by A
is contained in M.
As such, the smallest montone classM containing A is exactly the σ-algebra generated
by A, which is the smallest σ-algebra containing A.
Q.E.D.
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2.2 Measurable Functions

2.2.1 Measurability and Characterizations

Let (E,E), (F,F) be measurable spaces, and f :E→ F a function that maps E into F . f is said
to be a measurable function relative to the σ-algebras E and F if:

For any A ∈ F , the inverse image f−1(A) ∈ E .

We denote this relation succinctly by f ∈ E/F .
Because we will encounter functions f : E → [−∞,+∞] very often, we write f ∈ E for f ∈
E/B([−∞,+∞]). If f is nonnegative valued, then we write f ∈ E+.

The following result simplifies the criteria for measurability by relying on generating sets.

Lemma 2.5 Let F0 be a collection of subsets of F that generates F . Then, a function f :E→F

is measurable relative to E and F if and only if f−1(A) ∈ E for any A ∈ F0.

Proof) The necessity part follows immediately, since F0 ⊂F and f−1(A) ∈ E for any A ∈ F if
f ∈ E/F .

To show sufficiency, suppose that f−1(A) ∈ E for any A ∈ F0, and define

M= {A⊂ F | f−1(A) ∈ E};

M contains F0. We now show that M is a σ-algebra on F :

i) f−1(F ) = E ∈ E , so F ∈M.

ii) For any A ∈M,

f−1(F \A) = f−1(F )\f−1(A) = E \f−1(A) ∈ E

because f−1(A) ∈ E and E is closed under complements. This implies that Ac =
F \A ∈M.

iii) For any countable collection {An}n∈N+ ⊂M, letting A=⋃
nAn,

f−1(A) =
⋃
n

f−1(An) ∈ E

becauase each f−1(An) ∈ E and E is closed under countable unions.

It follows that M is a σ-algebra on F containing F0. Since F = σF0 is the smallest
σ-algebra containing F0, we have F ⊂M. In other words, f−1(A) ∈ E for any A ∈ F ,
so by definition, f ∈ E/F .
Q.E.D.
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The powerful result above gives us the following characterization of measurability for functions
whose target space is a Borel space, and shows that continuous functions are always measurable:

Corollary to Lemma 2.5 The following hold true:

i) Let (E,E) be a measurable space and (F,B(F,τ)) a Borel space. Then, a function f :E→F

is measurable relative to E and B(F,τ) if and only if f−1(A) ∈ E for any A ∈ τ .

ii) Let (E,τ) and (F,s) be topological spaces. Then, any function f : E → F continuous
relative to τ and s is also measurable relative to B(E,τ) and B(F,s).

Proof) i) This follows immediately from lemma 2.5 because τ generates the σ-algebra B(F,τ).

ii) Let (E,τ) and (F,s) be topological spaces and f : E → F a function continuous
relative to τ and s. By definition, f−1(A) ∈ τ for any A ∈ s. Since στ = B(E,τ),
this means that f−1(A) ∈ B(E,τ) for any A ∈ s, and by result i), this indicates
that f ∈ E/F .

Q.E.D.

Furthermore, lemma 2.5 implies that, for any measurable space (E,E) and a real function f :E→
R, f ∈ E/B(R) if and only if f−1((a,b)) ∈ E for any open interval (a,b) with rational endpoints,
since the base of such open intervals was shown to generate the standard topology on R.
Likewise, for any function f : E→ [−∞,+∞] that takes values on the extended real line, f ∈ E
if and only if

f−1([−∞,a)),f−1((a,+∞]),f−1((a,b)) ∈ E

for any rational a,b ∈ Q. This characterization of measurability can be further simplified, as
shown below:
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Theorem 2.6 Let (E,E) be a measurable space, and let f : E → [−∞,+∞] be a function.
Then, the following statements are equivalent:

i) f is E-measurable

ii) f−1([−∞,a)) ∈ E for any a ∈Q

iii) f−1([a,+∞]) ∈ E for any a ∈Q

iv) f−1([−∞,a]) ∈ E for any a ∈Q

v) f−1((a,+∞]) ∈ E for any a ∈Q

Proof) We show that each statement implies the next.

i)→ ii) Suppose f ∈ E . Then, because [−∞,a) ∈ τ[−∞,+∞] ⊂ B([−∞,+∞]) for any a ∈Q,
by the definition of measurability f−1([−∞,a)) ∈ E for any a ∈Q.

ii)↔ iii) Suppose f−1([−∞,a)) ∈ E for any a ∈Q. Then, for any a ∈Q,

f−1([a,+∞]) = f−1 ([−∞,+∞]\ [−∞,a))

= f−1 ([−∞,+∞])\f−1([−∞,a)) = E \f−1([−∞,a)) = f−1([−∞,a))c ∈ E ,

where the last inclusion follows because E is closed under complements.
Conversely, suppose that iii) holds. Because [−∞,a) = [−∞,+∞]\ [a,+∞] for any
a ∈Q, by the same reasoning as above,

f−1([−∞,a)) ∈ E

and thus ii) holds.

ii)→ iv) Suppose ii) holds. Then, for any a ∈Q, because

[−∞,a] =
⋂

n∈N+

[
−∞,a+ 1

n

)
,

we can see that

f−1([−∞,a]) = f−1

 ⋂
n∈N+

[
−∞,a+ 1

n

)=
⋂

n∈N+

f−1
([
−∞,a+ 1

n

))
∈ E ,

where the last inclusion holds because each f−1
([
−∞,a+ 1

n

))
is measurable by

hypothesis and E is closed under countable intersections.
This holds for any a ∈Q, so iv) holds.
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iv)↔ v) Note that the sets of the form [−∞,a] and (a,+∞] are complements of one an-
other. Therefore, the closedness of σ-algebras under complements indicate that, if
iv) or v) hold, then the other holds as well.

v)→ i) Suppose that f−1((a,+∞])∈E for any a∈Q. Then, we showed above that f−1([−∞,a])∈
E for any a ∈Q as well.
Choose any a ∈Q, and note that

[−∞,a) =
⋃

n∈N+

[
−∞,a− 1

n

]
;

as such,

f−1 ([−∞,a)) = f−1

 ⋃
n∈N+

[
−∞,a− 1

n

]=
⋃

n∈N+

f−1
([
−∞,a− 1

n

])
∈ E ,

where the last inclusion holds because each f−1
([
−∞,a− 1

n

])
is measurable and

E is closed under countable unions.
Finally, for any a,b ∈Q such that a < b, because

(a,b) = [−∞, b)\ [a,+∞],

we have

f−1 ((a,b)) = f−1 ([−∞, b)\ [a,+∞]) = f−1 ([−∞, b))\f−1 ([a,+∞]) ∈ E .

We have thus shown that f−1(A)∈ E for any A∈ τ[−∞,+∞] contained in the count-
able base

B̄ = {[−∞,a) | a ∈Q}
⋃
{(a,+∞] | a ∈Q}

⋃
{(a,b) | a,b ∈Q}.

Since B̄ is a countable base generating the standard topology τ[−∞,+∞] on [−∞,+∞]
by theorem 1.5, lemma 2.2 shows us that B̄ generates the Borel σ-algebra B([−∞,+∞]),
and therefore, by lemma 2.5, f is measurable relative to E and B([−∞,+∞]).

Q.E.D.

The workhorse theorem proved above allows us to easily prove many statements concerning the
measurability of numerical functions, or functions taking values in [−∞,+∞].
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The following is a corollary to the above theorem that extends the above criteria to real-valued
functions.

Corollary to Theorem 2.6 Let (E,E) be a measurable space, and let f :E→R a function.
Then, the following statements are equivalent:

i) f is E-measurable

ii) f−1((−∞,a)) ∈ E for any a ∈Q

iii) f−1([a,+∞)) ∈ E for any a ∈Q

iv) f−1((−∞,a]) ∈ E for any a ∈Q

v) f−1((a,+∞)) ∈ E for any a ∈Q

Proof) Let f̄ :E→ [−∞,+∞] be the extension of f to the extended real line. If i) holds, then
ii) to v) hold because (−∞,a), [a,+∞),(−∞,a],(a,+∞) ∈ τR ⊂ B(R) for any a ∈Q.
Suppose ii) holds. Then, for any a ∈Q,

f̄−1([−∞,a)) = f−1((−∞,a)) ∈ E ,

and by theorem 2.6, f̄ is E-measurable. By definition,

f̄−1(A) ∈ E

for anyA∈B([−∞,+∞]). Since (a,b)∈B([−∞,+∞]) for any a,b∈Q because B([−∞,+∞])
is generated by the order topology on [−∞,+∞], we have

f−1((a,b)) = f̄−1((a,b)) ∈ E

for any a,b ∈Q. It follows from lemma 2.5 that f ∈ E/B(R) and thus that i) holds.
Similar arguments show that iii) to v) also imply that i) holds.
Q.E.D.

The above reveals that, for any f :E→R, if f ∈ E/B(R) then the extension f̄ :E→ [−∞,+∞] of
f to the extended real number system must be E-measurable. Conversely, if f : E→ [−∞,+∞]
is real valued and E-measurable, then its restriction f̃ :E→R to R is in E/B(R). Thus, we may
identify measurability of real-valued functions regardless of whether its target space is the real
line or the extended real-number system; for this reason, we will also denote f ∈ E , or call f
E-measurable, if f is a function with target space R that is measurable with respect to E and
B(R).
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2.2.2 Preservation of Measurability under Various Operations

Here we show that measurability is preserved across compositions and simple arithmetic opera-
tions.

Theorem 2.7 The following hold true:

i) Let (E,E), (F,F), and (G,G) be measurable spaces, and let f :E→ F , g : F →G be func-
tions.
If f ∈ E/F and g ∈ F/G, then the function h : E → G defined as h = g ◦ f is measurable
relative to E and G.

ii) Let (E,E) be a measurable space, and f1, · · · ,fn : E→ R measurable functions relative to
E and B(R). Let Φ : Rn→ R be measurable relative to B(Rn) and B(R).
Then, the function h : E→ R defined as

h(x) = Φ(f1(x), · · · ,fn(x))

for any x ∈ E is measurable relative to E and B(Rn).

iii) Let (E,E) be a measurable space, and suppose f,g : E → R are real valued functions on
E. If f,g ∈ E/B(R), then f +g and fg are measurable relative to E and B(R) as well.

iv) Let (E,E) be a measurable space, and suppose f :E→ [−∞,+∞] is E-measurable. Then,
for any c ∈ R, cf is also E-measurable.

v) Let (E,E) be a measurable space, and suppose f,g : E → [−∞,+∞] are E-measurable.
Then, the sets

{f ≥ g}, {f ≤ g}, {f > g}, {f < g}, {f = g}, {f 6= g}

are all E-measurable sets.

Proof) i) Suppose that f ∈ E/F and g ∈ F/G. Then, for any A ∈ G,

h−1(A) = f−1(g−1(A)) ∈ τ

because g−1(A) ∈ F and f is measurable. By definition, h ∈ E/G.

ii) We first show that the function f : E→ Rn defined as

f(x) = (f1(x), · · · ,fn(x))
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for any x ∈ E is measurable relative to E and B(Rn). Letting τ en be the euclidean
topology on Rn, we showed in theorem 1.9 that

τ en = τR×·· ·× τR︸ ︷︷ ︸
n

= τnR .

In addition, B= {(a,b)∈ a,b∈Q} is a countable base that generates τR (by theorem
1.5), and as such, by lemma 1.8, the collection

Bn = {B1×·· ·×Bn |Bi ∈ B for any 1≤ i≤ n}

of open rectangles on Rn is a countable base generating τnR = τ en.
Therefore, by lemma 2.2, Bn generates the σ-algebra B(Rn). For any B = B1×
·· ·×Bn ∈ Bn,

f−1(B) =
n⋂
i=1

f−1
i (Bi) ∈ E ,

where the last inclusion holds because each f−1
i (Bi) ∈ E by the measurability of

fi and E is closed under finite intersections.
This holds for any B ∈ Bn, so by lemma 2.5, f ∈ E/B(Rn).

The remaining step is to show that the function h : E→ R defined as

h(x) = Φ(f1(x), · · · ,fn(x))

for any x ∈ E is E-measurable. However, because we can write h = Φ ◦ f , where
Φ ∈ B(Rn)/B(R) by hypothesis and we showed that f ∈ E/B(Rn), it follows from
result i) that h ∈ E/B(R).

iii) Note that the functions Φ1,Φ2 : R2→ R defined as

Φ1(x) = x1 +x2 and Φ2(x) = x1x2

for any x= (x1,x2) ∈R2 are continuous relative to the euclidean topologies on R2

and R; this is easily shown using elementary analytical machinery.

As such, Φ1,Φ2 ∈ B(R2)/B(R) by the corollary to lemma 2.5, and from result ii),
we can see that

f +g = Φ1(f,g) and fg = Φ2(f,g)

are measurable relative to E and R.
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iv) If c= 0, then cf(x) = 0 for any x ∈ E, so cf ∈ E .
Now let c > 0. Then, for any r ∈Q, by the denseness of Q in R, we have

{cf < r}= {f < r

c
}=

⋃
q<r/c, q∈Q

f−1 ([−∞, q)) ;

this union is a countable union of measurable sets, so {cf < r} ∈ E and cf ∈ E .
If c < 0, then {cf > r}= {f < r

c}, so by the same process as above, we can show
that cf ∈ E .

v) By the denseness of Q in R, note that

{f > g}=
⋃

q>r, q,r∈Q
{x ∈ E | f(x)> q > r > g(x)}

=
⋃

q>r, q,r∈Q
[{x ∈ E | f(x)> q}∩{x ∈ E | r > g(x)}] .

Beacause {x ∈E | f(x)> q},{x ∈E | r > g(x)} ∈ E for any q,r ∈Q by the measur-
ability of f,g, and the union and intersection above are over a countable collection
of sets, it follows that {f > g} ∈ E .
Likewise, {f < g}= {−f >−g} ∈ E because −f,−g ∈ E by iv).
In addition, {f ≤ g}= {f > g}c ∈ E and {f ≥ g}= {f < g}c ∈ E .
Finally, {f = g}= {f ≤ g}\{f < g} ∈ E , and {f 6= g}= {f = g}c ∈ E as well.

Q.E.D.

111



2.2.3 Preservation of Measurability under Limits

One of the main advantages of working with measurable functions instead of continuous func-
tions is that the property of measurability, unlike continuity, is preserved under pointwise limits
as well as uniform limits, whereas the pointwise limit of continuous functions may be discontin-
uous. This is formally shown below:

Theorem 2.8 Let (E,E) be a measurable space. The following hold true:

i) Let {fn}n∈N+ be a sequence of E-measurable functions. Then, limsupn→∞ fn and liminfn→∞ fn
are E-measurable numerical functions.

ii) Let {fn}n∈N+ be a sequence of E-measurable functions with a pointwise limit f = limn→∞ fn

taking values in [−∞,+∞]. Then, f is E-measurable.

Proof) i) By definition,

limsup
n→∞

fn = inf
n∈N+

(
sup
k≥n

fk

)

and

liminf
n→∞

fn = sup
n∈N+

(
inf
k≥n

fk

)
.

Therefore, to establish the measurability of the limsup and liminf functions, we
must first establish the measurability of supremums and infimums of functions.

For any n ∈N+, define gn : E→ [−∞,+∞] as

gn(x) = sup
k≥n

fk(x)

for any x ∈ E. For any a ∈Q,

g−1
n ([−∞,a]) = {x ∈ E | sup

k≥n
fk(x)≤ a}=

⋂
k≥n
{x ∈ E | fk(x)≤ a}=

⋂
k≥n

f−1
k ([−∞,a]) .

Because each fk ∈ E , the sets f−1
k ([−∞,a]) ∈ E by theorem 2.6, and since E is

closed under countable intersections, g−1
n ([−∞,a]) ∈ E as well. This holds for any

a ∈Q, so by theorem 2.4, gn ∈ E .

This holds for any n ∈N+, so {gn}n∈N+ is a sequence of E-measurable numerical
functions. Then, f = limsupn→∞ fn = infn∈N+ gn; for any a ∈Q,

f−1([a,+∞]) = {x ∈ E | inf
n∈N+

gn ≥ a}=
⋂

n∈N+

{x ∈ E | gn(x)≥ a}=
⋂

n∈N+

g−1
n ([a,+∞]) .
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Each g−1
n ([a,+∞])∈E and E is closed under countable intersections, so f−1([a,+∞])∈

E . This holds for any a∈Q, so by theorem 2.6, f ∈E , or in other words, limsupn→∞ fn
is measurable.

As for liminfn→∞ fn, since

liminf
n→∞

fn =− inf
n∈N+

(
sup
k≥n

(−fk)
)

=− limsup
n→∞

(−fn),

and {−fn}n∈N+ is a sequence of E-measurable functions, the result shown above
implies that liminfn→∞ fn is measurable as well.

ii) If {fn}n∈N+ be a sequence of E-measurable functions witha pointwise limit f :
E→ [−∞,+∞], for any x ∈ E we have

f(x) = lim
n→∞

fn(x) = liminf
n→∞

fn(x) = limsup
n→∞

fn(x),

where the last two equalities follow from the fact that the sequence {fn(x)}n∈N+

converges. Therefore,

f = liminf
n→∞

fn = limsup
n→∞

fn;

the latter two functions were shown to be measurable, so it follows that f is E-
measurable as well.

Q.E.D.
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2.2.4 The Positive and Negative Parts of a Function

Let f : E→ [−∞,+∞], and define f+ = max(f,0) and f− = −min(f,0). Then, for any x ∈ E,
if f(x)≥ 0, then f(x) = f+(x) and f−(x) = 0, so that f(x) = f+(x)−f−(x), while if f(x)< 0,
then f(x) =−f−(x) and f+(x) = 0, so that f(x) = f+(x)−f−(x) once again. Therefore, we can
decompose f into its positive and negative parts on the entire set E:

f = f+−f−.

Note that f+ and f− both non-negative valued, that is, they take values on [0,+∞].

The positive and negative parts of a function have useful measurability and minimality proper-
ties: these are stated below.

Lemma 2.9 Let (E,E) be a measurable space, and f : E→ [−∞,+∞] a numerical function.
The following hold true:

i) f is E-measurable if and only if the positive and negative parts f+ and f− of f are
E-measurable.

ii) Let f = g−h for some g,h : E → [−∞,+∞] that are non-negative valued. Then, f+ ≤ g
and f− ≤ h.

Proof) i) Suppose f is E-measurable. The function g : E → [−∞,+∞] defined as g(x) = 0
for any x ∈ E is E-measurable, since

g−1 ([−∞,a)) =

E if a > 0

∅ if a≤ 0
∈ E

for any a ∈Q.
Now we can write f+ = max(f,g) and f− = min(f,g); it follows from the preser-
vation of measurability under supremums and infimums and the measurability of
f and g that f+,f− ∈ E .
Conversely, suppose that f+,f− are E-measurable. Choose any a ∈ Q, and sup-
pose a > 0. If f(x) < a for some x ∈ E, then because 0 < a as well, f+(x) =
max(f(x),0) < a. Conversely, if f+(x) < a for some x ∈ E, then because f(x) ≤
f+(x), f(x)< a as well. This equivalency can be written as

f−1([−∞,a)) = {x ∈ E | f(x)< a}

= {x ∈ E | f+(x)< a}= (f+)−1([−∞,a)) ∈ E ,

where the last inclusion holds because f+ is E-measurable.
Now suppose a≤ 0. If f(x)<a, then because f(x)<a≤ 0, min(f(x),0) = f(x)<a
and f−(x) =−min(f(x),0) =−f(x)>−a. Conversely, if f−(x)>−a, then because
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min(f(x),0) < a ≤ 0, min(f(x),0) = f(x) and f(x) < a. This equivalency can be
written as

f−1([−∞,a)) = {x ∈ E | f(x)< a}

= {x ∈ E | f−(x)>−a}= (f−)−1((−a,+∞]) ∈ E ,

where the last inclusion holds because f− is E-measurable.
Therefore, f−1([−∞,a)) ∈ E for any a ∈ Q, and by the characterization of mea-
surability for numerical functions, f is E-measurable.

ii) Suppose f = g−h for some g,h : E → [−∞,+∞] that are non-negative valued.
Then,

f+ = max(f,0)≤ f = g−h≤ g

on E, where the last inequality follows from the non-negativity of h. Likewise,

f− =−min(f,0)≤−f = h−g ≤ h

on E by the non-negativity of g.

Q.E.D.

Due to the ubiquity of non-negative measurable functions, from now on we denote a non-negative
measurable function f by f ∈ E+.
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2.2.5 Simple Functions

Let (E,E) be a measurable space. A simple function f :E→R is defined as a function that maps
into a finite subset of [0,+∞). Letting f : E→ R be a real function mapping into the finite set
{α1, · · · ,αn} ⊂ [0,+∞) of distinct elements, for any 1 ≤ i ≤ n we can define the inverse image
Ai = f−1({αi}); then, f can be written as

f =
n∑
i=1

αi · IAi .

Note that A1, · · · ,An ⊂E are disjoint, since x∈Ai∩Aj for some i 6= j indicates that f(x) = αi =
αj , which contradicts the fact that αi 6= αj . A representation of a simple function in the form
above, or the linear combination of indicators of disjoint sets whose union is E with distinct
coefficients, is referred to as the canonical form of f .
Conversely, suppose that

f =
n∑
i=1

αi · IAi

for some α1, · · · ,αn ∈ [0,+∞) and A1, · · · ,An ⊂ E, where α1, · · · ,αn may not be distinct and
A1, · · · ,An not disjoint. Nevertheless, f takes values in a finite subset of {α1, · · · ,αn}, so it is a
simple function.

Let f be a simple function on E with canonical form

f =
n∑
i=1

αi · IAi .

It can be easily shown that f is E-measurable if and only if A1, · · · ,An ∈ E :

• If f ∈ E , then for any 1≤ i≤ n, because {αi} ∈ B(R), we have Ai = f−1({αi}) ∈ E by the
definition of measurability.

• If A1, · · · ,An ∈ E , then for any A ∈ B(R), because f−1 (R\{α1, · · · ,αn}) = ∅, we have

f−1(A) = f−1 (A∩{α1, · · · ,αn}) =
n⋃
i=1

f−1 ({αi}∩A) .

Defining Bi = {αi}∩A for 1≤ i≤ n, if Bi = ∅, then f−1(Bi) = ∅ ∈ E , while if Bi 6= ∅, then
Bi = {αi} and f−1(Bi) = f−1({αi}) = Ai ∈ E . Therefore, f−1(B1), · · · ,f−1(Bn) ∈ E and
f−1(A) ∈ E .
This holds for any A ∈ B (R), so f is E-measurable.

We now prove a very powerful result that every measurable numerical function is the pointwise
limit of an increasing sequence of simple functions.
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Theorem 2.10 (Approximation by Simple Functions)
Let (E,E) be a measurable space, and f :E→ [−∞,+∞] a non-negative E-measurable function.
Then, there exists an increasing sequence {sn}n∈N+ of E-measurable simple functions such that
sn↗ f pointwise as n→∞.

Proof) For any n ∈N+, define sn : E→ [0,+∞) as

sn(x) =
n2n∑
k=1

k−1
2n · If−1([ k−1

2n , k2n ))(x) +n · If−1([n,+∞])(x)

for any x∈E. sn takes values in the finite set {k−1
2n | 1≤ k≤ 2n+1}, so by definition, sn

is a simple function. Furthermore, for any 1≤ k ≤ n2n, the set
[
k−1
2n ,

k
2n
)
⊂ [0,+∞] is a

Borel set, so by measurability, f−1
([

k−1
2n ,

k
2n
))
∈ E . Thus, as we showed above, sn ∈ E+.

We must now show that sn ≤ sn+1 on E for any n∈N+. Choose any n∈N+ and x∈E,
and denote y = f(x) ∈ [0,+∞]. We now study three distinct cases:

– If y ≥ n+ 1, then sn(x) = n < n+ 1 = sn+1(x).

– If n≤ y <n+1, then letting y ∈
[
k−1
2n+1 ,

k
2n+1

)
for some n ·2n+1 +1≤ k≤ (n+1)2n+1,

sn+1(x) = k−1
2n+1 ≥

n ·2n+1 + 1−1
2n+1 = n= sn(x).

– Finally, if y < n, then letting y ∈
[
k−1
2n ,

k
2n
)

for some 1≤ k ≤ n2n, we can see that

y ∈
[2k−2

2n+1 ,
2k−1
2n+1

)⋃[2k−1
2n+1 ,

2k
2n+1

)
,

so that

sn+1(x) = 2k−2
2n+1 or 2k−1

2n+1 .

In any case, sn+1(x) is larger than or equal to sn(x) = k−1
2n .

Therefore, in any case, sn+1(x)≥ sn(x), so sn ≤ sn+1 on E.

Finally, we must show that sn→ f pointwise as n→∞. Choose any x ∈E, ε > 0, and
denote y = f(x) ∈ [0,+∞].
If y = +∞, then sn(x) = n for any n ∈N+ and sn(x)→+∞= y = f(x) as n→∞.
On the other hand, suppose y < +∞. Then, there exists a natural number M ∈ N+

such that y <M , and for any n≥M , there exists a 1≤ k≤ n2n such that y ∈
[
k−1
2n ,

k
2n
)
.

As such,

sn(x) = k−1
2n ≤ y = f(x)< k

2n = 1
2n +sn(x),
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so that

|sn(x)−f(x)|= f(x)−sn(x)< 1
2n .

Because 1
2k → 0 as k→∞, there exists an N ≥M such that 1

2n < ε for any n≥N ; thus,
for any n≥N , n≥M implies that

|sn(x)−f(x)|< 1
2n < ε.

Such an N ∈N+ holds for any ε > 0, so by definition

lim
n→∞

sn(x) = f(x).

In any case, sn(x)→ f(x); this holds for any x ∈ E, so by definition sn→ f pointwise
as n→∞.
Q.E.D.

Simple functions are also useful in that the sum or product of simple functions is also a simple
function:

Lemma 2.11 Let (E,E) be a measurable space, and f,g ∈ E+ measurable simple functions.
Then, f +g and fg are also measurable simple functions.

Proof) Let the canonical forms of f and g be given as

f =
n∑
i=1

αi · IAi and g =
m∑
i=1

βi · IBi ,

where ⋃iAi =⋃
iBi =E. Define Cij =Ai∩Bj for any 1≤ i≤ n and 1≤ j ≤m. Due to

the disjoint nature of B1, · · · ,Bm,

IAi = I
Ai∩
(⋃m

j=1Bj

) =
m∑
j=1

IAi∩Bj ,

and

f =
n∑
i=1

αi · I
Ai∩
(⋃

j
Bj

) =
n∑
i=1

n∑
j=1

αi · ICij .

Likewise, for g,

g =
n∑
i=1

m∑
j=1

βj · ICij .
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Therefore,

f +g =
n∑
i=1

m∑
j=1

(αi+βj) · ICij .

Each αi+βj ∈ [0,+∞), and Cij ⊂ E, so f + g is a simple function. In addition, f and
g are real valued measurable functions, and theorem 2.7 tells us that the sum of mea-
surable functions is measurable, so f +g is a measurable simple function.

The case for fg is easier. Note that

fg =
(

n∑
i=1

αi · IAi

)(
m∑
i=1

βi · IBi

)
=

n∑
i=1

m∑
j=1

(αiβj) · IAi∩Bj =
n∑
i=1

m∑
j=1

(αiβj) · ICij .

It follows immediately that fg is a simple function, and because the measurability of
real valued functions is preserved under products, fg is also a measurable simple func-
tion.
Q.E.D.

A useful corollary of the above results is that the sum of non-negative functions is also measur-
able; note that the functions in questions do not need to be real valued, and can take +∞ as a
value.

Corollary to Theorem 2.10 and Lemma 2.11 Let (E,E) be a measurable space, and
f,g ∈E+ non-negative measurable functions. Then, f+g and fg are also non-negative measurable
functions.

Proof) By theorem 2.10, there exist sequences {sn}n∈N+ and {hn}n∈N+ of simple measurable
functions increasing to f and g respectively. The sum of simple functions is also a sim-
ple function, and measurability is preserved over the sum of real-valued measurable
functions, so {sn +hn}n∈N+ is a sequence of simple measurable functions increasing
to the non-negative valued function f + g. Finally, because measurability is preserved
under limits, f +g is measurable as well.

Similarly, because the product of simple functions is also a simple function and measur-
ability is preserved over the product of real-valued measurable functions, {snhn}n∈N+

is a sequence of simple measurable functions increasing to the non-negative function
fg. Because measurability is preserved under limits, fg is measurable as well.

Q.E.D.
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2.2.6 The Monotone Class Theorem for Functions

This section covers a very useful application of the π−λ theorem.
Let (E,E) be a measurable space. The collecitonM of E-measurable numerical functions is said
to be a monotone class if:

i) IE ∈M

ii) For any bounded f,g ∈M and a,b ∈ R, af + bg ∈M

iii) For any increasing sequence {fn}n∈N+ of non-negative functions inM, the pointwise limit
f = limn→∞ fn is contained in M (the limit exists because {fn(x)}n∈N+ is increasing for
any x ∈ E )

The following is the monotone class theorem:

Theorem 2.12 (The Monotone Class Theorem for Functions)
Let (E,E) be a measurable space and M a monotone class of functions. If M contains every
function of the form IA, where A∈ E0 and E0 is a π-system generating E , then every non-negative
or bounded E-measurable function is contained in M.

Proof) Define the collection

D = {A⊂ E | IA ∈M}.

We will show that D is a λ-system on E:

i) E ∈ D because IE ∈M by the definition of a monotone class of functions.

ii) For any A,B ∈ D such that A⊂B, because IA, IB ∈M are bounded and

IB\A = IB− IA,

the second property of monotone classes of functions tells us that IB\A ∈M and
B \A ∈ D.

iii) For any increasing sequence of sets {An}n∈N+ ⊂D, letting A=⋃nAn, IAn ≤ IAn+1

for any n ∈N+ and

IA(x) = lim
n→∞

IAn(x)

for any x∈E, so that IAn↗ IA; because each {IAn}n∈N+ is an increasing sequence
of non-negative functions inM, IA ∈M by the third property of monotone classes
of functions.
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It is clear that D contains E0, since IA ∈M for any A ∈ E0 by hypothesis. D is a λ-
system containing the π-system E0, so by the π−λ theorem, D contains the σ-algebra
generated by E0. Since E0 generates E , E ⊂ D and thus IA ∈M for any A ∈ E .

The rest of the theorem will be proved by showing that the theorem holds for measur-
able simple functions and then, using theorem 2.10, for any non-negative measurable
function. This type of argument will be employed heavily in the proofs to come.
Let f ∈ E+ be a measurable simple function given as f =∑n

i=1αi · IAi for α1, · · · ,αn ∈
[0,+∞) and A1, · · · ,An ∈ E . For any 1 ≤ i ≤ n, IAi ∈M is a bounded function, so by
the second property of monotone classes,

f =
n∑
i=1

αi · IAi ∈M.

Now let f ∈E+ in general. By theorem 2.10, there exists an increasing sequence {sn}n∈N+

of E-measurable simple functions such that sn↗ f . Since each sn ∈M+, by the third
property of monotone classes f ∈M+ as well. Thus, M contains all non-negative E-
measurable functions.

Finally, let f be a bounded E-measurable function. Then, f+,f− ∈ E+ by lemma 2.9,
and because f+,f− are bounded,

f = f+−f− ∈M

by the second property of monotone classes. Therefore,M also contains every bounded
E-measurable functions.
Q.E.D.

The monotone class theorem above will be used extensively in the context of product spaces and
proofs involving measurable rectangles. By implication, it is also used extensively when dealing
with transition kernels and conditional probabilities.
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2.3 Measures

2.3.1 Definitions and Basic Properties

Let (E,E) be a measurable space. Then, a measure µ on E is a function mapping E into [0,+∞]
such that:

For any countable collection of disjoint measurable sets {An}n∈N+ ⊂ E ,

µ

(⋃
n

An

)
=
∞∑
n=1

µ(An).

The limit on the left is well-defined in [0,+∞] because {µ(An)}n∈N+ is a non-negative sequence.
This defining property of a measure is called countable additivity.
To avoid trivialities such as the fucntion µ(A) = +∞ for any A ∈ E , we also require that

µ(A)<+∞ for at least one A ∈ E .

The triple (E,E ,µ) is called a measure space.
The following properties follow immediately from the definition above:

Theorem 2.13 Let (E,E ,µ) be a measure space. Then, the following hold true:

i) µ(∅) = 0.

ii) (Finite Additivity) For any finite collection of disjoint measurable sets A1, · · · ,An ∈ E ,

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai).

iii) (Monotonicity) For any A,B ∈ E such that A⊂B, µ(A)≤ µ(B).

iv) (Sequential Continuity) For any sequence {An}n∈N+ ⊂ E such that An ⊂ An+1 for any
n ∈N+,

µ

(⋃
n

An

)
= lim
n→∞

µ(An).

v) (Sequential Continuity II) For any sequence {An}n∈N+ ⊂ E such that An+1 ⊂ An for any
n ∈N+ and µ(A1)<+∞,

µ

(⋂
n

An

)
= lim
n→∞

µ(An).

vi) (Countable Subadditivity; Boole’s Inequality) For any sequence {An}n∈N+ ⊂ E ,

µ

(⋃
n

An

)
≤
∞∑
n=1

µ(An).
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Proof) i) By definition, there exists a A ∈ E such that µ(A) < +∞. Define the sequence
{An}n∈N+ ⊂ E as A1 = A and An = ∅ for any n > 1. Then, {An}n∈N+ is disjoint,
and by countable additivity,

µ(A) = µ

(⋃
n

An

)
=
∞∑
n=1

µ(An) = µ(A) +
∞∑
n=2

µ(∅).

µ(A)<+∞, so ∑∞n=2µ(∅) = 0. The only way this is possible is if µ(∅) = 0.

ii) Let A1, · · · ,An ∈E be a disjoint. Then, defining Am = ∅ for any m>n, the sequence
{Am}m∈N+ ⊂ E is disjoint, so by countable additivity,

µ

(
n⋃
i=1

Ai

)
= µ

(⋃
m

Am

)
=
∞∑
m=1

µ(Am)

=
n∑
i=1

µ(Ai) +
∞∑

i=n+1
µ(∅) =

n∑
i=1

µ(Ai)

because µ(∅) = 0.

iii) Let A,B ∈ E and A⊂B. Then, C =B \A ∈ E and B =A∪C, where A and C are
disjoint; by finite additivity,

µ(B) = µ(A∪C) = µ(A) +µ(C)≥ µ(A),

where the last inequality follows because µ(C) ∈ [0,+∞].

iv) Let {An}n∈N+ ⊂ E be an increasing sequence of sets. Define {Bn}n∈N+ as B1 =A1

and

Bn =An \An−1

for any n ≥ 2. Then, {Bn}n∈N+ is a sequence of disjoint measurable sets (due to
the increasing nature of {An}n∈N+) such that ⋃nBn = ⋃

nAn = A ∈ E , and by
countable additivity

µ(A) = µ

(⋃
n

Bn

)
=
∞∑
n=1

µ(Bn) = lim
n→∞

n∑
i=1

µ(Bi).

Recall that B1 =A1. Suppose, for some n≥ 1, that Am =⋃mi=1Bi for any 1≤m≤n.
Then, because

An+1 =Bn+1∪An
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and

An =
n⋃
i=1

Bi

by the inductive hypothesis, we have

An+1 =Bn+1∪
(

n⋃
i=1

Bi

)
=
n+1⋃
i=1

Bi.

Thus, by induction, An =⋃n
i=1Bi for any n ∈N+ and, by finite additivity,

µ(An) =
n∑
i=1

µ(Bi).

Therefore,

µ(A) = lim
n→∞

n∑
i=1

µ(Bi) = lim
n→∞

µ(An).

v) Let {An}n∈N+ ⊂ E be a decreasing sequence of sets such that µ(A1)<+∞. Define
{Bn}n∈N+ as

Bn =A1 \An

for any n ∈N+; then, {Bn}n∈N+ is an increasing sequence of sets in A such that

⋃
n

Bn =
⋃
n

(A1 \An) =
⋃
n

(A1∩Acn) =A1∩
(⋃
n

Acn

)
=A1∩

(⋂
n

An

)c
=A1 \

(⋂
n

An

)
.

Denoting A= (⋂nAn), by sequential continuity for increasing sets,

µ(A1 \A) = lim
n→∞

µ(Bn).

For any n∈N+, A1 =An∪Bn, where An and Bn are disjoint, so by finite additivity,
µ(A1) = µ(An) +µ(Bn). By monotonicity and the fact that An ⊂ A1, µ(An) ≤
µ(A1)<+∞, which allows us to rewrite µ(Bn) as

µ(Bn) = µ(A1)−µ(An).

Likewise, because A1 = A∪ (A1 \A) for disjoint measurable sets A and A1 \A,
finite additivity and monotonicity imply that

µ(A) = µ(A1)−µ(A1 \A).

124



Therefore,

µ(A) = µ(A1)−µ(A1 \A) = µ(A1)− lim
n→∞

µ(Bn) = lim
n→∞

µ(An).

vi) Let {An}n∈N+ ⊂ E be an arbitrary collection of measurable sets. Define {Bn}n∈E
as B1 =A1 and

Bn =An \
(
n−1⋃
i=1

Ai

)

for any n≥ 2. Then, {Bn}n∈N+ is a sequence of disjoint measurable sets such that⋃
nBn =⋃

nAn =A ∈ E , and by countable additivity

µ(A) = µ

(⋃
n

Bn

)
=
∞∑
n=1

µ(Bn).

Since Bn ⊂An for any n ∈N+, we have µ(Bn)≤ µ(An) by monotonicity and thus

µ(A) =
∞∑
n=1

µ(Bn)≤
∞∑
n=1

µ(An).

Q.E.D.
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2.3.2 Examples of Measures

The following are some measures that are often encountered:

(1) The Lebesgue Measure
The Lebesgue Measure λ on the euclidean space Rn is the measure such that, for any
A ∈ B(Rn), λ(A) yields the length, area or volume of A. In particular, if n= 1, λ((a,b)) =
b−a for any open interval (a,b); this also holds for closed or half-open intervals as well.
Moreover, λ({x}) = 0 for any x ∈ Rn, that is, the Lebesgue measure assigns 0 mass to
individual points in euclidean space.
The Lebesgue measure can be constructed directly (as in chapter 2 of the Frank Jones
textbook), through the Caratheodory extension theorem (which we study below), or using
the Riesz representation theorem (this is the avenue we pursue, and is detailed in chapter
4 of the present article).

(2) The Counting Measure
Let (E,2E) be a countable space, where E is often taken to be N+ or Z. An important
property of countable spaces is that, because the σ-algebra is often taken to be the discrete
σ-algebra 2E , every function defined on E is measurable.

The counting measure c on (E,2E) is defined as

c(A) = The number of elements in A

for any A⊂ E. We can easily show that this is a measure:

i) c(∅) = 0 because there are no elements in the empty set

ii) For any sequence {An}n∈N+ of disjoint subsets of E, let A = ⋃
nAn. If A is a finite

set, then there exists an N ∈ N+ such that An = ∅ for any n ≥ N , and the number
of elements in A is the sum of the number of elements in A1, · · · ,AN , since they are
disjoint. This means that

c(A) =
N∑
n=1

c(An) =
∞∑
n=1

c(An).

On the other hand, if A is an infinite set, we can consider two cases:
If there exists an N ∈N+ such that AN is an infinite set, then because

c(A) = +∞=
∞∑
n=1

c(An).

If every set in {An}n∈N+ is a finite set, then only a finite number of sets in {An}n∈N+ is
the empty set; otherwise, if there existed an N ∈N+ such that An = ∅ for any n≥N ,
then A would contain only the finite number of elements contained in A1, · · · ,AN ,

126



which contradicts the assumption that A is an infinite set. Therefore, an infinite
number of elements in the sequence {c(An)}n∈N+ is nonzero, which means that

∞∑
n=1

c(An) = +∞= c(A).

In any case,

c(A) =
∞∑
n=1

c(An),

so c is countably additive.

The counting measure will be used to great effect later on when interpreting series as
integrals.

(3) The Dirac Measure
Let (E,E) be a measurable space. For any x ∈ E, the Dirac Delta measure δx on (E,E)
sitting at x is defined as

δx(A) =

1 if x ∈A

0 otherwise

for any A ∈ E . To see that this actually defines a measure, note that

i) δx(∅) = 0 because x /∈ ∅.

ii) For any sequence {An}n∈N+ of disjoint subsets of E, let A = ⋃
nAn. If x ∈ A, then

there exists a unique N ∈N+ such that x ∈ AN , where the uniqueness follows from
the disjointness of {An}n∈N+ ; thus, δx(An) = 0 for any n 6=N because x /∈An, and

δx(A) = 1 = δ(AN ) =
∞∑
n=1

δx(An).

On the other hand, if x /∈A, then x /∈An for every n ∈N+, and

δx(A) = 0 =
∞∑
n=1

δx(An).

In any case,

δx(A) =
∞∑
n=1

δx(An),

so δx is countably additive.

The Diract Delta measure has the tendency to pop up when we least expect it; examples
include the proof of the existence of conditional probabilities and the transition probability
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of the Metropolis-Hastings algorithm.

(4) Probability Measures
Let (Ω,H) be a measurable space. A probability measure P on (Ω,H) is a measure on
(Ω,H) such that P(Ω) = 1, that is, the entire set is assigned the value of 1. In this case,
the triple (Ω,H,P) is said to be a probability space, where Ω is interpreted as the sample
space (the set of all outcomes, such as heads or tails), H as the set of all admissible events,
and P(H) as the probability of event H for any H ∈H.
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2.3.3 The Finiteness of Measures

Note initially that the sum of measures is also a measure.
Let {µn}n∈N+ be a sequence of measures on (E,E). Define µ : E → [0,+∞] as

µ(A) =
∞∑
n=1

µn(A)

for any A ∈ E , where the sum on the right hand side is well defined due to the non-negativity of
each µn(A). We will show that µ is actually a measure on (E,E):

• µ(∅) =∑∞
n=1µn(∅) = 0 because each µn(∅) = 0. As such, µ(∅)<+∞ for ∅ ∈ E .

• For any disjoint {Am}m∈N+ ⊂ E ,

µ

(⋃
m

Am

)
=
∞∑
n=1

µn

(⋃
m

Am

)
=
∞∑
n=1

∞∑
m=1

µn(Am) (Countable Additivity)

=
∞∑
m=1

∞∑
n=1

µn(Am)

(The order of summation of non-negative sequences can be changed)

=
∞∑
m=1

µ(Am). (By definition)

Therefore, µ is a measure on (E,E).

Since the function ν : E → [0,+∞] defined as ν(A) = 0 for any A ∈ E is trivially a measure on
(E,E), it follows from logic similar to that used to prove the finite additivity of measures that
the sum of finite measures is also a measure.

The above fact is used to prove the relationship between different kinds of measures.
Let µ be a measure on (E,E). Then, we say that µ is:

• finite if µ(E)<+∞,

• σ-finite if there exists a measurable and countable partition {En}n∈N+ ⊂ E of E such that
µ(En)<+∞ for any n ∈N+.

• Σ-finite if there exists a sequence of finite measures {µn}n∈N+ on (E,E) such that

µ=
∞∑
n=1

µn.

An example of a finite measure is a probability measure, which must satisfy µ(E) = 1<+∞ by
definition.
An example of a σ-fintie measure is the Lebesgue measure λ on (Rn,B(Rn)); note that the col-
lection {B (0,n+ 1)\B (0,n)}n∈N+ , where B(x,δ) is the open ball of radius δ > 0 around x∈Rn,
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is a countable and measurable partition of Rn and that the Lebesgue measure of each entry is
finite (the entries have finite volume).
The counting measure is also a σ-finite measure.

We can show that finite measures are σ-finite, and that σ-finite measures are Σ-finite.

Lemma 2.14 Let (E,E ,µ) be a measure space. Then, the following hold true:

i) If µ is finite, then it is σ-finite.

ii) If µ is σ-finite, then it is Σ-finite.

Proof) i) Suppose that µ(E) < +∞. Then, {En}n∈N+ defined as E1 = E and En = ∅ for
n≥ 2 is a measurable partition of E such that µ(En)<+∞ for any n ∈N+, so by
definition µ is σ-finite.

ii) Suppose that µ is σ-finite, so that there exists a measurable partition {En}n∈N+ ⊂
E of E such that µ(En) < +∞ for any n ∈N+. For any n ∈N+, define µn : E →
[0,+∞] as

µn(A) = µ(A∩En)

for any A ∈ E . Then, µn is a finite measure on (E,E):

– µn(∅) = µ(∅∩En) = µ(∅) = 0,
– For any disjoint {Am}m∈N+ ⊂ E ,

µn

(⋃
m

Am

)
= µ

((⋃
m

Am

)
∩En

)
= µ

(⋃
m

(Am∩En)
)

=
∞∑
m=1

µ(Am∩En)

(Countable additivity; {Am∩En}m∈N+ is a disjoint collection)

=
∞∑
m=1

µn(Am),

– µn(E) = µ(En)<+∞.
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Now observe that, for any A ∈N+,

µ(A) = µ

(
A∩

(⋃
n

En

))
(⋃nEn = E)

= µ

(⋃
n

(A∩En)
)

=
∞∑
n=1

µ(A∩En)

(Countable additivity; {A∩En}m∈N+ is a disjoint collection)

=
∞∑
n=1

µn(A).

As such, µ=∑∞
n=1µn, and µ is Σ-finite by definition.

Q.E.D.

The π−λ theorem allows us to prove the following result, which enables us to determine whether
two finite or σ-finite measures are equal on the basis of their equality on a generating set of the
relevant σ-algebra.

Lemma 2.15 Let (E,E) be a measurable space, and µ,ν two measures on (E,E). Let F be a
π-system that generates E . Then, the following hold true:

i) Suppose µ,ν are finite measures.
If µ(A) = ν(A) for any A ∈ F and µ(E) = ν(E)<+∞, then µ(A) = ν(A) for any A ∈ E .

ii) Now suppose µ,ν are σ-finite measures.
If µ(A) = ν(A) for any A ∈ F and F contains a measurable partition {En}n∈N+ of E such
that µ(En) = ν(En)<+∞ for any n ∈N+, then µ(A) = ν(A) for any A ∈ E .

Proof) i) Define the collection

M= {A⊂ E | µ(A) = ν(A)}.

We will show that M is a λ-system:

– E ∈M because µ(E) = ν(E)<+∞.

– For any A,B ∈M such that A ⊂ B, by finite additivity and the fact that
µ(A) = ν(A)<+∞ and µ(B) = ν(B)<+∞, we have

µ(B \A) = µ(B)−µ(A) = ν(B)−ν(A) = ν(B \A).

Therefore, B \A ∈M.
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– For any increasing sequence of sets {An}n∈N+ ⊂M, letting A = ⋃
nAn, by

sequential continuity

µ(A) = lim
n→∞

µ(An) = lim
n→∞

ν(An) = ν(A).

Therefore, A ∈M.

The π-system F is contained in the λ-systemM; by the π−λ theorem, it follows
that the σ-algebra E generated by F is contained in M, so that µ(A) = ν(A) for
any A ∈ E .

ii) For any n ∈N+, define µn,νn : E→ [0,+∞] as

µn(A) = µ(A∩En) and νn(A) = ν(A∩En)

for any n ∈ N+. By assumption, {En}n∈N+ is a measurable partition of E such
that µ(En) = ν(En)<+∞; we showed in the proof of lemma 2.14 that each µn,νn
are finite measures on (E,E) such that

µ=
∞∑
n=1

µn and ν =
∞∑
n=1

νn.

For any n∈N+, µn and νn are finite measures such that µn(E) = µ(En) = ν(En) =
νn(E)<+∞ and, because En is an element of the π-system F ,

µn(A) = µ(A∩En) = ν(A∩En) = νn(A)

for any A ∈ F . By result i), µn(A) = νn(A) for any A ∈ E . It now follows that, for
any A ∈ E ,

µ(A) =
∞∑
n=1

µn(A) =
∞∑
n=1

νn(A) = ν(A).

Q.E.D.
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2.3.4 Caratheodory’s Extension Theorem

We have studied the definition and properties of measures, but a central question we have not
answered yet is whether measures actually exist. Given a measurable space (E,E), is there really
a non-negative function defined on E that is countably additive? This is the question we seeek to
answer in this section. Looking ahead slightly, it turns out that, given pre-measures, or functions
that are countably additive on some algebra, we can extend that algebra to a σ-algebra and the
pre-measure to a measure. This result, called Caratheodory’s extension theorem, is the focus of
our section.
The existence of pre-measures is easily established for a small algebra of sets, so the existence
of a measure on an extension of such algebras to σ-algebras follows from the extension theorem.
In practice, this theorem is used in a variety of contexts in probability theory, especially in the
proof of the existence of chains of random variables and Prohorov’s theorem, which furnishes
sufficient conditions for the weak convergence of probability measures on a metric space.

Recall that an algebra A on a set E is a collection of subsets of E satisfying the following
properties:

• E ∈ A.

• For any A ∈ A, Ac ∈ A. This implies that ∅ ∈ A as well.

• For any finite collection {A1, · · · ,An} ⊂ A, their union A= ⋃n
i=1Ai ∈ A as well. By prop-

erty ii), A is also closed under finite intersections.

A pre-measure µ0 on A is defined as a function µ0 :A→ [0,+∞] such that

• µ0(∅) = 0.

• (Finite Additivity) For any finite disjoint set {A1, · · · ,An} ⊂ A,

µ0

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ0(Ai).

Any pre-measure µ0 on A is said to have the σ-additivity property if, for any sequence {An}n∈N+

of disjoint sets in A with union A also in A,

µ0(A) =
∞∑
n=1

µ0(An).

Caratheodory’s extension theorem shows that, given an algebra A on E and a σ-additive pre-
measure µ0 on A, A can be extended to a σ-algebra on E and µ0 to a measure on that σ-algebra.
The exact sense in which these are ”extensions” will soon be made clear.

An outer measure on E is defined as a function µ : 2E → [0,+∞] on 2E such that:
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• µ(∅) = 0,

• (Monotonicity) For any subsets A,B of E such that A⊂B, we have µ(A)≤ µ(B).

• (σ-Subadditivity) For any sequence {An}n∈N+ of subsets of E with union A,

µ(A)≤
∞∑
n=1

µ(An).

Let µ∗ be an outer measure on E. The collection of all µ∗-measurable sets is defined as

M= {A⊂ E | µ∗(B) = µ∗(B∩A) +µ∗(B∩Ac) for any B ⊂ E}.

In a sense, M collects all the subsets of E that partitions each subset of E in a manner that is
finitely additive under µ∗.
Our main result, to be proven immediately below, states that the µ∗-measurable sets form a
σ-algebra on E, and that the restriction of µ∗ to this σ-algebra is a measure. From this result,
it follows that, if we can just construct an outer measure from a pre-measure on some algebra,
then we have the desired construction.

Theorem 2.16 (Caratheodory’s Restriction Theorem)
Let E be an arbitrary set, µ∗ an outer measure on E, andM the collection of all µ∗-measurable
sets. Then, M is a σ-algebra on E, and the restriction µ of µ∗ to M is a measure on M. In
addition, the measure space (E,M,µ) is complete.

Proof) We will prove the two results above simultaneously.
Clearly, E ∈M, since

µ∗(B) = µ∗(B∩E) = µ∗(B∩E) +µ∗(B∩∅)

for any B ⊂ E.
Next, we want to show that M is closed under complements. Suppose A ∈M. Then,

µ∗(B) = µ∗(B∩A) +µ∗(B∩Ac)

for any B ⊂E, which immediately shows us that Ac ∈M. It follows that ∅ ∈M as well.

Closedness under Finite Unions and Finite Additivity
To show thatM is closed under countable unions, we first show that it is closed under
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finite unions.
Let A1,A2 ∈M, and let A=A1∪A2. Then, for any B ⊂ E,

µ∗(B) = µ∗((B∩A)∪ (B∩Ac))≤ µ∗(B∩A) +µ∗(B∩Ac).

by the subadditivity of µ∗. Therefore, we need only show the reverse inequality holds
to conclude that A ∈M. This follows easily:

µ∗(B) = µ∗(B∩A1) +µ∗(B∩Ac1) (A1 ∈M)

= µ∗(B∩A1) +µ∗(B∩Ac1∩A2) +µ∗(B∩Ac1∩Ac2) (B∩Ac1 ⊂ E and A2 ∈M)

≥ µ∗((B∩A1)∪ (B∩Ac1∩A2)) +µ∗(B∩Ac1∩Ac2) (Subadditivity of µ∗)

= µ∗(B∩ (A1∪ (Ac1∩A2))) +µ∗(B∩Ac1∩Ac2)

= µ∗(B∩ (A1∪A2)) +µ∗(B∩Ac1∩Ac2)

= µ∗(B∩A) +µ∗(B∩Ac).

Therefore, A ∈M.
Furthermore, if A1,A2 are disjoint, then taking A=A1∪A2 again,

µ∗(B∩A) = µ∗((B∩A)∩A1) +µ∗((B∩A)∩Ac1)

= µ∗(B∩A1∪ ((B∩A2)∩A1)) +µ∗((B∩A2)∩Ac1)

= µ∗(B∩A1) +µ∗(B∩A2).

for any B ⊂ E. Taking B = E show us that µ∗ is finitely additive on M.
These results can easily be extended to finite collections of sets inM through induction;
specifically, for any {A1, · · · ,An} ⊂M,

n⋃
i=1

Ai ∈M

µ∗
(
B∩

(
n⋃
i=1

Ai

))
=

n∑
i=1

µ∗(B∩Ai). (for any B ⊂ E if A1, · · · ,An are disjoint)

A consequence of the closedness ofM under finite unions and complements is that it is
also closed under set differences. To see this, let A1,A2 ∈M. Then, A1 \A2 =A1∩Ac2 =
(Ac1∪A2)c; since Ac1 ∈M and Ac1∪A2 ∈M, it follows that A1 \A2 ∈M as well.

Closedness under Countable Unions and Countable Additivity
Now let {An}n∈N+ be a sequence of sets inM with union A. Again, by the subadditivty
of µ∗,

µ∗(B)≤ µ∗(B∩A) +µ∗(B∩Ac)
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for any B ⊂ E. For the reverse inequality, define the sequence {Vn}n∈N+ as V1 = A1

and

Vn =An \
(
n−1⋃
i=1

Ai

)

for any n ≥ 2. Because M is closed under finite unions and set differences, {Vn}n∈N+

is a disjoint sequence of sets in M such that

n⋃
i=1

Vi↗A

as n→∞. Therefore, for any n ∈N+,

µ∗(B) = µ∗
(
B∩

(
n⋃
i=1

Vi

))
+µ∗

(
B∩

(
n⋃
i=1

Vi

)c)

≥ µ∗
(
B∩

(
n⋃
i=1

Vi

))
+µ∗(B∩Ac)

=
n∑
i=1

µ∗(B∩Vi) +µ∗(B∩Ac). (V1, · · · ,Vn are disjoint sets in M)

This holds for any n ∈N+, so taking n→∞ on both sides,

µ∗(B)≥
∞∑
n=1

µ∗(B∩Vn) +µ∗(B∩Ac),

and by the countable subadditivity of µ∗,

µ∗(B)≥
∞∑
n=1

µ∗(B∩Vn) +µ∗(B∩Ac)

≥ µ∗
(⋃
n

(B∩Vn)
)

+µ∗(B∩Ac)

= µ∗
(
B∩

(⋃
n

Vn

))
+µ∗(B∩Ac) = µ∗(B∩A) +µ∗(B∩Ac).

This holds for any B ⊂ E, so it follows that A ∈M.
Finally, taking B =A reveals that

µ∗(A)≥
∞∑
n=1

µ∗(A∩Vn) +µ∗(A∩Ac) =
∞∑
n=1

µ∗(Vn).

If {An}n∈N+ were disjoint, then Vn =An for any n ∈N+, so in this case, we have

µ∗(A)≥
∞∑
n=1

µ∗(An),
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and the reverse inequality holds by countable subadditivity. Therefore,

µ∗(A) =
∞∑
n=1

µ∗(An)

if {An}n∈N+ is disjoint, which tells us that µ∗ is countably additive on M.

Completeness
We have thus shown that (E,M) is a measurable space, and letting µ :M→ [0,+∞]
be the restriction of µ∗ toM, because µ(∅) = µ∗(∅) = 0 and µ is countably additive on
M, the triple (E,M,µ) defines a measure space.
It remains to show that this measure space is complete. Choose any A ∈M such that
µ(A) = 0, and let N ⊂A. By the monotonicity of µ∗, µ∗(N) = 0, which implies that

µ∗(B∪N)≤ µ∗(B) +µ∗(N) = µ∗(B)≤ µ∗(B∪N)

and therefore µ∗(B) = µ∗(B∪N) for any B ⊂E by the monotonicity and subadditivity
of µ∗. By subadditivity,

µ∗(B) = µ∗(B∪N) = µ∗((B \N)∪N)≤ µ∗(B \N) +µ∗(N) = µ∗(B∩N c),

and because B∩N c ⊂B, the reverse inequality holds as well, which implies that

µ∗(B) = µ∗(B∩N c).

µ∗(B∩N) = 0 trivially, so it follows that

µ∗(B) = µ∗(B∩N) +µ∗(B∩N c).

Therefore, N ∈M by definition, which implies that

µ(N) = µ∗(N) = 0.

It follows that M contains all negligible sets, and that their measure is 0 under µ; by
definition, (E,M,µ) is complete.
Q.E.D.

Now we show a way to define an outer measure for any set E given an algebra on E and a
pre-measure on that algebra.

Lemma 2.17 Let E be an arbitrary set, A an algebra on E, and µ0 a pre-meausure on A.
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Then, the function µ∗ : 2E → [0,+∞] defined as

µ∗(A) = inf
{ ∞∑
n=1

µ0(Vn) | {Vn}n∈N+ ⊂A and A⊂
⋃
n

Vn
}

for any A⊂ E is an outer measure on E.

Proof) µ∗(A) is clearly well-defined for any A⊂E; {Vn}n∈N+ where V1 =E and Vn = ∅ for any
n≥ 2 is a collection of elements of A such that A⊂⋃nVn and

∞∑
n=1

µ0(Vn) = µ0(E) ∈ [0,+∞].

Therefore, the set

{ ∞∑
n=1

µ0(Vn) | {Vn}n∈N+ ⊂A and A⊂
⋃
n

Vn
}

contains µ0(E), and is thus a nonempty subset of [0,+∞]. If the set contains a finite
element, then by the lower bound property of the real line, µ∗(A) ∈ [0,+∞), while if
the set equals {+∞}, then µ∗(A) = +∞.

Now we show that µ∗ satisfies the three properties of an outer measure. Because
{Vn}n∈N+ defined as Vn = ∅ for any n ∈N+ is a sequence in A that covers ∅, it follows
that

0≤ µ∗(∅)≤ 0,

and as such µ∗(∅) = 0.
Next, let A,B be subsets of E such that A⊂B. For any collection {Vn}n∈N+ ⊂A such
that B ⊂⋃nVn, it follows that A⊂⋃nVn as well, so that

{ ∞∑
n=1

µ0(Vn) | {Vn}n∈N+ ⊂A and B ⊂
⋃
n

Vn
}
⊂
{ ∞∑
n=1

µ0(Vn) | {Vn}n∈N+ ⊂A and A⊂
⋃
n

Vn
}
.

Therefore,

µ∗(A) = inf
{ ∞∑
n=1

µ0(Vn) | {Vn}n∈N+ ⊂A and A⊂
⋃
n

Vn
}

≤ inf
{ ∞∑
n=1

µ0(Vn) | {Vn}n∈N+ ⊂A and B ⊂
⋃
n

Vn
}

= µ∗(B),

which shows that µ∗ is monotonic.

It remains to show that µ∗ is countably subadditive. To this end, choose any sequence
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{An}n∈N+ of subsets of E with union A. If µ∗(An) = +∞ for some n ∈ N+, then the
reuslt is trivial.
Assume then that µ∗(An) < +∞ for any n ∈ N+. For any ε > 0 and n ∈ N+, by the
definition of the infimum there exists a sequence {Vm,n}m∈N+ ⊂ A such that An ⊂⋃
mVm,n and

µ∗(An)≤
∞∑
m=1

µ0(Vm,n)< µ∗(An) + ε

2n .

Then, the sequence {Vm,n}m,n∈N+ is a sequence of sets in A that covers A, since

A=
⋃
n

An ⊂
⋃
n

⋃
m

Vm,n.

Furthermore, because µ0(Vm,n) is non-negative for any m,n ∈ N+, the order of sum-
mation can be freely interchanged in the series ∑∑µ0(Vm,n), which tells us, by the
definition of µ∗,

µ∗(A)≤
∞∑
n=1

∞∑
m=1

µ0(Vm,n)≤
∞∑
n=1

µ∗(An) +
∞∑
n=1

ε

2n

=
∞∑
n=1

µ∗(An) +ε.

This holds for any ε > 0, so

µ∗(A)≤
∞∑
n=1

µ∗(An).

This completes the proof.
Q.E.D.

We can now state the final extension result:

Theorem 2.18 (Hahn-Kolmogorov Extension Theorem)
Let E be an arbitrary set, A an algebra on E, and µ0 a σ-additive pre-meausure on A. Then,
there exists a σ-algebra M on E and a measure µ on (E,M) such that:

i) (E,M,µ) is a complete measure space.

ii) M contains A.

iii) µ(A) = µ0(A) for any A ∈ A.

Proof) Let µ∗ be the outer measure on E defined as in lemma 2.17, and letM be the collection
of all µ∗-measurable sets and µ the restriction of µ∗ to M. Then, by Caratheodory’s
restriction theorem, (E,M,µ) is a complete measure space. It remains to verify the last
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two claims, which contextualize why (E,M,µ) is an ”extension” of the algebra A and
the pre-measure µ0.

We first show that A⊂M.
Choose any B ⊂ E and A ∈ A. Then,

µ∗(B)≤ µ∗(B∩A) +µ∗(B∩Ac)

by the subadditivty of µ∗, so in order to show that A ∈M, we must show that the
reverse inequality holds as well.
If µ∗(B) = +∞, then the reverse inequality holds trivially. Suppose µ∗(B)<+∞; then,
for any ε > 0 there exists an A-cover {Vn}n∈N+ of B such that

µ∗(B)≤
∞∑
n=1

µ0(Vn)< µ∗(B) +ε.

It follows that {A∩Vn}n∈N+ is an A-cover of B∩A, so that

µ∗(B∩A)≤
∞∑
n=1

µ0(A∩Vn);

likewise,

µ∗(B∩Ac)≤
∞∑
n=1

µ0(Ac∩Vn).

Adding the two equations together yields

µ∗(B∩A) +µ∗(B∩Ac)≤
∞∑
n=1

µ0(A∩Vn) +
∞∑
n=1

µ0(Ac∩Vn)

=
∞∑
n=1

[µ0(A∩Vn) +µ0(Ac∩Vn)] ,

where the equality follows because the series in question both converge. Because A∩Vn,
Ac∩Vn are disjoint sets in A, by the finite additivity of µ0

µ0(A∩Vn) +µ0(Ac∩Vn) = µ0(Vn),

and as such

µ∗(B∩A) +µ∗(B∩Ac)≤
∞∑
n=1

µ0(Vn)< µ∗(B) +ε.

This holds for any ε > 0, so

µ∗(B∩A) +µ∗(B∩Ac)≤ µ∗(B).
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This shows us that A ∈M, so the algebra A is contained in M.

Next, we show that µ∗ and µ0 agree on A due to the σ-additivity of µ0.
Choose any A∈A. Then, because the sequence {Vn}n∈N+ defined as V1 =A and Vn = ∅
for any n≥ 2 is a A-cover of A, by the definition of µ∗ we have

µ∗(A)≤
∞∑
n=1

µ0(Vn) = µ0(A).

Now consider an arbitrary A-cover {Vn}n∈N+ of A. By definition, A⊂⋃nVn, so

⋃
n

(A∩Vn) =A.

Define the collection {Bn}n∈N+ as follows:

B1 =A∩V1

Bn = (A∩Vn)\
(
n−1⋃
i=1

(A∩Vi)
)

for any n≥ 2.

Since algebras are closed under finite intersections, {A∩Vn}n∈N+ is a sequence in A.
Furthermore, they are also closed under finite unions and set differences, so {Bn}n∈N+

is a disjoint sequence of sets in A with union A. By the σ-additivity of µ0,

µ0(A) =
∞∑
n=1

µ0(Bn),

and because Bn ⊂A∩Vn ⊂ Vn for any n ∈N+, the monotonicity of the pre-measure µ0

tells us that

µ0(A)≤
∞∑
n=1

µ0(Vn).

Therefore, µ0(A) is a lower bound of the set

{ ∞∑
n=1

µ0(Vn) | {Vn}n∈N+ ⊂A and A⊂
⋃
n

Vn
}
,

which impliest that µ0(A)≤ µ∗(A). It follows that

µ∗(A) = µ0(A).

Because A ∈ A⊂M, we finally have the equality

µ0(A) = µ(A).

Q.E.D.
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Note that, in the above proof, the σ-additivity of µ0 was only used to show that µ and µ0 agree
on A.
Therefore, we can conclude that, for any algebra A on E and a pre-measure µ0 on A, there
exists a complete measure space (E,M,µ) such that A⊂M and µ(A)≤ µ0(A) for any A ∈ A.

The Hahn-Kolmorov Extension theorem tells us only that there exists a complete measure space
that extends the given algebra A and pre-measure µ0 in the manners specified above. These
are quite weak conditions, and do not impart much information about the constructed measure
space. This is sometimes an advantage, especially in probability theory, where we want the
constructed probability space to be as general as possible.
In other cases, however, the paucity of information proves detrimental. In particular, while it is
possible to construct the Lebesgue measure using the extension theorem above, doing so means
that we have to prove its other properties, such as regularity and the approximation property, as
well as the equivalence of Lebesgue integrals and Riemann integrals, separately. To this end, we
study the Riesz representation theorem in chapter 4. This theorem allows us to extend a linear
functional defined on the space of continuous compactly supported functions to a measure, as the
above theorem extended a pre-measure to a measure. In the case of the Riesz theorem, however,
the constructed measure is always a Radon measure and satisfies several desirable properties off
the bat, which makes it ideal to construct measures such as the Lebesgue measure.
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Chapter 3

Abstract Integration

3.1 Integration of Non-Negative Functions

Let (E,E ,µ) be a measure space and f ∈ E+ a measurable simple function given as

f =
n∑
i=1

αiIAi

for some α1, · · · ,αn ∈ [0,+∞) and A1, · · · ,An ∈ E .
For any A ∈ E , we define the integral of f with respect to µ over A as

∫
A
fdµ=

n∑
i=1

αi ·µ(Ai∩A);

note that this value takes values in [0,+∞].

Before we start using this definition in earnest, we must first verify some of its properties, the
most important of which is whether it is invariant to the representation of the simple function
as a linear combination of a finite number of indicator functions.

Lemma 3.1 Let (E,E ,µ) be a measure space and f,g ∈ E+ be measurable simple functions.
The following hold true:

i) For any A ∈ E , the mapping f →
∫
A fdµ is a function.

ii) (Monotonicity) If f ≤ g, then for any A ∈ E ,
∫
A fdµ≤

∫
A gdµ.

iii) (Linearity) For any c ∈ [0,+∞) and A ∈ E ,
∫
A(cf +g)dµ= c ·

∫
A fdµ+

∫
A gdµ.

Proof) We first prove ii), and then show how it implies i).
Suppose the measurable simple functions f,g satisfy f ≤ g and have the canonical
representations

f =
n∑
i=1

αi · IAi and g =
m∑
i=1

βi · IBi .
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As in lemma 2.11, define Cij = Ai∩Bj for any 1≤ i≤ n, 1≤ j ≤m; note that the Cij
are all disjoint and cover E because A1, · · · ,An and B1, · · · ,Bm are disjoint and they
each cover E. In other words, any x ∈ E is contained in Cij for exactly one pair (i, j).
Choose any A ∈ E , and partition the set I = {(i, j) | 1 ≤ i ≤ n,1 ≤ j ≤ m} into two
subsets:

P1 = {(i, j) ∈ I | Cij ∩A 6= ∅} and P2 = {(i, j) ∈ I | Cij ∩A= ∅}.

For any (i, j) ∈ P1, since f(x)≤ g(x) for any x ∈ E, for any x ∈ Cij

f(x) = αi ≤ βj = g(x).

Observe that, by finite additivity and the fact that E =⋃m
j=1Bj ,

µ(Ai∩A) = µ

Ai∩
 m⋃
j=1

Bj

∩A


= µ

 m⋃
j=1

(Cij ∩A)


=

m∑
j=1

µ(Cij ∩A),

for any 1≤ i≤ n, so that

∫
A
fdµ=

n∑
i=1

αi ·µ(Ai∩A) =
n∑
i=1

m∑
j=1

αi ·µ(Cij ∩A).

Likewise, we can see that

∫
A
gdµ=

m∑
j=1

βj ·µ(Bj ∩A) =
n∑
i=1

m∑
j=1

βi ·µ(Cij ∩A).

Therefore,

∫
A
fdµ=

n∑
i=1

m∑
j=1

αi ·µ(Cij ∩A)

=
∑

(i,j)∈P1

αi ·µ(Cij ∩A) (µ(Cij ∩A) = 0 for any (i, j) ∈ P2)

≤
∑

(i,j)∈P1

βj ·µ(Cij ∩A) (αi ≤ βj for any (i, j) ∈ P1)

=
n∑
i=1

m∑
j=1

βi ·µ(Cij ∩A) (µ(Cij ∩A) = 0 for any (i, j) ∈ P2)

=
∫
A
gdµ,

which proves ii).
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Suppose that f has two representations as the linear combination of a finite number of
indicator functions

f =
n∑
i=1

αi · IAi =
m∑
i=1

βi · IBi .

Then, labeling g =∑m
i=1βi · IBi , f = g, so that, by the result proved above,

∫
A
fdµ=

n∑
i=1

αi ·µ(Ai∩A)

=
∫
A
gdµ=

m∑
j=1

βj ·µ(Bj ∩A)

for any A ∈ E . Therefore, the integral of f under µ over A is invariant to the represen-
tation of f , which tells us that the mapping f →

∫
A fdµ is a function for any A ∈ E .

This proves i).

Finally, suppose once again that f,g have the canonical forms

f =
n∑
i=1

αi · IAi and g =
m∑
i=1

βi · IBi ,

nd let c ∈ [0,+∞).
Because c ∈ [0,+∞), cαi ∈ [0,+∞) for any 1≤ i≤ n, and

cf =
n∑
i=1

cαi · IAi

is also a measurable simple function.
As above, define the disjoint sets Cij = Ai ∩Bj for any 1 ≤ i ≤ n, 1 ≤ j ≤m. It was
shown in lemma 2.11 that we can express

cf =
n∑
i=1

n∑
j=1

cαi · ICij and g =
n∑
i=1

m∑
j=1

βj · ICij ,

so that

cf +g =
n∑
i=1

m∑
j=1

(cαi+βj) · ICij .

Furthermore, we showed in the proof of ii) that

∫
A
fdµ=

n∑
i=1

αi ·µ(Ai∩A) =
n∑
i=1

m∑
j=1

αi ·µ(Cij ∩A)
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and ∫
A
gdµ=

m∑
j=1

βj ·µ(Bj ∩A) =
n∑
i=1

m∑
j=1

βi ·µ(Cij ∩A).

Therefore, for any A ∈ E , by the definition of the integral,

∫
A

(cf +g)dµ=
n∑
i=1

m∑
j=1

(cαi+βj) ·µ(Cij ∩A)

= c ·
n∑
i=1

m∑
j=1

αi ·µ(Cij ∩A) +
n∑
i=1

m∑
j=1

βj ·µ(Cij ∩A)

= c ·
∫
A
fdµ+

∫
A
gdµ.

Q.E.D.
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We can now construct the integral of a non-negative measurable function with respect to µ over
any measurable set A using the integral of simple functions. Let Es be the set of all measurable
simple functions.
Let f ∈ E+ be an arbitrary non-negative mesurable function. Then, for any A ∈ E , we define the
integral of f with respect to the measure µ over the measurable set A as∫

A
fdµ= sup

g≤f,g∈Es

∫
A
gdµ.

Note that this supremum is well defined on [0,+∞]; if the set {
∫
A gdµ | g ≤ f,g ∈ Es} is bounded

above, then by the least upper bound property of real numbers, it has a supremum in [0,+∞),
while if it is unbounded, then its supremum is +∞. Furthermore, this value is unique due to the
uniqueness of the supremum, which means that the mapping f →

∫
A fdµ is a function.

Since simple measurable functions are also non-negative measurable functions, we seem to have
two different definitions for the integral of a simple measurable function. However, we can easily
show that the two definitions agree; letting f be a simple measurable function, denote the first
definition by (

∫
A fdµ)1 and the second by (

∫
A fdµ)2.

For any g ∈ Es such that g ≤ f , by lemma 3.1 we have(∫
A
gdµ

)
1
≤
(∫

A
fdµ

)
1
,

so that (
∫
A fdµ)1 is an upper bound of the set {(

∫
A gdµ)1 | g ≤ f,g ∈ E+}; this implies that

(∫
A
fdµ

)
2

= sup
g≤f,g∈Es

(∫
A
gdµ

)
1
≤
(∫

A
fdµ

)
1
.

However, f is itself a simple measurable function that is less than or equal to f on E, so by
definition of the supremum, (∫

A
fdµ

)
1
≤
(∫

A
fdµ

)
2
.

This shows us that (
∫
A fdµ)1 = (

∫
A fdµ)2, and that the two definitions agree for simple measur-

able functions.

The following are some useful properties of integrals of non-negative functions:

Theorem 3.2 Let (E,E ,µ) be a measure space, and f,g ∈ E+. The following hold true:

i) (Monotonicity) If f ≤ g, then for any A ∈ E ,
∫
A fdµ≤

∫
A gdµ.

ii) If A,B ∈ E and A⊂B, then
∫
A fdµ≤

∫
B fdµ.

iii) For any A ∈ E , if f(x) = 0 for any x ∈A, then
∫
A fdµ= 0.

iv) For any c ∈ [0,+∞) and A ∈ E , c ·
∫
A fdµ=

∫
A(cf)dµ.
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v) If µ(A) = 0 for some A ∈ E , then
∫
A fdµ= 0.

vi) For any A ∈ E ,
∫
A fdµ=

∫
E(f · IA)dµ.

Proof) i) Choose any A ∈ E . Suppose s is a simple measurable function such that s ≤ f .
Then, s≤ g as well because f ≤ g, meaning that∫

A
sdµ≤

∫
A
gdµ.

This holds for any simple measurable function s such that s ≤ f , so
∫
A gdµ is

an upper bound of the set {
∫
A sdµ | s ≤ f,s ∈ Es}, and by the definition of the

supremum, it follows that∫
A
fdµ= sup{

∫
A
sdµ | s≤ f,s ∈ Es} ≤

∫
A
gdµ.

ii) Choose A,B ∈E such that A⊂B. For any simple measurable function h=∑n
i=1αi ·

IAi , by definition

∫
A
hdµ=

n∑
i=1

αi ·µ(Ai∩A)≤
n∑
i=1

αi ·µ(Ai∩B) =
∫
B
hdµ,

where the inequality holds because Ai∩A⊂Ai∩B for 1≤ i≤ n and measures are
monotonic. Therefore, for any simple measurable function h such that h≤ f ,∫

A
hdµ≤

∫
B
hdµ≤

∫
B
fdµ,

so that
∫
B fdµ is an upper bound of the set {

∫
A sdµ | s≤ f,s ∈ Es} and thus∫

A
fdµ= sup{

∫
A
sdµ | s≤ f,s ∈ Es} ≤

∫
B
fdµ.

iii) Let A ∈ E and suppose f(x) = 0 for any x ∈ A. Suppose s is a measurable simple
function such that s ≤ f . Then, 0 ≤ s(x) ≤ f(x) = 0 and thus s(x) = A for any
x ∈A.
Letting s=∑n

i=1αi · IAi for α1, · · · ,αn ∈ (0,+∞), this implies that Ai∩A= ∅ for
1 ≤ i ≤ n; otherwise, if Ai ∩A 6= ∅ for some 1 ≤ i ≤ n, then letting x ∈ Ai ∩A,
s(x) = αi > 0, a contradiction. Therefore,

∫
A
sdµ=

n∑
i=1

αi ·µ(Ai∩A) =
n∑
i=1

αi ·µ(∅) = 0.

This holds for any simple measurable function s such that s≤ f , so {
∫
A sdµ | s≤
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f,s ∈ Es}= {0} and as such∫
A
fdµ= sup{

∫
A
sdµ | s≤ f,s ∈ Es}= 0.

iv) Choose any c∈ [0,+∞) and A∈ E . If c= 0, then (cf)(x) = cf(x) = 0 for any x∈E,
so that ∫

A
(cf)dµ= 0 = 0 ·

∫
A
fdµ= c ·

∫
A
fdµ

by result iii).
Suppose on the other hand that c ∈ (0,+∞). Then, for any simple measurable
function s such that s≤ f , letting s=∑n

i=1αi · IAi ,

c ·s=
n∑
i=1

cαi · IAi ,

where cαi ∈ [0,+∞) for any 1≤ i≤ n. It follows that c · s is a simple measurable
function such that c ·s≤ cf , so

c ·
∫
A
sdµ=

∫
A

(cs)dµ (lemma 3.1)

≤
∫
A

(cf)dµ.

This holds for any simple measurable function s such that s≤ f , so

c ·
∫
A
fdµ= c · sup{

∫
A
sdµ | s≤ f,s ∈ Es}

= sup{c ·
∫
A
sdµ | s≤ f,s ∈ Es} (c is positive)

≤
∫
A

(cf)dµ.

Since 0< c<+∞ and cf is also a non-negative measurable function, applying the
above result implies that

1
c
·
∫
A

(cf)dµ≤
∫
A

(1
c
cf

)
dµ=

∫
A
fdµ,

or
∫
A(cf)dµ≤ c ·

∫
A fdµ. Therefore,∫

A
(cf)dµ= c ·

∫
A
fdµ.

v) Suppose that µ(A) = 0 for some A∈ E . Then, for any simple measurable function s
such that s≤ f , letting s=∑n

i=1αi ·IAi , because 0≤ µ(Ai∩A)≤ µ(A) = 0 implies
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µ(Ai∩A) = 0 for 1≤ i≤ n,

∫
A
sdµ=

n∑
i=1

αi ·µ(Ai∩A) = 0.

This holds for any simple measurable function s such that s≤ f , so {
∫
A sdµ | s≤

f,s ∈ Es}= {0} and as such∫
A
fdµ= sup{

∫
A
sdµ | s≤ f,s ∈ Es}= 0.

vi) For any A ∈ E , first note that g = f · IA is a non-negative measurable function
because

g−1([−∞,a)) =

f
−1([−∞,a))∩A if a > 0

∅ if a≤ 0
∈ E

for any a ∈Q.

Let s be a simple measurable function such that s ≤ f , and let s =∑n
i=1αi · IAi .

Then,

s · IA =
n∑
i=1

αi · IAi∩A,

and as such ∫
E

(s · IA)dµ=
n∑
i=1

αi ·µ(Ai∩A) =
∫
A
sdµ.

Since s · IA ≤ f · IA, we can see that∫
A
sdµ=

∫
E

(s · IA)dµ≤
∫
E

(f · IA)dµ.

This holds for any simple measurable function s such that s≤ f , so∫
A
fdµ≤

∫
E

(f · IA)dµ.

To show the reverse inequality, suppose s is a simple measurable function such that
s≤ f ·IA. Then, for any x ∈Ac, s(x) = 0. Letting s=∑n

i=1αi ·IAi for α1, · · · ,αn ∈
(0,+∞), this means that Ai⊂A for 1≤ i≤ n; otherwise, if there exists an 1≤ i≤ n
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such that Ai∩Ac 6= ∅, then for any x ∈Ai∩Ac,

0 = s(x) = αi > 0,

a contradiction. Therefore,

∫
E
sdµ=

n∑
i=1

αi ·µ(Ai) =
n∑
i=1

αi ·µ(Ai∩A) =
∫
A
sdµ≤

∫
A
fdµ.

This holds for any simple measurable function s such that s≤ f · IA, so∫
E

(f · IA)dµ≤
∫
A
fdµ,

from which we can conclude that∫
E

(f · IA)dµ=
∫
A
fdµ.

Q.E.D.

We can also see that two important properties hold:

Theorem 3.3 Let (E,E ,µ) be a measure space, and f ∈ E+. The following hold true:

i) (The Vanishing Property) For any A ∈ E ,
∫
A fdµ = 0 if and only if {x ∈ A | f(x) > 0} =

f−1((0,+∞])∩A has measure 0 under µ.

ii) (The Finiteness Property) For any A ∈ E , if
∫
A fdµ < +∞, then {x ∈ A | f(x) = +∞} =

f−1 ({+∞})∩A has measure 0 under µ.

Proof) i) Let A ∈ E . Suppose f−1((0,+∞])∩A has measure 0 under µ. In other words,
letting B = f−1((0,+∞])∩A= {x ∈A | f(x)> 0}, µ(B) = 0. Note that

f · IA = f · IB +f · IA\B.

By theorem 3.2, ∫
E

(f · IB)dµ=
∫
B
fdµ= 0

because µ(B) = 0, while

(
f · IA\B

)
(x) = f(x) · IA\B(x) = 0
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for any x ∈ E because f(x) = 0 if x ∈A\B, which implies that

f · IA = f · IB.

Therefore, ∫
A
fdµ=

∫
E

(f · IA)dµ=
∫
E

(f · IB)dµ= 0.

Conversely, suppose that
∫
A fdµ= 0. For any n ∈N+, define Bn = f−1((0,+∞])∩

A= {x ∈A | f(x)> 1
n}, and let sn = 1

n · IBn . Then, 0≤ s≤ f for any x ∈ E, and
∫
A
sdµ= 1

n
µ(A∩Bn) = 1

n
µ(Bn).

By the definition of the integral of non-negative functions,

0≤ 1
n
µ(Bn)≤

∫
A
fdµ= 0,

so that 1
nµ(Bn) = 0, or µ(Bn) = 0.

This holds for any n ∈ N+, and note that ⋃nBn = B. Therefore, by sequential
continuity,

µ(B) = lim
n→∞

µ(Bn) = 0.

ii) Let A ∈ E , and suppose that
∫
A fdµ < +∞. To show that ii) holds, assume the

contrary and suppose µ(B) > 0 for B = f−1({+∞})∩A = {x ∈ A | f(x) = +∞}.
Define the sequence of simple measurable functions {sn}n∈N+ as sn = n ·IB. Then,
0≤ sn ≤ f for any n ∈N+, and by the definition of the integral of a non-negative
function, ∫

A
sndµ= n ·µ(A∩B) = n ·µ(B)≤

∫
A
fdµ.

If µ(B) = +∞, we have the contradiction +∞≤
∫
A fdµ <+∞. If µ(B) ∈ (0,+∞),

this contradicts the Archimedean property of the real numbers, since
∫
A fdµ ∈

(0,+∞) as well. Therefore, µ(B) = 0.

Q.E.D.
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3.2 The Monotone Convergence Theorem

This section is dedicated to one of the most fundamental results of measure theory, which allows
us to exchange limits and integrals for increasing sequences of functions.
We first need the following preliminary result:

Lemma 3.4 Let (E,E ,µ) be a measure space, and f a simple E-measurable function. Then,
for any sequence of disjoint measurable sets {An}n∈N+ ⊂ E , letting A=⋃

nAn,

∫
A
fdµ=

∞∑
n=1

∫
An
fdµ,

where the limit on the right exists in [0,+∞].

Proof) Let f =∑n
i=1αi · IBi be the canonical form of f . Then, note that

∫
A
fdµ=

n∑
i=1

αi ·µ(Bi∩A)

=
n∑
i=1

αi ·µ
(⋃
n

(An∩Bi)
)

=
n∑
i=1

αi ·
[ ∞∑
n=1

µ(An∩Bi)
]

(Countable Additivity of µ)

=
∞∑
n=1

(
n∑
i=1

αi ·µ(An∩Bi)
)

=
∞∑
n=1

∫
An
fdµ.

Q.E.D.

We are now ready to prove the main theorem of this section.
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Theorem 3.5 (The Monotone Convergence Theorem, MCT)
Let (E,E ,µ) be a measure space, and {fn}n∈N+ a sequence of increasing non-negative E-
measurable functions. Then, the pointwise limit f ∈ E+ of {fn}n∈N+ exists and

lim
n→∞

∫
E
fndµ=

∫
E
fdµ,

where the limit on the left hand side exists in [0,+∞].

Proof) For any x ∈E, since {fn(x)}n∈N+ is an increasing sequence in [0,+∞], if {fn(x)}n∈N+

is bounded then fn(x)↗ fx for some fx ∈ [0,+∞), while if {fn(x)}n∈N+ is unbounded,
then fn(x)↗ fx = +∞. Defining f :E→ [−∞,+∞] as f(x) = fx for any x ∈E, fn↗ f

pointwise, and because measurability is preserved over limits, f is non-negative and
E-measurable.

For any n ∈ N+, fn ≤ fn+1 ≤ f . Thus, by the monotonicity of integration,
∫
E fndµ ≤∫

E fn+1dµ ≤
∫
E fdµ. This holds for any n ∈ N+, so {

∫
E fndµ}n∈N+ is an increasing

sequence in [0,+∞] that is bounded above by
∫
E fdµ; it follows that

lim
n→∞

∫
E
fndµ≤

∫
E
fdµ,

where the limit on the left hand side exists in [0,+∞] because {
∫
E fndµ}n∈N+ is in-

creasing.

It remains to be seen that the reverse inequality holds, or that α = limn→∞
∫
E fndµ≥∫

E fdµ holds. To this end, put c ∈ (0,1) and let s be a simple measurable function such
that 0≤ s≤ f . Define

An = {x ∈ E | fn(x)≥ c ·s(x)}.

By theorem 2.7, fn and c ·s are both non-negative measurable functions and, being a set
of the form introduced in theorem 2.7 v), An is a measurable set. In addition, An⊂An+1

for any n ∈N+ because if x ∈An, then c ·s(x)≤ fn(x)≤ fn+1(x) and x ∈An+1.
For any x ∈E, if s(x)> 0, then 0≤ c ·s(x)< s(x)≤ f(x), and because limn→∞ fn(x) =
f(x), there exists an N ∈N+ such that

|f(x)−fn(x)|< f(x)− c ·s(x),

and in particular

c ·s(x)< fn(x),

for any n≥N . In other words, x ∈An for any n≥N .
On the other hand, if s(x) = 0, then x ∈An for any n ∈N+ trivially.
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Therefore, defining A=⋃
nAn, we can see that E ⊂A, or E =A=⋃

nAn.

For any n ∈N+, by monotonicity, and the fact that fn ≥ fn · IAn , we can see that∫
E
fndµ≥

∫
E

(fn · IAn)dµ=
∫
An
fndµ≥

∫
An

(c ·s)dµ= c ·
∫
An
sdµ

by the results in theorem 3.2. By lemma 3.4 and sequential continuity, it follows that

α= lim
n→∞

∫
E
fndµ≥ c ·

∫
A
sdµ.

This holds for any simple measurable function s≤ f , so

c ·
∫
E
fdµ= c · sup{

∫
E
gdµ | g ∈ Es,g ≤ f} ≤ α.

This in turn holds for any c ∈ (0,1), so

n−1
n
·
∫
E
fdµ≤ α

for any n≥ 2; taking n→∞ on both sides, we can now see that∫
E
fdµ≤ α.

This completes the proof.
Q.E.D.
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3.2.1 The Linearity of Integration

There are numerous applications of the MCT: first, the linearity of the integration of non-
negative functions:

First Corollary to the MCT (The Linearity of Integration)
Let (E,E ,µ) be a measure space, and f,g non-negative measurable functions. Then,∫

E
(f +g)dµ=

∫
E
fdµ+

∫
E
gdµ.

Proof) Let {sn}n∈N+ and {hn}n∈N+ be increaing sequences of simple measurable functions
increasing to f and g respectively. The sum of simple functions is also a simple function,
and measurability is preserved over the sum of non-negative functions, so {sn+hn}n∈N+

is a sequence of simple measurable functions increasing to the non-negative measurable
function f +g.
Because the integration of simple functions is linear,∫

E
(sn+hn)dµ=

∫
E
sndµ+

∫
E
hndµ

for any n ∈N+. Note that {sn+hn}n∈N+ , {sn}n∈N+ and {hn}n∈N+ are increasing se-
quences of non-negative measurable functions increasing to f , g, and f+g respectively.
By the MCT, we can see that∫

E
(f +g)dµ= lim

n→∞

∫
E

(sn+hn)dµ

= lim
n→∞

∫
E
sndµ+ lim

n→∞

∫
E
hndµ

=
∫
E
fdµ+

∫
E
gdµ.

Q.E.D.
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3.2.2 The MCT for Series

The next corollary concerns the series version of the MCT:

Second Corollary to the MCT (The MCT for Series)
Let (E,E ,µ) be a measure space, and {fn}n∈N+ a sequence of non-negative measurable functions.
Then, f =∑∞

n=1 fn is a well-defined non-negative measurable function, and

∞∑
n=1

∫
E
fndµ=

∫
E
fdµ,

where the series on the left hand side exists in [0,+∞].

Proof) For any n ∈N+, define

gn =
n∑
i=1

fi,

which is a well defined non-negative numerical function because fi(x) is non-negative for
any x∈E. The finite sum of non-negative measurable functions preserves measurability,
so gn is measurable. {gn}n∈N+ is then an increasing sequence of E-measurable functions,
so that the pointwise limit f of {gn}n∈N+ exists and is a non-negative measurable
function. By definition, for any x ∈ E

f(x) = lim
n→∞

gn(x) = lim
n→∞

n∑
i=1

fi(x) =
∞∑
n=1

fn(x).

Therefore, f =∑∞
n=1 fn is a well-defined non-negative measurable function.

Now note that, for any n ∈N+,

∫
E
gndµ=

n∑
i=1

∫
E
fidµ

by the linearity of the integration of non-negative functions proved above. Each
∫
E fndµ∈

[0,+∞], so it follows that the sequence {∑n
i=1
∫
E fidµ}n∈N+ is increasing in [0,+∞];

thus, it increases to the limit

lim
n→∞

n∑
i=1

∫
E
fidµ=

∞∑
n=1

∫
E
fndµ ∈ [0,+∞].

{gn}n∈N+ is a sequence of non-negative functions increasing to f , so by the MCT,

∫
E
fdµ= lim

n→∞

∫
E
gndµ= lim

n→∞

n∑
i=1

∫
E
fidµ=

∞∑
n=1

∫
E
fndµ.

Q.E.D.
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3.2.3 Series as Integrals

Let c the counting measure on (N+,2N+). Then, for any non-negative function f on N+, f is
measurable because N+ is countable, and the sequence {sn}n∈N+ of simple functions defined as

sn =
n∑
i=1

f(i)I{i}

increases to f . It follows that the integral of f is

∫
N+

fdc= lim
n→∞

n∑
i=1

f(i) · c({i}) = lim
n→∞

n∑
i=1

f(i) =
∞∑
n=1

f(n) ∈ [0,+∞].

This observation motivates the treatment of series as integrals, and leads to the following corol-
lary of the MCT:

Third Corollary to the MCT (Series as Integrals)
Let {amn}n,m∈N+ ∈ [0,+∞] be a sequence of non-negative numbers in the extended real number
system. The following results hold:

i) If anm ≤ an+1,m for any n,m ∈N+, then there exist bm = limn→∞anm in [0,+∞] for any
m ∈N+, and

lim
n→∞

∞∑
m=1

anm =
∞∑
m=1

bm.

ii) The order of summation can be interchanged:

∞∑
n=1

∞∑
m=1

anm =
∞∑
m=1

∞∑
n=1

anm.

Proof) i) For any n ∈N+, define the function fn :N+→ [0,+∞] as

fn(m) = anm

for any m ∈N+. Then, letting c be the counting measure on (N+,2N+),

∫
N+

fndc=
∞∑
m=1

fn(m) =
∞∑
m=1

anm,

and fn ≤ fn+1 for any n ∈N+ because

fn(m) = anm ≤ an+1,m = fn+1(m)

for any m ∈N+ by assumption. Thus, by the MCT, we know that f = limn→∞ fn

exists, that is, for any m ∈ N+ there exists a bm = f(m) = limn→∞ fn(m) =
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limn→∞anm, and

lim
n→∞

∞∑
m=1

anm = lim
n→∞

∫
N+

fndc=
∫
N+

fdc=
∞∑
m=1

bm.

ii) Letting c be the counting measure on N+, define fn :N+→ [0,+∞] as

fn(m) = anm

for any m ∈N+. Then, as above,

∫
N+

fndc=
∞∑
m=1

fn(m) =
∞∑
m=1

anm,

for any n ∈N+.
{fn}n∈N+ is a sequence of non-negative functions on N+, so that, by the MCT for
series, the function f :N+→ [0,+∞] defined as

f(m) =
∞∑
n=1

fn(m) =
∞∑
n=1

anm

for any m ∈N+ is well-defined in [0,+∞], and

∞∑
n=1

∞∑
m=1

anm =
∞∑
n=1

∫
N+

fndc=
∫
N+

fdc=
∞∑
m=1

f(m) =
∞∑
m=1

∞∑
n=1

anm.

Q.E.D.
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3.2.4 Indefinite Integrals and Radon-Nikodym Derivatives

We can also formulate an extension of lemma 3.4 to non-negative functions, not just simple
functions.

Fourth Corollary to Theorem 3.5 (The Indefinite Integral of a Function)
Let (E,E ,µ) be a measure space, and f a non-negative measurable function. Then, the function
v : E → [0,+∞] defined as

v(A) =
∫
A
fdµ

is a measure on (E,E). Moreover, for any g ∈ E+,∫
E
gdv =

∫
E
gfdµ.

Proof) Defining {sn}n∈N+ as the sequence of simple measurable functions increasing to the non-
negative measurable function f , note that, for any A ∈ E , sn ·IA is a simple measurable
function for any n ∈N+ (the product of simple functions is simple, and measurability
of real functions are preserved under products), and that sn ·IA↗ f ·IA. We will verify
that v satisfies the conditions for a measure:

i) v(∅) =
∫
∅ fdµ= 0 by theorem 3.2.

ii) For any sequence of disjoint measurable sets {Am}m∈N+ ⊂ E , let A=⋃
mAm.

v(A) =
∫
A
fdµ=

∫
E

(f · IA)dµ (Theorem 3.2)

= lim
n→∞

∫
E

(sn · IA)dµ (The MCT)

= lim
n→∞

∫
A
sndµ (Theorem 3.2)

= lim
n→∞

∞∑
m=1

∫
Am

sndµ. (Lemma 3.4)

Define the double sequence {anm}n,m∈N+ in [0,+∞] as

anm =
∫
Am

sndµ

for any n,m ∈N+. Then, because anm ≤ an+1,m for any n,m ∈N+ by the mono-

160



tonicity of integration, by the third corollary to the MCT we have

lim
n→∞

∞∑
m=1

anm =
∞∑
m=1

(
lim
n→∞

anm
)

=
∞∑
m=1

(
lim
n→∞

∫
Am

sndµ

)

=
∞∑
m=1

∫
Am

fdµ (The MCT)

=
∞∑
m=1

v(Am).

By definition, v is a measure on (E,E).

Let g ∈ E+ be a simple measurable function with canonical form

g =
n∑
i=1

αi · IAi .

Then,

∫
E
gdv =

n∑
i=1

αi ·v(Ai) =
n∑
i=1

αi ·
∫
E

(f · IAi)dµ

=
∫
E
f ·
(

n∑
i=1

αi · IAi

)
dµ (The Linearity of Integration)

=
∫
E
fgdµ.

Now let g ∈ E+ be an arbitrary non-negative measurable function. Letting {sn}n∈N+ be
a sequence of simple measurable functions increasing to g, {fsn}n∈N+ is a sequence of
non-negative measurable functions (the product of non-negative measurable functions
are measurable) increasing to fg. Thus, by repeated applications of the MCT,∫

E
gdv = lim

n→∞

∫
E
sndv (The MCT)

= lim
n→∞

∫
E

(f ·sn)dµ (The preceding result)

=
∫
E
gfdµ. (The MCT)

Q.E.D.
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The measure v defined above is called the indefinite integral of f under µ. When µ is the
Lebesgue measure on R, note that v satisfies

v((−∞,x]) =
∫ x

−∞
f(y)dy

for any x ∈ R, so that
∫ b

a
f(y)dy = v((−∞, b])−v((−∞,a])

for any −∞< a < b <+∞. In this case, v is a function that allows us to compute the value of
the definite integral

∫ b
a f(y)dy for any open interval (a,b); it is in this sense that v is called the

”indefinite” integral.

Alternatively, if, for two measures µ,v on (E,E), there exists a non-negative measurable function
f ∈ E+ such that

v(A) =
∫
A
fdµ

for any A ∈ E , then f is called the Radon-Nikodym derivative, or the density, of v with respect
to µ.
In probability theory, any probability mass function or probability density function of a univari-
ate random variable is the Radon-Nikodym derivative of the associated distribution with respect
to the counting measure on N or the Lebesgue measure on R. This will be made clearer when
the distribution of a random variable is defined.

For two measures µ,v on (E,E), we say that v is absolutely continuous with respect to µ, denoted
v << µ, if, for any A ∈ E such that µ(A) = 0, v(A) = 0 holds as well.
Note that, if there exists a Radon-Nikodym derivative f of v with respect to µ, then v << µ,
since if µ(A) = 0 for some A ∈ E , then

v(A) =
∫
A
fdµ= 0

by theorem 3.2.
There also exists a converse to this statement: if v,µ are σ-finite and v << µ, then there exists a
Radon-Nikodym derivative f of v with respect to µ. This is called the Radon-Nikodym theorem,
and it is used to derive many fundamental results in probability theory, including the existence
of conditional expectations and densities of discrete and continuous random variables.
The Radon-Nikodym theorem and more are studied in detail in section 5 of chapter 6 using
Hilbert space techniques.

162



3.2.5 Fatou’s Lemma

This corollary to the MCT will be used to derive many useful results later on for the integral of
complex measurable functions. It is also of independent interest and is used as the linchpin in
many proofs.

Fifth Corollary to the MCT (Fatou’s Lemma)
Let (E,E ,µ) be a measure space, and {fn}n∈N+ a sequence of non-negative measurable functions.
Then, letting f = liminfn→∞ fn, ∫

E
fdµ≤ liminf

n→∞

∫
E
fndµ.

Proof) For any n ∈N+, define

gn = inf
k≥n

fk;

gn is non-negative because fk are all bounded below by 0, and because measurability
is preserved under infimums, gn is also measurable. Furthermore, gn ≤ gn+1. By the
definition of the limit inferior,

f = liminf
n→∞

fn = sup
n∈N+

(
inf
k≥n

fk

)
= lim
n→∞

gn.

Thus, {gn}n∈N+ is a sequence of non-negative measurable functions that increases to
f ; by the MCT, ∫

E
fdµ= lim

n→∞

∫
E
gndµ.

For any n ∈N+ and k ≥ n, because gn = infm≥n fm ≤ fk, by the monotonicity of inte-
gration ∫

E
gndµ≤

∫
E
fkdµ,

and since this holds for any k ≥ n,∫
E
gndµ≤ inf

k≥n

∫
E
fkdµ.

Therefore, ∫
E
fdµ= lim

n→∞

∫
E
gndµ≤ lim

n→∞

(
inf
k≥n

∫
E
fkdµ

)
= liminf

n→∞

∫
E
fndµ.

Q.E.D.
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3.3 Integration of Numerical and Complex Functions

3.3.1 Integration of Numerical Functions

Let (E,E ,µ) be a measure space, and f :E→ [−∞,+∞] a numerical function. We showed earlier
that f is E-measurable if and only if its positive and negative parts f+ and f− are non-negative
E-measurable functions. The absolute value of f , |f |, is defined as

|f |= f+ +f−.

Suppose f ∈ E . Then, since |f | is the sum of two non-negative E-measurable functions, it is also
non-negative and E-measurable.

Suppose there exists a E-measurable numerical function f such that∫
E
f±dµ <+∞.

Then, we say that f is µ-integrable, and define the integral of f over any A ∈ E as∫
A
fdµ=

∫
A
f+dµ−

∫
A
f−dµ.

The value above is well-defined in R because they are both finite values (their finiteness follows
from the fact that the integral of a non-negative function over A is smaller than or equal to its
integral over E by the monotonicity of integration).

Sometimes, we extend the definition of an integral of a numerical function to include −∞
and +∞. Specifically, given a measurable numerical function f , if either

∫
E f

+dµ < +∞ or∫
E f
−dµ <+∞, we define the integral of f over any A ∈ E as∫

A
fdµ=

∫
A
f+dµ−

∫
A
f−dµ ∈ [−∞,+∞],

since the difference here is well-defined due to the finiteness of one of the terms. In this case, we
say that the integral of f over E exists in the ”extended” sense.
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Consider a E-measurable numerical function f . Since f is measurable, so is |f |; being a non-
negative measurable function, the integral

∫
E |f |dµ of |f | is well-defined.

Suppose
∫
E |f |dµ <+∞. Then, by the lineatiy of integration, because |f |= f+ +f−,∫

E
f+dµ+

∫
E
f−dµ=

∫
E
|f |dµ <+∞.

∫
E f

+dµ and
∫
E f
−dµ, being integrals of non-negative functions, take values in [0,+∞], so the

fact that their sums are finite means that
∫
E f

+dµ and
∫
E f
−dµ themselves are also finite.

Therefore, f is µ-integrable by definition.
Conversely, suppose that f is µ-integrable. Then,

∫
E f

+dµ and
∫
E f
−dµ take values in [0,+∞)

by definition, and by the linearity of integration,∫
E
|f |dµ=

∫
E
f+dµ+

∫
E
f−dµ <+∞.

We have seen above that f is µ-integrable if and only if the µ-integral of |f | over E is integrable;
since |f | is its own positive part and its negative part is 0, this is equivalent to saying that |f |
is µ-integrable. Therefore, f is µ-integrable if and only if |f | is µ-integrable.

The following are some elementary properties of the integrals of integrable functions:

Theorem 3.6 Let (E,E ,µ) be a measure space, and f,g :E→ [−∞,+∞] numerical functions
that are E-measurable. Then, the following hold true:

i) If f is µ-integrable, then for any A ∈ E , f · IA is also µ-integrable and∫
A
fdµ=

∫
E

(f · IA)dµ.

ii) (Monotonicity) If f,g are µ-integrable and f ≤ g, then
∫
E fdµ≤

∫
E gdµ.

iii) (Linearity) For any a ∈ R, if f,g are µ-integrable and real-valued, then af + g is a E-
measurable and µ-integrable real-valued function such that∫

E
(af +g)dµ= a ·

∫
E
fdµ+

∫
E
gdµ.

iv) If f is µ-integrable, then ∣∣∣∣∫
E
fdµ

∣∣∣∣≤ ∫
E
|f |dµ.

Proof) i) Let f be an E-measurable µ-integrable function and A ∈ E . Then, because |fIA| ≤
|f |, ∫

E
|fIA|dµ≤

∫
E
|f |dµ <+∞
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by the monotonicity of integration, indicating that fIA is also µ-integrable.
Note that, because

∫
A gdµ=

∫
E (g · IA)dµ for any non-negative measurable function

g, and (fIA)± = f±IA, we have∫
A
fdµ=

∫
A
f+dµ−

∫
A
f−dµ (Definition)

=
∫
E

(
f+IA

)
dµ−

∫
E

(
f−IA

)
dµ (theorem 3.2)

=
∫
E

(fIA)+dµ−
∫
E

(fIA)−dµ

=
∫
E

(fIA)dµ, (Definition of the Integral)

where the rightmost integral exists becasue fIA is integrable. Therefore, like with
non-negative functions, ∫

A
fdµ=

∫
E

(f · IA)dµ.

We will use this characterization from now on and focus on integrals over the
entire set.

ii) Suppose f ≤ g. Then, f+−f− ≤ g+−g−, and adding f−+g− to both sides yields
the inequality

f+ +g− ≤ g+ +f−.

Both f+ +g− and g+ +f− are non-negative measurable functions, so by the mono-
tonicity and linearity of integration of non-negative functions,∫

E
f+dµ+

∫
E
g−dµ=

∫
E

(f+ +g−)dµ

≤
∫
E

(g+ +f−)dµ=
∫
E
g+dµ+

∫
E
f−dµ.

Since each of the integrals
∫
E f

+dµ,
∫
E g
−dµ,

∫
E g

+dµ,
∫
E f
−dµ above are finite

by the definition of µ-integrability, we can rearrange the terms so that∫
E
f+dµ−

∫
E
f−dµ≤

∫
E
g+dµ−

∫
E
g−dµ.

By the definition of the integral of integrable functions, we finally have∫
E
fdµ≤

∫
E
gdµ.

iii) af is E-measurable, and because af and g are both real-valued, af + g is E-
measurable as well. We proceed step by step.
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First, assume that a ∈ [0,+∞). Then,

(af)+ = max(af,0) = a ·max(f,0) = af+ and

(af)− =−min(af,0) = a · (−min(f,0)) = af−,

so that ∫
E

(af)±dµ= a ·
∫
E
f±dµ <+∞

by the linearity of integration of non-negative functions. By definition, af is µ-
integrable, and∫

E
afdµ=

∫
E

(af)+dµ−
∫
E

(af)−dµ= a ·
(∫

E
f+dµ−

∫
E
f−dµ

)
= a ·

∫
E
fdµ.

On the other hand, suppose a < 0. Then,

(af)+ = max(af,0) = a ·min(f,0) = (−a)f− = |a|f− and

(af)− =−min(af,0) = (−a) ·max(f,0) = (−a)f+ = |a|f+,

so that ∫
E

(af)±dµ= |a| ·
∫
E
f∓dµ <+∞

by the linearity of integration of non-negative functions. By definition, af is µ-
integrable, and∫
E
afdµ=

∫
E

(af)+dµ−
∫
E

(af)−dµ= (−a) ·
(∫

E
f−dµ−

∫
E
f+dµ

)
= a ·

∫
E
fdµ.

In any case, af is µ-integrable and
∫
E afdµ= a ·

∫
E fdµ.

Now denote h= af +g. Since

(af +g)+ ≤ (af)+ +g+ and (af +g)− ≤ (af)−+g−,

by the monotonicity and linearity of integration of positive functions,∫
E
h+dµ≤ ·

∫
E

(af)+dµ+
∫
E
g+dµ <+∞,

∫
E
h−dµ ≤ ·

∫
E

(af)−dµ+
∫
E
g−dµ <+∞,

where the inequalities follow from the µ-integrability of af and g. By definition,
h is µ-integrable. To obtain the µ-integral of h over E, note that

(af)+− (af)−+g+−g− = h= h+−h−.
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Rearranging terms yields

(af)+ +g+ +h− = h+ + (af)−+g−.

The functions on both sides are non-negative and measurable, so by the linearity
of integration of non-negative functions,∫

E
(af)+dµ+

∫
E
g+dµ+

∫
E
h−dµ=

∫
E

(af)−dµ+
∫
E
g−dµ+

∫
E
h+dµ.

All the terms involved are finite by integrability, so rearranging terms once again
yields ∫

E
afdµ+

∫
E
gdµ=

∫
E

(af)+dµ−
∫
E

(af)−dµ+
∫
E
g+dµ−

∫
E
g−dµ

=
∫
E
h+dµ−

∫
E
h−dµ=

∫
E
hdµ.

We saw above that
∫
E afdµ= a ·

∫
E fdµ, so

a ·
∫
E
fdµ+

∫
E
gdµ=

∫
E
afdµ+

∫
E
gdµ=

∫
E
hdµ.

iv) This follows very easily; since
∫
E f
−dµ,

∫
E f

+dµ ∈ [0,+∞),∣∣∣∣∫
E
fdµ

∣∣∣∣= ∣∣∣∣∫
E
f+dµ−

∫
E
f−dµ

∣∣∣∣≤ ∫
E
f+dµ+

∫
E
f−dµ=

∫
E
|f |dµ,

where the last equality follows by the linearity of integration.

Q.E.D.
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3.3.2 Integration of Complex Functions

A Characterization of Measurability for Complex Functions

Let (E,E) be a measurable space, and f : E → C a function defined on E that maps into the
complex plane C. Let τC be the standard (euclidean) topology on C, and define B(C) as the
Borel σ-algebra generated by τC.
f is then measurable relative to E and B(C) if f−1(A) ∈ E for any A ∈ B(C). We can obtain a
simpler characterization of measurability if we rely on the fact that C is homeomorphic to R2.

Formally, define φ : C→ R2 as

φ(z) = (Re(z), Im(z))

for any z ∈ C. We saw in chapter 1 that φ is a homeomorphism between (C, τC) and (R2, τ2
R).

To facilitate our subsequent proofs, recall that τR is generated by some countable base B1, and
as such that τ2

R is generated by the countable base

B2 = {A×B |A,B ∈ B1}.

By lemma 2.2, B1 generates B(R) and B2 generates the Borel σ-algebra on R2.

Let f : E→ C be a complex function, and define h= φ◦f = (Re(f), Im(f)).
Suppose that Re(f) and Im(f) are E-measurable real functions. Then,

h−1(A×B) = (Re(f))−1(A)∩ (Im(f))−1(B) ∈ E

for any A×B ∈ B2. Since B2 generates the Borel σ-algebra on R2, it follows that h is measur-
able relative to E and the Borel σ-algebra on R2. Because f = φ−1 ◦h, and the continuity of
φ−1 : R2→C relative to τ2

R and τC implies that φ−1 is measurable relative to the Borel σ-algebra
on R2 and B(C), it follows that f is measurable relative to E and B(C).

Now assume the converse, so that f is measurable relative to E and B(C). Then, h is measurable
relative to E and the Borel σ-algebra on R2, since φ is continuous, and for any A ∈ B1,

(Re(f))−1(A) = (Re(f))−1(A)∩ (Im(f))−1(R) = h−1(A×R) ∈ E

because A×R is an open rectangle and thus an element of the Borel σ-algebra on R2. It follows
that Re(f) is measurable relative to E and B(R), and by the same process, so is Im(f).

Thus, a complex function f on E is E-measurable if and only if its real and imaginary parts
Re(f) and Im(f) are E-measurable real functions.
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Integrability of Complex Functions

The absolute value |f | of f is defined as

|f |=
√
Re(f)2 + Im(f)2.

Since |f | is a continuous function of the real valued functions Re(f) and Im(f), |f | is a non-
negative E-measurable function.

A E-measurable complex function f is said to be µ-integrable if Re(f) and Im(f) are µ-
integrable real-valued functions. By the result we derived above, f is µ-integrable if and only if∫
E |Re(f)|dµ,

∫
E |Im(f)|dµ <+∞.

Suppose that
∫
E |f |dµ <+∞. Then, because |Re(f)|, |Im(f)| ≤ |f |, by the monotonicity of inte-

gration of non-negative functions,∫
E
|Re(f)|dµ,

∫
E
|Im(f)|dµ≤

∫
E
|f |dµ <+∞

and f is µ-integrable.
Conversely, suppose that f is µ-integrable. Then, becauase |f | ≤ |Re(f)|+ |Im(f)|, by the mono-
tonicity and linearity of integration of non-negative functions,∫

E
|f |dµ≤

∫
E
|Re(f)|dµ+

∫
E
|Im(f)|dµ <+∞.

Therefore, as in the case of numerical functions, a complex valued E-measurable function f is
µ-integrable if and only if |f | is µ-integrable, that is,

∫
E |f |dµ <+∞.

We denote the set of all E-measurable and µ-integrable complex-valued functions by L1(E ,µ);
this includes real valued functions that are E-measurable and µ-integrable as well. In light of
the above characterization, we can express L1(E ,µ) as

L1(E ,µ) =
{
f : E→ C

∣∣∣Re(f), Im(f) ∈ E and
∫
E
|f |dµ <+∞

}
.

The µ-integral for some function f ∈ L1(E ,µ) over a set A ∈ E is defined as∫
A
fdµ=

∫
A
Re(f)dµ+ i ·

∫
A
Im(f)dµ,

where the integrals on the right are well-defined because Re(f), Im(f) are µ-integrable real val-
ued functions. It follows that

∫
ARe(f)dµ and

∫
A Im(f)dµ are the real and imaginary parts of

the complex number
∫
A fdµ.

Integrals of complex-valued functions share much of the same properties as integrals of numerical
functions:
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Theorem 3.7 Let (E,E ,µ) be a measure space, and f,g : E → C complex-valued functions
that are E-measurable. Then,

i) For any f ∈ L1(E ,µ) and A ∈ E , ∫
A
fdµ=

∫
E

(f · IA)dµ.

ii) (Linearity) For any z ∈ C, if f,g ∈ L1(E ,µ), then zf +g ∈ L1(E ,µ) and∫
E

(zf +g)dµ= z ·
∫
E
fdµ+

∫
E
gdµ.

iii) If f ∈ L1(E ,µ), then ∣∣∣∣∫
E
fdµ

∣∣∣∣≤ ∫
E
|f |dµ.

Proof) i) Let f ∈ L1(E ,µ) and A ∈ E . Then, because |fIA| ≤ |f | on E, by the monotonicity
of integration ∫

E
|fIA|dµ≤

∫
E
|f |dµ <+∞

and fIA ∈ L1(E ,µ).
By definition, Re(f) and Im(f) are µ-integrable, and by the analogous result for
integrable numerical functions,∫

A
Re(f)dµ=

∫
E

(Re(f) · IA)dµ and
∫
A
Im(f)dµ=

∫
E

(Im(f) · IA)dµ.

Furthermore, Re(f)IA =Re(fIA) and Im(f)IA = Im(fIA), so that∫
A
fdµ=

∫
A
Re(f)dµ+ i ·

∫
A
Im(f)dµ

=
∫
E

(Re(f)IA)dµ+ i ·
∫
E

(Im(f)IA)dµ

=
∫
E
Re(fIA)dµ+ i ·

∫
E
Im(fIA)dµ

=
∫
E

(f · IA)dµ.

Again, we will use this characterization from now on and focus on integrals over
the entire set.

ii) Letting a=Re(z) and b= Im(z), note that

zf = (a+ ib)(Re(f) + iIm(f)) = (a ·Re(f)− b · Im(f)) + i(b ·Re(f) +a · Im(f)),
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so that

Re(zf) = a ·Re(f)− b · Im(f) and Im(zf) = b ·Re(f) +a · Im(f).

Since Re(f), Im(f) are E-measurable real-valued functions, Re(zf) and Im(zf)
are also E-measurable real-valued functions, implying that zf is E-measurable.
In addition,

zf +g = (Re(zf) +Re(g)) + i(Im(zf) + Im(g));

by implication, Re(zf +g) =Re(zf) +Re(g), Im(zf +g) = Im(zf) + Im(g), and
because Re(g) and Im(g) are also E-measurable real-valued functions, Re(zf+g),
Im(zf +g) are E-measurable real-valued functions, indicating that zf +g is a E-
measurable complex function.

To show that zf +g ∈ L1(E ,µ), note that

|zf +g| ≤ |Re(zf +g)|+ |Im(zf +g)| ≤ |Re(zf)|+ |Re(g)|+ |Im(zf)|+ |Im(g)|

≤ (|a|+ |b|)(|Re(f)|+ |Im(f)|) + |Re(g)|+ |Im(g)|.

Since Re(f), Im(f),Re(g), Im(g) ∈ L1(E ,µ) by the µ-integrability of f,g, by the
monotonicity and linearity of integration of non-negative functions we have∫

E
|zf +g|dµ≤ (|a|+ |b|)

(∫
E
|Re(f)|dµ+

∫
E
|Im(f)|dµ

)
+
(∫

E
|Re(g)|dµ+

∫
E
|Im(g)|dµ

)
<+∞.

This implies that zf +g ∈ L1(E ,µ).

Finally, the integral of zf +g can be decomposed as follows:∫
E

(zf +g)dµ=
∫
E
Re(zf +g)dµ+ i ·

∫
E
Im(zf +g)dµ

(Definition of the Integral)

=
∫
E
Re(zf)dµ+

∫
E
Re(g)dµ+ i ·

∫
E
Im(zf)dµ+ i ·

∫
E
Im(g)dµ

(Linearity)

= a ·
∫
E
Re(f)dµ+ i2b ·

∫
E
Im(f)dµ+ ia ·

∫
E
Im(f)dµ+ ib ·

∫
E
Re(f)dµ+

∫
E
gdµ

(Linearity)

= a ·
∫
E
fdµ+ ib ·

∫
E
fdµ+

∫
E
gdµ

= z ·
∫
E
fdµ+

∫
E
gdµ.
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iii) If
∫
E fdµ = 0, then |

∫
E fdµ| = 0 ≤

∫
E |f |dµ < +∞ trivially. Suppose now that∫

E fdµ 6= 0.
We first prove that, for any nonzero complex number z = a+ ib ∈ C, there exists
a complex number α ∈ C with |α|= 1 such that αz = |z|. Specifically, put α= z̄

|z| ,
which is well defined because |z|> 0; then,

|α|= 1
|z|
|z̄|= 1

and

αz = zz̄

|z|
= |z|

2

|z|
= |z|.

∫
E fdµ∈C is a non-zero complex number, so by the above observation there exists

a complex α ∈ C such that |α|= 1 and α ·
∫
E fdµ= |

∫
E fdµ|. It follows that∣∣∣∣∫

E
fdµ

∣∣∣∣= α ·
∫
E
fdµ=

∫
E

(αf)dµ

=
∫
E
Re(αf)dµ (

∫
E(αf)dµ is real-valued)

≤
∫
E
|Re(αf)|dµ

≤
∫
E
|αf |dµ

= |α| ·
∫
E
|f |dµ (Linearity)

=
∫
E
|f |dµ. (|α|= 1)

We can therefore see that, in any case,∣∣∣∣∫
E
fdµ

∣∣∣∣≤ ∫
E
|f |dµ.

Q.E.D.
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3.4 The Dominated Convergence Theorem

This section is dedicated to a workhorse theorem for interchanging limits and integrals. It utilizes
Fatou’s lemma to derive more general conditions under which limit taking and integrals can be
interchanged.

Theorem 3.8 (The Dominated Convergence Theorem, DCT)
Let (E,E ,µ) be a measure space, and {fn}n∈N+ a sequence of functions in L1(E ,µ). Suppose
that

• There exists a non-negative E-measurable function g such that |fn| ≤ g for any n ∈ N+

and
∫
E gdµ <+∞.

• fn→ f for some E-measurable complex valued function f

Then, f ∈ L1(E ,µ) and

lim
n→∞

∫
E
|fn−f |dµ= 0.

By implication,

lim
n→∞

∫
E
fndµ=

∫
E
fdµ ∈ C.

Proof) Observe that |fn(x)| ≤ g(x) for any n ∈N+ and x ∈E. Re(fn)→Re(f) and Im(fn)→
Im(f) as n→∞, and because measurability is preserved across limits, Re(f), Im(f)
are E-measurable numerical functions, so that f is E-measurable. Furthermore,

|f(x)|= lim
n→∞

|fn(x)| ≤ g(x)

for any x ∈ E, so by the monotonicity of integration,∫
E
|f |dµ≤

∫
E
gdµ <+∞,

so f ∈ L1(E ,µ).

We now define a sequence {gn}n∈N+ of non-negative measurable functions: for any
n ∈N+, define

gn = 2g−|fn−f |,

which is well-defined because |fn−f | ∈ [0,+∞) for any n ∈ N+ (all fn and f are
complex-valued). For any x ∈ E, since

|fn(x)−f(x)| ≤ |fn(x)|+ |f(x)| ≤ 2g(x),
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gn(x) = 2g(x)−|fn(x)−f(x)| ∈ [0,+∞]. Therefore, {gn}n∈N+ is a sequence of E-measurable
non-negative real-valued functions. In addition,∫

E
|fn−f |dµ≤ 2 ·

∫
E
gdµ <+∞

by the monotonicity and linearity of integration for any n ∈N+, so {|fn−f |}n∈N+ is a
sequence of µ-integrable non-negative functions.

By Fatou’s lemma, ∫
E

(
liminf
n→∞

gn
)
dµ≤ liminf

n→∞

(∫
E
gndµ

)
.

We will now study both sides of the above inequality:

1) The left hand side
Note that

liminf
n→∞

gn = 2g−
(

limsup
n→∞

|fn−f |
)

;

because limsupn→∞ |fn−f |= limn→∞ |fn−f |= 0 by assumption,∫
E

(
liminf
n→∞

gn
)
dµ= 2 ·

∫
E
gdµ.

2) The right hand side
For any n ∈N+, ∫

E
gndµ= 2 ·

∫
E
gdµ−

∫
E
|fn−f |dµ

by the linearity of integration. Thus,

liminf
n→∞

(∫
E
gndµ

)
= 2 ·

∫
E
gdµ− limsup

n→∞

(∫
E
|fn−f |dµ

)
.

Therefore, the above inequality can be rewritten as

2 ·
∫
E
gdµ≤ 2 ·

∫
E
gdµ− limsup

n→∞

(∫
E
|fn−f |dµ

)
.

∫
E gdµ ∈ [0,+∞) by assumption, so

limsup
n→∞

(∫
E
|fn−f |dµ

)
≤ 0.

For any n ∈N+, |fn−f | is a non-negative valued measurable function, so
∫
E |fn−f |dµ
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is non-negative valued and thus

0≤ liminf
n→∞

(∫
E
|fn−f |dµ

)
.

Putting the two inequalities together, it holds that

0≤ liminf
n→∞

(∫
E
|fn−f |dµ

)
≤ limsup

n→∞

(∫
E
|fn−f |dµ

)
≤ 0,

or

liminf
n→∞

(∫
E
|fn−f |dµ

)
= limsup

n→∞

(∫
E
|fn−f |dµ

)
= 0.

Therefore,

lim
n→∞

|fn−f |dµ= 0.

fn,f ∈ L1(E ,µ) for any n ∈N+, so by the linearity of integration,∫
E

(fn−f)dµ=
∫
E
fndµ−

∫
E
fdµ.

∫
E fdµ ∈ C, and by theorem 3.7,∣∣∣∣∫

E
fndµ−

∫
E
fdµ

∣∣∣∣= ∣∣∣∣∫
E

(fn−f)dµ
∣∣∣∣≤ ∫

E
|fn−f |dµ.

Taking n→∞ on both sides reveals that

lim
n→∞

∫
E
fndµ=

∫
E
fdµ.

Q.E.D.

We now present important corollaries of the DCT, like we did for the MCT.
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3.4.1 The Bounded Convergence Theorem

The first corollary we present is a simplified version of the DCT when the associated measure is
finite. This result is often used in probability theory to interchange limits and expectations, since
probability measures are finite by definition. An example includes the proof that the derivatives
of the moment generating function yield the moments of a random variable. The formal state-
ment and proof are as follows:

Corollary to Theorem 3.8 (Bounded Convergence Theorem, BCT)
Let (E,E ,µ) be a finite measure space, and {fn}n∈N+ a sequence of E-measurable bounded
complex functions that converges poinwise to some E-measurable complex function f .
Then, each fn and f are µ-integrable, and

lim
n→∞

∫
E
|fn−f |dµ= 0,

which implies that
∫
E fdµ= limn→∞

∫
E fndµ.

Proof) Suppose that there exists an M > 0 such that |fn| ≤M for any n ∈N+. Then, defining
g : E→ [0,+∞] as g(x) =M for any x ∈ E, g is trivially measurable, and∫

E
gdµ=M ·µ(E)<+∞,

where the finiteness of µ was used (µ(E) < +∞). Therefore, {fn}n∈N+ is a sequence
dominated by an integrable function g that converges to some complex measurable
function f . As such, by the DCT, f ∈ L1(E ,µ) and∫

E
fdµ= lim

n→∞

∫
E
fndµ.

Q.E.D.

The fact that the condition that µ is a finite measure is necessary for the above result can be
seen through the following simple counterexample.
Consider the measure space (R,B(R),λ), where λ is the Lebesgue measure on R. Clearly, λ is
not a finite measure (we showed in chapter 2 that it is instead σ-finite).
Now suppose the sequence {fn}n∈N+ of functions on R are defined as fn(x) = 1

n for any x ∈ R
and n ∈N+. Then, {fn}n∈N+ is bounded above by 1 and converges to the measurable function
f : R→ R defined as f(x) = 0 for any x ∈ E. However,∫

R
fdλ= 0 ·λ(R) = 0, while

∫
R
fndλ= 1

n
·λ(R) = +∞ for any n ∈N+.

Therefore, ∫
R
fdλ= 0 6= +∞= lim

n→∞

∫
R
fndλ.
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3.4.2 The Generalized DCT

The next corollary is a generalized version of the DCT, in which the dominating function is
replaced by a dominating sequence that converges pointwise and integral-wise to some function.
In this case, the dominating sequence is usually taken to be an increasing sequence of functions
so that the MCT can be applied to it. The formal statement and proof are as follows:

Corollary to Theorem 3.8 (The Generalized DCT)
Let (E,E ,µ) be a measure space, and {fn}n∈N+ a sequence in L1(E ,µ) and {gn}n∈N+ a sequence
in E+ such that:

• For any n ∈N+, |fn| ≤ gn.

• There exists a g ∈ E+ such that gn→ g pointwise and

lim
n→∞

∫
E
gndµ=

∫
E
gdµ <+∞.

• There exists a complex measurable f such that fn→ f pointwise.

Then, f ∈ L1(E ,µ) and

lim
n→∞

∫
E
|fn−f |dµ= 0,

which implies that ∫
E
fdµ= lim

n→∞

∫
E
fndµ.

Proof) The proof proceeds almost beat by beat like the proof of the DCT.
Since |fn| ≤ gn for any n ∈N+ and fn→ f , gn→ g pointwise, we have |f | ≤ g. By the
monotonicity of integration, ∫

E
|f |dµ≤

∫
E
gdµ <+∞,

so f ∈ L1(E ,µ).

For any n ∈N+, define the sequence {hn}n∈N+ as

hn = gn+g−|fn−f |,

which is well defined because |fn−f | is always complex-valued. In addition, for any
x ∈ E,

|fn(x)−f(x)| ≤ |fn(x)|+ |f(x)| ≤ gn(x) +g(x),
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so that hn(x) = gn(x) + g(x)− |fn(x)−f(x)| ∈ [0,+∞]. Therefore, {hn}n∈N+ is a se-
quence of non-negative measurable functions. We can also see that∫

E
|fn−f |dµ≤

∫
E
gndµ+

∫
E
gdµ

by the monotonicity and linearity of integration. {
∫
E gndµ}n∈N+ is a sequence in [0,+∞]

that converges to the real number
∫
E gdµ, so it is a bounded sequence, which implies

that ∫
E
|fn−f |dµ≤

∫
E
gndµ+

∫
E
gdµ <+∞.

This means that {gn}n∈N+ and {|fn−f |}n∈N+ are sequences of µ-integrable non-
negative functions.

By Fatou’s lemma, ∫
E

(
liminf
n→∞

hn
)
dµ≤ liminf

n→∞

(∫
E
hndµ

)
.

Since limn→∞ gn = g and limn→∞ |fn−f |= 0, we have

liminf
n→∞

hn = lim
n→∞

hn = 2g,

and as such ∫
E

(
liminf
n→∞

hn
)
dµ= 2 ·

∫
E
gdµ

by the linearity of integration.
On the other hand,

liminf
n→∞

(∫
E
hndµ

)
= liminf

n→∞

(∫
E
gdµ+

∫
E
gndµ−

∫
E
|fn−f |dµ

)
(Linearity of Integration)

= 2 ·
∫
E
gdµ− limsup

n→∞

(∫
E
|fn−f |dµ

)
.

(
∫
E gndµ→

∫
E gdµ by assumption)

Therefore, the above inequality reduces to

2 ·
∫
E
gdµ≤ 2 ·

∫
E
gdµ− limsup

n→∞

(∫
E
|fn−f |dµ

)
,

and because 2 ·
∫
E gdµ <+∞, we have

limsup
n→∞

(∫
E
|fn−f |dµ

)
≤ 0.
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By implication,

limsup
n→∞

(∫
E
|fn−f |dµ

)
= liminf

n→∞

(∫
E
|fn−f |dµ

)
= lim
n→∞

(∫
E
|fn−f |dµ

)
= 0,

which also tells us that

lim
n→∞

∫
E
fndµ=

∫
E
fdµ.

Q.E.D.
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3.4.3 Scheffe’s Lemma

This result concerns the equivalence of L1 convergence and convergence in mean for a sequence
of measurable functions that converges pointwise. It is used in probability theory to establish
that the convergence of density functions implies convergence in distribution.

Corollary to Theorem 3.8 (Scheffe’s Lemma)
Let (E,E ,µ) be a finite measure space, and {fn}n∈N+ a sequence in L1(E ,µ) that converges
poinwise to some E-measurable complex function f . Then,

lim
n→∞

∫
E
|fn−f |dµ= 0

if and only if

lim
n→∞

∫
E
|fn|dµ=

∫
E
|f |dµ,

and f ∈ L1(E ,µ) under either condition.

Proof) Suppose initially that

lim
n→∞

∫
E
|fn−f |dµ= 0.

Then, {
∫
E |fn−f |dµ}n∈N+ is a convergent and thus bounded sequence in [0,+∞]. By

implication, {|fn−f |}n∈N+ is a sequence of non-negative functions in L1(E ,µ), and
because

|f | ≤ |f1|+ |f1−f |,

by the monotonicity and linearity of integration∫
E
|f |dµ≤

∫
E
|f1|dµ+

∫
E
|f1−f |dµ <+∞.

We have seen that f ∈ L1(E ,µ).
In addition, by the inequality in theorem 3.7,∣∣∣∣∫

E
|fn|dµ−

∫
E
|f |dµ

∣∣∣∣= ∣∣∣∣∫
E

(|fn|− |f |)dµ
∣∣∣∣ (Linearity of Integration)

≤
∫
E
||fn|− |f ||dµ

≤
∫
E
|fn−f |dµ (The triangle inequality)

for any n ∈N+. Therefore,

lim
n→∞

∣∣∣∣∫
E
|fn|dµ−

∫
E
|f |dµ

∣∣∣∣= 0

181



and

lim
n→∞

∫
E
|fn|dµ=

∫
E
|f |dµ.

Conversely, suppose that

lim
n→∞

∫
E
|fn|dµ=

∫
E
|f |dµ.

Then, defining |fn|= gn for any n∈N+, |fn| ≤ gn for any n∈N+, where {gn}n∈N+ ⊂E+

satisfies gn→ g = |f | pointwise and∫
E
gndµ=

∫
E
|fn|dµ→

∫
E
|f |dµ=

∫
E
gdµ

as n→∞. By the generalized DCT, then, f ∈ L1(E ,µ) and

lim
n→∞

∫
E
|fn−f |dµ= 0.

Q.E.D.

To see that this result does lead to the conclusion that convergence of densities implies conver-
gence in distribution, let {µn}n∈N+ be a sequence of distributions on (E,E) and µ a distribution
in (E,E). Suppose λ is some σ-finite measure with respect to which µn,µ are absolutely con-
tinuous and thus, by the Radon-Nikodym theorem, with respect to which µn,µ have densities
fn,f ∈ E+ for any n ∈N+.
Now suppose that fn→ f pointwise. Then, because

lim
n→∞

∫
E
fndµ= 1 =

∫
E
fdµ,

by Scheffe’s lemma

lim
n→∞

∫
E
|fn−f |dµ= 0.

Therefore, for any A ∈ E , because∣∣∣∣∫
A
fndµ−

∫
A
fdµ

∣∣∣∣= ∣∣∣∣∫
E

(fn−f) · IAdµ
∣∣∣∣≤ ∫

E
|fn−f |dµ

for any n ∈N+, the fact that limn→∞
∫
E |fn−f |dµ= 0 implies that

lim
n→∞

∣∣∣∣∫
A
fndµ−

∫
A
fdµ

∣∣∣∣= 0,
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or equivalently,

lim
n→∞

∫
A
fndµ=

∫
A
fdµ.

By the definition of fn,f as densities, this means that

lim
n→∞

µn(A) = µ(A)

for any A ∈ E . By the portmanteau theorem, this implies that µn→ µ weakly, or in distribution.
In fact, it is possible to show the stronger result that µn→ µ in total variation norm by observing
that

sup
A∈E

∣∣∣∣∫
A
fndµ−

∫
A
fdµ

∣∣∣∣≤ ∫
E
|fn−f |dµ,

which would imply that

lim
n→∞

sup
A∈E
|µn(A)−µ(A)|= 0,

which basically means that the probability of any event under µn converges uniformly to that
probability under µ.
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3.5 Almost Everywhere

3.5.1 Definition and Properties that hold a.e.

Let (E,E ,µ) be a measure space. We say that some property holds almost everywhere on E if it
holds true for any x ∈A such that µ(Ac) = 0; since this is clearly measure-dependent, we denote
this by “a.e. [µ]”.
Suppose f,g are E-measurable numerical or complex functions. By definition, f and g are equal
almost everywhere on E, or f = g a.e. on [µ], if

µ({f 6= g}) = 0.

Note that {f 6= g} is a measurable set because both f and g are measurable. Such almost every-
where equivalence implies that their integrals over any measurable set is equal, as shown in the
next theorem:

Theorem 3.9 Let (E,E ,µ) be a measure space, and f,g numerical or complex functions that
are E-measurable. If f = g a.e. [µ] and f,g are non-negative functions, then∫

E
fdµ=

∫
E
gdµ.

If f = g a.e. [µ] and f is µ-integrable, then so is g, and∫
E
fdµ=

∫
E
gdµ.

Proof) Suppose initially that f,g ∈ E+. Then,∫
E
fdµ=

∫
{f=g}

fdµ+
∫
{f 6=g}

fdµ

=
∫
{f=g}

fdµ (theorem 3.2)

=
∫
{f=g}

gdµ (f = g on {f = g})

=
∫
E
gdµ. (Same process as above)

Now let f be a µ-integrable numerical function. Suppose f(x) = g(x) for some x ∈ E.
If f(x) = g(x)≥ 0, then

f+(x) = f(x) = g(x) = g+(x)

and

f−(x) = 0 = g−(x),
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while if f(x) = g(x)< 0, then

f−(x) = f(x) = g(x) = g−(x)

and

f+(x) = 0 = g+(x).

Therefore, {f = g} ⊂ {f+ = g+}∩ {f− ∩ g−}. Conversely, if f±(x) = g±(x) for some
x ∈ E, then

f(x) = f+(x)−f−(x) = g+(x)−g−(x) = g(x),

so that {f+ = g+}∩{f−∩ g−} ⊂ {f = g} and thus {f = g} = {f+ = g+}∩{f−∩ g−}.
It follows that

{f 6= g}= {f+ 6= g+}∪{f− 6= g−},

and by the monotonicity of measures, µ({f 6= g}) = 0 implies

µ({f± 6= g±}) = 0.

By the result shown above, we can now conclude that∫
E
f±dµ=

∫
E
g±dµ <+∞,

so that g is also µ-integrable. Furthermore, by the definition of the integral for integrable
functions, ∫

E
fdµ=

∫
E
f+dµ−

∫
E
f−dµ

=
∫
E
g+dµ−

∫
E
g−dµ=

∫
E
gdµ.

Finally, let f ∈ L1(E ,µ). Then, it is clear that {f = g}= {Re(f) = Re(g)}∩{Im(f) =
Im(g)}, where Re(f), Im(f),Re(g), Im(g) are all µ-integrable real valued functions. As
such,

{f 6= g}= {Re(f) 6=Re(g)}∪{Im(f) 6= Im(g)},

and by the monotonicity of measures,

µ({Re(f) 6=Re(g)}) = µ({Im(f) 6= Im(g)}) = 0,
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so that Re(g), Im(g) are µ-integrable and∫
E
Re(f)dµ=

∫
E
Re(g)dµ and

∫
E
Im(f)dµ=

∫
E
Im(g)dµ

by the results shown above. This implies that g ∈ L1(E ,µ) and∫
E
fdµ=

∫
E
Re(f)dµ+ i ·

∫
E
Im(f)dµ

=
∫
E
Re(g)dµ+ i ·

∫
E
Im(f)dµ.

Q.E.D.

We have shown that, no matter the target space of f,g, if they are equal µ-a.e., then their
µ-integrals are equal over any set A ∈ E , provided that they are their integrals are well-defined.
This shows us that, insofar as integration is concerned, we might be able to identify functions
that are equal almost everywhere.
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Recall the vanshing and finiteness properties (theorem 3.3). Those properties can now be stated
as follows:

• Vanishing Property
For any f ∈ E+ and A ∈ E , ∫

A
fdµ= 0

if and only if f = 0 µ-almost everywhere on A.

• Finiteness Proprety
For any f ∈ E+ and A ∈ E , if ∫

A
fdµ <+∞,

then f <+∞ µ-almost everywhere on A.

The above results were stated only for non-negative functions. Now, we make use of the almost
everywhere notation and prove similar results for arbitrary complex measurable functions as well.

Theorem 3.10 Let (E,E ,µ) be a measure space. Then, the following hold true:

i) For any f ∈ L1(E ,µ) , if ∫
A
fdµ= 0

for any A ∈ E , then f = 0 a.e. [µ].

ii) For any f ∈ L1(E ,µ), if ∣∣∣∣∫
E
fdµ

∣∣∣∣= ∫
E
|f |dµ,

then there exists an α ∈ C such that αf = |f | a.e. [µ].

iii) For any sequence {An}n∈N+ of measurable sets such that

∞∑
n=1

µ(An)<+∞,

µ-almost every x ∈ E is contained in at most a finite number of sets in {An}n∈N+ .
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Proof) i) Initially assume that f is real-valued. By assumption, for any A ∈ E∫
A
fdµ=

∫
A
f+dµ−

∫
A
f−dµ= 0,

or ∫
A
f+dµ=

∫
A
f−dµ,

which follows because
∫
A f
±dµ <+∞ by integrability.

Define the set H = {x ∈ E | f(x) = 0}. Then,

Hc = {x ∈ E | f+(x) 6= 0}∪{x ∈ E | f−(x) 6= 0}=A+∪A−.

It suffices to show that µ(A±) = 0.
Suppose that µ(A+)> 0. Then, noting that

A+ = {f+ 6= 0}= {f+ > 0} (f+ is a non-negative function)

=
⋃
n

{f+ >
1
n
}=

⋃
n

A+
n ,

by subadditivity

0< µ(A+)≤
∞∑
n=1

µ(A+
n ),

so that there must exist some n ∈N+ such that µ(A+
n )> 0 (otherwise, µ(A+) = 0,

a contradiction). It follows that∫
A+
n

f+dµ≥ 1
n
µ(A+

n )> 0.

However, because f−(x) = 0 for any x∈A+
n (min(f(x),0) = 0 if f(x)> 0), f−(x) =

0 for any x ∈A+
n , which implies that

0 =
∫
A+
n

f−dµ=
∫
A+
n

f+dµ > 0,

a contradiction. Therefore, µ(A+) = 0.
Through a similar process, we can show that µ(A−) = 0. Therefore,

µ(Hc)≤ µ(A+) +µ(A−) = 0

and µ(Hc) = 0, so that f = 0 a.e. [µ].
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Now let f ∈ L1(E ,µ) in general. Then, for any A ∈ E ,∫
A
fdµ=

∫
A
Re(f)dµ+ i ·

∫
A
Im(f)dµ= 0,

so that ∫
A
Re(f)dµ=

∫
A
Im(f)dµ= 0.

By the previous result, there exist sets A,B ∈ E such that A= {Re(f) = 0}, B =
{Im(f) = 0} and µ(Ac) = µ(Bc) = 0. Since {f = 0}=A∩B,

µ({f 6= 0})≤ µ(Ac) +µ(Bc) = 0,

or µ({f 6= 0}) = 0. Therefore, f = 0 a.e. [µ].

ii) Suppose that ∣∣∣∣∫
E
fdµ

∣∣∣∣= ∫
E
|f |dµ

for some f ∈ L1(E ,µ). If
∫
E fdµ = 0, then by the vanishing property for non-

negative functions |f |= 0, or f = 0, a.e. [µ], indicating that 0 ·f = |f | a.e. [µ].
Now suppose that

∫
E fdµ 6= 0. Then, as noted in theorem 3.7, defining

α=
∫
E fdµ

|
∫
E fdµ|

∈ C,

we have |α|= 1 and

α ·
(∫

E
fdµ

)
=
∣∣∣∣∫
E
fdµ

∣∣∣∣.
By the linearity of integration, we now have∫

E
(αf)dµ=

∣∣∣∣∫
E
fdµ

∣∣∣∣= ∫
E
|f |dµ,

where the latter equality follows by assumption. Since αf must be real valued and

αf ≤ |αf |= |α||f |= |f |,

by the linearity of integration ∫
E

(|f |−αf)dµ= 0,

where |f | −αf is a non-negative measurable function. Finally, by the vanishing
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property of non-negative functions,

|f |−αf = 0,

or |f |= αf , a.e. [µ].

iii) Note that {IAn}n∈N+ is a sequence of non-negative measurable functions; by the
MCT for series, the non-negative function f defined as

f(x) =
∞∑
n=1

IAn(x)

for any x ∈ E is measurable, and

∫
E
fdµ=

∞∑
n=1

∫
E
IAndµ=

∞∑
n=1

µ(An)<+∞,

where the last inequality follows by assumption.
Therefore, by the finiteness property of non-negative functions, f < +∞ a.e. [µ].
If some x ∈ E is contained in infinitely many of the An, then f(x) = +∞, so it
follows that almost every x ∈ E is contained in finitely many of the An.

Q.E.D.
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3.5.2 Complete Measure Spaces

The above finding indicates that we can extend our definition of measurability to encompass
functions that are defined on the entire set E except for a set of measure 0. Formally, let A ∈ E
be a set such that µ(Ac) = 0, and let f :A→C be a function. We will say that f is E-measurable
if, for any B ∈ B(R),

(Re(f))−1(B)∩A,(Im(f))−1(B)∩A ∈ E .

Suppose that f :A→ C is E-measurable, and define its trivial extension f̄ : E→ C as

f̄(x) =

f(x) if x ∈A

0 if x ∈Ac.

Then, A= {f = f̄}= {Re(f) =Re(f̄)}∩{Im(f) = Im(f̄)}, so that, for any B ∈ B(R),

(Re(f̄))−1(B) =
(
(Re(f̄))−1(B)∩A

)
∪
(
(Re(f̄))−1(B)∩Ac

)
=


(
(Re(f))−1(B)∩A

)
∪Ac if 0 ∈B

(Re(f))−1(B)∩A if 0 /∈B
.

Because (Re(f))−1(B)∩A ∈ E by assumption and A,Ac ∈ E , Re(f̄) is an E-measurable real-
valued function. Likewise, Im(f̄) is E-measurable, indiciating that f̄ is also measurable.
Thus, the definition of measurability for f given above is really nothing more than requiring the
trivial extension f̄ of f to the entire set E to be a measurable function.
Given a E-measurable function f : A → C, then, we say that f is µ-integrable if its trivial
extension f̄ is µ-integrable, and define its integral as∫

E
fdµ=

∫
E
f̄dµ.

However, we cannot yet consider any extension of f to E a measurable function aside from
the trivial extension. To see this, consider an arbitrary extension g of f to E. Then, for any
B ∈ B(R),

(Re(g))−1(B) =
(
(Re(g))−1(B)∩A

)
∪
(
(Re(g))−1(B)∩Ac

)
=
(
(Re(f))−1(B)∩A

)
∪
(
(Re(g))−1(B)∩Ac

)
.

The first term is E-measurable, but the second term, despite being a subset of a measure zero
set Ac, is not guaranteed to be in the σ-algebra E and thus we cannot say that (Re(g))−1(B) is
in E . This means that g is not necessarily E-measurable.

More generally, consider a E-measurable real function f and a function g : E → R such that
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f = g a.e. [µ], or there exists an A ∈ E such that f(x) = g(x) for any x ∈A and µ(Ac) = 0. The
fact that f = g a.e. [µ] does not guarantee that g is also E-measurable; this can be seen from the
fact that, for any B ∈ B (R),

g−1(B) =
(
g−1(B)∩A

)
∪
(
g−1(B)∩Ac

)
=
(
f−1(B)∩A

)
∪
(
g−1(B)∩Ac

)
,

since f = g on A. By the measurability of f , f−1(B)∩A ∈ E , but while g−1(B)∩Ac is a subset
of the measure zero set Ac, we do not know at the moment whether g−1(B)∩Ac is a measurable
set. Therefore, we cannot say for certain that g is E-measurable.

The above problem will be immediately solved if any subset of a measure zero set, called negli-
gible sets, are mesurable and of measure zero as well. Such measure spaces are called complete.
Fortunately, for any arbitrary measure space (E,E ,µ) we are able to extend E and µ in a manner
that makes it complete. This is shown below:
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Theorem 3.11 (The Completion of Measure Spaces)
Let (E,E ,µ) be a measure space, and define N as the set of all negligible sets on E, that is,

N = {A⊂ E | ∃B ∈ E s.t. A⊂B,µ(B) = 0}.

Now define the collection of sets

Ē = {A⊂ E | ∃B,C ∈ E s.t. C ⊂A⊂B,µ(B \C) = 0}.

Then, Ē is a σ-algebra on E.
Moreover, defining the function µ̄ : Ē → [0,+∞] as

µ̄(A) = µ(C)

for any A ∈ Ē , where B,C ∈ E satisfy C ⊂ A ⊂ B and µ(B \C) = 0, µ̄ is a measure on (E, Ē)
such that µ̄(A) = µ(A) for any A ∈ E .
Finally,

Ē = E ∪N = {A∪B |A ∈ E ,B ∈N},

and for any A ∈ Ē = E ∪N such that A=B∪N for some B ∈ E and N ∈N ,

µ̄(A) = µ(B).

Proof) We first show that Ē is a σ-algebra on E.

i) Because E ⊂ E ⊂ E and µ(E \E) = 0, where E ∈ E , E ∈ Ē by definition.

ii) For any A∈ Ē , let B,C ∈E satisfy C ⊂A⊂B and µ(B\C) = 0. Then, Bc⊂Ac⊂Cc

for Bc,Cc ∈ E and

µ(Cc \Bc) = µ(Cc∩B) = µ(B \C) = 0,

so by definition Ac ∈ Ē .

iii) For any sequence {An}n∈N+ ⊂ Ē with union A=⋃nAn, let {Cn}n∈N+ ,{Bn}n∈N+ ⊂
E be sequences such that Cn ⊂An ⊂Bn and µ(Bn \Cn) = 0 for any n∈N+. Then,
defining C =⋃

nCn and B =⋃
nBn, B,C ∈ E , and for any n ∈N+,

C ⊂A=
⋃
n

An ⊂B.
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Furthermore,

µ(B \C) = µ

((⋃
n

Bn

)
∩Cc

)
= µ

(⋃
n

(Bn∩Cc)
)

≤
∞∑
n=1

µ(Bn \C) (Countable Subadditivity)

≤
∞∑
n=1

µ(Bn \Cn). (Monotonicity; Cn ⊂ C for any n)

Since µ(Bn \Cn) = 0 for any n ∈N+, we have

µ(B \C) = 0,

and A ∈ Ē by definition.

Now let the set function µ̄ be defined as above. We first check that µ̄ is actually a
function. For any A ∈ Ē , suppose that there exist two pairs of sets, B1,C1 and B2,C2,
in E such that Ci ⊂A⊂Bi and µ(Bi \Ci) = 0 for i= 1,2. Then,

µ(Bi) = µ(Bi \Ci) +µ(Ci) = µ(Ci)

for i= 1,2 by finite additivity. Furthermore,

µ(B1) = µ(B1 \B2) +µ(B2) (Finite Additivity)

≤ µ(B1 \C1) +µ(B2) (Monotonicity; C1 ⊂A⊂B2)

= µ(B2),

so that µ(B1) ≤ µ(B2). This holds the opposite direction as well, which implies that
µ(B2)≤ µ(B1) and thus µ(B1) = µ(B2). As such, we have

µ̄(A) = µ(C1) = µ(B1) = µ(B2) = µ(C2),

so that µ̄(A) is uniquely defined.
For any A ∈ E , this indicates that µ̄(A) = µ(A).

It is now easy to show that µ̄ is a measure on (E, Ē):

i) µ̄(∅) = µ(∅) = 0 because ∅ ∈ E .

ii) For any disjoint sequence {An}n∈N+ ⊂ Ē with union A=⋃
nAn, recall there exist

sequences {Cn}n∈N+ ,{Bn}n∈N+ ⊂ E be sequences such that Cn ⊂ An ⊂ Bn and
µ(Bn \Cn) = 0 for any n ∈ N+. Recall from above that, defining C = ⋃

nCn and
B = ⋃

nBn, C ⊂ A ⊂ B and µ(B \C) = 0. Also note that {Cn}n∈N+ is disjoint,
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since Cn ⊂An for any n ∈N+ and the An are disjoint. It follows that

µ̄(A) = µ(C) =
∞∑
n=1

µ(Cn) (Countable Additivity)

=
∞∑
n=1

µ̄(An). (Definition)

Therefore, µ̄ is a measure on (E, Ē) such that µ̄(A) = µ(A) for any A ∈ E .

We can easily show that Ē = E ∪N . Let A ∈ E . Then, A ⊂ A ⊂ A and µ(A \A) = 0,
where A ∈ E , so A ∈ Ē . For any N ∈ N , since ∅ ⊂ N ⊂ A for some A ∈ E such that
µ(A) = 0 (by the definition of a negligible set), where A,∅ ∈ E and µ(A\∅) = µ(A) = 0,
by definition N ∈ Ē . Therefore, Ē is a σ-algebra on E containing both E and N ; since
σ-algebras are closed under finite unions, it follows that E ∪N ⊂ Ē .
Conversely, suppose A ∈ Ē ; then, there exist B,C ∈ E such that C ⊂ A⊂B and µ(B \
C) = 0. Defining N = A \C, since A \C ⊂ B \C, where B \C ∈ E has measure 0, by
definition N ∈N . Then,

A= C ∪ (A\C) = C ∪N

shows that A ∈ E ∪N , since C ∈ E . This shows that Ē ⊂ E ∪N . Putting the two results
together, we have

Ē = E ∪N ,

and the last result shows us that

µ̄(A) = µ(C),

where A= C ∪N for some C ∈ E and N ∈N .
Q.E.D.
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The above theorem tells us three things:

• Ē = E ∪N is itself a σ-algebra on E, and thus the smallest σ-algebra that contains both
the original σ-algebra E and the collection of negligible sets N .

• µ̄ is an extension of µ to Ē that preserves the measure of sets in the original σ-algebra E .

• For any N ∈N , there exists an A∈ E such that µ(A) = 0. As such, ∅ ⊂N ⊂A, where ∅ ∈ E
and µ(A\∅) = µ(A) = 0, so by definition

µ̄(N) = µ(∅) = 0.

In other words, (E, Ē , µ̄) is the minimal extension of (E,E ,µ) to a measure space in which all
negligible sets are measurable with measure 0 and the measure of the original measurable sets
are preserved. We thus call (E, Ē , µ̄) the completion of (E,E ,µ).
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3.5.3 Functions Defined Almost Everywhere

Since every measure space can be extended to its completion, we can take arbitrary measure
spaces to be complete by assuming that we are working with their completion. For this reason,
going forward we will assume that (E,E ,µ) is complete.
Let us return again to the almost everyhwere equivalence problem. For any E-measurable real
function f and a function g : E → R that is µ-a.e. equivalent to f , there exists an A ∈ E such
that f = g on A and µ(Ac) = 0. Since (E,E ,µ) is now complete, g is also E-measurable; to see
this, choose any B ∈ B (R) and observe that

g−1(B) =
(
g−1(B)∩A

)
∪
(
g−1(B)∩Ac

)
=
(
f−1(B)∩A

)
∪
(
g−1(B)∩Ac

)
,

since f = g on A. By the measurability of f , f−1(B)∩A ∈ E , while g−1(B)∩Ac, being a subset
of a measure 0 set Ac, is a negligible set and thus E-measurable. It follows that g−1(B) ∈ E , so
that g is a E-measurable real valued function.

Now we are able to extend a function defined almost everywhere on E any way we want, and
still retain measurability. Let A ∈ E be a set such that µ(Ac) = 0, and f :A→C a E-measurable
function. By definition, its trivial extension f̄ is a E-measurable complex function. Let g :E→C
be an arbitrary extension of f to E, so that g(x) = f(x) for any x∈A. This means that f̄ = g a.e.
[µ], which in turn implies that the real and imaginary parts of f̄ and g are almost everywhere
equivalent. By the measurability of f̄ , the real and imaginary parts of g are also E-measurable,
which means that g is a E-measurable complex function.
In addition, because of the equivalence of the integral of almost everywhere equivalent functions,
if f is µ-integrable (=f̄ is µ-integrable), then so is g, and∫

E
fdµ=

∫
E
f̄dµ=

∫
E
gdµ.

This implies that the value of the integral of f does not depend on the specific way in which f

is extended to E, and therefore that we do not need to specify the extension of f at all when
talking about the integral or measurability of f .

The following are versions of the MCT, MCT for series, and DCT for functions defined almost
everywhere, which are proved through extensive use of the trivial extensions of functions defined
almost everywhere. We also state a DCT analogue for the MCT for series:
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Theorem 3.12 (Almost Everywhere Version of the MCT)
Let (E,E ,µ) be a complete measure space, and {fn}n∈N+ a sequence in E+ defined almost
everywhere on E. Suppose that

fn(x)≤ fn+1(x)

for almost every x ∈ E. Then, the limit

fn(x)↗ f(x)

exists for almost every x ∈ E, f is a measurable function defined almost everywhere on E, and∫
E
fdµ= lim

n→∞

∫
E
fndµ.

Proof) For any n ∈N+, let

fn(x)≤ fn+1(x)

for any x ∈An such that µ(Acn) = 0. Then, defining A=⋂
nAn,

µ(Ac) = µ

(⋃
n

Acn

)
≤
∞∑
n=1

µ(Acn) = 0

by countable subadditivity, so that Ac is a negligible set. We can thus treat each fn as
a function defined on A.

For any x ∈ A, since {fn(x)}n∈N+ is an increasing sequence of non-negative real num-
bers, it has a limit fx ∈ [0,+∞]. We can then define the function f :A→ [−∞,+∞] as
f(x) = fx for any x ∈A. Let f̄n be the trivial extension of fn to E for any n ∈N+ and
f̄ the trivial extension of f to E. Then, since

lim
n→∞

f̄n(x) =

f(x) if x ∈A

0 if x /∈A
= f̄(x)

for any x ∈ E and {f̄n}n∈N+ is a sequence of increasing E-measurable functions, f̄ is
a E-measurable non-negative function because measurability is preserved across limits;
by definition, this also implies that f is E-measurable function.
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By the MCT, we can now see that∫
E
fdµ=

∫
E
f̄dµ

= lim
n→∞

∫
E
f̄ndµ (The MCT)

= lim
n→∞

∫
E
fndµ,

where the first and third equalities are justified by the definition of a measurable func-
tion defined almost everywhere.
Q.E.D.

Theorem 3.13 (Almost Everywhere Version of the MCT for Series)
Let (E,E ,µ) be a complete measure space, and {fn}n∈N+ a sequence in E+ only defined almost
everywhere on E. Then,

f(x) =
∞∑
n=1

fn(x)

is defined for almost every x ∈ E, f is a measurable function, and

∫
E
fdµ=

∞∑
n=1

∫
E
fndµ.

Proof) For any n ∈N+, let fn be defined on a set An ∈ E such that µ(Acn) = 0. Then, defining
A=⋂

nAn,

µ(Ac) = µ

(⋃
n

Acn

)
≤
∞∑
n=1

µ(Acn) = 0

by countable subadditivity, so that Ac is a negligible set. We can thus treat each fn as
a function defined only on A.

Letting f̄n be the trivial extensions of fn to E, the sequence {f̄n}n∈N+ is a sequence of
E-measurable non-negative functions, and by the MCT for series,

f̄ =
∞∑
n=1

f̄n

is a measurable non-negative function and

∫
E
f̄dµ=

∞∑
n=1

∫
E
f̄ndµ.
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Defining f :A→ [0,+∞] as

f(x) = f̄(x) =
∞∑
n=1

f̄n(x) =
∞∑
n=1

fn(x)

for any x ∈ A, f̄ is the trivial extension of f to E, and because f̄ is measurable, so is
f . In addition, by the definition of the integral of functions defined almost everywhere,

∫
E
fdµ=

∫
E
f̄dµ=

∞∑
n=1

∫
E
f̄ndµ=

∞∑
n=1

∫
E
fndµ.

Q.E.D.

Theorem 3.14 (Almost Everywhere Version of the DCT)
Let (E,E ,µ) be a complete measure space, and {fn}n∈N+ a sequence of E-measurable complex
functions only defined almost everywhere on E. Suppose that

• There exists a function g ∈ E+ defined almost everywhere on E such that
∫
E gdµ < +∞

and, for any n ∈N+, |fn(x)| ≤ g(x) for almost every x ∈ E.

• The limit

lim
n→∞

fn(x) = f(x)

exists for almost every x ∈ E.

Then, f ∈ L1(E ,µ) and ∫
E
fdµ= lim

n→∞

∫
E
fndµ.

Proof) For any n ∈N+, let

|fn(x)| ≤ g(x)

for any x ∈An, where µ(Acn) = 0, and suppose

lim
n→∞

fn(x) = f(x)

for any x ∈B, where µ(Bc) = 0. Then, defining A= (⋂nAn)∩B,

µ(Ac) = µ

((⋃
n

Acn

)
∪Bc

)
≤
∞∑
n=1

µ(Acn) +µ(Bc) = 0

by countable subadditivity, so that Ac is a negligible set. We can thus treat each fn, f
and g as a function defined only on A.
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Letting f̄n, f̄ and ḡ be the trivial extensions of their respective functions defined on A,
note that {f̄n}n∈N+ is a sequence of E-measurable complex functions, g a non-negative
function in E+, and

lim
n→∞

f̄n(x) = f̄(x)

for any x ∈ E. By the preservation of measurability across limits, f̄ is also a E-
measurable complex function, indicating that the function f defined only on A is also
measurable. Furthermore,

∣∣∣f̄n(x)
∣∣∣=

|fn(x)| if x ∈A

0 if x /∈A
≤ ḡ(x)

for any x ∈ E, and
∫
E ḡdµ=

∫
E gdµ <+∞.

By the DCT, we can see that f̄ ∈ L1(E ,µ), which implies f ∈ L1(E ,µ), and∫
E
fdµ=

∫
E
f̄dµ= lim

n→∞

∫
E
f̄ndµ= lim

n→∞

∫
E
fdµ.

Q.E.D.

Theorem 3.15 (DCT for Series)
Let (E,E ,µ) be a complete measure space, and {fn}n∈N+ a sequence of E-measurable complex
functions defined almost everywhere on E such that

∞∑
n=1

∫
E
|fn|dµ <+∞.

Then, the series ∑∞n=1 fn(x) converges for almost every x ∈ E, and defining f as

f(x) =
∞∑
n=1

fn(x)

for the x ∈ E such that the right hand side converges, f ∈ L1(E ,µ) and

∫
E
fdµ=

∞∑
n=1

∫
E
fndµ.

Proof) The sequence {|fn|}n∈N+ is a sequence of measurable non-negative functions defined
almost everywhere on E. By the MCT for series, the limit

h(x) =
∞∑
n=1
|fn(x)|
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is defined for almost every x ∈E, h is a measurable non-negative valued function, and

∫
E
hdµ=

∞∑
n=1

∫
E
|fn|dµ <+∞,

where the last inequality follows by assumption. Letting h̄ be the trivial extension of h
to E, this implies that ∫

E
h̄dµ=

∫
E
hdµ <+∞,

so that, by the vanishing property of the integration of non-negative functions, B =
{x ∈ E | h̄(x) < +∞} ∈ E satisfies µ(Bc) = 0. Letting H ∈ E be the set on which h is
defined, where µ(Hc) = 0,

h(x) = h̄(x) =
∞∑
n=1
|fn(x)|<+∞

for any x ∈ H ∩B, that is, the series ∑∞n=1 fn(x) converges to a value in C for any
x ∈H ∩B. µ((H ∩B)c) = 0 by subadditivity, so ∑∞n=1 fn(x) converges for almost every
x ∈ E.

For any n ∈N+, let fn be defined on a set An ∈ E such that µ(Acn) = 0. Then, defining
A= (⋂nAn)∩B∩H,

µ(Ac) = µ

((⋃
n

Acn

)
∪Bc∪Hc

)
≤
∞∑
n=1

µ(Acn) +µ(Bc) +µ(Hc) = 0

by countable subadditivity, so that Ac is a negligible set. We can thus treat each fn

and h as a function defined only on A.

From the result we showed above, we can define f :A→ C

f(x) =
∞∑
n=1

fn(x)

for any x ∈ A. Let f̄ , f̄n, h̄ be the trivial extensions of the associated functions to E.
Then,

f̄(x) ==


∑∞
n=1 fn(x) if x ∈A

0 if x /∈A
=
∞∑
n=1

f̄n(x)

for any x ∈ E.
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Defining the sequence {gn}n∈N+ of functions on E as

gn(x) =
n∑
i=1

f̄i(x)

for any x ∈ E, by the measurability of each f̄i and the preservation of measurability
across sums, the function gn is a measurable complex function. Furthermore,

|gn(x)| ≤
n∑
i=1

∣∣∣f̄i(x)
∣∣∣≤ ∞∑

i=1

∣∣∣f̄i(x)
∣∣∣=


∑∞
i=1 |fi(x)| if x ∈A

0 if x /∈A
= h̄(x)

for any x ∈ E, where h̄ is a non-negative measurable function such that∫
E
h̄dµ=

∫
E
hdµ <+∞.

Finally,

f̄(x) =
∞∑
n=1

f̄n(x) = lim
n→∞

n∑
i=1

f̄i(x) = lim
n→∞

gn(x)

for any x ∈ E. Since measurability is preserved across limits, f̄ is measurable, which
means that f is also measurable.
Therefore, by the DCT, f̄ ∈ L1(E ,µ), which implies f ∈ L1(E ,µ), and∫

E
fdµ=

∫
E
f̄dµ= lim

n→∞

∫
E
gndµ (DCT)

= lim
n→∞

n∑
i=1

∫
E
f̄idµ

=
∞∑
n=1

∫
E
f̄ndµ

=
∞∑
n=1

∫
E
fndµ.

Q.E.D.
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3.6 Transition Kernels

In this section we introduce and study transition kernels, which are mathematical objects that
form the basis of the concept of conditional probabilities in probability theory. First, we state a
result concerning the characterization of integrals that will prove useful going forward.

3.6.1 An Elementary Representation Theorem

So far, we have seen that the integral with respect to some measure is a linear functional on the
vector space of all complex functions (this point will be studied further in the next chapter on
Borel measures) and that the MCT holds for integrals of non-negative functions. The following
theorem shows that these properties also fully characterize integration, in the sense that, for any
linear functional on the vector space of all complex functions that also satisfies the MCT, there
exists a unique measure such that the integral of the function with respect to that measure is
precisely the value of the linear functional for that function.
This can be seen as a stronger version of the Riesz representation theorem, which will be intro-
duced in the next chapter, where the condition that the underlying space be a locally compact
Hausdorff space is replaced with the requirement that the linear functional in question satisfies
the MCT. The formal statement is given as follows:

Theorem 3.16 (Characterization of Integrals)
Let (E,E) be a measurable space, and Λ : E+→ [0,+∞] a function such that

i) Λ(I∅) = 0.

ii) For any a ∈ [0,+∞) and f,g ∈ E+,

Λ(af +g) = a ·Λf + Λg.

iii) For any increasing sequence of non-negative measurable functions {fn}n∈N+ ,

Λfn↗ Λf,

as n→∞, where f is the pointwise limit of {fn}n∈N+ .

Then, there exists a unique measure µ on (E,E) such that

Λf =
∫
E
fdµ

for any f ∈ E+.

Proof) For any A ∈ E , we will define the function µ : E → [0,+∞] as

µ(A) = Λ(IA).
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We will now show that µ is a measure on (E,E), and that the integral of any non-
negative measurable function with respect to µ equals its value under the linear func-
tional Λ.

It is immediately clear that

µ(∅) = Λ(I∅) = 0.

Furthermore, for any disjoint sequence of measurable sets {An}n∈N+ , letting A=⋃nAn,
we have IA =∑∞n=1 IAn ; since {∑n

i=1 IAi}n∈N+ is an increasing sequence of non-negative
measurable functions with limit IA, by the linearity and MCT properties of Λ, we have

µ(A) = Λ(IA) = lim
n→∞

Λ
(

n∑
i=1

IAi

)
= lim
n→∞

n∑
i=1

Λ(IAn)

=
∞∑
n=1

Λ(IAn) =
∞∑
n=1

µ(An),

where the series on the right hand side converges in [0,+∞] because each µ(An) is
non-negative. Therefore, µ is countably additive and a measure on (E,E).

Now let f be a measurable simple function with canonical form

f =
n∑
i=1

αi · IAi

for some α1, · · · ,αn ∈ [0,+∞) and A1, · · · ,An ∈ E . Then,

∫
E
fdµ=

n∑
i=1

αi ·µ(Ai) =
n∑
i=1

αi ·Λ(IAi)

= Λ
(

n∑
i=1

αi · IAi

)
(By the Linearity of Λ)

= Λf.

Now let f be a general non-negative measurable function. Then, letting {fn}n∈N+ be
a sequence of measurable simple functions increasing to f , by the MCT and the MCT
property of Λ we have ∫

E
fdµ= lim

n→∞

∫
E
fndµ= lim

n→∞
Λfn = Λf.

Therefore, for any f ∈ E+, we have

Λf =
∫
E
fdµ ∈ [0,+∞].
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The uniqueness of µ follows easily. Suppose that v is another measure on (E,E) such
that

Λf =
∫
E
fdv

for any f ∈ E+. Then, for any A ∈ E , since IA ∈ E+, we have

µ(A) = Λ(IA) = v(A),

so that µ= v on E .
Q.E.D.

The measure µ represents the linear functional Λ in the sense that the value of a function under
Λ is its integral with respect to µ. This same sense of representation will be used in the next
chapter for the Riesz representation theorem, except there the proof will be complicated due to
the relevant linear functional being defined only on the space of continuous functions.
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3.6.2 Definitions and Measure-Kernel-Functions

Let (E,E) and (F,F) be measurable spaces. A transition kernel K from (E,E) into (F,F) is a
function K : E×F → [0,+∞] such that:

• For any A ∈ F , K(·,A) is a E-measurable non-negative function.

• For any x ∈ E, K(x, ·) is a measure on (F,F).

K is called a transition probability kernel if K(x, ·) is a probability measure for each x ∈ E,
and a Markov kernel on (E,E) if it is a transition probability kernel from (E,E) into itself. We
denote the integral of a function f ∈ F+ with respect to the measure K(x, ·) for some x ∈E by∫

F
f(y)K(x,dy).

The usefulness of transition kernels will be made immediately clear if we let K e a Markov kernel
on (E,E), E a finite space and E the corresponding discrete σ-algebra. Letting E = {x1, · · · ,xn},
in this case we can construct an m×n matrix P with (i, j)th element equal to K(xi,{xj}).
Then, since K(xi, ·) is a probability measure for each 1 ≤ i ≤ n, the matrix P can be regarded
as a transition probability matrix of some finite Markov process, and the value K(xi,{xj})
specifically the probability of the process taking the value xj given that the previous iteration
took the value xi. Therefore, Markov kernels on arbitrary measurable spaces can be seen as
generalizations of the concept of the transition probability matrix of finite Markov processes,
and transition kernesl the generalization of Markov kernels to arbitrary measures.

The following theorem shows that we can construct measurable functions and measures using
transition kernels:
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Theorem 3.17 Let (E,E) and (F,F) be measurable spaces, and K a transition kernel from
(E,E) into (F,F). Then, the following hold true:

i) The transformation TK : F+→E+ defined as

(TKf)(x) =
∫
F
f(y)K(x,dy)

for any x ∈ E is

• Linear:
For any a ∈ [0,+∞) and f,g ∈ F+,

TK(af +g) = a ·TKf +TKg

• Continuous under Increasing Limits:
For any increasing sequence {fn}n∈N+ ⊂F+ with pointwise limit f ,

TKfn↗ TKf

as n→∞.

ii) For any measure µ on (E,E), the function µK : F → [0,+∞] defined as

(µK)(A) =
∫
E
K(x,A)dµ(x)

for any A ∈ F is a measure on (F,F).

iii) For any measure µ on (E,E) and non-negative measurable function f ∈ F+,∫
F
fd(µK) =

∫
E

(TKf)dµ,

and we denote the above quantity by
∫
E

∫
F f(y)K(x,dy)dµ(x).

Proof) We will first show that the operator TK is linear and continuous under increasing limits.
For any a ∈ [0,+∞) and f,g ∈ F+, for any x ∈ E,

(TK(af +g))(x) =
∫
F

(a ·f(y) +g(y))K(x,dy)

= a ·
∫
F
f(y)K(x,dy) +

∫
F
g(y)K(x,dy) = a · (TKf)(x) + (TKg)(x)

by the linearity of integration of non-negative functions, so it holds that

TK(af +g) = TKf +TKg
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on E. Furthermore, for any increasing sequence of functions {fn}n∈N+ ⊂F+ with limit
f , for any x ∈ E

(TKf)(x) =
∫
F
f(y)K(x,dy) = lim

n→∞

∫
F
fn(y)K(x,dy) = lim

n→∞
(TKfn)(x)

by the MCT, and by the monotonicity of integration, for any n ∈N+,

(TKfn)(x) =
∫
F
fn(y)K(x,dy)≤

∫
F
fn+1(y)K(x,dy) = (TKfn+1)(x).

Therefore, {TKfn}n∈N+ is a sequence of non-negative functions on E increasing point-
wise to TKf .
It remains to show that TKf is measurable for any f ∈ F+. Let f be a measurable
simple function with canonical form f = ∑n

i=1αi · IAi for α1, · · · ,αn ∈ [0,+∞) and
A1, · · · ,An ∈ F . Then, by linearity,

TKf =
n∑
i=1

αi ·TKIAi =
n∑
i=1

αi ·K(·,Ai).

Since K(·,Ai) ∈ E+ for each 1≤ i≤ n by definition, it follows that TKf ∈ E+ as well.
Now let f ∈F+ in general. Then, letting {fn}n∈N+ be a sequence of measurable simple
functions increasing to f , by the continuity of TK under increasing limits we have

TKf = lim
n→∞

TKfn,

and because TKfn ∈ E+ for any n ∈ N+, TKf is also E-measurable. Therefore, TK is
a linear transformation mapping from F+ into E+ that is continuous under increasing
limits.

Now let µ be a measure on (E,E), and define the mapping Λ : F+→ [0,+∞] as

Λf =
∫
E

(TKf)dµ

for any f ∈ F+, where the integral on the right hand side is well-defined because
TKf ∈ E+. We will show that Λ is a linear functional with the MCT property:

– Λ(I∅) =
∫
E(TKI∅)dµ=

∫
EK(x,∅)dµ(x) = 0 because K(x,∅) = 0 for any x ∈ E.
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– For any a ∈ [0,+∞) and f,g ∈ F+,

Λ(af +g) =
∫
E
TK(af +g)dµ=

∫
E

(a ·TKf +TKg)dµ (Linearity of T )

= a ·
∫
E

(TKf)dµ+
∫
E

(TKg)dµ= a ·Λf + Λg.

(Linearity of Integration)

– For any increasing sequence {fn}n∈N+ ⊂F+ with pointwise limit f , because TKfn↗
TKf as n→∞ by the continuity of TK under increasing limits, {TKfn}n∈N+ is
an increasing sequence of E-measurable non-negative functions with limit TKf : by
the MCT,

Λf =
∫
E

(TKf)dµ= lim
n→∞

∫
E

(TKfn)dµ= lim
n→∞

Λfn,

and by the monotonicity of integration, Λfn ≤ Λfn+1 for any n ∈N+.

Therefore, by theorem 3.16, there exists a unique measure v on (F,F) such that

Λf =
∫
F
fdv

for any f ∈ F+. For any A ∈ F ,

v(A) =
∫
F

(IA)dv = Λ(IA) =
∫
E

(TKIA)dµ=
∫
E
K(x,A)dµ(x) = (µK)(A).

Therefore, v = µK on F and µK is a measure on (F,F). In addition, for any f ∈ F+,
we have ∫

F
fd(µK) = Λf =

∫
E

(TKf)dµ.

Q.E.D.

The quantity ∫
E

∫
F
f(y)K(x,dy)dµ(x)

for any measure µ on (E,E) and function f ∈ F+ allows us to, in a sense, ”integrate” a function
on F with respect to a measure on (E,E). This will prove especially useful in our study of
Markov chains.
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3.6.3 Propreties of Markov Kernels

Let (E,E), (F,F) and (G,G) be measurable spaces, and K,L transition kernels from (E,E) into
(F,F) and (F,F) into (G,G), respectively. Much like functions, we can think of compositions of
transition kernels. Formally, the product of K and L is a function KL :E×G → [0,+∞] defined
as

(KL)(x,A) =
∫
F
L(y,A)K(x,dy)

for any (x,A) ∈ E×G. Because

• For any A ∈ G, L(·,A) ∈ F+ and (KL)(x, ·) = TKL(·,A) ∈ E+ by the above theorem, and

• For any x ∈ E, µ = K(x, ·) is a measure on (F,F), so that (KL)(x, ·) = µL is a measure
on (G,G) by the above theorem,

by definition KL is a transition kernel from (E,E) into (G,G). Note that, if both K and L are
transition probability kernels, then for any x ∈ E

(KL)(x,G) =
∫
F
L(y,G)K(x,dy) =K(x,F ) = 1

and thus KL is itself a transition probability kernel.

The concept of the product of transition kernels has especially important implications for Markov
kernels, since it allows us to define the power of Markov kernels.
Let (E,E) be a measurable space and P a Markov kernel on (E,E). Heuristically, we may think
of P as a transition probability for some Markov chain. In accordance with the above definition
of the product of transition kernels, we can define Pn recursively as follows:

• P 1 = P , and

• Pn = Pn−1P for any n≥ 2.

The reason for defining Pn as above instead of the other way around (PPn−1) will be made
clearer in the next section. Note that, for any n≥ 2, by definition,

Pn(x,A) =
∫
E
P (y,A)Pn−1(x,dy)

for any (x,A) ∈ E×E .

Defining the kernel I as

I(x,A) = δx(A),
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where δx is the Dirac delta measure on (E,E) sitting at x, for any (x,A) ∈ E×E , I is clearly a
Markov kernel on (E,E), and we can see that

(P · I)(x,A) =
∫
E
I(y,A)P (x,dy) =

∫
E
IA(y)P (x,dy) = P (x,A),

so that the product of P and I is P . It is also easy to see that I ·P = P ;

(I ·P )(x,A) =
∫
E
P (y,A)I(x,dy) =

∫
E
P (y,A)dδx(y) = P (x,A).

Therefore, we denote call I the identity kernel and denote I = P 0. This has the advantage that
we can express

Pn(x,A) =
∫
E
P (y,A)Pn−1(x,dy)

for any n ∈N+, and not just n≥ 2.

By the theorem proved in the previous section, we can obtain a convenient expression for integrals
with respect to the product Pn. For any f ∈ E+, n∈N+ and x∈E, denote Pn−1(x, ·) = µx. Then,
because Pn(x, ·) satisfies

Pn(x,A) =
∫
E
P (y,A)Pn−1(x,dy) =

∫
E
P (y,A)dµx(y),

in the notation of the above theorem, Pn(x, ·) = µxP , and it follows that∫
E
f(y)Pn(x,dy) =

∫
E
fd(µxP ) =

∫
E

∫
E
f(z)P (y,dz)dµx(y)

=
∫
E

∫
E
f(z)P (y,dz)Pn−1(x,dy) =

∫
E

(TP f)(y)Pn−1(x,dy).

Therefore, continuing to rewrite the integral in this way shows us that the integral of f with
respect to Pn can be evaluated sequentially through integrals with respect to P .
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Some Markov kernels have special properties that make them especially attractive in probabilistic
analysis. Here we state some of those properties, which will be heuristically expanded upon in
the next section. Throughout, we let (E,E) be a measurable space and P a Markov kernel on
(E,E).

• Stationary Distributions
Let π be a measure on (E,E). Then, π is a stationary distribution of P if∫

E
P (x,A)dπ(x) = π(A)

for any A ∈ E . Note that, in the notation of theorem 3.17, this means that πP = π.
π is called ”stationary” for P because, for any n ≥ 2, assuming that πPn−1 = π for any
A ∈ E , we have∫

E
Pn(x,A)dπ(x) =

∫
E

(TPn−1P (·,A))(x)dπ(x) (By definition)

=
∫
E
P (x,A)d(πPn−1)(x) (Theorem 3.17)

=
∫
E
P (x,A)dπ(x) (Inductive Hypothesis)

= π(A) (Definition of Stationarity)

for any A ∈ E , so that πPn = π on E . By induction, πPn = π, that is,∫
E
Pn(x,A)dπ(x) = π(A)

for any A ∈ E , for any n ∈N+. Heuristically, this means that the Markov chain with P has
unconditional distribution equal to π throughout the chain, regardless of the initial value x.

• Reversibility
We say that P is reversible with respect to a measure π on (E,E) if, for any A,B ∈ E ,∫

A
P (y,B)dπ(x) =

∫
B
P (y,A)dπ(y).

Heuristically, reversibility implies that the order of the Markov chain with P as its tran-
sition probability can be reversed but still maintain the same probabilistic structure.
If P is reversible with respect to π, then π is stationary for P . To see this, choose any
A ∈ E ; then, ∫

E
P (x,A)dπ(x) =

∫
A
P (x,E)dπ(x) (Reversibility)

= π(A), (P is a Markov Kernel)

and by definition π is stationary for P .
The most important application of the above result is that the Markov kernel used in the
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Metropolis-Hastings algorithm is reversible with respect to the target distribution, which
is why the algorithm converges to that target distribution. This will be shown in greater
detail in the next section.

• φ-Irreducibility
Let φ be a measure on (E,E). Then, we say that P is φ-irreducible if, for any x ∈ E and
A ∈ E such that φ(A)> 0, there exists an n ∈N+ such that

Pn(x,A)> 0.

Heuristically, it means that the Markov chain with P as its transition probability eventu-
ally enters the set A with positive probability regardless of the initial value x. As such, this
means that the chain will pass through every set to which φ assigns a positive probability.
Usually, this φ is taken to be the stationary distribution of P .

• Aperiodicity
Let π be the stationary distribution of P . We say that P is periodic if there exists an
integer d≥ 2 and disjoint sets A1, · · · ,Ad ∈ E such that P (x,Ai+1) = 1 for any x ∈Ai and
1≤ i≤ d−1, P (x,A1) = 1 for any x ∈Ad, and π(A1)> 0. Suppose that π(Ai)> 0 for some
1≤ i≤ d−1; then,

π(Ai+1) =
∫
E
P (x,Ai+1)dπ(x) =

∫
Ai

P (x,Ai+1)dπ(x) = π(Ai)> 0,

so that, by induction, π(A1)> 0 implies π(Ad) = · · ·= π(A1)> 0.
Heuristically, periodicity indicates that the Markov chain with P as its transition proba-
bility periodically circulates through a collection of disjoint sets; this means that the chain
is predictable to a degree.
P is said to be aperiodic if P is not periodic.
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Chapter 4

Borel Measures and Lebesgue
Integration

In this chapter we focus on function spaces as vector spaces. Specifically, letting (E,E) be a
measurable space and F(E,E) the set of all complex E-measurable functions, then F(E,E) is
a vector space over the complex field. To see this, recall that the set of all complex functions
defined on E forms a vector space over the complex field. Therefore, we need only establish that
F(E,E) is closed under the pointwise addition and scalar multiplication operations, and that it
contains the zero function. However, these follow easily from the facts that constant functions
are measurable and that measurability is preserved across addition and scalar multiplication.

Since the pair F(E,E) is a vector space over the complex field, we can now define linear func-
tionals Λ : F(E,E)→ C, that is, linear transformations from F(E,E) into the complex field.
There is a very close relationship between linear functionals and integration.
Specifically, consider any measure µ on (E,E). L1(E ,µ) is a linear subspace of F(E,E), since it
contains the zero function, and if f,g ∈ F(E,E) are µ-integrable, then for any a ∈ C, af + g ∈
F(E,E) and ∫

E
|af +g|dµ≤ |a| ·

∫
E
|f |dµ+

∫
E
|g|dµ <+∞

by the monotonicity and linearity of integration, which tells us that af +g ∈ L1(E ,µ).
Now define the function Λ : L1(E ,µ)→ C as

Λ(f) =
∫
E
fdµ.

for any f ∈ L1(E ,µ). Then, for any a ∈ C and f,g ∈ L1(E ,µ), by the linearity of integration

Λ(af +g) =
∫
E

(af +g)dµ= a ·
∫
E
fdµ+

∫
E
gdµ= a ·Λ(f) + Λ(g),

which tells us that Λ is a linear transformation and thus a linear functional. Note also that this
linear functional is positive, in that Λ(f)≥ 0 if f ≥ 0 (the integral of non-negative functions is
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always non-negative).

The focus of this chapter is the Riesz Representation Theorem, which tells us that the converse
of the above claim holds. Formally, letting (E,E) be a Borel space with certain topological
properties, for any positive linear functional Λ defined on the subset of all continuous complex
functions on E, there exists a measure µ on (E,E) such that

Λ(f) =
∫
E
fdµ

for any continuous complex function f on E. This powerful result also implies the existence of
the Lebesgue measure on euclidean spaces.
This theorem makes extensive use of the topological properties of the Borel space (E,E) laid
out in chapter 1, especially Urysohn’s lemma.
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4.1 The Riesz Representation Theorem

We now state the theorem first, before making a few remarks and then moving onto the proof.
The theorem is formally called the Riesz-Markov-Kakutani representation, since Riesz first stated
it for continuous functions on the unit interval [0,1], Markov extended it to continuous functions
on non-compact spaces and Kakutani finally generalized the result to hold on locally compact
Hausdorff spaces.

Theorem 4.1 (Riesz-Markov-Kakutani Representation Theorem)
Let (E,τ) be a locally compact Hausdorff space and B(E,τ) the corresponding Borel σ-algebra.
For any positive linear functional Λ on Cc(E,τ), there exists a σ-algebra E containing B(E,τ)
and a unique measure µ on (E,E) such that:

i) µ(K)<+∞ for any compact set K on E,

ii) For any A ∈ E ,

µ(A) = inf{µ(V ) |A⊂ V,V ∈ τ}

iii) For any A ∈ τ or A ∈ E with µ(A)<+∞,

µ(A) = sup{µ(K) |K ⊂A,K is compact}

iv) (E,E ,µ) is complete

v) Λf =
∫
E fdµ for any f ∈ Cc(E,τ), where the integral on the right exists in C.

Proof) The proof will consist of multiple steps. First, we construct the requisite measure µ on
the discrete σ-algebra on E, after which we show that µ is countably additive on a sub
σ-algebra of the discrete σ-algebra that contains the Borel sets. Finally, we show that
µ satisfies the requirement v).

The basic idea for the construction of µ proceeds as follows. For the integral of a func-
tion with respect to µ to be the value of the Λ given that function, the value of Λ given
an indicator function must equal the measure of the associated set under the measure
µ (this is in a heuristic sense; strictly speaking, Λ is not defined for indicator func-
tions because they are not continuous). In order to make this hold, for any set A⊂ E
we can define µ(A) as the supremum of Λf for any function f ∈ Cc(E,τ) that takes
values between 0 and 1 and is 0 outside of A. Because Urysohn’s lemma tells us it is
possible to approximate indicator functions arbitrary well with continuous compactly
supported functions on locally compact Hausdorff spaces, this way, µ(A) can equal the
approximate value of Λ given the indicator function IA.

217



Step 1: The Definition of µ

Defining µ for open sets

As per the idea introduced above, for any open set A⊂ E, define

µ(A) = sup{Λf | f ≺A}.

Note that any function f ≺A is continuous and compactly supported, takes values in [0,1], and
whose support is a compact set contained in A. Note that µ(A) is bounded below by 0 because
Λ is a positive linear functional and any f ≺A is non-negative valued. Additionally, for any open
sets A1,A2 ∈ τ such that A1 ⊂A2, it follows that f ≺A2 if f ≺A1, and as such that

µ(A1) = sup{Λf | f ≺A1} ≤ sup{Λf | f ≺A2}= µ(A2).

The fact that Λ is a linear transformation tells us that ΛI∅ = 0, since I∅ is the unique additive
identity on Cc(E,τ). Therefore,

µ(∅) = sup{Λf | f ≺ ∅}= ΛI∅ = 0,

since f ≺ ∅ requires f(x) = 0 for any x ∈ ∅c = E.

Defining µ for arbitrary subsets of E

Now define the function µo : 2E → [0,+∞] as

µo(A) = inf{µ(V ) |A⊂ V,V ∈ τ}

for any A ⊂ E. Since µ(V ) takes values in [0,+∞] for any open set V , it follows that µo(A) is
bounded below by 0 as well. Therefore, µo does indeed map into [0,+∞].
In addition, for any A1 ⊂A2, because A2 ⊂ V implies A1 ⊂ V as well,

{µ(V ) |A2 ⊂ V,V ∈ τ} ⊂ {µ(V ) |A1 ⊂ V,V ∈ τ}

and

µo(A1) = inf{µ(V ) |A1 ⊂ V,V ∈ τ} ≤ inf{µ(V ) |A2 ⊂ V,V ∈ τ}= µo(A2).

This tells us that the function µo is montone.

The definition of µo shows us that the measure of an arbitrary subset A is determined as the
approximation of the measure of open sets containing A, where the measure of some open set
was defined above as the approximation of the value of Λ for the indicator of said open set. As
such, µo(A) approximates the value of Λ for the indicator IA.
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Showing that the measure of an open set is well-defined

Before proceeding, note that the above definitions apparently provide two definitions of the
measure of an open set V ∈ τ , either as µ(V ) = sup{Λf | f ≺ V } or as µo(V ) = inf{µ(U) | V ⊂
U,U ∈ τ}. However, because

µ(V )≤ µ(U)

for any U ∈ τ such that V ⊂ U , and V is itself an open set, we have the equality

µo(V ) = inf{µ(U) | V ⊂ U,U ∈ τ}= µ(V ).

Therefore, the two definitions agree on the collection of all open sets, and we can denote µo = µ

on 2E .
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Step 2: µ as an Outer Measure

In this part, we will show that µ is an outer measure on E, that is, a function µ : 2E → [0,+∞]
such that µ(∅) = 0, µ(A) ≤ µ(B) if A ⊂ B, and which is countably subadditive. We already
proved the first two properties, so it remains to see whether µ is countably subadditive.

Finite subadditivity of µ for open sets

To this end, we first prove that µ is finitely subadditive for open sets. Let V1,V2 ∈ τ , and suppose
g ≺ V1∪V2. Since g is a continuous compactly supported function whose support K is contained
in the open set V1 ∪V2, by the partition of unity theorem there exist functions h1 and h2 in
Cc(E,τ) such that h1 ≺ V1, h2 ≺ V2 and h1(x) +h2(x) = 1 for any x ∈K.
For i= 1,2, hig is a continuous complex valued function because continuity is preserved across
products. Additionally, hi(x)g(x) ∈ [0,1] because both hi and g take values in [0,1]. From

{hi = 0}∪{g = 0}= {hig = 0},

we can see that

{hig 6= 0} ⊂ {hi 6= 0}∩K ⊂ V1∩ (V1∪V2) = V1.

Because hi is compactly supported, {hi 6= 0}∩K is compact, implying that {hig 6= 0} is also
compact and contained in V1. Therefore, hig ≺ Vi.
The fact that h1 +h2 = 1 on K indicates that h1g+h2g = g on K. If x /∈ K, then g(x) = 0,
meaning that h1(x)g(x) +h2(x)g(x) = 0 = g(x). Thus, h1g+h2g = g on E, and by the linearity
of Λ and the definition of µ for open sets, we now have

Λg = Λ(h1g) + Λ(h2g)≤ µ(V1) +µ(V2).

This holds for any g ≺ V1∪V2, so we have

µ(V1∪V2)≤ µ(V1) +µ(V2).

It follows by induction that

µ(V1∪·· ·∪Vn)≤ µ(V1) + · · ·+µ(Vn)

for any n ∈N+ and open sets V1, · · · ,Vn.
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Countable subadditivity of µ for arbitrary subsets of E

Now let {An}n∈N+ be an arbtirary collection of subsets of E, and denote A=⋃
nAn. If µ(An) =

+∞ for some n ∈N+, the inequality

µ(A)≤
∞∑
n=1

µ(An)

holds trivially.
Suppose that µ(An)<+∞ for any n ∈N+. Then, for any ε > 0 and any n ∈N+, because

µ(An) = inf{µ(V ) |An ⊂ V,V ∈ τ},

by the definition of the infimum there exists an open set Vn containing An such that

µ(An)≤ µ(Vn)< µ(An) + 2−nε.

Define V =⋃
nVn ∈ τ . For any f ≺ V , because the support K of f is contained in V , {Vn}n∈N+

is an open cover of K and by compactness there exists an m ∈N+ such that

K ⊂ V1∪·· ·∪Vm.

f is thus a continuous compactly supported function taking values in [0,1] whose support is
contained in the open set V1 ∪ ·· · ∪ Vm. By definition, f ≺ V1 ∪ ·· · ∪ Vm, and as such, by the
definition of µ for open sets and the finite subadditivity result shown above,

Λf ≤ µ(V1∪·· ·∪Vm)≤
m∑
i=1

µ(Vi)≤
∞∑
n=1

µ(Vn)

where the last inequality follows because µ is non-negative valued.
By how we chose V1,V2, · · · ,

∞∑
n=1

µ(Vn)≤
∞∑
n=1

µ(An) +ε ·
∞∑
n=1

(1
2

)n
=
∞∑
n=1

µ(An) +ε,

and we have

µ(V ) = sup{Λf | f ≺ V } ≤
∞∑
n=1

µ(An) +ε.

Because A⊂ V (each An ⊂ Vn by design), it follows that

µ(A)≤ µ(V )≤
∞∑
n=1

µ(An) +ε.
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Finally, this holds for any ε > 0, which implies that

µ(A)≤
∞∑
n=1

µ(An).

We have therefore seen that µ is an outer measure on E.

222



Step 3: Value of µ for Compact Sets

We now study the value of µ(K) for any compact set K in E. Specifically, we will show that
µ(K)<+∞ and

µ(K) = inf{Λf |K ≺ f}

for any compact K. Note that the set {Λf |K ≺ f} is non-empty for any compact set K, since
K ⊂E, where E is open, and this ensures the existence of some continuous compactly supported
function f such that K ≺ f ≺ E by Urysohn’s lemma. Any f such that K ≺ f is non-negative
real valued, so by positivity, Λf ∈ [0,+∞) as well. As such, the infimum on the right is well
defined as a value in [0,+∞) by the least upper bound property of the real line.

Proving µ(K)≤ inf{Λf |K ≺ f}

First, choose any f such that K ≺ f . Then, f is continous and compactly supported on E, takes
values in [0,1], and equals 1 on K. f is non-negative real valued, so by the positivity of Λ, so is
Λf .
For any n ∈N+, define

Vn = {x ∈ E | f(x)> n−1
n
}= f−1

((
n−1
n

,+∞
))

.

Because f is a continuous real-valued function, Vn ∈ τ , and we can see that K ⊂ Vn, since
f(x) = 1 > n−1

n for x ∈ K. For any g ≺ Vn, because the support of g is contained in Vn, if
g(x)> 0, then x ∈ Vn and thus

f(x)> n−1
n
≥ n−1

n
g(x),

where the second equality follows from the fact that g(x) ∈ [0,1]. If x /∈ Vn, then g(x) = 0 and
it is trivially true that f(x) ≥ n−1

n g(x). Thus, n−1
n g ≤ f on E, and as such, f − n−1

n g ≥ 0 is a
non-negative real valued function contained in Cc(E,τ) (Cc(E,τ) is a vector space containing
f,g). It follows that

Λf = Λ
(
f − n−1

n
g

)
+ n−1

n
·Λg (Linearity of Λ)

≥ n−1
n
·Λg, (Positivity of Λ)

which implies that

Λg ≤ n

n−1 ·Λf.
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This holds for any g ≺ Vn, so

µ(Vn) = sup{Λg | g ≺ Vn} ≤
n

n−1 ·Λf.

By the monotonicity of µ and the fact that K ⊂ Vn,

µ(K)≤ µ(Vn)≤ n

n−1 ·Λf ;

this holds for any n ∈N+, so sending n→∞ yields

µ(K)≤ Λf.

Because Λf ∈ [0,+∞), this also shows that µ(K)<+∞.
The above inequality holds for any f such that K ≺ f , so

µ(K)≤ inf{Λf |K ≺ f}.

Proving µ(K)≥ inf{Λf |K ≺ f}

To see that the reverse inequality holds, choose any ε > 0; because

µ(K) = inf{µ(V ) |K ⊂ V,V ∈ τ}

and µ(K)<+∞, by the definition of the infimum there exists a V ∈ τ such that K ⊂ V and

µ(K)≤ µ(V )< µ(K) +ε.

Then, by Urysohn’s lemma, there exists a continuous compactly supported function g such that
K ≺ g ≺ V , which implies by the definition of µ(V ) that

Λg ≤ µ(V )< µ(K) +ε.

Therefore,

inf{Λf |K ≺ f} ≤ Λg < µ(K) +ε,

and because this holds for any ε > 0, the inequality

inf{Λf |K ≺ f} ≤ µ(K)

holds. In conclusion, we have

µ(K) = inf{Λf |K ≺ f} ∈ [0,+∞).
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So far, we have studied the properties of the function µ : 2E → [0,+∞] defined as

• For any open set V ,

µ(V ) = sup{Λg | f ≺ V }

• For any A⊂ E,

µ(A) = inf{µ(V ) |A⊂ V,V ∈ τ}.

We have subsequently found that:

• µ(∅) = 0

• µ(A)≤ µ(B) if A⊂B

• For any collection {An}n∈N+ ∈ 2E ,

µ

(⋃
n

An

)
≤
∞∑
n=1

µ(An),

so that µ is an outer measure on E, and that, for any compact set K,

µ(K) = inf{Λf |K ≺ f} ∈ [0,+∞).
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Step 4: Defining EF and E

Having defined µ as above and shown that it is an outer measure, any subset of E can be said
to be outer measurable. Since we have allowd any subset of E to be outer measurable, one may
naturally question whether arbitrary subsets of E are inner measurable, where inner measura-
bility is defined in a similar manner but instead with supremums instead of infimums. We now
set out to do just that, and it turns out that only some functions are inner measurable in our
current construction.

The Collection EF

Define the subcollection EF of 2E as the sets A⊂ E such that µ(A)<+∞ and

µ(A) = sup{µ(K) |K ⊂A,K is compact}.

In this sense, EF is the collection of all ”inner measurable” sets, in contrast to the outer mea-
surability defined earlier. Note that EF is nonempty, since ∅ ∈ EF (∅ is the only compat subset
of ∅, and µ(∅) = 0).
Furthermore, we can see that any subset A⊂E with value 0 under µ is contained in EF . To see
this, let K be a compact set such that K ⊂ A. Then, by the non-negativity and monotonicity
of µ, 0≤ µ(K)⊂ µ(A) = 0, which implies that µ(K) = 0 and therefore that

µ(A) = 0 = sup{µ(K) |K ⊂A,K is compact}.

EF also contains any compact K. This is because µ(K)≤ µ(K ′) for any compact K ′ such that
K ⊂K ′, K is compact itself, and µ(K)<+∞.

The measure of an open set V ∈ τ also satisfies

µ(V ) = sup{µ(K) |K ⊂ V,K is compact}.

Let V ∈ τ . Then, for any compact K such that K ⊂ V , by the monotonicity of µ we have
µ(K)≤ µ(V ), so

sup{µ(K) |K ⊂ V,K is compact} ≤ µ(V ).

To show the reverse inequality, let f ≺ V , and denote by K the compact support of f , which
satisfies K ⊂ V . Then, for any open set U containing K, because f is a continuous compactly
supported function taking values in [0,1] and whose support is contained in U , f ≺ U and
Λf ≤ µ(U) by the definition of µ for open sets. As such,

Λf ≤ inf{µ(U) |K ⊂ U,U ∈ τ}= µ(K)
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by the definition of µ for arbitrary subsets of E. Therefore,

Λf ≤ µ(K)≤ sup{µ(K ′) |K ′ ⊂ V,K ′ is compact}.

The above inequality holds for any f such that f ≺ V , so

µ(V ) = sup{Λf | f ≺ V } ≤ sup{µ(K) |K ⊂ V,K is compact},

which shows us that

µ(V ) = sup{µ(K) |K ⊂ V,K is compact}.

It follows now that any open V ∈ τ with finite value under µ is contained in EF .

The Collection E

We now define the subcollection E of 2E as follows:

E = {A⊂ E |A∩K ∈ EF for any compact K}.

It is immediately evident that ∅,E ∈ E , since ∅∩K = ∅ ∈ EF and E∩K =K ∈ EF for any compact
K. Likewise, any A⊂E such that µ(A) = 0 is contained in E , since, for any compact K, A∩K
has value 0 under µ by monotonicity and is thus contained in EF .
Finally, any compact K is contained in E as well, since, for any compact K1, K ∩K1 is also
compact with µ(K ∩K1)≤ µ(K)<+∞, which implies that K ∩K1 ∈ EF .

Summarizing our findings, we have defined subcollections EF and E of 2E that contain the
following sets:

• The empty set ∅

• Every compact set

• Any set with value 0 under µ.

Any open set with finite value under µ is also contained in EF , and E also contains the entire
set E.
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Step 5: The Countable Additivity of µ on EF

Finite Additivity for Compact Sets

We first show that, for any disjoint compact K1 and K2, µ(K1∪K2) = µ(K1)+µ(K2). It follows
from the countable subadditivity of µ that µ(K1 +K2)≤ µ(K1)+µ(K2). It remains to show that
the reverse inequality holds true.
Denote K = K1 ∪K2, and choose any f such that K ≺ f . Letting V = Kc

2, V is an open set
because the compact set K2 is closed, and becaues K1 ⊂ V from the fact that K1∩K2 = ∅, by
Urysohn’s lemma there exists a continuous compactly supported function g taking values in [0,1]
such that K1 ≺ g ≺ V , so that g(x) = 1 for x ∈K1 and g(x) = 0 for any x /∈ V , or equivalently
x ∈K2.
Define h1 = fg and h2 = (1− g)f . Both h1 and h2 take values in [0,1], and their supports are
contained in the support of f , which is compact; this implies that h1,h2 ∈ Cc(E,τ). Finally,
if x ∈ K1, then f(x) = 1 (K1 ⊂ K1 ∪K2 = K ≺ f) and g(x) = 1 (K1 ≺ g), so that h1(x) = 1,
and likewise, if x ∈K2, then f(x) = 1 (K2 ⊂K1∪K2 = K ≺ f) and g(x) = 0 (g ≺Kc

2), so that
h2(x) = 1. As such, by definition K1 ≺ h1 and K2 ≺ h2, where h1 +h2 = f . By the linearity of
Λ, we have

Λh1 + Λh2 = Λf.

We derived a characterization for the value of µ for compact sets in step 3 that mirrored the
definition of µ for open sets. According to this definition,

µ(Ki) = inf{Λk |Ki ≺ k} ≤ λhi}

for i= 1,2, so we have

µ(K1) +µ(K2)≤ Λh1 + Λh2 = Λf.

This in turn holds for any f such that K ≺ f , so it follows that

µ(K1) +µ(K2)≤ µ(K).

We can now conclue that

µ(K1) +µ(K2) = µ(K1∪K2)

for disjoint compact sets K1,K2. By induction, it follows that

µ(K1) + · · ·+µ(Kn) = µ(K1∪·· ·∪Kn)

for a finite collection {K1, · · · ,Kn} of disjoint compact sets.
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Countable Additivity on EF

Now we move onto the main result. Let {An}n∈N+ be a sequence of disjoint sets in EF , and
denote A=⋃

nAn, which may or may not be in EF . Because µ is an outer measure, by countable
subadditivity

µ(A)≤
∞∑
n=1

µ(An).

We need only show the reverse inequality holds using the properties that A1,A2, · · · are disjoint
and in EF .
For any ε > 0 and n ∈N+, because µ(An)<+∞ and

µ(An) = sup{µ(K) |K ⊂An,K is compact}

by the fact that An ∈ EF , by the definition of the supremum we can see that there exists a
compact set Kn such that Kn ⊂An and

µ(An)−2−nε < µ(Kn)≤ µ(An).

Since A1,A2, · · · are disjoint and Kn⊂An for each n∈N+, it follows that the sequence {Kn}n∈N+

is also a disjoint colleciton of compact sets.
For any n ∈N+, by the result shown above,

n∑
i=1

µ(Ki) = µ(K1∪·· ·∪Kn).

Because Ki ⊂ Ai ⊂ A for 1 ≤ i ≤ n, it follows that K1∪ ·· · ∪Kn ⊂ A, and by the monotonicity
of µ, we have

n∑
i=1

µ(Ki) = µ(K1∪·· ·∪Kn)≤ µ(A).

This holds for any n ∈N+, so taking n→∞ on both sides,

∞∑
n=1

µ(Kn)≤ µ(A),

where the limit on the left hand side exists because {µ(Kn)}n∈N+ is a sequence of non-negative
reals.
Finally, from the way we chose each Kn, we can see that

∞∑
n=1

µ(Kn)≥
∞∑
n=1

µ(An)−ε ·
∞∑
n=1

(1
2

)n
=
∞∑
n=1

µ(An)−ε.
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Therefore,

∞∑
n=1

µ(An)−ε≤ µ(A),

and because this holds for any ε > 0, we have

∞∑
n=1

µ(An)≤ µ(A)

and by implication the countable additivity follows.

The Inclusion of A=⋃
nAn in EF

An important consequence of the above result is that A ∈ EF if µ(A)<+∞.
In this case, for any ε > 0, since {∑n

i=1µ(Ai)}n∈N+ is an increasing non-negative real valued
sequence whose limit is µ(A), µ(A) is the supremum of that sequence and thus there exists an
m ∈N+ such that

µ(A)− ε2 <
m∑
i=1

µ(Ai)≤ µ(A).

As we noted above, for any 1≤ i≤m there exists a compact Ki such that

µ(Ai)−2−i ε2 < µ(Ki)≤ µ(Ai),

so substituting this into the inequality above yields

µ(A)− ε2 <
m∑
i=1

µ(Ai)<
m∑
i=1

µ(Ki)−
ε

2 ·
(

m∑
i=1

2−i
)
≤

m∑
i=1

µ(Ki)−
ε

2 .

K1, · · · ,Km are disjoint, so ∑m
i=1µ(Ki) = µ(K1∪·· ·∪Km), and since K1∪·· ·∪Km is a compact

set contained in A, we have shown that, for any ε > 0, there exists a compact K ⊂A such that

µ(A)−ε < µ(K).

Since µ(A) is obviously an upper bound of the set {µ(K) |K ⊂A,K is compact} by the mono-
tonicity of µ, we have µ(A) = sup{µ(K) | K ⊂ A,K is compact}. This tells us that A ∈ EF if
µ(A)<+∞.
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We have thus shown that:

• For any disjoint sequence {An}n∈N+ in EF ,

µ

(⋃
n

An

)
=
∞∑
n=1

µ(An),

• For any disjoint sequence {An}n∈N+ in EF ,

⋃
n

An ∈ EF if µ
(⋃
n

An

)
<+∞
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Step 6: The Approximation Property of Sets in EF

This is a key property of the function µ, which will eventually allow us to approximate any
measurable function with continuous functions.
Choose any A ∈ EF and ε > 0. Then, because µ(A)<+∞ and A satisfies both

µ(A) = inf{µ(V ) |A⊂ V,V ∈ τ} (by definition)

and

µ(A) = sup{µ(K) |K ⊂A,K is compact}, (by A ∈ EF )

there exist V ∈ τ and compact K such that K ⊂A⊂ V and

µ(A)− ε2 < µ(K)≤ µ(A)≤ µ(V )< µ(A) + ε

2 .

Becasue V is an open set such that µ(V ) < µ(A) + ε
2 < +∞, so V \K = V ∩Kc is an open set

also with finite value under µ by monotonicity. K is in EF by compactness and V \K and K are
disjoint, so from the countable additivity result shown earlier, we now have

µ(V ) = µ(V \K) +µ(K),

which implies

µ(V \K) = µ(V )−µ(K)<
(
µ(A) + ε

2

)
−
(
µ(A)− ε2

)
= ε.

We have therefore seen that, for any A ∈ EF and ε > 0, there exist an open set V and a compact
set K such that K ⊂A⊂ V and

µ(V \K)< ε.

This shows us that any set in EF can be approximated arbitrarily closely above by an open set
and below by a compact set.
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Step 7: Closedness of EF under Finite Set Operations

We will show in this step that, for any A,B ∈ EF , A∪B,A∩B,A\B are all contained in EF by
using the approximation proprety derived in step 6.

We first show that, for any A1,A2 ∈ EF , A1 \A2 ∈ EF .
A1 \A2 clearly has finite value under µ by monotonicity and the finiteness of A, and by the
approximation property derived above, for any ε > 0 there exist compact Ki and open Vi such
that Ki ⊂ Ai ⊂ Vi and µ(Vi \Ki) < ε

2 for i = 1,2. The difference A1 \A2 is then majorized as
follows:

A1 \A2 =A1∩Ac2 ⊂ V1∩Kc
2 = V1 \K2.

For any x ∈ V1 \K2, x ∈ V1 and x /∈K2; we can now consider two distinct caes. If x ∈K1, then
x ∈K1 and x /∈K2, so that x ∈K1 \K2, and if x /∈K1, then because x ∈ V1, x ∈ V1 \K1. This
shows that x is either in V1 \K1 or in K1 \K2.
Likewise, for any x ∈ K1 \K2, x ∈ K1 and x /∈ K2. If x ∈ V2, then because x /∈ K2, we have
x ∈ V2 \K2, while if x /∈ V2, then because x ∈K1, we have x ∈K1 \V2. It follows that

A1 \A2 ⊂ V1 \K2 ⊂ (V1 \K1)∪ (K1 \K2)

⊂ (V1 \K1)∪ (K1 \V2)∪ (V2 \K2).

By the countably subadditivity of µ,

µ(A1 \A2)≤ µ(V1 \K1) +µ(K1 \V2) +µ(V2 \K2)< µ(K1 \V2) +ε.

Since K1 \ V2 = K1 ∩ V c
2 is a closed subset of the compact set K1, it is itself compact; since

K1 ⊂ A1 and V c
2 ⊂ Ac2, we can also see that K1 \V2 ⊂ A1 \A2. Therefore, K1 \V2 is a compact

subset of A1 \A2, which tells us that

µ(A1 \A2)< µ(K1 \V2) +ε≤ sup{µ(K) |K ⊂A1 \A2,K is compact}+ε.

sup{µ(K) |K ⊂ A1 \A2,K is compact} is bounded above by µ(A1 \A2) < +∞, and the above
inequality holds for any ε > 0, so

µ(A1 \A2) = sup{µ(K) |K ⊂A1 \A2,K is compact}.

This, together with the fact that µ(A1 \A2)<+∞, tells us that A1 \A2 ∈ EF by definition.

Now let A,B ∈ EF . We have already seen that A\B ∈ EF , and since

A∪B =B∪ (A\B),

where µ(A∪B)≤ µ(A) +µ(B)<+∞ and B,A\B ∈ EF are disjoint sets in EF , the final result
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of step 5 shows us that A∪B ∈ EF .
Finally, since

A∩B =A\ (A\B),

where A,A\B ∈ EF , the above result tells us that A∩B ∈ EF .
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Step 8: EF is the collection of all A ∈ E such that µ(A)<+∞

Let A ∈ EF . Then, for any compact K, because K ∈ EF as well, A∩K ∈ EF because EF is closed
under finite intersections; this implies that A ∈ E , and therefore that EF ⊂ E .

Now suppose that A ∈ E , and µ(A)<+∞. Then, because

µ(A) = inf{µ(V ) |A⊂ V,V ∈ τ},

there must exist a V ∈ τ such that A⊂ V and µ(V )<+∞, since otherwise, µ(A) = +∞. Since
V is an open set with finite value under µ, it is contained in EF , and by the approximation
property derived in step 6, for any ε > 0 there exist a compact set K and an open set V ′ such
that K ⊂ V ⊂ V ′ and µ(V ′ \K)< ε

2 . By montonicity,

µ(V \K)≤ µ(V ′ \K)< ε

2 .

Now, since A∩K ∈ EF by the compactness of K and the definition of A as a set in E , the
relationship

µ(A∩K) = sup{µ(H) |H ⊂A∩K,H is compact}

holds by the definition of EF . Since µ(A∩K)<+∞, there exists a compact set H ⊂A∩K such
that

µ(A∩K)− ε2 < µ(H)≤ µ(A∩K),

which implies that

µ(A) =µ((A∩K)∪ (A\K))

≤ µ((A∩K)∪ (V \K)) (Monotonicity; A⊂ V )

= µ(A∩K) +µ(V \K) (Finite Additivity on EF ; A∩,V \K are disjoint sets in EF )

< µ(H) +ε.

Because H ⊂A∩K ⊂A, this shows us that

µ(A)≤ sup{µ(K) |K ⊂A,K is compact}+ε,

and because this holds for any ε > 0 and µ(A) is an upper bound of the set {µ(K) | K ⊂
A,K is compact}, we have µ(A) = sup{µ(K) |K ⊂A,K is compact}.

This, alongside the assumption that µ(A)<+∞, shows us that

EF = {A ∈ E | µ(A)<+∞}.
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Step 9: (E,E ,µ) is a Complete Measure Space and B(E,τ)⊂ E

E is a σ-algebra on E

We will first show that E is a σ-algebra on E.
Step 2 already shows that ∅,E ∈ E .
Furthermore, for any A ∈ E and compact set K, since A∩K ∈ EF and

Ac∩K =K \A=K \ (A∩K),

Ac∩K ∈ EF because K ∈ EF by compactness. Therefore, E is closed under complements as well.

It remains to see that, for any countable collection {An}n∈N+ of sets in E , their union A=⋃nAn
is in E as well. Fix a compact set K, and note that An∩K ∈ EF for any n ∈N+. From step 5,
we saw that the countable union of a disjoint sequence of sets in EF is also contained in EF if
its value under µ is finite. We will now exploit this finding.
Construct the sequence {Bn}n∈N+ of subsets of E as follows: B1 = A1∩K, and for any n ≥ 2,
define

Bn = (An∩K)\
(
n−1⋃
i=1

Bi

)
.

By design, {Bn}n∈N+ is a disjoint sequence. B1 = A1∩K ∈ EF by definition; now assume that
B1, · · · ,Bn ∈ EF for some n ≥ 1. then, because ⋃ni=1Bi ∈ EF (EF is closed under finite unions)
and An∩K ∈ EF , Bn+1 ∈ EF because EF is closed under differences. By induction, {Bn}n∈N+ is
a disjoint sequence of sets in EF . Finally, the union of {B1, · · · ,Bn} is

n⋃
i=1

Bi =An∩K

for any n≥ 1, so

⋃
n

Bn =
⋃
n

(An∩K) =A∩K.

Since K is compact, it has finite value under µ, and by monotonicity, µ(A∩K)≤ µ(K)<+∞.
Therefore, A∩K is the union of the disjoint sequence of sets {Bn}n∈N+ in EF with µ(A∩K)<
+∞, which tells us that A∩K ∈ EF by step 5.
This holds for any compact K, so A ∈ E by definition, and we have shown that E is a σ-algebra
on E.

Every Borel set is included in E

For any open set V , the set A = V c is closed. For any compact K, A∩K is a closed subset of
K and thus compact itself. Therefore, A∩K ∈ EF , which tells us that A ∈ E . This implies that
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V = Ac ∈ E as well, since E is closed under complements. Therefore, τ ⊂ E , which tells us that
B(E,τ)⊂ E as well.

µ is a measure on (E,E)

We now show that µ is a measure on the measurable space (E,E). Note initially that µ(∅) = 0;
thus we need only prove the countable additivity of µ.
For any disjoint sequence of sets {An}n∈N+ in E , denote A = ⋃

nAn. If µ(An) = +∞ for some
n ∈N+, then by monotonicity, µ(A) = +∞ as well, meaning that the equality

µ(A) = +∞=
∞∑
n=1

µ(An)

holds trivially.
Now assume that µ(An)<+∞ for any n ∈N+. Then, because {An}n∈N+ is a disjoint sequence
of sets in EF with union A by step 8, by step 5 we have

µ(A) =
∞∑
n=1

µ(An).

(E,E ,µ) is complete

It remains to be seen that (E,E ,µ) is a complete measure space. To this end, let A ∈ E be a
set with µ(A) = 0, and let N ⊂A. Then, by monotonicity µ(N) = 0 as well, which tells us that
N ∈ E , as shown in step 4.
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Step 10: Λf =
∫
E fdµ for any f ∈ Cc(E,τ)

Any f ∈ Cc(E,τ) is µ-integrable

Let f ∈ Cc(E,τ) with compact support K. By continuity, f is a Borel measurable complex
function. We will first show that f is µ-integrable.
Because f(E) is a compact subset of the complex plane, by the Heine-Borel thoerem f(E) is
closed and bounded; thus, there exists an M < +∞ such that |f(x)| ≤M for any x ∈ E. In
addition, since f(x) = 0 for any x /∈K, we can see that∫

E
|f |dµ=

∫
K
|f |dµ+

∫
Kc
|f |dµ=

∫
K
|f |dµ.

|f | ≤M on K, so ∫
E
|f |dµ≤M ·µ(K)<+∞,

where µ(K)<+∞ because K is compact. Therefore, f is a µ-integrable Borel measurable func-
tion, so that f ∈ L1(B(E,τ),µ). Since B(E,τ)⊂ E , we can also say that f ∈ L1(E ,µ).

Λf =
∫
E fdµ for real valued f ∈ Cc(E,τ)

Now we will show that Λf =
∫
E fdµ.

First, assume that f is real-valued. Then, it suffices to show that Λf ≤
∫
E fdµ, since the reverse

inequality follows from the inequality

−Λf = Λ(−f)≤
∫
E

(−f)dµ=−
∫
E
fdµ,

which holds because −f is a continuous compacty supported function on E if f is.

Since f(E) is a compact subset of the real line, it is bounded, and as such there exist a,b∈R such
that f(E)⊂ (a,b]. For any ε > 0, choose n∈N+ so that b−a

n < ε. Then, we define {y0, · · · ,yn}⊂R
as

yi = a+ i

n
(b−a)

for any 0≤ i≤ n. This shows us that

a= y0 < · · ·< yn = b

and that yi−yi−1 = b−a
n < ε for any 1≤ i≤ n.

Define

Ai = f−1 ((yi−1,yi])∩K for any 1≤ i≤ n;
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since {(y0,y1], · · · ,(yn−1,yn]} is a partition of the range (a,b] of f , and because they are all Borel
sets in R, and f is Borel measurable by continuity, each f−1((yi−1,yi]) ∈ B(E,τ). In addition,

A1∪·· ·∪An =
(

n⋃
i=1

f−1 ((yi−1,yi])
)
∩K

= f−1
(

n⋃
i=1

(yi−1,yi]
)
∩K = f−1((a,b])∩K = E∩K =K,

where K ∈ B(E,τ) because K is compact, so A1, · · · ,An are Borel sets in E whose union equals
the support K of f . Finally, because {(y0,y1], · · · ,(yn−1,yn]} are disjoint, so are A1, · · · ,An.
Since B(E,τ) is contained in E , it follows that A1, · · · ,An are E-measurable functions. Since
Ai ⊂ K for 1 ≤ i ≤ n, by monotonicity µ(Ai) < +∞ for each i; this indicates, by step 8, that
A1, · · · ,An are disjoint sets in EF .

By definition of the value of sets under µ, for 1≤ i≤ n we have

µ(Ai) = inf{µ(V ) |Ai ⊂ V,V ∈ τ}.

This means that there exists an open set V ′ ∈ τ such that A⊂ V ′ and

µ(Ai)≤ µ(V ′)< µ(Ai) + ε

n
.

Furthermore, because f is continuous and (yi−1,yi + ε) is an open set in R, the inverse image
V ′′ = f−1((yi−1,yi+ε)) is an open set in E that contains Ai, since

Ai = f−1 ((yi−1,yi])⊂ f−1((yi−1,yi+ε)) = V ′′.

Defining Vi = V ′∩V ′′ ∈ τ , it follows that Ai ⊂ Vi and

• µ(Vi)≤ µ(V ′)< µ(Ai) + ε
n

• For any x∈Vi, since x∈V ′′ as well, f(x)∈ (yi−1,yi+ε), or equivalently, yi−1<f(x)<yi+ε.
Furthermore, since yi−1 < f(x)< yi and yi−yi−1 < ε, we have 0< yi−f(x)< yi−yi−1 < ε,
which implies f(x)> yi−ε.
Therefore, if x ∈ Vi, then

yi−ε < f(x)< yi+ε.

Because Ai ⊂ Vi for each 1≤ i≤ n,

K =A1∪·· ·∪An ⊂ V1∪·· ·∪Vn.

Each Vi is open, while K is compact, so by the partition of unity theorem, there exist continuous
compactly supported functions h1, · · · ,hn such that hi ≺ Vi for 1≤ i≤ n and K ≺∑n

i=1hi. Since
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∑n
i=1hi = 1 on K, while f(x) = 0 for any x ∈Kc, we can see that (∑n

i=1hi)f = f on E, while
K ≺

∑n
i=1hi and the characterization of µ(K) derived in step 3 reveals that

µ(K)≤ Λ
(

n∑
i=1

hi

)
=

n∑
i=1

Λhi.

For any 1≤ i≤ n, if x ∈ Vi, then f(x)< yi+ε, so

hi(x)f(x)< hi(x)(yi+ε) ,

while if x /∈ Vi, then hi(x) = 0 (since hi ≺ Vi), and

hi(x)f(x) = 0 = hi(x)(yi+ε) .

Therefore, hif ≤ (yi+ε)hi on E.
Finally, for any 1 ≤ i ≤ n, because hi ≺ Vi, by the defition of the value of µ for open sets, we
have

Λhi ≤ µ(Vi)< µ(Ai) + ε

n
.

Summarizing these findings, we can see that h1, · · · ,hn are functions in Cc(E,τ) such that:

1) (∑n
i=1hi)f = f on E,

2) µ(K)≤∑n
i=1 Λhi, and for any 1≤ i≤ n,

3) hif ≤ (yi+ε)hi on E and

4) Λhi ≤ µ(Ai) + ε
n .

Now we can see that

Λf = Λ
(

n∑
i=1

hif

)
=

n∑
i=1

Λ(hif) (fact 1) above)

≤
n∑
i=1

(yi+ε)Λhi (fact 2) above)

=
n∑
i=1

(|a|+yi+ε)Λhi−|a| ·
n∑
i=1

Λhi

≤
n∑
i=1

(|a|+yi+ε)
(
µ(Ai) + ε

n

)
−|a| ·µ(K) (facts 2) and 4) above)

=
n∑
i=1

(yi−ε) ·µ(Ai) + (|a|+ 2ε) ·
(

n∑
i=1

µ(Ai)
)

+ε · (|a|+ε) + ε

n

(
n∑
i=1

yi

)
−|a| ·µ(K).
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Since A1, · · · ,An are disjoint sets in E , by finite additivity

µ(K) = µ(A1∪·· ·∪An) =
n∑
i=1

µ(Ai),

while yi ≤ b for 1≤ i≤ n implies that

n∑
i=1

yi ≤ nb,

so we have

Λf ≤
n∑
i=1

(yi−ε) ·µ(Ai) + (|a|+ 2ε) ·µ(K) +ε · (|a|+ b+ε)−|a| ·µ(K)

=
n∑
i=1

(yi−ε) ·µ(Ai) +ε · (2µ(K) + |a|+ b+ε) .

Define the function g as

g =
n∑
i=1

(yi−ε) · IAi ;

since A1, · · · ,An ∈ B(E,τ) and y1, · · · ,yn ∈ R, g is the linear combination of E-measurable real-
valued functions and therefore E-measurable itself.
Furthermore, for any x ∈ E, if x ∈K, then x ∈Ai for a unique 1≤ i≤ n, so that

g(x) = yi−ε < f(x).

On the other hand, if x /∈ K, then f(x) = g(x) = 0, so g ≤ f on E. By the monotonicity of
integration,

n∑
i=1

(yi−ε) ·µ(Ai) =
∫
E
gdµ≤

∫
E
fdµ,

and as such, we get the final inequality

Λf ≤
∫
E
fdµ+ε · (2µ(K) + |a|+ b+ε) .

This holds for any ε > 0, and the second term on the right hand side goes to 0 as ε does, so

Λf ≤
∫
E
fdµ.
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It follows, as mentioned above, that

Λf =
∫
E
fdµ.

Λf =
∫
E fdµ for arbitrary f ∈ Cc(E,τ)

Now suppose f is a general complex valued function in Cc(E,τ). Then, by the linearity of Λ and
integration,

Λf = Λ(Re(f)) + i ·Λ(Im(f))

=
∫
E
Re(f)dµ+ i ·

∫
E
Im(f)dµ

=
∫
E
fdµ,

since Re(f), Im(f) ∈ Cc(E,τ) as well.
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Step 11: The Uniqueness of µ

It remains to show that µ is the unique measure on (E,E) satisfying claims i) to v) of the
theorem. To this end, suppose that there exist two measures, µ1 and µ2, that satisfy i) to v).
For any A ∈ E , by ii) we have

µi(A) = inf{µi(V ) |A⊂ V | V ∈ τ}

for i= 1,2, so it suffices to show that µ1(V ) = µ2(V ) for any V ∈ τ to establish that µ1 = µ2 on
E . However, by iii) it holds that

µi(V ) = sup{µi(K) |K ⊂ V,K is compact}

for i = 1,2 and open V ∈ τ . Therefore, if µ1(K) = µ2(K) < +∞ for any compact set K, then
µ1(V ) = µ2(V ) for any open set V , which in turn implies that µ1 = µ2 on E . We thus prove that
µ1(K) = µ2(K) for any compact set K.

Choose any compact set K. For any i= 1,2, because µi(K)<+∞ and

µi(K) = inf{µi(V ) |Ki ⊂ V | V ∈ τ},

for any ε > 0 there exists an open set Vi ∈ τ such that Ki ⊂ Vi and

µi(K)≤ µi(Vi)< µi(K) +ε.

By Urysohn’s lemma, therre exists a continuous compactly supported function fi such that
Ki ≺ fi ≺ Vi.
If x ∈K, then fi(x) = 1, so that IK(x) = fi(x), while if x /∈K, then IK(x) = 0≤ fi(x); it follows
that IK ≤ fi.
Similarly, if x /∈ Vi, then fi(x) = 0 = IVi(x), while if x ∈ Vi, then fi(x)≤ 1 = IVi(x), which implies
that fi ≤ IVi on E.
Letting the subscript −i denote 1 if i= 2 and 2 if i= 1, we have

µ−i(K) =
∫
E
IKdµ−i ≤

∫
E
fdµ−i (Monotonicity of Integration; IK ≤ f on E)

= Λf =
∫
E
fdµi (Claim v); f ∈ Cc(E,τ))

≤
∫
E
IVidµi (Monotonicity of Integration; f ≤ IVi on E)

= µi(Vi)< µi(K) +ε.

This holds for any ε > 0, so it follows that

µ−i(K)≤ µi(K).
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Finally, this holds for i = 1 or 2, so we have µ1(K) = µ2(K) for any compat set K. As stated
above, this implies that µ1(A) = µ2(A) for any A ∈ E , and as such the measure µ constructed
across steps 1 to 10 is unique.
Q.E.D.
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4.2 The Regularity of Measures

Let (E,τ) be a locally compact Hausdorff space. Any measure µ defined for sets in B(E,τ) is
called a Borel measure.
Now let (E,E ,µ) be a measure space. µ is a Borel measure if and only if B(E,τ)⊂ E . If

µ(A) = inf{µ(V ) |A⊂ V,V ∈ τ}

for any set A in some collection B, then we say that µ is outer regular for sets in B.
Similarly, if µ satisfies

µ(A) = sup{µ(K) |K ⊂A,K is compact}

for any A ∈ B, then µ is inner regular for sets in B.
If µ is both outer and inner regular on B(E,τ), then we say that µ is a regular measure.
If µ is outer regular for all Borel sets, inner regular for all open sets, and µ(K) < +∞ for any
compact set K in E, then we say that µ is a Radon measure.

In light of the above definitions, we can see that, for any positive linear functional Λ defined
on the set of all continuous compactly supported functions, the Riesz representation theorem
proves the existence of a Radon measure µ that ”represents” Λ in the sense that Λf =

∫
E fdµ

for any continuous compactly supported function f . However, the theorem does not tell us that
the measure µ constructed above is a regular measure. Indeed, it is possible to find a measure
as constructed above that is not inner regular for every Borel set.

To ensure that µ is regular, we require additional restrictions on the topological properties of
(E,τ). To this end, we define the following concepts.
Let (E,τ) be a topological space, and µ a measure on the measurable space (E,E), where the
σ-algebra E contains the Borel σ-algebra B(E,τ).
For any A ∈ E , we say that A is σ-compact if A is the countable union of compact sets.
Similarly, we say that A ∈ E has σ-finite measure under µ if there exists a countable measurable
partition {An}n∈N+ of A such that µ(An)<+∞ for any n ∈N+. Note the similarities between
this definition and that of σ-finite measures.

The following are simple properties of σ-compact sets and sets with σ-finite measure:
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Lemma 4.2 Let (E,τ) be a locally compact Hausdorff space and B(E,τ) the correspond-
ing Borel σ-algebra. Let (E,E ,µ) be a measure space with properties i) to iv) of the Riesz
representation theorem: to state them for completeness, assume that

i) µ(K)<+∞ for any compact K ⊂ E

ii) Any E-measurable set is outer regular; for any A ∈ E ,

µ(A) = inf{µ(V ) |A⊂ V,V ∈ τ}

iii) Any E-measurable set with finite measure or any open set is inner regular; for any A ∈ E
such that µ(A)<+∞ or A ∈ τ ,

µ(A) = sup{µ(K) |K ⊂A,K is compact}

iv) (E,E ,µ) is complete, and E contains all Borel sets.

Then, the following hold true:

i) If A ∈ E is σ-compact, then it has σ-finite measure under µ.

ii) If A ∈ E has σ-finite measure under µ, then it is inner regular.

Proof) Suppose that A ∈ E is σ-compact. Then, there exists a sequence {Kn}n∈N+ of compact
sets such that A = ⋃

nKn. Note that µ(Kn) < +∞ by property i) of the Riesz repre-
sentation theorem.
Define the sequence {An}n∈N+ as A1 =K1 and

An =Kn \
(
n−1⋃
i=1

Ki

)

for n≥ 2. Then, each An is E-measurable, and {An}n∈N+ is disjoint with union ⋃nKn =
A. Finally, by the monotonicity of measures,

µ(An)≤ µ(Kn)<+∞

for any n ∈ N+. This means that {An}n∈N+ is a measurable partition of A such that
µ(An)<+∞ for each n, so by definition A has σ-finite measure under µ.

Now suppose that A ∈ E has σ-finite measure under µ. By definition, there exists a
measurable partition {An}n∈N+ of A such that µ(An)<+∞ for any n ∈N+.
If µ(A) < +∞, then A is inner regular by property iii) of the Riesz representation
theorem, so suppose that µ(A) = +∞. We need to show that

sup{µ(K) |K ⊂A,K is compact}= +∞.
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Choose any M > 0. From the countable additivity of measures, we have

+∞= µ(A) =
∞∑
n=1

µ(An).

Thus, there exists an N ∈N+ such that ∑n
i=1µ(Ai)>M for any n≥N . Defining

ε=
N∑
i=1

µ(Ai)−M > 0,

because µ(Ai)<+∞ for any 1≤ i≤N , A1, · · · ,AN are inner regular sets, and as such,
for any 1≤ i≤N there exists a compact set Ki such that Ki ⊂Ai and

µ(Ai)−
ε

N
< µ(Ki).

Because A1, · · · ,AN are disjoint, so are K1, · · · ,KN , so that, by countable additivity,

N∑
i=1

µ(Ai)−ε <
N∑
i=1

µ(Ki) = µ(K)

for the compact set K = K1∪ ·· ·∪KN . Since Ki ⊂ Ai ⊂ A for each 1 ≤ i ≤N , K ⊂ A
and

M =
N∑
i=1

µ(Ai)−ε < µ(K)≤ sup{µ(K ′) |K ′ ⊂A,K ′ is compact}.

This holds for any M > 0, so that

sup{µ(K) |K ⊂A,K is compact}= +∞= µ(A).

Q.E.D.

Now we can show that, if the entire set E is σ-compact in addition to (E,τ) being a locally
compact Hausdorff space, then the measure defined in the Riesz representation theorem is a
regular measure in addition to being a Radon measure. Furthermore, σ-compactness allows us
to extend the approximation property introduced in step 6 of the proof of the representation
theorem to every measurable set, not just to those measurable sets with finite measure.
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Theorem 4.3 Let (E,τ) be a locally compact Hausdorff space and B(E,τ) the correspond-
ing Borel σ-algebra. Let (E,E ,µ) be a measure space with properties i) to iv) of the Riesz
representation theorem:

i) µ(K)<+∞ for any compact K ⊂ E

ii) Any E-measurable set is outer regular; for any A ∈ E ,

µ(A) = inf{µ(V ) |A⊂ V,V ∈ τ}

iii) Any E-measurable set with finite measure or any open set is inner regular; for any A ∈ E
such that µ(A)<+∞ or A ∈ τ ,

µ(A) = sup{µ(K) |K ⊂A,K is compact}

iv) (E,E ,µ) is complete, and E contains all Borel sets.

If E is σ-compact, then the following hold true:

i) µ is a regular Borel measure.

ii) For any A ∈ E and ε > 0, there exist open and closed sets V and F such that F ⊂ A⊂ V
and µ(V \F )< ε.

iii) For any A ∈ E , there exist measurable sets F,V such that F is Fσ (the countable union of
closed sets), V is Gδ (the countable intersection of open sets), F ⊂A⊂ V and µ(V \F ) = 0.

Proof) We will first show that µ is a regular measure. By σ-compactness, there exists a sequence
{Kn}n∈N+ of compact sets such that E =⋃

nKn. For any A ∈ E ,

A=A∩E =
⋃
n

(A∩Kn).

Defining An =A∩Kn for any n ∈N+, by monotonicity and the fact that µ(Kn)<+∞
by property i) of the representation theorem tells us that µ(An)<+∞.
Define the sequence {Bn}n∈N+ as B1 =A1 and

Bn =An \
(
n−1⋃
i=1

Ai

)

for n≥ 2. Then, each Bn is E-measurable, and {Bn}n∈N+ is disjoint with union ⋃nAn =
A. Finally, by the monotonicity of measures,

µ(Bn)≤ µ(An)<+∞

for any n ∈ N+. This means that {Bn}n∈N+ is a measurable partition of A such that
µ(Bn)<+∞ for each n, so by definition A has σ-finite measure under µ.
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By the preceding lemma, it now follows that A is inner regular. Since A is also outer
regular by property ii) of the representation theorem, and A was chosen arbitrarily
from E , we can see that µ is a regular Borel measure.

Now we will show that the approximation property holds.
Let A ∈ E and ε > 0. For any n ∈N+, note that A∩Kn is outer regular by property ii)
of the representation theorem and thus

µ(A∩Kn) = inf{µ(V ) |A∩Kn ⊂ V,V ∈ τ}.

Because Kn and thus A∩Kn have finite measure under µ by property i) of the rep-
resentation theorem, by the definition of the infimum there exists an open set Vn ∈ τ
containing A∩Kn such that

µ(Vn)< µ(A∩Kn) + ε

2n+2 .

This implies that

µ(Vn \ (A∩Kn)) = µ(Vn)−µ(A∩Kn)< ε

2n+1 ,

where the equality follows from finite additivity and the fact that A∩Kn ⊂ Vn.
Defining V =⋃

nVn ∈ τ ,

V \A=
⋃
n

(Vn \A)⊂
⋃
n

(Vn \ (A∩Kn)) ,

so that, by monotonicity and countable subadditivity,

µ(V \A)≤
∞∑
n=1

µ(Vn \ (A∩Kn))≤ ε

4 .

The above result holds for Ac as well, so there exists an open set U ∈ τ such that Ac⊂U
and

µ(U \Ac)≤ ε

4 .

Defining F = U c, F is closed and F ⊂ A. Furthermore, since U \Ac = A∩U = A \F ,
using the fact that

V \F ⊂ (V \A)∪ (A\F ),
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we can see that

µ(V \F )≤ µ(V \A) +µ(A\F )≤ ε

2 < ε.

To prove the final claim, choose any A ∈ E . By the above result, for any n ∈N+ there
exist open and closed sets Vn and Fn such that Fn ⊂A⊂ Vn such that µ(Vn \Fn)< 1

n .
Defining V =⋂

nVn and F =⋃
nF , V is Gδ, F is Fσ, and

F =
⋃
n

Fn ⊂A⊂
⋂
n

Vn = V.

For any n ∈N+,

V \F ⊂ Vn \Fn,

since V ⊂ Vn and F c ⊂ F cn. By monotonicity,

µ(V \F )≤ µ(Vn \Fn)< 1
n
,

and because this holds for any n ∈N+, we have µ(V \F ) = 0.
Q.E.D.
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The following theorem furnishes sufficient conditions for an arbitrary Borel measure to be regular.

Theorem 4.4 Let (E,τ) be a locally compact Hausdorff space and B(E,τ) the corresponding
Borel σ-algebra. Let v be a measure on the measurable space (E,B(E,τ)), making v a Borel
measure.
If every open set in E is σ-compact and every compact set in E has finite measure under v, then
v is a regular Borel measure.

Proof) Let f ∈ Cc(E,τ) with compact support K. By continuity, f is a Borel measurable
complex function. We will first show that f is v-integrable.
Because f(E) is a compact subset of the complex plane, by the Heine-Borel thoerem
f(E) is closed and bounded; thus, there exists an M < +∞ such that |f(x)| ≤M for
any x ∈ E. In addition, since f(x) = 0 for any x /∈K, we can see that∫

E
|f |dv =

∫
K
|f |dv+

∫
Kc
|f |dv =

∫
K
|f |dv.

|f | ≤M on K, so ∫
E
|f |dv ≤M ·v(K)<+∞,

where v(K)<+∞ because K is compact. Therefore, f is a v-integrable Borel measur-
able function, so that f ∈ L1(B(E,τ),v).

Now we can define the complex-valued function Λ on Cc(E,τ) as

Λf =
∫
E
fdv

for any f ∈Cc(E,τ). Λ is a linear functional because of the linearity of integration, and
because the integral of a non-negative real-valued measurable function takes values in
[0,+∞], Λ is positive as well.
By the Riesz representation theorem, because Λ is a linear functional on Cc(E,τ) and
(E,τ) is locally compact and Hausdorff, there exists a σ-algebra E on E and a measure
µ on (E,E) satisfying the claims of the representation theorem.
Because E is itself an open set, it is σ-compact; by the previous theorem, µ is a regular
measure. v will then be shown to be regular if we can just show that v(A) = µ(A) for
any Borel set A. This is what we will show for the remainder of the proof.

We first show that v(V ) = µ(V ) for any open set V ∈ τ . By the assumption of σ-
compactness, there exists a sequence {Kn}n∈N+ of compact sets such that V =⋃

nKn.
For any n ∈N+, because Kn ⊂ V and (E,τ) is a locally compact Hausdorff space, by
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Urysohn’s lemma there exists an fn ∈ Cc(E,τ) such that Kn ≺ fn ≺ V . Defining

gn = max(f1, · · · ,fn),

we can see that gn, bing the maximum of continuous functions, is also continuous.
Furthermore, because {f1 = 0}∩ · · ·∩{fn = 0} ⊂ {gn = 0}, we have

{gn 6= 0} ⊂ {f1 6= 0}∪ · · ·∪{fn 6= 0} ⊂ {f1 6= 0}∪ · · ·∪{fn 6= 0},

where the set on the rightmost side is compact by the assumption that f1, · · · ,fn are
compactly supported. Thus, gn is a continuous compactly supported function on E.
In addition, because fi(x) ∈ [0,1] for any x ∈E, gn(x) ∈ [0,1] for any x ∈E as well, and
the support of gn is contained in V because f1, · · · ,fn ≺ V . Finally, fi(x) = 1 for any
x ∈Ki and 1≤ i≤ n, so

gn(x) = max(f1(x), · · · ,fn(x)) = 1

for any x ∈K1∪·· ·∪Kn.
We have so far constructed an increasing sequence {gn}n∈N+ of continuous compactly
supported functions taking values in [0,1] such that, for any n ∈N+, gn(x) = 1 for any
x∈K1∪·· ·∪Kn and gn(x) = 0 for any x /∈ V . Choose any x∈E; if x∈ V , then because
V =⋃

nKn, x ∈KN for some N ∈N+, which implies that

|IV (x)−gn(x)|= 0

for any n≥N . On the other hand, if x /∈ V , then |IV (x)−gn(x)|= 0 once again, so it
follows by definition that gn↗ IV pointwise.
{gn}n∈N+ ⊂ Cc(E,τ) is an increasing sequence of non-negative E-measurable functions
with pointwise limit IV ; it follows that

v(V ) =
∫
E
IV dv = lim

n→∞

∫
E
gndv (The MCT)

= lim
n→∞

Λgn (Definition of Λ)

= lim
n→∞

∫
E
gndµ (The Riesz Representation Theorem)

=
∫
E
IV dµ= µ(V ). (The MCT)

It remains to show that µ(A) = v(A) for any Borel set A.
First, choose any A ∈ B(E,τ). Because E is σ-compact, by the approximation property
shown above, for any ε> 0 there exist open and closed sets V and F such that F ⊂A⊂V
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such that µ(V \F )< ε. By finite additivity and the fact that F ⊂ V ,

µ(V ) = µ(F ∪ (V \F )) = µ(F ) +µ(V \F )≤ µ(F ) +ε,

where the inequality is not strict because µ(F ) could be +∞, and because V is open,
µ(V ) = v(V ) and thus

v(V )≤ µ(F ) +ε.

Since V \F ∈ τ , we also have v(V \F ) = µ(V \F )< ε; it thus holds that

µ(V ) = v(V ) = v(F ) +v(V \F )≤ v(F ) +ε.

Therefore,

µ(A)≤ µ(V )≤ v(F ) +ε≤ v(A) +ε and

v(A)≤ v(V )≤ µ(F ) +ε≤ µ(A) +ε

by the monotonicity of measures.
If µ(A) = +∞ or v(A) = +∞, then we immediately have µ(A) = v(A). If µ(A),v(A)<
+∞, then the above implies that

|µ(A)−v(A)|< ε,

and because this holds for any ε > 0, we have µ(A) = v(A).
Q.E.D.
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4.3 Finite-Dimensional Linear Algebra

Before constructing the Lebesgue measure, we first review linear algebra on finite-dimensional
vector spaces and the properties of matrices. Matrices have an intimate relationship with eu-
clidean spaces, and indeed have important geometric properties that can be elucidated with the
help of the Lebesgue measure. We assume knowledge of the basic definitions of fields, vector
spaces, linear subspaces, bases of vector spaces, the span of a set, and linear independence.

4.3.1 Vector Spaces and Bases

We first show that any linearly independent subset of a finite-dimensional vector space can be
extended to a basis of that space.

Theorem 4.5 Let V be an n-dimensional vector space over the field F , and {v1, · · · ,vm} a
linearly independent subset of V . Then, m ≤ n and there exist vectors u1, · · · ,un−m ∈ V such
that {v1, · · · ,vm,u1, · · · ,un−m} forms a basis of V .

Proof) We proceed by induction on m. If m = 0, then we can take {u1, · · · ,uk} to simply be
any basis of V , and the claim holds true.

Now suppose that the claim holds for some 0 ≤ m ≤ n, and let {v1, · · · ,vm+1} be a
linearly independent subset of V . By the inductive hypothesis, m ≤ n, and there ex-
ist vectors u1, · · · ,uk−m ∈ V such that {v1, · · · ,vm,u1, · · · ,un−m} forms a basis of V . If
m= n, then {v1, · · · ,vm} forms a basis of V and vm+1, being a vector in V , is contained
in the span of {v1, · · · ,vm}. This contradicts the linear independence of {v1, · · · ,vm+1},
so it must be the case that m< n, which implies that m+ 1 ≤ n. In other words, the
inductive process cannot go beyond m= n.

Since {v1, · · · ,vm,u1, · · · ,un−m} is a basis of V , there exist a1, · · · ,am, b1, · · · , bn−m ∈ F
such that

vm+1 =
m∑
i=1

ai ·vi+
n−m∑
i=1

bi ·ui.

If b1 = · · ·= bn−m = 0, then vm+1 is a linear combination of v1, · · · ,vm, which contradicts
the lienar indepenence of {v1, · · · ,vm+1}, so there must be at least one 1 ≤ i ≤ n−m
such that bi 6= 0. Without loss of generality, suppose b1 6= 0. Then,

u1 = 1
b1
vm+1 +

m∑
i=1

(
−ai
b1

)
vi+

n−m∑
i=2

(
− bi
b1

)
ui,

so that u1 is contained in the span of B = {v1, · · · ,vm+1,u2, · · · ,un−m}. We will show
that B forms a basis of V .
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It is easy to see that B spans V ; since

{v1, · · · ,vm,u1, · · · ,un−m} ⊂ span({v1, · · · ,vm+1,u2, · · · ,un−m}) ,

the span of {v1, · · · ,vm,u1, · · · ,un−m}, the vector space V , is contained in the span of
{v1, · · · ,vm+1,u2, · · · ,un−m}. Each vector in {v1, · · · ,vm+1,u2, · · · ,un−m} is contained in
V , so it follows that

V = span({v1, · · · ,vm+1,u2, · · · ,un−m}) .

To see that these vectors are linearly independent, let

m+1∑
i=1

αi ·vi+
n−m∑
i=2

βi ·ui = 0

for some α1, · · · ,αm+1,β2, · · · ,βn−m ∈ F . Then, since vm+1 can be written as a linear
combination of v1, · · · ,vm,u1, · · · ,un−m as above, substituting that into the above equa-
tion yields

m∑
i=1

(αi+αm+1ai) ·vi+αm+1b1 ·u1 +
n−m∑
i=2

(βi+αm+1bi) ·ui = 0.

By the linear independence of v1, · · · ,vm,u1, · · · ,uk−m,

αi+αm+1ai = 0 for any 1≤ i≤m

αm+1b1 = 0

βi+αm+1bi = 0 for any 2≤ i≤ n−m.

Since b1 6= 0, αm+1 = 0, so that ai = βj = 0 for any 1≤ i≤m and 2≤ j ≤ n−m. As such,
v1, · · · ,vm+1,u2, · · · ,un−m are linearly independent, and {v1, · · · ,vm+1,u2, · · · ,un−m} forms
a basis of V .

The claim now follows from induction.

Q.E.D.

Corollary to Theorem 4.5 Let V be an n-dimensional vector space over the field F . Then,
the following hold true:

i) Any subset of V with more than n elements must be linearly dependent.

ii) Any linearly independent subset of V with exactly n elements is a basis of V .

iii) Any linear subspace of V must have dimension at most n.
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iv) The only linear subspace of V with dimension n is V itself.

Proof) The first point follows because we showed above that any linearly independent subset
of V can have at most n elements. The second point follows immediately from putting
m= n in the theorem above.

The third point follows by assuming that some lineear subspace W of V has dimension
greater than n. Then, W has a basis consisting of more than n linearly independent
vectors, where the existence of a basis of W is guaranteed by theorem 2.19. However,
because these vectors are also contained in V , this contradicts the first point. Therefore,
W must have dimension at most n.

Finally, to see the fourth point, suppose that W is a subspace of V with dimension n.
Then, it has a basis {u1, · · · ,un}; this is a linearly independent subset of V with n ele-
ments, so by the second point, it is also a basis of V . Therefore, V = span({u1, · · · ,un}) =
W .

Q.E.D.
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4.3.2 Linear Transformations

Let V,W be finite-dimensional vector spaces over the same field F . We denote by L(V,W ) the
space of all linear transformations T : V →W , that is, functions from V into W such that

T (ax+y) = a ·T (x) +T (y)

for any a ∈ F and x,y ∈ V . Letting dim(V ) = n and dim(W ) = m, we can choose bases B =
{v1, · · · ,vn} and B′ = {u1, · · · ,um} of V and W . Define the coordinate mappings cB : V → Fn

and cB′ :W → Fm as the functions satisfying

v =
(
v1 · · · vn

)
cB(v) and u=

(
u1 · · · um

)
cB′(u)

for any v ∈ V and u ∈W . These functions are well-defined because every vector has a unique
representation in terms of the linear combination of basis vectors.

Matrix Representations of Linear Transformations
Note that cB is itself a linear transformations; for any a ∈ F and x,y ∈ V , we can see that

a ·x+y =
(
v1 · · · vn

)
cB(a ·x+y)

= a ·
(
v1 · · · vn

)
cB(x) +

(
v1 · · · vn

)
cB(y) =

(
v1 · · · vn

)
(a · cB(x) + cB(y)) ,

from which it follows that cB(a ·x+ y) = a · cB(x) + cB(y) by the uniqueness of the coordinate
mapping. The same process shows us that cB′ is a linear transformation from W into Fm.

For any T ∈ L(V,W ) we can define the matrix

[T ]B′B =
(
cB′(T (v1)) · · · cB′(T (vn))

)
∈ Fm×n.

For any x∈V , we have x=∑n
i=1 cB(x)i ·vi, and for any 1≤ i≤n, T (vi) =

(
u1 · · · um

)
cB′(T (vi)),

which together imply that

T (x) =
(
u1 · · · um

)
cB′(T (x))

=
n∑
i=1

cB(x)i ·T (vi) =
(
T (v1) · · · T (vn)

)
cB(x)

=
(
u1 · · · um

)[(
cB′(T (v1)) · · · cB′(T (vn))

)
cB(x)

]
=
(
u1 · · · um

)
[T ]B′B cB(x).

The uniquness of the coordinate mapping again implies that

cB′(T (x)) = [T ]B′B cB(x).

The matrix [T ]B′B is called the left-multiplication matrix of T with respect to the bases B and B′;
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it allows us to express the coordinate mapping of T (x) in terms of a matrix product involving
the coordinate mapping of x.

Matrix Representations of Compositions of Linear Transformations
Consider three vector spaces V,W,Z be vector spaces over the same field F with bases B,B′

and B′′. Let T ∈ L(V,W ) and U ∈ L(W,Z). Consider the composition U ◦T : V → Z. U ◦T is a
linear transformation: for any a ∈ F and x,y ∈ V ,

(U ◦T )(a ·x+y) = U(T (a ·x+y)) = U(a ·T (x) +T (y))

= a ·U(T (x)) +U(T (y)) = a · (U ◦T )(x) + (U ◦T )(y).

This allows us to see that, for any x ∈ V ,

cB′′((U ◦T )(x)) =
(
[U ]B′′B′

)
cB′′(T (x)) =

(
[U ]B′′B′ [T ]B′B

)
cB(x)

=
(
[U ◦T ]B′′B′

)
cB(x).

In other words,

[U ◦T ]B′′B′ = [U ]B′′B′ [T ]B′B ,

so that the matrix representation of the composition of linear transformations is equivalent to
the product of the matrix representations of each transformation.

Linear Operators
A linear operator on V is defined as a linear transformation from V into V , and we denote

the collection of all such transformations by L(V ). Given a basis B of V , we define the left-
multiplication matrix of T with respect to the basis B as

[T ]B = [T ]BB,

so that

cB(T (x)) = [T ]BcB(x)

for any x ∈ V .
Of special interest to us are linear operators on euclidean k-space, that is, members of the

space L(Rk). In this case, letting E = {e1, · · · ,ek} be the standard basis of Rk, cE(x) = x for any
x ∈ Rk. Therefore, for any T ∈ L(Rk), we have

T (x) = ([T ]E)x
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for any x ∈ Rk, so that T can be represented as a product with respect to the matrix [T ]E .

The Rank-Nullity Theorem
Returning to the more general case of linear transformations in L(V,W ), we define the range

of T ∈ L(V,W ) as the set

R(T ) = {y ∈W | T (x) = y for some x ∈ V },

which is exactly the image of V under the function T . The null space of T is defined as

N(T ) = {x ∈ V | T (x) = 0W }.

Note that, since T (0V ) = 0W for any linear transformation T , N(T ) contains 0V and R(T )
contains 0W . Furthermore, if y,z ∈R(T ) with y = T (x1) and z = T (x2), then for any a ∈ F ,

T (a ·x1 +x2) = a ·T (x1) +T (x2) = a ·y+z,

so that a ·y+z ∈R(T ). Similarly, if x,y ∈N(T ), then for any a ∈ F ,

T (a ·x+y) = a ·T (x) +T (y) = 0W ,

so that a ·x+y ∈N(T ) as well. Therefore, the range and null space of T are linear subspaces of
W and V . The dimension of R(T ) and N(T ) are called the rank and nullity of T , respectively.
It immediately follows that rank(T ) ≤m and nullity(T ) ≤ n. We can actually show that their
sum must equal k, the dimension of the domain of T .

Theorem 4.6 (Rank-Nullity Theorem)
Let V and W be n-and m-dimensional vector spaces over the same field F . Then, for any
T ∈ L(V,W ),

rank(T ) + nullity(T ) = n.

Proof) Suppose first that N(T ) = V . Then, R(T ) = {0W }, so that the claim holds trivially. As
such, suppose that N(T ) has dimension m between 1 and n−1, and let {v1, · · · ,vm}⊂ V
be a basis of N(T ). By theorem 4.5, there then exist linearly independent vectors
u1, · · · ,un−m ∈ V such that {v1, · · · ,vm,u1, · · · ,uk−m} is a basis of V . We will show that
{T (u1), · · · ,T (un−m)} forms a basis of R(T ) to complete the proof.

For any x ∈ V , there exist a1, · · · ,am, b1, · · · , bn−m ∈ R such that

x=
m∑
i=1

ai ·vi+
n−m∑
i=1

bi ·ui.
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Applying the transformation T to both sides yields

T (x) =
m∑
i=1

ai ·T (vi) +
n−m∑
i=1

bi ·T (ui) =
kn−m∑
i=1

bi ·T (ui),

where the second equality follows because each vi ∈N(T ). This shows us that {T (u1), · · · ,T (un−m)}
spans R(T ). It remains to show that these vectors are linearly independent. Suppose
that

n−m∑
i=1

bi ·T (ui) = 0W

for some b1, · · · , bn−m ∈ R. Then, since

T

(
n−m∑
i=1

bi ·ui

)
= 0W ,

the linear combination ∑n−m
i=1 bi ·ui ∈N(T ), and there exist a1, · · · ,am ∈ R such that

n−m∑
i=1

bi ·ui =
m∑
i=1

ai ·vi,

or equivalently,

m∑
i=1

(−ai) ·vi+
n−m∑
i=1

bi ·ui = 0V .

By the linear independence of {v1, · · · ,vm,u1, · · · ,uk−m}, it follows that a1 = · · ·= am =
b1 = · · ·= bn−m = 0, which shows us that {T (u1), · · · ,T (un−m)} is linearly independent
and therefore a basis of R(T ).

Q.E.D.

What the rank-nullity theorem shows us is that, in particular, a linear transformation
T ∈ L(V,W ) between spaces with the same dimension is injective if and only if it is surjec-
tive. We state this as a corollary:

Corollary to Theorem 4.6 Let V and W be n-dimensional vector spaces over the same
field F . T ∈ L(V,W ) is injective if and only if it is surjective.

Proof) Suppose that T is injective. Then, for any x ∈ V ,

T (x) = 0W = T (0V )
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implies that x= 0V . In other words, N(T ) = {0V }, so that

n= rank(T ) + nullity(T ) = rank(T ).

Thus, R(T ) is a linear subspace of W with the same dimension as W ; it follows that
W =R(T ), or that T maps onto W .

Conversely, suppose that T is surjective, or that R(T ) =W . Then, by the rank-nullity
theorem,

n= rank(T ) + nullity(T ) = n+ nullity(T ),

or that nullity(T ) = 0. By implication, N(T ) = {0V }. For any x,y ∈ V , T (x) = T (y)
tells us that T (x−y) = 0W and thus x−y = 0V , or x= y. Therefore, T is injective.

Q.E.D.

Non-singular Linear Transformations
Let V,W be n-and m-dimensional vector spaces over the same field F , and let B= {v1, · · · ,vn}

and B′= {u1, · · · ,un} be bases of V and W . We say T ∈L(V,W ) is non-singular if it is a bijection
from V onto W . Note that, if T is non-singular, then n = m; this is because rank(T ) = m by
surjectivity, nullity(T ) = 0 by injectivity, and finally, by the rank-nullity theoren,

n= rank(T ) + nullity(T ) =m.

Any non-singular T ∈ L(V,W ) is also called a vector space isomorphism between V and W .
In light of the above theorem, given vector spaces with the same dimension, T is non-singular

if and only if R(T ) =W if and only if N(T ) = {0V }. By implication, T is singular if and only if
there exists some non-zero x ∈ V such that T (x) = 0W .

Because any non-singular T is a bijection, it admits an inverse function T−1 :W → V . It is
easy to see that this inverse is also a linear transformation: for any a ∈ F and x,y ∈W ,

T
(
T−1(a ·x+y)−a ·T−1(x)−T−1(y)

)
= T

(
T−1(a ·x+y)

)
−a ·T (T−1(x))−T (T−1(y))

= a ·x+y−a ·x−y = 0W ,

where the first equality follows from the linearity of T . Since N(T ) = {0V }, it now follows that

T−1(a ·x+y)−a ·T−1(x)−T−1(y) = 0V ,

from which we can conclude that T−1 is linear. Thus, T−1 ∈ L(W,V ) and T−1 admits a left-
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multiplication matrix

[T−1]BB′ =
(
cB(T−1(u1)) · · · cB(T−1(un))

)
∈ Fn×n.

We can now furnish convenient characterizations of non-singularity:

Theorem 4.7 (Characterization of Non-singularity)
Let V and W be n-dimensional vector spaces over the same field F with bases B = {v1, · · · ,vn}
and B′ = {u1, · · · ,un}. Let T ∈ L(V,W ). Then, the following are equivalent:

i) T is non-singular.

ii) [T ]B′B ∈ Fn×n is an invertible matrix with inverse equal to [T−1]BB′ .

iii) x= 0 ∈ Fn is the unique solution to the system of linear equations [T ]B′B x= 0.

iv) The columns of [T ]B′B are linearly independent.

Proof) We will show that i) → ii)→ iii)→ iv).

Suppose that T is non-singular. For any x ∈ V , then,

cB(x) = cB
(
T−1(T (x))

)
= [T−1]BB′cB′ (T (x))

= [T−1]BB′ [T ]B′B cB(x),

so that

[T−1]BB′ [T ]B′B = In.

A similar process starting from any y ∈W shows us that

[T ]B′B [T−1]BB′ = In,

so by definition

(
[T ]B′B

)−1
= [T−1]BB′ .

This shows that [T ]B′B is invertible with inverse matrix equal to [T−1]BB′ .

Suppose that [T ]B′B is invertible. Then, the unique solution x∗ ∈ Fn of the system of
linear equations [T ]B′B x= 0 is given as

x∗ =
(
[T ]B′B

)−1
0 = 0.
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Now suppose that x= 0 ∈ Fn is the unique solution to the system of linear equations
[T ]B′B x= 0. Let y1, · · · ,yn ∈ Fn be the columns of [T ]B′B , and assume

n∑
i=1

ai ·yi = 0

for some a1, · · · ,an ∈ F . Then, defining a= (a1, · · · ,an)′ ∈ Fn,

[T ]B′B a=
n∑
i=1

ai ·yi = 0,

so that a= 0, or ai = 0 for any 1≤ i≤ n. By definition, y1, · · · ,yn are linearly indepen-
dent vectors in Fn.

Finally, suppose that the columns y1, · · · ,yn ∈ Fn of [T ]B′B are linearly independent. For
any x ∈ V , suppose

T (x) = 0W .

Then, letting x=∑n
i=1xi ·vi,

0 = cB′(T (x)) = [T ]B′B cB(x) =
n∑
i=1

xi ·yi.

By the linear independence of y1, · · · ,yn, we have x1 = · · · = xn = 0, so that x = 0V .
This implies that N(T ) = {0V } and therefore that T is non-singular.

Q.E.D.

The content of the above theorem implies that we identify any T ∈ L(Rk) with its left-
multiplication matrix [T ]E , and, if [T ]E is invertible, to identify its inverse [T ]−1

E with the inverse
mapping T−1 ∈ L(Rk).

While we have worked with linear transformations so far, we can also start from matrices.
Let F be a field and A ∈ Fm×n. Then, we can define the linear transformation LA ∈ L(Fn,Fm)
as

LA(x) =Ax

for any x ∈ Fn. Letting B = {e1, · · · ,en}, B′ = {u1, · · · ,um} be the standard bases of Fn and Fm,
and A1, · · · ,An ∈ Fm the columns of A, we can see that

[LA]B′B =
(
cB′(LA(e1)) · · · cB′(LA(en))

)
=
(
LA(e1) · · · LA(en)

)
=
(
A1 · · · An

)
=A.

That is, LA is a linear transformation whose left-multiplication matrix with respect to the stan-
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dard bases of Fn and Fm is exactly A. We thus call LA the left-multiplication transformation
of A, and now we can state the preceding theorem in temrs of matrices:

Matrix Version of Theorem 4.7 (Characterization of Non-singularity)
Let F be a field and A ∈ Fn×n. Then, the following are equivalent:

i) A is an invertible matrix.

ii) The left-multiplication transformation LA ∈ L(Fn) is non-singular with inverse transfor-
mation equal to LA−1 ∈ L(Fn), the left-multiplication transformation of A−1.

iii) x= 0 ∈ Fn is the unique solution to the system of linear equations Ax= 0.

iv) The columns of A are linearly independent.

Proof) None of them require elaboration except the fact that LA−1 is the inverse of LA. This
follows because, for any x ∈ Fn,

LA(LA−1(x)) = LA(A−1x) =A(A−1(x)) = x,

and similarly for LA−1(LA(x)). By definition, LA−1 is the inverse of LA.

Q.E.D.

This equivalence motivates our definition of a non-singular matrix as simply an invertible matrix.
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4.3.3 Elementary Matrix Operations

Here we shift our focus from linear transformations to matrices, and study how to represent
invertible matrices in terms of the product of elementary matrices. Letting F be a field, n×n
elementary matrices are matrices that are obtained either by:

Type 1 : Interchanging the columns of In

Type 2 : Multiplying the column of In by a constant c 6= 0

Type 3 : Adding a column of In to another column of In

Note that the definition of elementary matrices can be equivalently formulated in terms of the
rows of In, owing to the diagional nature of the identity matrix. Pre- or post-multiplying a matrix
A by an elementary matrix applies that operation to the rows and columns of A, respectively.
For example, consider the type 1 elementary matrix

E =

0 1
1 0



obtiained by interchanging the first and second columns (rows) of I2. Given any A=

a b

c d

,

EA=

c d

a b

 ,
so that the rows of A are interchanged. In contrast,

AE =

b a

d c

 ,
so that the columns of A are interchanged.

Each elementary matrix is invertible, with inverse equal to the product of a finite number
of elementary matrices. Consider an elementary matrix E ∈ Fn×n. If E is of type 1, then E−1

is simply itself. If E is of type 2, obtained by multiplying the jth column of In by c 6= 0, then
E−1 is another elementary matrix of type 2, obtained by multiplying the jth column of In by
1
c . Finally, if E is of type 3, obtained by adding the ith column of In to its jth column, then
E−1 is given as

E−1 = E1E2E1,

where E1 is the elementary matrix of type 2 obtained by multiplying the ith column of In by
-1, and E2 = E.
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Now consider a matrix A ∈ Fm×n. The rank of A is defined as the dimension of the column
space of A, that is, the subspace of Fm spanned by the columns of A. Under this definition, the
rank of a linear transformation coincides with the rank of its left-multiplication matrix:

Theorem 4.8 Let V and W be n-dimensional vector spaces over the same field F with bases
B = {v1, · · · ,vn} and B′ = {u1, · · · ,un}. For any T ∈ L(V,W ), the rank of T (the dimension of
the range R(T )) and the rank of its left-multiplication matrix A = [T ]B′B (the dimension of the
column space col(A)) are equivalent.

Proof) Denote the columns of A by A1, · · · ,An ∈ Fm; the column space col(A) of A is the
subspace of Fm spanned by {A1, · · · ,An} ⊂ Fm. Define the mapping U :R(T )→ col(A)
as

U(y) = cB′(y)

for any y ∈R(T ), that is, as the restriction of the coordinate mapping cB′ to the subspace
R(T ). U is clearly linear and injective. To see that it is surjective, choose any z ∈ col(A).
Then, there exist a1, · · · ,an ∈ F such that

z =
n∑
i=1

ai ·Ai =A ·


a1
...
an


by definition. Thus, defining

y =
m∑
i=1

zi ·ui and x=
n∑
i=1

ai ·vi,

we have

cB′(y) = z =A · cB(x) = cB′(T (x)),

so that y ∈ R(T ). In other words, z = U(y) for some y ∈ R(T ), which makes U a
surjection from R(T ) onto col(A). It follows that U ∈ L(R(T ),col(A)), making U an
isomorphism between R(T ) and col(A). By implication, R(T ) and col(A) have the same
dimension.

Q.E.D.

We say a matrix A ∈ Fm×n has full rank if its columns are linearly independent; this clearly
requires m ≥ n, since there any linearly independent set in Fm can have at most m elements.
Note that, in the case m = n, the matrix version of theorem 4.7 implies that A is invertible if
and only if A has full rank.
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The following theorem, which is of central importance, shows us how to row-reduce any
matrix so that the computation of its rank is rendered trivial. First, we present an elementary
lemma.

Lemma 4.9 Let F be a field and A ∈ Fm×n, B ∈ Rm×m and C ∈ Rn×n. If B and C are
invertible, then

rank(BAC) = rank(A).

Proof) Let x ∈ col(AC). Then, there exists a y ∈ Fn such that x = (AC)y = A(Cy). Thus,
x ∈ col(A), so that col(AC) ⊂ col(A). Conversely, if x ∈ col(A), then there exists a
y ∈ Fn such that x=Ay = (AC)(C−1y). Thus, x ∈ col(AC) as well, so that

rank(A) = dim(col(A)) = dim(col(AC)) = rank(AC).

Now note that

col(BA) =B(col(A)) := {y ∈ Fm |Bx= y for some x ∈ col(A)},

where B(col(A)) is clearly a linear subspace of Fm. If x ∈ col(BA), then x= (BA)y =
B(Ay) for some y ∈ Fn, so that x ∈ B(col(A)). Meanwhile, if x ∈ B(col(A)), then
there exists some y ∈ col(A) such that x=By, and by definition there exists a z ∈ Fn

such that y = Az, which implies x = B(Az) = (BA)z and thus x ∈ col(BA). Letting
T : col(A)→B(col(A)) be the linear transformation defined as

T (x) =Bx

for any x ∈ col(A), the invertibility of B immediately shows us that T is injective, and
T is surjective by construction. Therefore, T is an isomorphism between col(A) and
B(col(A)), meaning that

rank(A) = dim(col(A)) = dim(B(col(A)) = dim(col(BA)) = rank(BA).

Putting together the two results above shows us that

rank(BAC) = rank(BA) = rank(A).

Q.E.D.

Theorem 4.10 Let F be a field and A ∈ Fm×n with rank(A) = r. Then, r ≤min(m,n), and
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there exist products B ∈ Fm×m and C ∈ Fn×n of elementary matrices such that

BAC =

 Ir Or×(n−r)

O(m−r)×r O(m−r)×(n−r)

 .

Proof) If r = 0, then A is just the zero matrix, so that the claim holds trivially. Let r > 0. We
prove the claim by induction on the number of rows m of A in this case.

If m = 1, then A is simply a row vector. Since the rank of A is 1 in this case, r = 1≤
min(m,n) = 1, and A must have a non-zero element, say, in its jth position. It then
follows that

A ·E1E2 =
(
1 O1×(n−1)

)
,

where E1 ∈ Fntimesn is a type 1 elementary matrix that switches the first and jth
columns of A and E2 ∈ Fn×n is a type 2 elementary matrix that divides the first ele-
ment of AE1 by A(j) 6= 0. This establishes the claim for m= 1.

Now suppose that the claim holds for some m ≥ 1, and consider some A ∈ F (m+1)×n.
If n= 1, then A is a column vector and the claim holds using the same line of reason-
ing as above, this time by applying elementary row operations (premultiplication by
elementary matrices) instead of column operations.

As such, let n > 1. In this case, because A is a non-zero matrix (its rank r is positive),
it has at least one non-zero element, say, in its (i, j)th position. Then,

E1AE2E3

defines a matrix with 1 in its (1,1) position, where E1 ∈ F (m+1)×(m+1) is an elementary
matrix that interchanges the first and ith rows, E2 ∈ Fn×n is an elementary matrix
that interchanges the first and jth columns, and E3 ∈ Fn×n is an elementary matrix
that divides the first column by A(i, j) 6= 0. With the use of additional elementary row
operations that multiply the first row by −A(i,1) and adds it to the ith row for each
2 ≤ i ≤ m+ 1, and elementary column operations that multiply the first column by
−A(1, j) and adds it to the jth row for each 2 ≤ j ≤ n, we can show that there exist
products B ∈ F (m+1)×(m+1) and C ∈ Fn×n of elementary matrices such that

BAC =

 1 O1×(n−1)

Om×1 D

 .
Letting rank(D) = rd ≥ 0, the rank of BAC is equal to rank(D)+1 = rd+1. The rank
of BAC is in turn equal to the rank of A, so it follows that r = rd+ 1.
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Since D is an m× (n−1) matrix, by the inductive hypothesis rd ≤min(m,n−1) and
there exist products of elementary matrices Bd ∈ Rm×m and Cd ∈ R(n−1)×(n−1) such
that

BdDCd =

 Ir0 O1×(n−1−r0)

O(m−r0)×1 O(m−r0)×(n−1−r0)

 .
It follows that r = rd+ 1≤min(m,n), and 1 O1×(n−1)

Om×1 Bd

BAC
 1 O1×(n−1)

Om×1 Cd

=

 Ir O1×(n−r)

O(m+1−r)×1 O(m+1−r)×(n−r)

 .

Since

 1 O1×(n−1)

Om×1 Bd

B ∈ F (m+1)×(m+1) and C

 1 O1×(n−1)

Om×1 Cd

 ∈ Fn×n are

also products of elementary matrices, the claim now follows from induction.

Q.E.D.

Corollary to Theorem 4.10 Let F be a field and A ∈ Fn×n an invertible matrix. Then, A
can be expressed as the product of a finite number of elementary matrices.

Proof) If A is invertible, then it has full rank, and by the theorem above, there exist products
B,C ∈ Fn×n of elementary matrices such that

BAC = In.

Since B,C are invertible themselves, we can see that A is given as

A=B−1C−1.

Finally, B−1 and C−1 are the products of the inverses of a finite number of elementary
matrices, which themselves are finite products of elementary matrices, so the claim
follows.

Q.E.D.

Corollary to Theorem 4.10 (Invariance of Rank under Transposition)
Let F be a field and A ∈ Fm×n. Then, rank(A) = rank(A′). By implication, A ∈ Fn×n is non-
singular if and only if its rows are linearly independent.

Proof) Letting rank(A) = r, by the theorem above there exist products B ∈ Fm×m and C ∈
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Fn×n of elementary matrices such that

BAC =

 Ir Or×(n−r)

O(m−r)×r O(m−r)×(n−r)

 .
Transposing both sides shows us that the rank of C ′A′B′ is also equal to r. Since B,C
are invertible, so are B′,C ′, and we can thus conclude that

rank(A′) = rank(C ′A′B′) = r = rank(A).

Now let A ∈ Fn×n. If A is invertible, then A has full rank, and thus A′ also has full
rank. Since the rows of A are the columns of A′, by the matrix version of theorem
4.7. the rows of A are linearly independent. Conversely, suppose that the rows of A
are linearly independent. Then, the columns of A′ are linearly independent and by the
matrix version of theorem 4.7. A′ is invertible, that is, it has full rank. Therefore, A
also has full rank and is invertible.

Q.E.D.
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4.3.4 The Determinant of Square Matrices

For any matrix A ∈ Rn×n, we define the determinant of A as

det(A) =
n∑
j=1

(−1)1+jA(1, j) ·det
(
Ã1j

)
,

where Ãij is the (n− 1)× (n− 1) matrix obtained by deleting the ith row and jth column of
A. Here, we implicitly put the determinant of a dimension-less matrix equal to 1, which implies
that the determinant of a scalar is just itself. We can consider the determinant a function of
the n columns A1, · · · ,An of A, and write det(A) = det(A1, · · · ,An). The determinant has the
following properties:

Theorem 4.11 (Properties of the Determinant)
Let A ∈ Rn×n. Then, the following hold true:

i) (n-linearity) det(A) is linear with respect to each column of A.

ii) (Alternating Property) If B is obtained by interchanging two columns of A, then
det(B) =−det(A). By implication, if A has two identical columns, then det(A) = 0.

iii) (Assigns Value 1 to the Identity Matrix) det(In) = 1.

iv) If A is singular, then det(A) = 0.

Proof) i) We proceed by induction. The statement is obviously true when n= 1, so suppose
it holds for some n≥ 1. Choose any v1, · · · ,vn+1,u∈Rn+1 and a∈R, and denote by
ṽk, ũ the vectors vk and u obtained by deleting their first element. Fix 1≤ j ≤ n.
For any 1 ≤ k ≤ n+ 1, denote by Ṽ−k the n×n matrix with columns equal to
ṽ1, · · · , ṽk−1, ṽk+1, · · · , ṽn+1.
Similarly, if k 6= j, let Ṽ−k,u be the n×n matrix obtained by replacing ṽj with ũ

in Ṽ−k, and let Ṽ−k,av+u be the n×n matrix obtained by replacing ṽj with aṽj + ũ

in Ṽ−k.

Then,

det(v1, · · · ,avj +u, · · · ,vn+1) =
∑
k 6=j

(−1)1+kvk(1) ·det
(
Ṽ−k,av+u

)
+ (−1)i+j(a ·vj(i) +u(i)) ·det

(
Ṽ−j

)
.

By the inductive hypothesis, for any 1≤ k ≤ n+ 1 such that k 6= j,

det
(
Ṽ−k,av+u

)
= a ·det

(
Ṽ−k

)
+ det

(
Ṽ−k,u

)
,
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so we have

det(v1, · · · ,avj +u, · · · ,vn+1) = a ·
∑
k 6=j

(−1)1+kvk(1) ·det
(
Ṽ−k

)
+
∑
k 6=j

(−1)1+kvk(1) ·det
(
Ṽ−k,n

)
+a · (−1)1+jvj(1) ·det

(
Ṽ−j

)
+ (−1)1+ju(1) ·det

(
Ṽ−j

)

= a ·
n+1∑
k=1

(−1)1+kvk(1) ·det
(
Ṽ−k

)

+

∑
k 6=j

(−1)1+kvk(1) ·det
(
Ṽ−k,n

)
+ (−1)1+ju(1) ·det

(
Ṽ−j

)
= a ·det(v1, · · · ,vn+1) + det(v1, · · · ,u, · · · ,vn+1).

It now follows from induction that the determinant of A ∈ Rn×n is linear in each
of the columns of A for any n ∈N+.

ii) We initially proceed by induction. The claim trivially holds true for n = 1, since
in that case there is only one column and thus nothing to interchange it with.
Now suppose the claim holds for some n≥ 1. LetA= (A1, · · · ,An+1)∈R(n+1)×(n+1),
and construct B by interchaging the jth and j+1th rows of A, where 1≤ j < n+1,
that is,

B = (A1, · · · ,Aj+1,Aj , · · · ,An+1).

Then,

det(B) =
∑

i 6=j,j+1
(−1)1+iA(1, i) ·det

(
B̃1i

)
+ (−1)1+jA(1, j+ 1) ·det

(
Ã1,j+1

)
+ (−1)1+j+1A(1, j) ·det

(
Ã1j

)
.

For any i 6= j,j+1, B̃1i is an n×n matrix obtained by interchanging the jth and
j+ 1th columns of Ã1i, so by the inductive hypothesis,

det
(
B̃1i

)
=−det

(
Ã1i

)
.

Therefore,

det(B) =−
n+1∑
i=1

(−1)1+iA(1, i) ·det
(
Ã1i

)
=−det(A).

Now let B be obtained from A by interchanging any two distinct columns, say, the
jth and kth columns, where we assume j < k. Then, B can be obtained from A in
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an odd number of steps by interchanging adjacent columns. Specifically, we obtain
B1 by interchanging the jth and j+ 1th columns of A, then B2 by interchanging
the j+ 1th and j+ 2th columns of B2, and so on and so forth, until we obtain
Bk−j by interchanging the k−1th and kth columns of Bk−j−1. This sends column
j to the kth position. To move column k to the jth position, we move backward
by interchanging the k−1th and k−2th columns of Bk−j to obtain Bk−j+1, and
so on and so forth until we interchange the j+ 1th and jth columns of B2(k−j)−2

to obtain B = B2(k−j)−1. The subscripts represent how many times the adjacent
columns of A must be interchanged to obtain the matrix, and thus we can see
that it requires us to interchange 2(k− j)−1 adjacent columns of A to obtain B.
Therefore, by the result we just proved on interchanging adjacent columns,

det(B) = (−1)2(k−j)−1 ·det(A) =−det(A).

By induction, the claim holds for matrices of any dimension n ∈N+.

Suppose now that A has two identical columns. Then, the determinant of the
matrix Ã obtained by interchanging those columns is equal to −det(A). However,
since Ã=A, we have

det
(
Ã
)

= det(A) =−det(A).

This implies that 2 ·det(A) = 0 and thus det(A) = 0.

iii) This can also be seen by induction. It obviously holds true for n = 1, so suppose
it holds for some n≥ 1. Then, denoting A= In+1,

det(A) =A(1,1) ·det
(
Ã11

)
.

Here, A(1,1) = 1 and Ã11 is the n×n identity matrix, so we can conclude that

det(A) = det(In+1) = 1.

iv) The last claim is an application of the n-linearity and alternating property of the
determinant. It is trivial for n = 1, so let n > 1. Suppose that A is a singular
n×n matrix. Let A1, · · · ,An ∈Rn be the columns of A; by definition, there exists
a non-zero vector x ∈ Rn such that Ax = 0. Assuming without loss of generality
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that x1 6= 0, we can see that

A1 =
n∑
i=2

(
− xi
x1

)
Ai,

so that A1 can be written as the linear combination of the other n− 1 columns.
By the n-linearity of the determinant, we have

det(A) =
n∑
i=2

(
− xi
x1

)
·det(Ai,A2, · · · ,An).

Since each det(Ai,A2, · · · ,An) is the determinant of a matrix with identical columns,
by the alternating property we can conclude that det(A) = 0.

Q.E.D.

Of special interest is the determinant of elementary matrices. The determinant of these
matrices can be easily obtained by using the n-linearity and alternating properties of the deter-
minant, alongside the fact that D(In) = 1. Let {e1, · · · ,en} ⊂ Rn be the standard basis of Rn,
and consider an elementary matrix E. If E is of type 1, then it is obtained by interchanging two
columns of In; therefore, by the alternating property,

det(E) =−det(In) =−1.

If E is of type 2, then there exists a 1≤ j ≤ n and c 6= 0 such that

E =
(
e1 · · · c ·ej · · · en

)
,

so by the n-linearity of the determinant,

det(E) = c ·det(In) = c.

Finally, if E is of type 3, then there exist 1≤ j 6= k ≤ n such that

E =
(
e1 · · · ej +ek︸ ︷︷ ︸

jth position

· · ·en
)
,

so by the n-linearity of the determinant and the alternating property,

det(E) = det(In) + det(e1, · · · ,ek, · · · ,ek, · · · ,en) = det(In) = 1.

In any case, det(E) 6= 0.

It can actually be shown that the determinant is the unique function with the first three
properties stated above. This is shown formally in the theorem below, and in the process, we
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manage to obtain an alternate characterization of determinants.

Theorem 4.12 (Uniqueness of the Determinant)
Let D : Rn×n → R be a function that is n-linear with respect to each column and has the
alternating property. Then, for any A ∈ Rn×n,

D(A) =
∑
σ∈Sn

sgn(σ)
(

n∏
i=1

A(σi, i)
)
D(In),

where the sum runs over the set Sn of all permutations of {1, · · · ,n}, and we define

sgn(σ) =

1 if σ is obtained from {1, · · · ,k} via an even number of transpositions

0 otherwise

for any σ ∈ Sn.

Proof) Let {e1, · · · ,en} ⊂Rn be the standard basis of Rn, and choose any A ∈Rn×n. Denoting
the columns of A by A1, · · · ,An ∈ Rn, note that

Aj =
n∑
i=1

A(i, j)ei

for any 1≤ j ≤ n. Then, by the n-linearity of D,

D(A) =D(A1, · · · ,An) =D

 n∑
i1=1

A(i1,1)ei1 ,A2, · · · ,An


=

n∑
i1=1

A(i1,1) ·D(ei1 ,A2, · · · ,An).

Likewise,

D(ei1 ,A2, · · · ,An) =D

ei1 , n∑
i2=1

A(i2,2)ei2 , · · · ,An


=

n∑
i2=1

A(i2,2) ·D(ei1 ,ei2 , · · · ,An)

for any 1≤ i1 ≤ n, and continuing on in this manner leads us to

D(A) =
n∑

i1=1
· · ·

n∑
in=1

A(i1,1) · · ·A(in,n)D(ei1 , · · · ,ein).

Since any matrix with identical rows has value 0 under D due to the alternating prop-
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erty,

D(ei1 , · · · ,ein) = 0

if ij = ik for any two 1≤ j 6= k ≤ n. Therefore,

D(A) =
∑
σ∈Sn

A(σ1,1) · · ·A(σn,n)D(eσ1, · · · ,eσn).

For any σ ∈ Sn, if sgn(σ) = 1, then the matrix

(
eσ1 · · · eσn

)
can be obtained from interchanging the columns of In an even number of times. Thus,
by the alternating property, we can see that

D(eσ1, · · · ,eσn) =D(In).

On the other hand, if sgn(σ) =−1, then

D(eσ1, · · · ,eσn) =−D(In).

It follows that

D(A) =
∑
σ∈Sn

sgn(σ)(A(σ1,1) · · ·A(σn,n))D(In),

which is exactly the desired result.

Q.E.D.

Using the general formula for n-linear and alternating functions on Rn×n, we can now furnish
an alternate formula for determinants. This formulation can be used to easily derive two core
properties of determinants.
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Theorem 4.13 (Leibniz Formula for Determinants)
For any A ∈ Rn×n,

det(A) =
∑
σ∈Sn

sgn(σ)
(

n∏
i=1

A(σi, i)
)
.

Furthermore, the determinant also possesses the following properties:

i) (Invariance under Transposition) For any A ∈ Rn×n, det(A) = det(A′).

ii) (Separability under Matrix Products) For anyA,B ∈Rn×n, det(AB) = det(A)det(B).

Proof) We showed in lemma 4.8 that the determinant is n-linear with respect to each column,
has the alternating property, and assigns value 1 to In. Therefore, by theorem 4.9,

det(A) =
∑
σ∈Sn

sgn(σ)
(

n∏
i=1

A(σi, i)
)

for any A ∈ Rn×n.

To show the second result, we must introduce the concept of inverse permutations.
Given any σ ∈ Sn, we can also define σ−1j for any 1 ≤ j ≤ n; σ−1j is the position of
the number j under the permutation σ, while σj is the number assigned to position j

under the permutation σ. Clearly, σσ−1j = j for any 1≤ j ≤ n.

Now choose any A ∈ Rn×n. By the Leibniz formula,

det
(
A′
)

=
∑
σ∈Sn

sgn(σ)
(

n∏
i=1

Ai,σi

)

=
∑
σ∈Sn

sgn(σ)
(

n∏
i=1

Aσ−1i,i

)
.

Since the collection of all inverse permutations σ−1 of permutations in Sn is exactly
the set Sn of all permutations of {1, · · · ,n}, it follows that

det
(
A′
)

=
∑
σ∈Sn

sgn(σ)
(

n∏
i=1

Aσi,i

)
= det(A).

Let A ∈ Rn×n, and define the function D : Rn×n→ R as

D(B) = det(AB)

for any B ∈ Rn×n. D is n-linear with respect to each column and has the alternating
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property; to see n-linearity, note that, for any a ∈ R, v1, · · · ,vn,u ∈ Rn and 1≤ j ≤ n,

D(v1, · · · ,a ·vj +u, · · · ,vn) = det
(
A
(
v1 · · · a ·vj +u · · ·vn

))
= det(Av1, · · · ,a · (Avj) +Au, · · · ,Avn)

= a ·det(Av1, · · · ,Avn) + det(Av1, · · · ,Au, · · · ,Avn)

= a ·det
(
A
(
v1 · · ·vn

))
+ det

(
A
(
v1 · · · u · · ·vn

))
= a ·D(v1, · · · ,vn) +D(v1, · · · ,u, · · · ,vn),

where the third equality follows from the n-linearity of the determinant. For the alter-
nating property, note that, for any B ∈Rn×n and C ∈Rn×n obtained by interchanging
columns j and k of B, the matrix AC is obtained by also interchanging columns j and
k of AB. From the alternating property of the determinant, we now have

D(C) = det(AC) =−det(AB) =D(B).

Since D is n-linear with respect to each column and has the alternating property, by
the theorem above

D(B) =
∑
σ∈Sn

sgn(σ)
(

n∏
i=1

B(σi, i)
)
D(In) = det(B)D(In)

for any B ∈ Rn×n. Since D(In) = det(A) in this case, we can see that, by the Leibniz
formula for determinants,

det(AB) =D(B) = det(B)D(In) = det(B)det(A).

Q.E.D.

Corollary to Theorem 4.13 (Characterization of Invertible Matrices)
Let A ∈ Rn×n. A is non-singular if and only if det(A) 6= 0.

Proof) Sufficiency was shown in lemma 4.8; if A is singular then det(A) = 0, so the contra-
position must also be true, namely it must be the case that if det(A) 6= 0, then A is
non-singular.

For sufficiency, suppose that A is non-singular. Then, it can be expressed as a finite
product of elementary matrices, that is,

A=
k∏
i=1

Ei
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where each Ei ∈ Rn×n is an elementary matrix. We saw previously that the determi-
nant of an elementary matrix is always non-zero; therefore, using the product rule for
determinants,

det(A) =
k∏
i=1

det(Ei) 6= 0.

This completes the proof.

Q.E.D.

That the determinant of a matrix and its transpose is the same also has many important
implications. For one, it shows that the alternating property holds even when the rows of a
matrix are interchanged; to see this, let A ∈ Rn×n, and suppose B is obtained by interchanging
two rows of A. Then, B′ is obtained from A′ by interchanging two columns, so

det(B) = det
(
B′
)

=−det
(
A′
)

=−det(A)

by applying the alternating property and the above result. From this it follows that any matrix
with identical rows has determinant 0.

Perhaps the most useful part of the above result is that it helps expand our initial definition
of the determinant. While our initial definition of det(A) is stated in terms of an expansion with
respect to the first row, we can also furnish an equivalent expansion with respect to the first
column. In fact, this expansion can be along any row or column, which we prove below:

Lemma 4.14 Let A ∈ Rn×n. Then,

det(A) =
n∑
k=1

(−1)i+kA(i,k) ·det
(
Ãik

)
=

n∑
k=1

(−1)k+jA(k,j) ·det
(
Ãkj

)

for any 1≤ i≤ n and 1≤ j ≤ n.

Proof) Since the result follows by definition if i = 1, fix 1 < i≤ n. Let B be the n×n matrix
constructed by moving the ith row up to the first row and pushing the first to the
i−1th row down by one row. Because we obtained B by interchanging the rows of A
i−1 times, we have

det(B) = (−1)i−1 det(A).
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Since B̃1j = Ãij for any 1≤ j ≤ n, by definition we have

det(A) = (−1)i−1 ·det(B) = (−1)i−1 ·
n∑
j=1

(−1)1+jB(1, j) ·det
(
B̃1j

)

= ·
n∑
j=1

(−1)i+jA(i, j) ·det
(
Ãij
)
.

For the column expansion, we need only use the fact that determinants are transposition
invariant: for any A ∈ Rn×n and 1≤ j ≤ n,

det(A) = det
(
A′
)

=
n∑
k=1

A′(j,k) ·det
(
Ã′jk

)
=

n∑
k=1

A(k,j) ·det
((
Ãkj

)′)
=

n∑
k=1

A(k,j) ·det
(
Ãkj

)
.

Q.E.D.

The above result is more significant than it first seems, because it allows us to obtain a closed
form expression for the inverse of a non-singular matrix.

Theorem 4.15 (Inverse of a Non-singular Matrix)
Let A ∈ Rn×n be a non-singular matrix. Then, its inverse A−1 is given as

A−1 = 1
det(A)adj(A),

where adj(A), called the adjunct matrix of A, is an n×n matrix whose (i, j)th element is

(−1)i+j det
(
Ãji
)
.

Proof) Define

B = 1
det(A)adj(A),

where the adjunct of A is defined as above. We want to show that BA=AB = In. This
follows from a simple computation. The (i, j)th element of AB is defined as

(AB)(i, j) =
n∑
k=1

A(i,k)B(k,j) = 1
det(A)

n∑
k=1

(−1)k+jA(i,k) ·det
(
Ãjk

)
.

If i= j, then

(AB)(i, j) = 1
det(A)

n∑
k=1

(−1)i+kA(i,k) ·det
(
Ãik

)
= det(A)

det(A) = 1
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by a determinant expansion with respect to the ith row. On the other hand, if i 6= j,
then

n∑
k=1

(−1)k+jA(i,k) ·det
(
Ãjk

)
= (−1)j−i ·

n∑
k=1

(−1)k+iA(i,k) ·det
(
Ãjk

)

is the determinant of a matrix in which the ith row of A appears twice. Therefore, by
the alternating property, this determinant equals 0, and we have

AB = In.

BA= In follows from roughly the same steps, utilizing a column expansion rather than
a row expansion.

Q.E.D.

The formula for matrix inversion introduced above allows us to obtain the solution of a sys-
tem of linear equations in terms of determinants, which we state below:

Theorem 4.16 (Cramer’s Rule)
Let A ∈Rn×n be a non-singular matrix, and b ∈Rn. Then, the unique solution x∗ to the system
of linear equations Ax= b is given as

x∗j = det(Aj)
det(A) ,

where Aj ∈Rn×n is the matrix formed by replacing the jth column of A by b, for any 1≤ j ≤ n.

Proof) Note that x∗ = A−1b, and that the inversion formula above provides us with a closed
form expression for A−1:

A−1 = 1
det(A)adj(A) = 1

det(A)


(−1)1+1 det

(
Ã11

)
· · · (−1)n+1 det

(
Ãn1

)
... . . . ...

(−1)1+ndet
(
Ã1n

)
· · · (−1)n+ndet

(
Ãnn

)
 .

As such,

x∗ = 1
det(A)


∑n
i=1(−1)i+1bi ·det

(
Ãi1

)
...∑n

i=1(−1)i+nbi ·det
(
Ãin

)
 .

For any 1≤ j ≤ n, let Aj be the n×n matrix constructed by replacing the jth column
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of A with b. Then, the determinant of Aj via a jth column expansion is given as

det(Aj) =
n∑
i=1

(−1)i+jAj(i, j) ·det
(
Ãj ij

)
=

n∑
i=1

(−1)i+jbi ·det
(
Ãij
)
,

so that x∗j = det(Aj)
det(A) . This is exactly the desired result.

Q.E.D.

We conclue this subsection by summarizing the properties of the determinant that we have
derived thus far. We let A∈Rn×n, and the results are not presented in the order that we derived
them.

1. (Row/Column Expansion Formula for Determinants)
For any 1≤ i≤ n and 1≤ j ≤ n,

det(A) =
n∑
k=1

(−1)i+kA(i,k) ·det
(
Ãik

)
=

n∑
k=1

(−1)k+jA(k,j) ·det
(
Ãkj

)
.

2. (Leibniz Formula for Determinants)
The determinant is given by

det(A) =
∑
σ∈Sn

sgn(σ)
(

n∏
i=1

A(σi, i)
)

=
∑
σ∈Sn

sgn(σ)
(

n∏
i=1

A(i,σi)
)
,

where the sum runs over the set Sn of all permutations of {1, · · · ,n} and we define

sgn(σ) =

1 if σ is obtained from {1, · · · ,k} via an even number of transpositions

0 otherwise

for any σ ∈ Sn.

3. (Invariance under Transposition)
det(A) = det(A′).

4. (n-linearity)
det(A) is linear with respect to each row and column of A.

5. (Alternating Property I)
If B ∈Rn×n is obtained by interchaging two columns or rows of A, then det(B) =−det(A).
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6. (Alternating Property II)
If A has two identical columns or rows, then det(A) = 0.

7. (Determinant of Elementary Matrices)
det(In) = 1, and for any elementary matrix E ∈ Rn×n, det(E) 6= 0.

8. (Product Rule for Determinants)
For any A,B ∈ Rn×n, det(AB) = det(A)det(B).

9. (Determinants and Matrix Singularity)
A is non-singular if and only if det(A) 6= 0.

10. (Formula for Inverse Matrices)
If A is non-singular, then

A−1 = 1
det(A)adj(A) = 1

det(A)


(−1)1+1 det

(
Ã11

)
· · · (−1)n+1 det

(
Ãn1

)
... . . . ...

(−1)1+ndet
(
Ã1n

)
· · · (−1)n+ndet

(
Ãnn

)
 .

11. (Cramer’s Rule)
Let A be non-singular, and b∈Rn. The unique solution x∗ to the system of linear equations
Ax= b is given as

x∗j = det(Aj)
det(A) ,

where Aj ∈ Rn×n is the matrix formed by replacing the jth column of A by b, for any
1≤ j ≤ n.
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4.3.5 Eigenvalues and Eigenvectors

The study of eigenvalues and eigenvectors is motivated by the similarity of matrices and the
representation of a matrix with respect to different bases.

Matrix Representations under Changes in Basis
Let V be a vector space over a field F with two bases B = {v1, · · · ,vn} and B′ = {u1, · · · ,un},

and T ∈L(V ). Let IV : V → V be the identity transformation on V , and note that, for any x∈ V ,

cB′(x) = cB′(IV (x)) =
(
[IV ]B′B

)
cB(x)

by the definition of the left-multiplication matrix. The matrix [IV ]B′B is therefore called the change
of basis matrix from B to B′, and is often denoted by PB→B′ . By definition, we have

PB→B′ = [IV ]B′B =
(
cB′(v1) · · · cB′(vn)

)
.

By symmetry, we also have

PB′→B = [IV ]BB′ =
(
cB(u1) · · · cB(un)

)
;

for any x ∈ V , we have

cB(x) = (PB′→B)cB′(x) = (PB′→BPB→B′)cB(x),

so that

PB′→BPB→B′ = In.

Likewise, starting from cB′(x), we have PB→B′PB′→B = In as well, so

PB′→B = P−1
B→B′ .

For any x ∈ V , note now that

cB′(T (x)) = [T ]B′cB′(x)

= (PB→B′)cB(T (x)) = (PB→B′ [T ]B)cB(x) = (PB→B′ [T ]BPB′→B)cB′(x).

Therefore, the matrix representations [T ]B′ and [T ]B are related via

[T ]B′ = P−1
B′→B[T ]BPB′→B.

Now let us move our focus to square matrices. Let F be a field and E = {e1, · · · ,en} the
standard basis of Fn, with B= {v1, · · · ,vn} being another basis of Fn. Choosing some matrix A∈
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Fn×n, define the linear operator T : Fn→ Fn as T = LA, the left-multiplication transformation
of A. We saw above that [T ]E = A, so that A is simply the matrix representation of T with
respect to the standard basis.

The change of basis result tells us that

[T ]B = P−1
B→E · [T ]E ·PB→E .

The change of basis matrix PB→E is given as

PB→E = [IFn ]EB =
(
cE(v1) · · · cE(vn)

)
=
(
v1 · · · vn

)
,

so it follows that

[T ]B =
(
v1 · · · vn

)−1
A
(
v1 · · · vn

)
,

or alternatively,

A=
(
v1 · · · vn

)
· [T ]B ·

(
v1 · · · vn

)−1
.

In this case, we say that the matrices A and [T ]B are similar; they are simply matrix represen-
tations of the same linear operator with respect to different bases.

The question now becomes if we can find a basis B of Fn such that [T ]B assumes a simple
form. Specifically, we want to find a basis B such that [T ]B is diagonal, or equivalently, we want
to find out if A is similar to a diagonal matrix. It turns out that, if there exists such a basis, the
vectors comprising B are eigenvectors and the diagonal elements of [T ]B are the eigenvalues of A.

Definition of Eigenvalues and Eigenvectors
We say a λ ∈ F is an eigenvalue of the matrix A ∈ Fn×n, and v ∈ Fn is a corresponding

eigenvector, if v is a non-zero vector such that

Av = λ ·v.

Letting Eλ(LA)1 be the set of all eigenvectors of λ, along with the zero vector, Eλ(LA) is called
the eigenspace of λ. Note that Eλ(LA) can formally be written as

Eλ(LA) = {v ∈ Fn |Av = λ ·v},

so that the eigenvectors of λ are precisely the non-zero elements of Eλ(LA). Eλ(LA) is a subspace
of Fn, since it contains the zero vector and, for any a ∈ F and x,y ∈ Eλ(LA),

A(a ·x+y) = a ·Ax+Ay = (aλ) ·x+λ ·y = λ · (a ·x+y) ,

1The reason for making this dependent on LA will be made clear below.
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so that a ·x+ y ∈ Eλ(LA) and Eλ(LA) is closed under linear combinations. Since Eλ(LA) is a
subspace of Fn, an n-dimensional space, Eλ(LA) has dimension at most n. The dimension of
Eλ(LA) is called the geometric multiplicity of λ.

If λ ∈ F is an eigenvalue of A and v 6= 0 the corresponding eigenvector, then

(A−λ · In)v = 0,

that is, v is a non-zero solution to the system of linear equations (A− λ · In)x = 0. By the
characterization of invertible matrices, this is the case if and only if A−λ · In is non-invertible,
or equivalently,

det(A−λ · In) = 0.

Therefore, the eigenvalues of A are precisely the roots of this equation. By the Leibniz formula
for determinants, denoting Aλ =A−λ · In,

det(A−λ · In) =
∑
σ∈Sn

sgn(σ)
(

n∏
i=1

Aλ(i,σi)
)

=
n∏
i=1

(A(i, i)−λ) + · · ·+ det(A),

so that det(A−λ · In) is a polynomial of degree n with leading coefficient (−1)n. We therefore
define the characteristic polynomial chA : F → F as

chA(λ) = det(A−λ · In)

for any λ ∈ F , and the eigenvalues of A are found as the zeros of this polynomial. Since a
polynomial of degree n can have at most n zeros, this means that any n×n matrix A can have
at most n eigenvalues. For any eigenvalue λ of A, the power of the linear factor (z−λ) in chA

is referred to as the algebraic multiplicity of λ; simply put, the algebraic multiplicty of λ is the
number of times it appears as a root of chA(z) = 0.

The case in which we are most interested in is when F = C. If F = C, then by the fundamen-
tal theorem of algebra, which states that any polynomial on C with degree n has n (possibly
non-distinct) zeros, A has n eigenvalues λ1, · · · ,λn ∈ C. For completeness, we state the funda-
mental theorem below:
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Theorem 4.17 (The Fundamental Theorem of Algebra)
Let n ∈N+ and a0, · · · ,an ∈ C with an 6= 0. For the polynomial function P : C→ C defined as

P (z) =
n∑
i=0

ai ·zi

for any z ∈ C, there exists a z ∈ C such that P (z) = 0.

Proof) The idea of the proof is to find the infimum of |P (z)| over C and a point on C at
which |P (z)| attains that infimum. Then, we need only show that this infimum equals
0 to conclude that this point is a zero of P (z). The way we prove that this infimum
must equal 0 is by assuming the contrary, and then showing that, due to the nature of
polynomials, for any arbitrary positive value we can always find a z ∈ C close enough
to the origin so that |P (z)| is smaller than this value.

Since we are dealing with finding the zero of P (z), assume without loss of generality
that an = 1. First, define the infimum

µ= inf
z∈C
|P (z)|;

this value exists in R+ becuase the set {|P (z)| | z ∈ C} is bounded below at 0. Now we
want to find a point in C at which µ is attained. To do so, we employ a strategy that
is also used to prove the strict separating hyperplane theorem; we find a closed ball
around the origin, which is compact, such that the values of |P (z)| within the ball are
always smaller than the values of |P (z)| outside of this ball. Using the extreme value
theorem, we can now find a point in C at which the infimum of |P (z)| over this ball
is attained, and by design, this infimum coincides with the infimum of |P (z)| over the
entire complex field.

Formally, choose any z ∈ C with |z|=R> 0. Then,

|P (z)|=
∣∣∣∣∣
n∑
i=0

ai ·zi
∣∣∣∣∣=

∣∣∣∣∣zn+
n−1∑
i=0

ai ·zi
∣∣∣∣∣

≥ |z|n−
∣∣∣∣∣−

n−1∑
i=0

ai ·zi
∣∣∣∣∣

=Rn
(

1−
∣∣∣∣∣
n−1∑
i=0

ai ·
(
z

R

)i 1
Rn−i

∣∣∣∣∣
)

≥Rn
(

1−
n−1∑
i=0
|ai|

1
Rn−i

)
.

Taking |z|=R→+∞ shows us that the right hand side goes to +∞ as well (Rn diverges
to infinity, and the term inside the parentheses converges to 1). Thus, we can find an
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R0 > 0 such that

|P (z)|> µ+ 1 for any |z|>R0.

Now define C = B(0,R0), that is, as the closed ball on the complex plane around the
origin with radius R0. By the Heine-Borel theorem, C is a compact set, and polynomials
are continuous functions, so by the extreme value theorem there exists a z0 ∈ C such
that

|P (z0)|= inf
z∈C
|P (z)|.

Suppose infz∈C |P (z)|> µ. Then, there exists some z1 ∈ C such that

µ≤ |P (z1)|< inf
z∈C
|P (z)|;

this z1 /∈ C, which implies that |z| > R0 and |P (z)| > µ+ 1. Since µ+ 1 > µ, in turn
there exists some z2 ∈ C such that

|P (z2)|< µ+ 1≤ |P (z1)|< inf
z∈C
|P (z)|.

This z2 must be contained in C because |P (z2)| is smaller than µ+ 1, but this would
imply that there exists a point in C such that the value of |P (z)| at that point is strictly
smaller than infz∈C |P (z)|, a contradiction. It follows that

|P (z0)|= inf
z∈C
|P (z)|= µ.

Now suppose that µ > 0. Then, because P (z0) 6= 0, we can define the polynomial

Q(z) = P (z+z0)
P (z0) =

n∑
i=0

ai
P (z0) · (z+z0)i

on C. Note that Q(0) = 1, so that the constant term of Q(z) is equal to 1, and

|Q(z)|= |P (z+z0)|
|P (z0)| ≥ 1

because µ= |P (z0)| ≤ |P (z)| for any z ∈ C.

Letting

Q(z) =
n∑
i=0

bi ·zi,
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let 1≤ k ≤ n be chosen so that bi = 0 for any 1≤ i < k and bk 6= 0; that is,

Q(z) = 1 + bk ·zk + · · ·+ bn ·zn.

There exists some θ′ ∈ [0,2π) such that

− bk
|bk|

= exp
(
iθ′
)
,

since the left hand side is a unit vector. Defining θ =− θ′

k , we can see that

bk exp(ikθ) =−|bk|.

For an r > 0 small enough so that rk < 1
|bk| ,∣∣∣1 + bk · rk exp(ikθ)
∣∣∣= ∣∣∣1− rk|bk|∣∣∣= 1− rk|bk|.

Therefore, for such an r > 0,

|Q(r · exp(iθ))|=
∣∣∣1 + bk · rk exp(ikθ) + · · ·+ bn · rn exp(inθ)

∣∣∣
≤
∣∣∣1 + bk · rk exp(ikθ)

∣∣∣+ n∑
j=k+1

|bj | · rj |exp(ijθ)|

= 1− rk
(
|bk|− |bk+1| · r−·· ·− |bn| · rn−k

)
.

Since

lim
r→0

(
|bk|− |bk+1| · r−·· ·− |bn| · rn−k

)
= |bk|,

we can choose an r > 0 small enough so that

rk
(
|bk|− |bk+1| · r−·· ·− |bn| · rn−k

)
> 0,

or in other words, so that

|Q(r · exp(iθ))|< 1.

This contradicts the fact that |Q(z)| ≥ 1 for any z ∈C by design, so it must be the case
that |P (z0)|= µ= 0. z0 then becomes a zero of the polynomial P (z).

Note that the fact that P (z) is a complex polynomial was used in the last stretch of
the proof, specifically to prove µ = 0. In particular, it is the presence of the complex
polynomials, which have absolute value equal to 1 no matter how many powers are
taken, that allow us to prove µ= 0.

Q.E.D.
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A field F that possesses the property that any polynomial on that field can be completely
factored into linear factors is said to be complete. The fundamental theorem of algebra thus
tells us that the complex field is algebraically complete. When F is algebraically complete, the
characteristic polynomial of A can be expressed as the product of linear factors:

chA(z) = (−1)n
n∏
i=1

(z−λi)

for any z ∈ F , where λ1, · · · ,λn ∈ C are the eigenvalues of A.
An eigenbasis of Fn with respect to A is defined as a basis of Fn comprised of eigenvectors of

A. We can now see that eigenvalues and eigenvectors are related to the diagonal representation
of matrices in the following way.

Theorem 4.18 Let F be a field and A ∈ Fn×n. Then, A is similar to a diagonal matrix D

if and only if there exists an eigenbasis B of Fn with respect to A. In this case, the diagonal
elements of D are precisely the n eigenvalues of A.

Proof) Let E = {e1, · · · ,en} be the standard basis of A. Suppose that Fn has a basis B =
{v1, · · · ,vn} comprised of eigenvectors of A. Then, for any 1 ≤ i ≤ n, there exists a
λi ∈ F such that

Avi = λi ·vi.

Defining D ∈ Fn×n and P ∈ Fn×n as

D =


λ1 · · · 0
... . . . ...
0 · · · λn

 and P =
(
v1 · · · vn

)

P is invertible because its columns are linearly independent; in fact, P is precisely the
change of basis matrix PB→E . We now have

A ·P =
(
λ1 ·v1 · · · λn ·vn

)
= PD

and

D = P−1AP = P−1
B→E · [T ]E ·PB→E ,

where T = LA is the left-multiplication transformation of A. In other words, D = [T ]B,
the matrix representation of T with respect to the basis B, is diagonal with diagonal
elements equal to the eigenvalues of A.

Conversely, if A is similar to a diagonal matrix, that is, if there exist a diagonal matrix
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D ∈ Fn×n and an invertible matrix P ∈ Fn×n such that

A= PDP−1,

then AP = PD and the diagonal elements of D are precisely the eigenvalues of A,
with the columns of P being the corresponding eigenvectors of A. P is invertible, so its
columns form a set of n linearly independent vectors in Fn; they thus form a basis of
Fn comprised of eigenvectors of A.

Q.E.D.

The problem of finding a diagonal matrix similar to some matrix now reduces to finding
an eigenbasis with respect to this matrix. It turns out, as we see below, that a matrix over an
algebraically complete field F is diagonalizable if the algebraic multiplicity equals the geometric
multiplicity for any eigenvalue of that matrix.

Diagonalizability of Square Matrices
We start with a collection of important results concerning the eigenvalues and eigenvectors

of square matrices:

Lemma 4.19 Let F be a field and A ∈ Fn×n. Then, the following hold true:

i) Given an eigenvalue λ ∈ F with algebraic multiplicity m ≥ 1 and eigenspace Eλ(LA),
0 ≤ dim(Eλ(LA)) ≤ m, that is, the geometric mutliplicity of λ is at most equal to its
algebraic multiplicity.

ii) Given distinct eigenvalues λ1, · · · ,λk ∈ F of A and corresponding eigenvectors v1, · · · ,vk ∈
Fn, {v1, · · · ,vk} is a linearly independent subset of Fn.

Proof) i) Let E = {e1, · · · ,en} be the standard basis of Fn.
Suppose λ ∈ F be an eigenvalue of A with algebraic multiplicity m ≥ 1 and
eigenspace Eλ(LA). Suppose that Eλ(LA) has dimension 1≤ k ≤ n. Then, letting
{v1, · · · ,vk} be a basis of Eλ(LA), there exist vectors u1, · · · ,un−k ∈ Fn such that
B = {v1, ·,vk,u1, · · · ,un−k} is a basis of Fn. Define T = LA, the left-multiplication
transformation of A, and

P =
(
v1 · · · vk u1 · · · un−k

)
∈ Fn×n.

P is invertible because its columns are linearly independent, and by the change of
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basis formula,

[T ]B = P−1AP.

By definition,

[T ]B =
(
cB(T (v1)) · · · cB(T (vk)) cB(T (u1)) · · · cB(T (un−k))

)
.

For any 1≤ i≤ k,

T (vi) =Avi = λ ·vi,

so that cB(T (vi)) = λ ·ei. Therefore,

[T ]B =

 λ · Ik B

O(n−k)×k C


for some matrices B ∈ F k×(n−k) and C ∈ F (n−k)×(n−k). The characteristic polyno-
mial of A is now given as

chA(z) = det(A−z · In) = det
(
P−1

)
det(A−z · In)det(P )

= det
(
P−1AP −z · In

)
= det([T ]B−z · In)

= det

(λ−z) · Ik B

O(n−k)×k C−z · In−k

= (λ−z)k ·det(C−z · In−k),

where det(C−z · In−k) is a polynomial of degree n−k. Therefore, (λ−z) appears
as a linear factor in the characteristic polynomial of A at least k times; by the
definition of the algebraic multiplicty, we must then have k ≤m.

ii) We proceed by induction on the number of eigenvalues k. When k = 1, the claim
holds trivially because a singleton comprised of a non-zero vector is trivially lin-
early independent.
Now suppose the claim holds for some 1 ≤ k < n, and let λ1, · · · ,λk+1 ∈ F be
distinct eigenvalues of A, with v1, · · · ,vk+1 ∈ Fn being corresponding eigenvectors
of A. We want to show that {v1, · · · ,vk+1} is a linearly independent subset of Fn.
To this end, suppose that

k+1∑
i=1

ai ·vi = 0
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for some a1, · · · ,ak+1 ∈ F . Pre-multiply both sides of the equation above by λk+1

yields

k+1∑
i=1

(aiλk+1) ·vi = 0,

while pre-multiplying both sides by A yields

k+1∑
i=1

ai ·Avi =
k+1∑
i=1

(aiλi) ·vi = 0.

Subtracting these equations from one another shows us that

k∑
i=1

ai(λi−λk+1) ·vi = 0.

Since {v1, · · · ,vk} is a linearly independent set by the inductive hypothesis, it fol-
lows that ai(λi−λk+1) = 0 for 1≤ i≤ k; since λi−λk+1 6= 0 by the assumption of
distinctness, this implies that ai = 0 for 1≤ i≤ k. Returning to our original equa-
tion, we are left with ak+1 · vk+1 = 0, but because vk+1, being an eigenvector, is
non-zero, we must have ak+1 = 0. Thus, ∑k+1

i=1 ai ·vi = 0 implies a1 = · · ·= ak+1 = 0,
so that by definition {v1, · · · ,vk+1} is a linearly independent set. The result now
follows by induction.

Q.E.D.

A sufficient condition for diagonalizability can immediately be obtained as a corollary of the
preceding lemma. Indeed, it is the condition that we most often assume to ensure diagonalizabil-
ity and many other convenient properties, such as the continuity of the mapping A 7→ (λ1, · · · ,λn)
from a matrix to its eigenvalues.

Corollray of Lemma 4.19 Let F be a field and A ∈ Fn×n. If A has n distinct eigenvalues,
then A is diagonalizable.

Proof) Suppose that A has distinct eigenvalues λ1, · · · ,λn ∈ F . Then, there exist eigenvec-
tors v1, · · · ,vn ∈ Fn corresponding to each of the eigenvalues. Since these eigenvectors
correspond to distinct eigenvalues, by the lemma above B = {v1, · · · ,vn} is a linearly
independent subset of Fn that contains n elements. It follows that B is is an eigenbasis
of Fn with respect to A, so A is diagonalizable.

Q.E.D.
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We now furnish a characterization of diagonalizability follows using the lemma proved above.

Theorem 4.20 Let F be an algebraically complete field and A ∈ Fn×n. Then, A is diago-
nalizable if and only if the algebraic multiplicity of each eigenvalue is equal to its geometric
multiplicity.

Proof) Let λ1, · · · ,λk ∈F be the distinct eigenvalues of A, and denote the algebraic multiplicity
of each λi as 1≤mi ≤ n. Then, because F is algebraically complete, the characteristic
polynomial of A is given as

chA(z) = (−1)n
k∏
i=1

(z−λi)mi

for any z ∈ F . We denote the eigenspace of each λi by Ei(LA), and let 0 ≤ gi =
dim(Ei(LA))≤mi be the geometric multiplicity of λi.

First suppose that gi = mi for 1≤ i ≤ k. Then, for each 1≤ i ≤ k, there exists a basis
{v(i)

1 , · · · ,v(i)
gi } ⊂ Ei(LA) of Ei(LA). Define the set

B = {v(1)
1 , · · · ,v(1)

g1 , · · · ,v
(n)
1 , · · · ,v(n)

gn }.

Since ∑k
i=1 gi =∑k

i=1mi = n, B is a collection of n vectors in Fn. Furthermore, it is a
linearly independent set; to see this, suppose

k∑
i=1

gi∑
j=1

aij ·v(i)
j = 0

for some aij ∈ F . Then, note that ui :=∑gi
j=1aij ·v

(i)
j ∈ Ei(LA) for any 1≤ i≤ k, since

each Ei is a linear subspace of Fn. The u1, · · · ,uk satisfy

k∑
i=1

ui = 0.

Suppose ui = 0 for any 1≤ i≤ l, where 0≤ l ≤ k. If l < k, then

ul+1 + · · ·+uk = 0,

but because ul+1, · · · ,uk are eigenvectors corresponding to distinct eigenvalues, they are
linearly independent and we have a contradiction. Therefore, it must be the case that
l = k, so that ui = 0, or

gi∑
j=1

aij ·v(i)
j = 0,

for any 1 ≤ i ≤ k. Since each {v(i)
1 , · · · ,v(i)

gi } is a basis of Ei(LA), this implies that
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ai1 = ·= ai,gi = 0 for any 1≤ i≤ k. It follows that B is a linearly independent subset of
Fn comprised of n eigenvectors of A, and therefore it is an eigenbasis basis of Fn with
respect to A. This shows us that A is diagonalizable.

Conversely, suppose that A is diagonalizable. Then, there exists an eigenbasis B of Fn

with respect to A. Define Bi = B∩Ei(LA) for any 1 ≤ i ≤ k, so that Bi collects the
elements in B that belong to the ith eigenspace. Letting ni be the number of elements
in Bi, since Bi collects linearly independent vectors in the gi-dimensional space Ei(LA),
we must have ni ≤ gi. Furthermore, gi ≤ mi as per the previous lemma, so we have
ni ≤mi. B is a basis of Fn, so it must contain n elements, and since every element of
B is an eigenvector of Fn, any element of B must belong to some eigenspace Ei(LA).
Therefore,

k∑
i=1

ni = n=
k∑
i=1

mi,

or rearranging terms,

k∑
i=1

(mi−ni) = 0.

This is the sum of non-negative elements, so for each 1≤ i≤ k we have mi = ni. Finally,
ni ≤ gi ≤mi, so it must be the case that gi =mi for each 1≤ i≤ k as well.

Q.E.D.

Diagonalization of Linear Operators
We can also express the diagonalization result in terms of direct sums of linear subspaces.

Let V be a vector space over some field F , and let W1,W2 be two linear subspaces of V .
We say that W1 and W2 are independent if x+ y = 0V for some x ∈W1 and y ∈W2 implies
x = y = 0V . In theorem 4.20, we proved that, for any A ∈ Fn×n, the eigenspaces Eλ(LA) and
Eµ(LA) corresponding to distinct eigenvalues λ,µ ∈ F are independent.

The sum W1 +W2 of W1 and W2 is defined as

W1 +W2 = {z ∈ V | ∃x ∈W1,y ∈W2 s.t. z = x+y}.

Note that W1 +W2 is also a subspace of V ; it clearly contains the zero vector, and for a ∈ F and
z,w ∈W1 +W2, there exist x1,x2 ∈W1 and y1,y2 ∈W2 such that

z = x1 +y1, w = x2 +y2,
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so we have

a ·z+w = (a ·x1 +x2) + (a ·y1 +y2) ∈W1 +W2,

since a ·x1 +x2 ∈W1 and a · y1 + y2 ∈W2. If W1 and W2 are independent subspaces, we write
W1

⊕
W2 for the sum W1 +W2, and call this space the direct sum of W1 and W2.

The following are some properties of independent subspaces and the sum of subspaces:

Lemma 4.21 Let V be a vector space over some field F and W1,W2 two subspaces of V . The
following hold true:

i) If W1 and W2 are independent, then W1∩W2 = {0V }.

ii) Let W1 and W2 be independent, and define W =W1
⊕
W2. Then, letting B1,B2 be bases

of W1 and W2, B = B1∪B2 is a basis for W . By implication,

dim(W ) = dim(W1) + dim(W2).

Proof) i) Let W1 and W2 be independent, and suppose x∈W1∩W2. Then, −x∈W2 as well,
so

0V = x+ (−x),

where x ∈ W1 and −x ∈ W2. By the definition of independence, we now have
x= 0V .

ii) Let W1 and W2 be independent, and define W =W1
⊕
W2. Let B1,B2 be bases of

W1 and W2, and define B = B1∪B2. Choose any z ∈W ; then, there exist x ∈W1,
y ∈W2 such that z = x+y. B1 is a basis for W1, so there exist a1, · · · ,an ∈ F and
v1, · · · ,vn ∈ B1 such that

x=
n∑
i=1

ai ·vi.

Likewise, there exist b1, · · · , bk ∈ F and u1, · · · ,uk ∈ B2 such that

y =
k∑
i=1

bi ·ui.

Thus, z = x+ y is a linear combination of vectors in B, showing us that W ⊂
span(B). To see the reverse inclusion, choose any v ∈ B; letting v ∈ B1 ⊂W1 with-
out loss of generality, v = v+ 0V ∈W , since 0V ∈W2. Therefore, B ⊂W and we
can conclude that B spans W .
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It remains to show that B is linearly independent. Choose any finite subset {v1, · · · ,vn}⊂
B1 and {u1, · · · ,uk} ⊂ B2 and let

n∑
i=1

ai ·vi+
k∑
i=1

bi ·ui = 0V

for some a1, · · · ,an, b1, · · · , bk ∈F . Then, because ∑n
i=1ai ·vi ∈W1 and ∑k

i=1 bi ·ui ∈
W2, by independence

n∑
i=1

ai ·vi =
k∑
i=1

bi ·ui = 0V .

Because {v1, · · · ,vn} and {u1, · · · ,uk} are linearly independent sets, this then im-
plies that a1 = · · · = an = b1 = · · · = bk = 0. This shows us that B is a linearly
independent set that spans W , that is, it is a basis of W .

Q.E.D.

Let V be an n-dimensional vector space over some field F , and T ∈ L(V ). The set of eigen-
values of T is defined as the set of eigenvalues of the matrix representation [T ]B for any basis B
of V . Note that the collection of eigenvalues of T is invariant to the choice of basis; to see this,
let B and B′ be two bases of V , and define

P = PB′→B,

so that

[T ]B′ = P−1[T ]BP.

Let λ ∈ F be an eigenvalue of [T ]B. Then,

det([T ]B′−λ · In) = det
(
P−1[T ]BP −λ ·P−1P

)
= det

(
P−1

)
det([T ]B−λ · In)det(P ) = det([T ]B−λ · In) = 0,

so that λ is also an eigenvalue of [T ]B′ . By symmetry, the converse holds as well, so that [T ]B and
[T ]B′ have exactly the same set of eigenvalues. In particular, if F is an algebraically complete
field, any matrix representation of T and therefore T itself has n eigenvalues. Note also that
any matrix representation of T is associated with exactly the same characteristic polynomial; we
take this common characteristic polynomial to be the characteristic polynomial of T . It follows
that the eigenvalues of T can be found as the zeros of the characteristic polynomial of T , exactly
as in the case of matrices.
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Let B = {v1, · · · ,vn} be a basis of V . For any eigenvalue λ ∈ F of T , there exists a non-zero
x ∈ Fn such that

([T ]B)x= λ ·x.

Defining

v =
n∑
i=1

xi ·vi,

we can then see that cB(λ ·v) = λ ·x and

cB(T (v)) = ([T ]B)cB(v) = ([T ]B)x= λ ·x= cB(λ ·v).

By the injectivity of the coordinate mapping, this implies that T (v) = λ · v for some non-zero
v ∈ V . Conversely, suppose that T (v) = λ ·v for some λ ∈ F and non-zero v ∈ V . Then,

([T ]B)cB(v) = cB(T (v)) = λ · cB(v),

where cB(v) is non-zero, so λ is an eigenvalue of T . We have shown that λ ∈ F is an eigenvalue
of T if and only if there exists a non-zero v ∈ V such that

T (v) = λ ·v.

As usual, we refer to v as an eigenvector of T corresponding to λ. For any eigenvalue λ ∈ F of
T , we define

Eλ(T ) = {v ∈ V | T (v) = λ ·v};

this is why we denoted the eigenspace of λ by Eλ(LA) earlier for any matrix A ∈ Fn×n with
eigenvalue λ. We can easily show that each Eλ(T ) is a subspace of V . In addition, the eigenspaces
Eλ(T ) and Eµ(T ) are independent for distinct eigenvalues λ and µ:

Lemma 4.22 Let V be an n-dimensional vector space over some field F and T ∈ L(V ). Sup-
pose λ,µ ∈ F are distinct eigenvalues of T . Then, Eλ(T ) and Eµ(T ) are independent subspaces
of V .

Proof) Let B be some basis of V , and define A= [T ]B ∈ Fn×n. The result then follows almost
immediately by exploiting the relationship between that Eλ(T ) and Eλ(LA). Choose
any v ∈ Eλ(T ), u ∈ Eµ(T ) and suppose that v+u= 0V . Then,

cB(v)︸ ︷︷ ︸
x

+cB(u)︸ ︷︷ ︸
y

= 0.
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Because

Ax= ([T ]B)cB(v) = cB(T (v)) = cB(λ ·v) = λ ·x,

x∈Eλ(LA), and similarly, y ∈Eµ(LA). We already saw above that Eλ(LA) and Eµ(LA)
are independent, so it follows that x= y = 0, which implies v = u= 0V . By definition,
Eλ(T ) and Eµ(T ) are independent.

Q.E.D.

We can now generalize the diagonalization result in terms of linear operators and the direct
sum of linear subspaces:

Theorem 4.23 Let V be an n-dimensional vector space over some field F and T ∈ L(V ). Let
λ1, · · · ,λk ∈ F be the distinct eigenvalues of T . There exists a basis B such that [T ]B is diagonal
if and only if

V = Eλ1(T )
⊕
· · ·
⊕

Eλk(T ).

Proof) Suppose there exists some basis B= {v1, · · · ,vn} such that [T ]B =D is an n×n diagonal
matrix. By definition,

[T ]B =
(
cB(T (v1)) · · · cB(T (vn))

)
=


D(1,1) · · · 0

... . . . ...
0 · · · D(n,n)

 .

Letting {e1, · · · ,en} be the standard basis of Fn, for any 1≤ i≤ n,

cB(T (vi)) =D(i, i) ·ei,

which implies that T (vi) =D(i, i) ·vi. Thus, D(i, i) is an eigenvalue of T and therefore
vi, being an eigenvector, is contained in ⋃ki=1Eλi(T ).

Define Bi = B∩Eλi(T ) for any 1 ≤ i ≤ k. Then, {B1, · · · ,Bk} is a partition of B; they
are disjoint because Eλi(T ) and Eλj (T ) are independent and thus intersect only at the
zero vector for i 6= j by lemma 4.21, and their union is exactly B because

B⊂
k⋃
i=1

Eλi(T ).

It follows that any x ∈ V can be expressed as a linear combination of vectors in B, that
is, as the sum of linear combinations of vectors in B1, · · · ,Bk. Since linear combinations
of vectors in B1, · · · ,Bk are contained in Eλ1(T ), · · · ,Eλk(T ) respectively, it follows that
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x can be expressed as the sum of vectors in Eλ1(T ), · · · ,Eλk(T ). Therefore,

V ⊂ Eλ1(T )
⊕
· · ·
⊕

Eλk(T ).

The reverse inclusion is trivial because each eigenspace is a subspace of V , so we have
our desired result.

Conversely, suppose that

V = Eλ1(T )
⊕
· · ·
⊕

Eλk(T ).

Then, letting B1, · · · ,Bk be bases of Eλ1(T ), · · · ,Eλk(T ), by lemma 4.21 B=B1∪·· ·∪Bk
is a basis of V . Each vector in B is an eigenvector of T , and thus [T ]B is a diagonal
matrix.

Q.E.D.

We have also shown that, if [T ]B is a diagonal matrix for some basis B, then the diagonal
elements of this matrix are the eigenvalues of T , and that B can be constructed by taking the
union of the bases of the eigenspaces of T .
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4.4 The Lebesgue Measure

Using the Riesz representation above, we can now construct the Lebesgue measure. The con-
struction proceeds as follows: we first define the Riemann integral, and using it, a positive lienar
functional on the euclidean k-space Rk. Then, using the Riesz representation theorem, we claim
that there exists a complete measure space such that the integral of any compactly supported
continuous function on Rk with respect to the constructed measure equals its Riemann inte-
gral. This constructed measure will then be referred to as the Lebesgue measure on Rk and the
integral with respect to this measure the Lebesgue integral.

The Lebesgue measure is by construction a Radon measure, but this is not why it is so highly
valued. For one, we show below that the Lebesgue measure of set on Rk can be interpreted as the
volume of that set. As part of its role as the measure of volume on Rk, the Lebesgue measure is
translation and rotation-invariant, that is, rotating a set or shifting it in some direction without
changing its shape does not change its volume with respect to the Lebesgue measure.

4.4.1 Constructing the Lebesgue Measure

We first introduce the following concepts:

k-Cells A k-cell on Rk is defined as any set of the form

W = (a1, b1)×·· ·× (ak, bk)

where each ai, bi ∈ R, and each open interval can be taken to be a closed or half-open
interval. The volume of a k-cell W is defined as

vol(W ) =
k∏
i=1

(bi−ai).

δ-Boxes Finally, given a δ > 0 and x ∈ Rk, the δ-box with corner at x is defined as

Q(x;δ) = [x1,x1 + δ)×·· · [xk,xk + δ).

For any n ∈N+, let Pn be the set of all dyadic rationals with denominator 2n and Ωn

the set of all 2−n-boxes with corner at a point in Pn, that is,

Ωn = {Q(x;2−n) | x ∈ Pn}.

Matrices Given a k×k matrix T and any point x ∈ Rk, we define the translation and transfor-
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mation of a set A⊂ Rk by x and T as

TA+x= {Ty+x | y ∈ Rk}.

We can first show that the boxes in Ωn have the following properties:

Lemma 4.24 The following hold true:

i) For any n ∈N+, any x ∈ Rk lies in one and only one box in Ωn.

ii) If r,n ∈N+, n < r and Q ∈ Ωr, Q′ ∈ Ωn, then Q⊂Q′ or Q∩Q′ = ∅.

iii) For any r ∈N+, if Q ∈Ωr, then vol(Q) = 2−rk. Furthermore, if n ∈N+ and n > r, then Pn
has exactly 2(n−r)k points in any Q ∈ Ωr.

iv) Any nonempty open set in Rk can be expressed as the countable union of disjoint boxes
in ⋃nΩn.

Proof) i) For any x ∈ Rk and 1≤ i≤ k, letting mi = bxi ·2nc ∈ Z, we can see that

mi

2n ≤ xi <
mi+ 1

2n .

Letting

y =
[
m1
2n ,

m1 + 1
2n

)
×·· ·×

[
mk

2n ,
mk + 1

2n
)
∈ Pn,

this implies that x ∈Q(y;2−n) ∈ Ωn.
Now suppose that x ∈ Q(y′;2−n) for some y′ ∈ Pn such that y 6= y′. Then, there
exists a 1≤ i≤ k such that yi 6= y′i, or equivalently,

y′i = zi
2n

for some zi ∈Z such that zi 6=mi. Assuming that mi<zi without loss of generality,
it follows that

xi <
mi+ 1

2n ≤ zi
2n ,

so that xi 6= [y′i,y′i+2−n) and thus x 6=Q(y′;2−n). Therefore, Q(y;2−n) is the only
box in Ωn in which x is contained.

ii) Choose any r,n∈N+ such that n< r, and let Q=Q(x;2−r)∈Ωr, Q′=Q(x′;2−n)∈
Ωn for some x ∈ Pr and x′ ∈ Pn. Suppose that Q∩Q′ 6= ∅. Letting y ∈Q∩Q′, by

302



definition

xi = mi

2r ≤ yi < xi+ 2−r = mi+ 1
2r and

x′i = zi
2n ≤ yi < x′i+ 2−n = zi+ 1

2n

for any 1≤ i≤ k. Because 2n < 2r, 2r−n is an integer and, for any 1≤ i≤ k,

zi ·2r−n
2r ≤ yi <

(zi+ 1) ·2r−n
2r ,

which implies that

zi ·2r−n ≤mi and mi+ 1≤ (zi+ 1) ·2r−n.

Therefore, for 1≤ i≤ k,

x′i = zi
2n ≤

mi

2r = xi < xi+ 2−r ≤ zi+ 1
2n = x′i+ 2−n

so that

[xi,xi+ 2−r)⊂ [x′i,x′i+ 2−n).

By implication, Q⊂Q′.

iii) For any r ∈N+ and Q=Q(x;2−r) ∈ Ωr, because

Q=
[
x1,x1 + 2−r

)
×·· ·×

[
xk,xk + 2−r

)

vol(Q) =
k∏
i=1

(
(xi+ 2−r)−xi

)
=

k∏
i=1

2−r = 2−rk.

Now let n∈N+ and suppose that n> r. Let y ∈ Pn be contained in Q=Q(x;2−r).
Then, for any 1≤ i≤ k,

xi = mi

2r ≤ yi = zi
2n <

mi+ 1
2r = xi+ 2−r.

It follows that

mi ·2n−r ≤ zi <mi ·2n−r + 2n−r,

so zi must be equal to one of the 2n−r integers

mi ·2n−r,mi ·2n−r + 1, · · · ,mi ·2n−r + 2n−r−1.
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This holds for any 1≤ i≤ k, so y must be one of 2(n−r)k points in Pn, which proves
the claim.

iv) Let V ∈ Rk be an open set, and choose any x ∈ V . Then, there exists a ε > 0
such that the ε-ball B(x,ε) is contained in V . Letting n ∈N+ be chosen so that
2−n < ε√

k
, it follows that

(x1−2−n,x1 + 2−n)×·· ·× (xk−2−n,xk + 2−n)⊂ V.

Letting Q(y;2−n) be the box in Ωn in which x is contained,

yi ≤ xi < yi+ 2−n

for any 1≤ i≤ k, which implies that

xi−2−n < yi < yi+ 2−n ≤ xi+ 2−n

and therefore that

x ∈Q(y;2−n) = [y1,y1 + 2−n)×·· · [yk,yk + 2−n)⊂ V.

It follows that

x ∈
⋃
n

⋃
Q∈Ωn,Q⊂V

Q(y;2−n),

and as such that

V ⊂
⋃
n

⋃
Q∈Ωn,Q⊂V

Q(y;2−n).

The converse is clearly true, so we have

V =
⋃
n

⋃
Q∈Ωn,Q⊂V

Q(y;2−n).

Note that, because each Ωn is a countable collection of boxes, the above union is
a countable union of boxes in Ω1,Ω2, · · · as well.

Let {Wn}n∈N+ be the countable collection of sets in Ω1∪Ω2∪ ·· · such that V =⋃
nWn, ordered so that any set contained in Ωn precedes those contained in Ωn+1.

Then, define B1 =W1 and

Bn =Wn \
n−1⋃
i=1

Wi.
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Now {Bn}n∈N+ is a collection of disjoint measurable sets whose union is V .
Additionally, because Ωn+1 is a collection of disjoint boxes that are either con-
tained in some box in Ωn or disjoint from it, {Bn}n∈N+ is a collection of disjoint
boxes in Ω1∪Ω2∪·· · whose union is V .

Q.E.D.

Lemma 4.25 Let f : Rk→C be a continuous compactly supported function on the euclidean
k-space Rk. Then, f is uniformly continuous on Rk.

Proof) Denote the euclidean metric on Rk by dk. Let K = {f = 0} be the compact support
of f . By the Heine-Borel theorem, K is closed and bounded, so there exists an M > 0
such that

K ⊂ [−M,M ]k.

Choose any ε > 0. For any x ∈ Rk, since f is continuous at x, there exists a δx ∈ (0,1)
such that

|f(x)−f(y)|< ε

2

for any y ∈Rk such that |x−y|< δx. The collection {Bdk(x,δx/2)}x∈[−M−1,M+1]k is an
open cover of the compact set [−M − 1,M + 1]k, which shows us that there exists a
finite set of points {x1, · · · ,xn} ⊂ [−M −1,M + 1]k such that

[−M −1,M + 1]k ⊂
n⋃
i=1

Bdk(xi, δxi/2).

Define δ = 1
2 min(δx1 , · · · , δxn) ∈ (0,1). Choose any x,y ∈ Rk such that |x−y| < δ, and

consider three cases:

– x,y ∈K
In this case, both x and y are contained in [−M−1,M+1]k. Letting x∈Bdk(xi, δxi/2)
for some 1≤ i≤ n, note that

|xi−y| ≤ |xi−x|+ |x−y|< δ+ δxi
2 ≤ δxi ,

so that y ∈Bdk(xi, δxi/2) as well. Therefore,

|f(x)−f(y)| ≤ |f(x)−f(xi)|+ |f(xi)−f(y)|< ε.

– x ∈K,y /∈K
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In this case, because

|x−y|< δ < 1

and x∈K ⊂ [−M,M ]k, it follows that x,y ∈ [−M−1,M+1]k. Therefore, the same
line of reasoning as above implies that |f(x)−f(y)|< ε.
A symmetric argument shows that this inequality holds when x /∈K and y ∈K.

– x,y /∈K
In this case, since f(x) = f(y) = 0, |f(x)−f(y)|= 0< ε trivially.

In any case, |x−y|< δ implies that |f(x)−f(y)|< ε. Since such a δ > 0 exists for any
ε > 0, by definition f is uniformly continuous on Rk.

Q.E.D.

We are now ready to state the main result of this section.

Theorem 4.26 (Construction of the Lebesgue Measure)
There exists a σ-algebra L on Rk and a unique measure λ on (Rk,L) that satisfies the following
properties:

i) L contains every Borel set.

ii) (Rk,L,λ) is a complete measure space.

iii) λ(K)<+∞ for any compact set K ⊂ Rk.

iv) λ is a regular Borel measure.

v) For any A∈L and ε> 0, there exists a closed set F and an open set V such that F ⊂A⊂ V
and

λ(V \F )< ε.

vi) For any A⊂ Rk, A ∈ L if and only if there exist an F that is Fσ and a V that is Gδ such
that F ⊂A⊂ V and

λ(V \F ) = 0.

vii) λ(W ) = vol(W ) for any k-cell W .
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viii) λ is translation-invariant, that is, for any A ∈ L and x ∈ Rk,

λ(A+x) = λ(A).

ix) If µ is a measure on (Rk,B(Rk)) that is translation-invariant and assigns finite measure to
every compact set in Rk, then there exists a c > 0 such that

µ(A) = c ·λ(A)

for any A ∈ B(Rk).

x) For any k×k matrix T , there exists a ∆(T ) ∈ R+ such that

λ(TA) = ∆(T ) ·λ(A)

for any A ∈ L. In particular, if T is noninvertible, then ∆(T ) = 0.

Proof) We sequentially prove each claim in the theorem. Let τk be the standard euclidean
topology on Rk; note that (Rk, τk) is a locally compact Hausdorff space in which every
open set is σ-compact.

Step 1: Constructing the Riemann Integral

For any n ∈N+, define Λn as

Λnf = 2−kn ·
∑
x∈Pn

f(x)

for any complex valued function f on Rk with compact support (f is not necessarily
continuous). The fact that f has compact support ensures that Λnf ∈ C and does not
diverge, since only a finite number of f(x) are non-zero.
Note that Λn is a positive linear functional; for any a ∈ C and complex functions f,g
on Rk with compact support,

Λn(af +g) = 2−kn ·
∑
x∈Pn

(a ·f(x) +g(x))

= a ·2−kn
∑
x∈Pn

f(x) + 2−kn
∑
x∈Pn

g(x) = a ·Λnf + Λng,

while if f ≥ 0, then

Λnf = 2−kn ·
∑
x∈Pn

f(x)≥ 0

as well. By implication, Λn is monotonic; that is, for any real valued f,g such that
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f ≤ g,

Λng = Λnf + Λn(g−f)≥ Λnf,

since g−f ≥ 0 and thus Λn(g−f)≥ 0.

Denote by Cc(Rk) the collection of all continuous compactly supported functions on Rk.
Let f ∈Cc(Rk) be a real valued function with support K = {f 6= 0}, which is compact.

By the preceding result, f is uniformly continuous on Rk, so that, for any ε > 0, there
exists a δ > 0 such that |x−y| < δ implies |f(x)−f(y)| < ε for any x,y ∈ Rk. Letting
N ∈N+ be chosen so that 2−kN < δ, define g,h : Rk→ C as

g(x) = min
y∈Q

f(x) and h(x) = max
y∈Q

f(x)

for any x∈Q for some Q∈ΩN . Then, g,h are constant on each box in ΩN , g≤ f ≤ h on
Rk, and because the distance between any two points in some Q ∈ ΩN is never greater
than 2−kN < δ, by the uniform continuity result above we have

h(x)−g(x) = max
y∈Q

f(x)−min
y∈Q

f(x)< ε

for any x ∈ Q, and by extension h− g < ε on Rk. Finally, because f(x) = 0 for any
x /∈K, we can see that g(x) = h(x) = 0 for any x /∈K as well, so that K contains the
support of g and h. In other words, g and h are compactly supported functions.

For any n≥N , we can now see that

ΛNg = 2−kN ·
∑
x∈PN

g(x) =
∑
x∈PN

g(x) ·vol
(
Q(x;2−N )

)
=
∑
x∈Pn

2−(n−N)kg(x) ·vol
(
Q(x;2−n)

)
2(n−N)k

=
∑
x∈Pn

g(x) ·vol
(
Q(x;2−n)

)
= Λng,

where the third equality follows because there are exactly 2(n−N)k points in Pn contained
in each box in ΩN , on which g is constant, so that Λng duplicates each term in ΛNg
2(n−N)k times. Λn is monotonic, so

ΛNg = Λng ≤ Λnf ≤ Λnh= ΛNh.

It now follows that

limsup
n→∞

Λnf − liminf
n→∞

Λnf ≤ ΛN (h−g) = 2−kN ·
∑
x∈PN

(h(x)−g(x))

≤ ε ·
∑

Q∈ΩN ,Q⊂W
vol(Q)≤ ε ·vol(W ).
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This holds for any ε > 0, so we have

limsup
n→∞

Λnf = liminf
n→∞

Λnf = lim
n→∞

Λnf.

Denoting the above limit by Λf , we have shown that

Λf = lim
n→∞

Λnf

exists for any real valued f ∈ Cc(Rk). This result can be easily extended to complex-
valued f ∈ Cc(Rk) by the linearity of Λn for any n ∈N+. Λf can be interpreted as the
usual Riemann integral for any f ∈ Cc(Rk).
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Step 2: The Lebesgue Measure and Lebesgue Measurable Sets

Above, we have constructed a function Λ : Cc(Rk)→ C such that

Λ(af +g) = lim
n→∞

Λn(af +g) = a · lim
n→∞

Λnf + lim
n→∞

Λng = a ·Λf + Λg

for any a ∈ C and f,g ∈ Cc(Rk) by the linearity of each Λn, and

Λf = lim
n→∞

Λnf ≥ 0

for any f ∈ Cc(Rk) such that f ≥ 0 due to the positivity of each Λn. In other words, Λ
is a positive linear functional on Cc(Rk), where (Rk, τk) is a locally compact Hausdorff
space where Rk is σ-compact.

Therefore, by the Riesz Representation Theorem and theorem 4.3, there exists a σ-
algebra L on Rk and a unique measure λ on (Rk,L) such that:

– B(Rk)⊂ L, that is, every Borel set is contained in L

– (Rk,L,λ) is a complete measure space

– λ(K)<+∞ for any compact set K ⊂ Rk

– λ is a regular Borel measure

– For any A ∈ L and ε > 0, there exists a closed set F and an open set V such that
F ⊂A⊂ V and

λ(V \F )< ε

– For any A ∈ L, there exists an F that is Fσ (the countable union of closed sets)
and a V that is Gδ (the countable intersection of open sets) such that F ⊂A⊂ V
and

λ(V \F ) = 0
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– For any f ∈ Cc(Rk),

Λf =
∫
Rk
fdλ.

Conversely, if, for some A⊂Rk, if there exists an F that is Fσ and a V that is Gδ such
that F ⊂A⊂ V and

λ(V \F ) = 0,

then A\F ⊂ V \F is a negligible set; becuase (Rk,L,λ) is complete and V \F ∈B(Rk)⊂
L, A\F is also L-measurable, so that

A= F ∪ (A\F ) ∈ L.

It follows that A ∈ L if and only if there exist an F that is Fσ and a V that is Vδ such
that F ⊂A⊂ V and λ(V \F ) = 0.

We have thus shown that (Rk,L,λ) satisfies the first 6 claims of the theorem. Any set
contained in the σ-algebra L is called a Lebesgue measurable set, and the measure λ
is called the Lebesgue measure.
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Step 3: The Volume of k-cells under the Lebesgue Measure

Now we must show that the Lebesgue measure of a k-cell is precisely that of its volume.
This allows us to interpret the Lebesgue measure of any Lebesgue measurable set as
the volume of that set, by making use of the fact that every nonempty open set is the
countable union of k-cells.

Choose any nonempty open k-cell

W = (a1, b1)×·· ·× (ak, bk)

in Rk. For any n ∈N+, let An be defined as

An =
⋃

Q∈Ωn,Q⊂W

Q.

Clearly, {An}n∈N+ is an increasing sequence of sets. Let Q ∈ Ωn and Q⊂W ; then, for
any x ∈Q, letting Q′ ∈Ωn+1 be the box in which x is contained, Q′ ⊂Q by lemma 4.5,
since Q∩Q′ 6= ∅. Furthermore, Q′ ⊂Q⊂W , so that

x ∈Q′ ⊂
⋃

Q′′∈Ωn+1,Q′′⊂W
Q′′ =An+1.

This holds for any x ∈Q, so Q⊂An+1, and by implication An ⊂An+1.

Additionally, ⋃nAn = W . Each En, being the union of sets that lie in W , is clearly
contained in W , so that ⋃nAn ⊂W . To see the reverse inclusion, choose any x ∈W .
{x} is a compact set contained in the open set W , and (Rk, τk) is a locally compact
Hausdorff space, so by theorem 1.14, there exists an open set V ∈ τk with compact
closure such that

x ∈ V ⊂ V ⊂W.

By lemma 4.5, V , being a nonempty open subset of Rk, can be expressed as the count-
able union of sets in ⋃nΩn. Choosing any N ∈N+ and Q ∈ ΩN such that x ∈Q ⊂ V ,
we can see that

Q⊂ V ⊂W,

so that x ∈Q⊂AN . This holds for any x ∈W , so W ⊂⋃nAn, and as such W =⋃
nAn.

We can also easily see that vol(An)↗ vol(W ). For any n ∈N+, because An ⊂An+1, we
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have vol(An)≤ vol(An+1), and if

vol(W )−vol(An)> 2−kn

for some n ∈N+, this means that there exists at least one box in Ωn whose closure lies
in W but which is not included in the union An, a contradiction. Therefore,

|vol(W )−vol(An)|= vol(W )−vol(An)≤ 2−kn

for any n ∈N+, which implies that

vol(An)↗ vol(W ).

For any n ∈N+, because An is a closed set such that

An =
⋃

Q∈Ωn,Q⊂W

Q⊂
⋃

Q∈Ωn,Q⊂W
Q⊂W,

An is compact (it is closed and bounded, since W is bounded), and by Urysohn’s lemma
there exists an fn ∈ Cc(Rk) such that

An ≺ fn ≺W.

Define gn = max(f1, · · · ,fn) for any n ∈N+. For any n ∈N+, we saw from the analysis
in step 1 that

vol(An) = ΛnIAn = ΛmIAn

for any m≥n. Because IAn ≤ fn≤ gn≤ IW , from the monotonicity of the linear function
Λm for any m≥ n we can see that

vol(An) = ΛmIAn ≤ Λmfn,

so taking m→∞ on both sides yields

vol(An)≤ Λfn.

Furthermore, because gn(x) = 0 for any x /∈W and 0 ≤ gn(x) ≤ 1 for any x ∈ Rk, for
any m ∈N+ we have

Λmgn = 2−km ·
∑
x∈Pm

gn(x)≤ 2−km|W ∩Pm| ≤
k∏
i=1

(bi−ai+ 2−m),

where the last inequality follows because 2−km|W ∩Pm| is the sum of the volume all
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boxes in Ωn whose lower left vertex is contained in W . Therefore,

Λgn = lim
m→∞

Λmgn ≤=
k∏
i=1

(bi−ai) = vol(W ),

and as such, by the montonicity of Λ,

vol(An)≤ Λfn ≤ Λgn ≤ vol(W ).

The fact that vol(An)↗ vol(W ) indicates that

lim
n→∞

Λgn = vol(W )

as well.
{gn}n∈N+ is an increasing sequence of functions, and because IAn↗ IW and IAn ≤ gn ≤
IW , gn↗ IW as well. By the MCT,

λ(W ) =
∫
Rk
IWdλ= lim

n→∞

∫
Rk
gndλ

= lim
n→∞

Λgn = vol(W ).

Now let W ′ be the closed k-cell W ′ = [a1, b1]×·· ·× [ak, bk]. Then, W ′ is the intersection
of the open k-cells ∏k

i=1

(
ai− 1

n , bi+
1
n

)
across n ∈N+, and because

λ

(
k∏
i=1

(ai−1, bi+ 1)
)

=
k∏
i=1

(bi−ai+ 2)<+∞,

by the sequential continuity of measures we have

λ(W ′) = lim
n→∞

λ

(
k∏
i=1

(
ai−

1
n
,bi+

1
n

))
= lim
n→∞

k∏
i=1

(
bi−ai+

2
n

)
=

k∏
i=1

(bi−ai) = vol(W ′).

Finally, for any arbitrary k-cell W ′′ with vertices (a1, · · · ,ak) and (b1, · · · , bk), since

W ⊂W ′′ ⊂W ′,

the montonicity of measures tells us that

vol(W ) = λ(W )≤ λ(W ′′)≤ λ(W ′) = vol(W ′).

Because vol(W ) = vol(W ′) = ∏k
i=1(bi− ai), we have λ(W ′′) = ∏k

i=1(bi− ai), which is
exactly the volume of W ′′.
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Step 4: The Translation-Invariance of the Lebesgue Measure

We show this property by first starting with boxes and then gradually generalizing the
result, first to open sets, then to Borel sets and finally to Lebesgue measurable sets.

Let Q be a half-open k-cell given by

Q= [a1, b1)×·· ·× [ak, bk).

Then, for any x ∈ Rk,

Q+x= {y+x | y ∈Q}=
k∏
i=1

[ai+xi, bi+xi).

Since Q and Q+x are k-cells, from the above result we have

λ(Q+x) = vol(Q+x) =
k∏
i=1

(bi−ai) = vol(Q) = λ(Q).

Now let V ∈ τk be nonempty. We saw in lemma 4.5 that V can be expressed as the
countable union of disjoint half open k-cells; that is, there exists a countable collection
{Wn}n∈N+ of disjoint half-open k-cells such that

V =
⋃
n

Wn.

Then, for any x ∈ Rk,

V +x=
⋃
n

(Wn+x),

and by the disjointness of {Wn}n∈N+ and countable additivity, we have

λ(V +x) =
∞∑
n=1

λ(Wn+x) =
∞∑
n=1

λ(Wn) = λ(V ).

For any A ∈ L and ε > 0, there exist a closed set F and an open set V such that
F ⊂A⊂ V and

λ(V \F )< ε.
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For any x ∈ Rk, since V \F is an open set,

λ((V \F ) +x) = λ(V \F )< ε,

and as such,

λ(A)≤ λ(V ) = λ(V +x) = λ((V \F ) +x) +λ(F +x)< ε+λ(A+x)

λ(A+x)≤ λ(V +x) = λ(V ) = λ(V \F ) +λ(F )≤ ε+λ(A),

so that

|λ(A)−λ(A+x)|< ε.

This holds for any ε > 0, so

λ(A) = λ(A+x).
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Step 5: Translation Invariant Borel Measures as Scaled Lebesgue Measures

Let µ be a measure on (Rk,B(Rk)) that is translation-invariant, that is,

µ(A) = µ(A+x)

for any A ∈ B(Rk) and x ∈ Rk.
Note that any two δ-boxes Q(x;δ) and Q(y;δ) are translations of one another. Specifi-
cally,

Q(x;δ) =Q(y;δ) + (x−y).

Therefore, the measure of any δ-box under a translation invariant measure must be the
same.

Choose any 1-box Q0, and define

c= µ(Q0)≥ 0,

where c does not depend on the vertices of Q0 because µ is translation invariant. Note
that λ(Q0) = 1.
Let Q be an arbitrary 2−n-box; since Q0 is the union of 2nk disjoint 2−n-boxes, by finite
additivity and the translation invariance of µ and λ we have

2nkµ(Q) = µ(Q0) = c ·λ(Q0) = c ·2nkλ(Q),

which implies that

µ(Q) = c ·λ(Q).

We have shown above that µ = c ·λ on ⋃
nΩn. Let V ∈ τk be nonempty. We saw in

lemma 4.5 that V can be expressed as the countable union of disjoint k-cells in ⋃nΩn;
that is, there exists a countable collection {Wn}n∈N+ of disjoint k-cells in ⋃nΩn such
that

V =
⋃
n

Wn.
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By the disjointness of {Wn}n∈N+ and countable additivity, we have

µ(V ) =
∞∑
n=1

µ(Wn) = c
∞∑
n=1

λ(Wn) = c ·λ(V ).

For any A ∈ B(Rk) and ε > 0, because B(Rk) ⊂ L, there exist a closed set F and an
open set V such that F ⊂A⊂ V and

λ(V \F )< ε.

For any x ∈ Rk, since V \F is an open set,

c ·λ(V \F ) = µ(V \F )< c ·ε

c ·λ(V ) = µ(V ),

and as such,

c ·λ(A)≤ c ·λ(V ) = µ(V ) = µ(V \F ) +µ(F )< c ·ε+µ(A)

µ(A)≤ µ(V ) = c ·λ(V ) = c ·λ(V \F ) + c ·λ(F )≤ c ·ε+ c ·λ(A),

so that

|c ·λ(A)−µ(A)|< c ·ε.

This holds for any ε > 0, so

µ(A) = c ·λ(A).
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Step 6: The Lebesgue Measure under Linear Transformations

To show the final property of the Lebesgue measure, let T be a k×k real matrix. T is a
linear mapping from Rk onto Rk, so it is (uniformly) continuous; letting v1, · · · ,vk ∈Rk

be the rows of T , this can be seen by noting that

|T (x)−T (y)|2 = |T (x−y)|2 =

∣∣∣∣∣∣∣∣∣


v′1(x−y)

...
v′k(x−y)


∣∣∣∣∣∣∣∣∣
2

=
k∑
i=1

∣∣v′i(x−y)
∣∣2 ≤ ( k∑

i=1
|vi|2

)
|x−y|2

for any x,y ∈ Rk, where we used the Cauchy-Schwarz inequality to justify the last
inequality.

Define µ : B(Rk)→ [0,+∞] as

µ(A) = λ(T (A))

for any A ∈ B(Rk). µ is a Borel measure on Rk:

– µ(∅) = λ(∅) = 0, and

– For any disjoint {An}n∈N+ ⊂ B(Rk) with A=⋃
nAn, we have

T (A) =
⋃
n

T (An),

where {T (An)}n∈N+ is a sequence of disjoint Borel sets, so

µ(A) = λ(T (A)) =
∞∑
n=1

λ(T (An)) =
∞∑
n=1

µ(An)

by the countable additivity of λ.

Furthermore, because of the translation invariance of λ,

µ(A+x) = λ(T (A+x)) = λ(T (A) +Tx) = λ(T (A)) = µ(A)

for any A ∈ B(Rk) and x ∈ Rk, so that µ is translation invariant as well.
Finally, for any compact K ⊂ Rk, because T (K) is also compact by the continuity of
T , we can see that

µ(K) = λ(T (K))<+∞.

µ is a Borel measure on Rk that is translation invariant and assigns finite measure to
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any compact set. By the preceding result, there exists a c ∈ R+ such that

µ(A) = λ(T (A)) = c ·λ(A)

for any A ∈ B(Rk). Denoting c= ∆(T ), it follows that

λ(T (A)) = ∆(T ) ·λ(A)

for any A ∈ B(Rk).

Choosing any A ∈ L, there exist Borel sets F,V such that F ⊂A⊂ V and

λ(V \F ) = 0.

Then, because T (F )⊂ T (A)⊂ T (V ),

∆(T ) ·λ(F )≤ λ(T (A))≤∆(T ) ·λ(V ),

where

λ(V ) = λ(V \F ) +λ(F ) = λ(F ),

which implies λ(A) = λ(F ) = λ(V ).
Therefore,

λ(T (A)) = ∆(T ) ·λ(V ) = ∆(T ) ·λ(A).

It remains to show that ∆(T ) > 0 if T is non-singular, and ∆(T ) = 0 if T is singular.
Suppose that T is non-singular. Then, it is a surjective mapping, so that T (Rk) = Rk.
If ∆(T ) = 0, then

+∞= λ(Rk) = λ(T (Rk)) = ∆(T ) ·λ(Rk) = 0,

a contradiction, so it must be the case that ∆(T )> 0.

On the other hand, if T is singular, then the range R(T ) of T is a proper subspace of
Rk. Let {v1, · · · ,vm} be an orthonormal basis of T (Rk), where m< k, and {v1, · · · ,vk}
the extension of {v1, · · · ,vm} to an orthonormal basis of Rk. Then, defining S as the
unique linear operator on Rk such that Sei = vi for 1≤ i≤ k, where {e1, · · · ,ek} is the
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standard basis of Rk, we can see that

T (Rk) = S
(
Rm×{0(k−m)×1}

)
.

Therefore,

λ(T (Rk)) = λ(S
(
Rm×{0(k−m)×1}

)
) = ∆(S) ·λ(Rm×{0(k−m)×1}) = 0.

This means that

λ(T (A)) = 0

for any A ∈ L, and as such that ∆(T ) = 0.

Q.E.D.

It follows directly from the construction that the Lebesgue and Riemann integrals of contin-
uous compactly supported funtions must be the same. Customarily, we write∫ ∞

−∞
f(x)dx

for the integral
∫
R fdλ, where f is a Lebesgue integrable function on R and λ is the Lebesgue

measure on R. For higher dimensions, we similarly write∫
Rk
f(x)dx

for
∫
Rk fdλ, where f is a Lebesgue integrable function on Rk and λ is the Lebesgue measure on

Rk.
In the remainder of this section, we discuss some topics related to the Lebesgue measure.

First, we show that, under the axiom of choice, not every set is Lebesgue measurable; indeed,
that we cannot have a measure that reasonably assigns volume to every subset of some euclidean
space. Afterward, we study the relationship between the ∆(T ) derived in the above construction
and the determinant of square matrices.
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4.4.2 Existence of Non-Measurable Sets

The collection L of all Lebesgue measurable sets contains every Borel set on Rk, but it does not
contain every subset of Rk, that is, it does not equal 2Rk , given that we assume the axiom of
choice. In fact, a stronger statement holds true. Specifically, if the axiom of choice holds, then
there does not exist any measure that can reasonably assign a volume to every subset of Rk;
what is meant here by a measure that reasonably assigns volume is a measure that assigns to k-
cells their volume and is translation-invariant. This demonstrates why we work with σ-algebras
instead of the power set. Even with euclidean spaces, the simplest and most intuitive spaces, we
cannot construct a measure that sensibly assigns a volume to every subset. Below we show this
result for R1.

Theorem 4.27 (Existence of Non-measruable Set on R)
Suppose the axiom of choice holds. Let L be any σ-algebra on R, and λ a measure on (R,L)
such that

i) λ((a,b)) = λ([a,b]) = b−a for any −∞< a < b <+∞, and

ii) λ(A+x) = λ(A) for any A ∈ L and x ∈ R.

Then, there exists a subset of R that is not contained in L.

Proof) Suppose that L= 2R, so that every subset of R is contained in L. We can then derive
a contradiction through direct construction as follows.

Let F the collection of the cosets of Q on [0,1], that is, the collection of sets of the form

B = {x+ q | q ∈Q∩ [−x,1−x]} ⊂ [0,1]

for any x ∈ [0,1]. Note that the union of all cosets in F is exactly the unit interval
[0,1]. Note also that any two distinct cosets of F are disjoint; to see this, choose any
B1,B2 ∈ F such that B1 6=B2. By definition, there exist y1,y2 ∈ [0,1] such that

Bi = {yi+ q | q ∈Q∩ [−yi,1−yi]}

for i = 1,2. If y1− y2 ∈ Q, then B1 = B2, so it must be the case that the difference
y1− y2 is irrational. Now suppose that x ∈ B1 ∩B2.Then, there exist q1, q2 ∈ Q such
that x= y1 +q1 = y2 +q2. Then, y1−y2 = (q2−q1) ∈Q, which contradicts the distinct-
ness of B1 and B2. Therefore, B1∩B2 = ∅.

By the axiom of choice, there exists a choice function f : F → R. Define the set S ⊂ R
as

S = {f(B) |B ∈ F},
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that is, we construct S by choosing a point from each of the sets comprising F . By
design, the difference of any distinct x1,x2 ∈ S cannot be rational. To see this, let
x1 ∈B1 and x2 ∈B2 for distinct sets B1,B2 ∈ F , and suppose that x1−x2 = q ∈Q. By
definition, there exist y1,y2 ∈ [0,1] such that

Bi = {yi+ q | q ∈Q∩ [−yi,1−yi]}

for i = 1,2, where y1− y2 /∈ Q due to the distinctness of B1 and B2. Since xi ∈ Q+ yi

for i= 1,2, there exist q1, q2 ∈Q such that

q = x1−x2 = (y1 + q1)− (y2 + q2) = (y1−y2) + (q1− q2).

Rearranging terms implies y1−y2 = q− (q1−q2) ∈Q, a contradiction, so it must be the
case that x1−x2 /∈Q.

By our initial assumption, the set S that we just constructed is L-measurable. We show
that this leads to a contradiction.

Since Q0 = Q∩ [−1,1] is countable, we can arrange it as a sequence {qn}n∈N+ . Define
Sn = S+qn for any n ∈N+; since S is a subset of [0,1], each Sn ⊂ [−1,2]. We now show
that the following hold:

– {Sn}n∈N+ is a collection of disjoint sets
To this end, choose any distinct n,m ∈N+ and suppose that x ∈ Sn∩Sm. Then,
there exist y1,y2 ∈ S such that

x= y1 + qn = y2 + qm.

This can be rearrange to show that y1−y2 = qm−qn ∈Q. In other words, the dif-
ference between y1 and y2 is rational. y1 and y2 cannot be distinct, since otherwise
their difference cannot be rational. It follows that y1 = y2, but this in turn implies
that qn = qm, a contradiction. Thus, it Sn∩Sm = ∅.

– [0,1] is contained in the union of {Sn}n∈N+

Choose x ∈ [0,1]. Then, x lies in some coset B ∈ F , and let y ∈ B be the ele-
ment of this coset that is contained in S. Then, defining q = y−x ∈ [−x,1−x], q
must rational because x,y lie in the same coset, showing us that q ∈Q∩ [−x,1−
x] ⊂ Q∩ [−1,1]. Thus, there exists some n ∈ N+ such that q = qn, and we have
x ∈ S+ q = Sn.

323



The second property, combined with the definition of the sets Sn, allows us to see that

[0,1]⊂
⋃
n

Sn ⊂ [−1,2].

It follows from the monotonicity of measures that

1 = λ([0,1])≤ λ
(⋃
n

Sn

)
≤ λ([−1,2]) = 3.

Furthermore, by the first property and countable additivity,

λ

(⋃
n

Sn

)
=
∞∑
n=1

λ(Sn).

Finally, since each Sn is a translation of S,

λ(Sn) = λ(S)

for any n ∈N+. Now consider the following cases:

1) λ(S) = 0
In this case, λ(Sn) = 0 for any n ∈N+ and we have

1≤ λ
(⋃
n

Sn

)
=
∞∑
n=1

λ(Sn) = 0,

a contradiction.

2) λ(S)> 0
In this case, we have

λ

(⋃
n

Sn

)
=
∞∑
n=1

λ(Sn) =
(

lim
n→∞

n
)
λ(S) = +∞≤ 3,

another contradiction.

In any case, we end up with a contradiction. This must mean that the set S is not
L-measurable, or in other words, it is a subset of R not contained in L.

Q.E.D.

Since the Lebesgue measure satisfies the first two properties of the theorem above, it imme-
diately follows that there are subsets of R that are not Lebesgue measurable, that is, subsets of
the real line to which we cannot assign a reasonable size.

324



4.4.3 The Geometric Meaning of the Determinant

Returning to the context of the Lebesgue measure, the determinant of a matrix has the geometric
property of rescaling a set. Letting L be the set of all Lebesgue-measurable sets on Rk, and λ

the corresponding Lebesgue measure, recall that for any T ∈Rk×k, there exists a ∆(T )≥ 0 such
that

λ(TA) = ∆(T ) ·λ(A)

for any A ∈ L, where ∆(T ) = 0 if T is singular. To study the properties of the function ∆ :
Rk×k → R+, we fix A = [0,1]k, which has volume 1 and thus measure 1 under the Lebesgue
measure. This shows us that ∆(T ) is given as

∆(T ) = λ(T [0,1]k).

Note that the operation ∆ satisfies the same product rule as the determinant; that is, for any
U,T ∈ Rk×k,

∆(UT ) = λ((UT )[0,1]k) = λ(U(T [0,1]k)) = ∆(U) ·λ(T [0,1]k)

= ∆(U)∆(T )λ([0,1]k) = ∆(U)∆(T ).

It turns out that ∆(T ) shares more than just the product rule of the determinant. In fact, it is
exactly equal to the absolute value of the determinant of T :

Theorem 4.28 (Geometric Meaning of the Determinant)
Let L be the set of all Lebesgue-measurable sets on Rk, and λ the corresponding Lebesgue
measure. Let T ∈ Rk×k. Then,

λ(T (A)) = |det(T )| ·λ(A)

for any A ∈ L.

Proof) In terms of the notations introduced above, we need only prove that

∆(T ) = |det(T )|

for any T ∈ Rk×k.

If T is singular, then ∆(T ) = det(T ) = 0, and the equivalence is established, so suppose
T is non-singular. In this case, T can be expressed as the product of a finite number of
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elementary matrices, that is,

T =
n∏
i=1

Ei,

where each Ei ∈Rk×k is an elementary matrix. Thus, if we show that ∆(E) = |det(E)|
for any elementary matrix E ∈ Rk×k, then by the product rule,

|det(T )|=
n∏
i=1
|det(Ei)|=

n∏
i=1

∆(Ei) = ∆(T ),

and we have the equivalence. Let E ∈Rk×k be an elementary matrix, and {e1, · · · ,ek} ⊂
Rk the standard basis of Rk. We consider the following three cases:

– E is of Type 1
In this case, E is obtained by interchanging two columns of Ik, say, the ith and
jth columns. Letting i < j without loss of generality, this means that

E =
(
e1 · · · ej · · · ei · · ·ek

)
.

Note that E[0,1]k = [0,1]k. For any x∈E[0,1]k, Ey= x for some y ∈ [0,1]k, where x
is obtained by interchanging the ith and jth coordinates of y. Since the coordinates
of y ∈ [0,1]k are all contained in [0,1], so are the coordinates of x, and thus x ∈
[0,1]k. To see the reverse inclusion, choose any x ∈ [0,1]k, and, letting y ∈ [0,1]k

be constructed by interchanging the ith and jth coordinates of x, x=Ey, so that
x ∈ E[0,1]k. It follows that

∆(E) = λ(E[0,1]k) = λ([0,1]k) = 1 = |det(E)|.

– E is of Type 2
In this case, there exists a c 6= 0 and 1≤ j ≤ k such that

E =
(
e1 · · · c ·ej · · ·ek

)
.

Assume first that c > 0. We can show that E[0,1]k =∏k
i=1[0, ci], where ci = 1 for

i 6= j and ci = c for i = j. First, choose some x ∈ E[0,1]k. Then, there exists a
y ∈ [0,1]k such that Ey = x, and x is constructed by multiplying c to the jth
element of y. Therefore, for any 1≤ i≤ k, yi = xi ∈ [0,1], while xj = c ·yj ∈ [0, c],
so that

x ∈ [0,1]×·· ·× [0, c]×·· · [0,1] =
k∏
i=1

[0, ci].
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Conversely, if x ∈∏k
i=1[0, ci], then letting y ∈ Rk be defined as

yi =

xi if i 6= j

1
cxi if i= j

,

we have x= Ey ∈ E[0,1]k. It follows that

∆(E) = λ(E[0,1]k) = λ

(
k∏
i=1

[0, ci]
)

= c= det(E).

If c < 0, the same line of reasoning shows that

E[0,1]k = [0,1]×·· ·× [c,0]×·· · [0,1],

so that ∆(E) =−c= |det(E)|.

– E is of Type 3
In this case, there exist 1≤ i 6= j ≤ k such that

E =
(
e1 · · · ei+ej︸ ︷︷ ︸

jth position

· · · ek
)
.

For the sake of convenience, we work with the half-open unit cube [0,1)k instead
of the unit cube [0,1]k; note that they have the same volume 1.
For any y ∈ Rk, denote x= Ey; then,

xm =

ym if m 6= j

yi+yj if m= j
.

This means that, for any y ∈ [0,1)k,

0≤ xm = ym < 1 for any m 6= j,

0≤ xj = yi+yj < yi+ 1< 2.

We now partition E[0,1)k into two parts; defining

S1 = {x ∈ E[0,1)k | xj ∈ [0,1)}, S2 = {x ∈ E[0,1)k | xj ∈ [1,2)},

E[0,1]k = S1∪S2 and S1∩S2 = ∅. We can now see that

[0,1)k = S1∪ (S2−ej).
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To see this, suppose x ∈ [0,1)k. If xi ≤ xj , then x= Ey for y ∈ [0,1)k defined as

ym =

xm if m 6= j

xj−xi if m= j
.

Thus, x ∈ E[0,1)k, and since x ∈ [0,1)k, we have x ∈ S1. On the other hand, if
xi > xj , then we can use the fact that the difference xj−xi is bounded below by
1. Therefore, x+ej = Ey for y ∈ [0,1)k defined as

ym =

xm if m 6= j

(xj + 1)−xi if m= j
.

Thus, x+ ej ∈ E[0,1)k and the jth element of x+ ej is contained in the interval
[1,2), so we have x+ ej ∈ S2 and x ∈ S2− ej . This shows us that [0,1)k ⊂ S1 ∪
(S2−ej).
Conversely, choose any x ∈ S1∪ (S2− ej). If x ∈ S1, then x ∈ [0,1)k by definition.
If x ∈ (S2− ej), then there exists a y ∈ S2 such that x = y− ej . By definition,
ym ∈ [0,1) for any m 6= j and yj ∈ [1,2), so x ∈ [0,1)k, which shows us that S1∪
(S2−ej)⊂ [0,1)k.
Finally, we can see that S1∩ (S2− ej) = ∅. For the sake of contradiction, suppose
that x∈ S1∩(S2−ej). Then, there exists a w ∈ [0,1)k such that x=Ew−ej , since
x ∈ S2−ej . However, since x ∈ S1, there also exists a y ∈ [0,1)k such that x=Ey.
Putting these results together, we have

ej = Ew−Ey = E(w−y).

Since the ith coordinate of w− y is equal to 0, the above equation can be re-
expressed as ej = w−y, or wj = yj + 1. However, this implies that

wj = yj + 1≥ 1,

which contradicts the fact that w ∈ [0,1)k. Thus, S1∩ (S2−ej) = ∅.

Now the result follows easily by noting that

1 = λ([0,1)k) = λ(S1∪ (S2−ej))

= λ(S1) +λ(S2−ej) (Finite Additivity)

= λ(S1) +λ(S2) (Translation Invariance of λ)

= λ(S1∪S2) (Finite Additivity)

= λ(E[0,1)k) = ∆(E).

Since det(E) = 1 as well, we have ∆(E) = |det(E)| at last.
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Q.E.D.

The above result can easily be extended to give the formula for integration under a linear
change of variables:

Theorem 4.29 (Linear Change of Variables)
Let L be the set of all Lebesgue-measurable sets on Rk, and λ the corresponding Lebesgue
measure. Let T ∈ Rk×k be a non-singular matrix and f a non-negative Lebesgue measurable
function. Then, ∫

Rk
f(x)dx= |det(T )| ·

∫
Rk
f(T (x))dx.

Proof) We use the usual construction of non-negative functions using simple functions and
indicator functions. Let f be a non-negative simple Lebesgue measurable function such
that

f =
n∑
i=1

ai · IAi ,

where a1, · · · ,an ∈ [0,+∞) and A1, · · · ,An ∈L are disjoint Lebesgue measurable subsets.
Note that

f(T (x)) =
n∑
i=1

ai · IAi(T (x)) =
n∑
i=1

ai · IT−1(Ai)(x)

for any x∈Rk, so that f ◦T is also a non-negative simple Lebesgue measurable function.
Then,

∫
Rk
f(T (x))dx=

n∑
i=1

ai ·λ(T−1(Ai))

=
∣∣∣det

(
T−1

)∣∣∣( n∑
i=1

ai ·λ(Ai)
)

=
∣∣∣det

(
T−1

)∣∣∣ ·∫
Rk
f(x)dx.

Now let f ∈ L+ in general. Then, there exists a sequence {fn}n∈N+ of simple non-
negative L-measurable functions increasing to f . {fn ◦T}n∈N+ is then also a sequence
of simple non-negative L-measurable functions increasing to f ◦T ; by repeated appli-
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cations of the MCT, we have∫
Rk
f(T (x))dx= lim

n→∞

∫
Rk
fn(T (x))dx

=
∣∣∣det

(
T−1

)∣∣∣ ·( lim
n→∞

∫
Rk
fn(x)dx

)
=
∣∣∣det

(
T−1

)∣∣∣ ·∫
Rk
f(x)dx.

Finally, note from the product rule of determinants that, since TT−1 = Ik,

1 = det
(
TT−1

)
= det(T )det

(
T−1

)
,

so that det(T ) = 1
det(T−1) . Thus, for any f ∈ L+, we have

∫
Rk
f(x)dx= 1

|det(T−1)| ·
∫
Rk
f(T (x))dx= |det(T )| ·

∫
Rk
f(T (x))dx.

Q.E.D.

Heuristically, given any T ∈ Rk×k, the determinant is the volume of the transformation
T [0,1]k of the unit cube into a parallelogram. This is especially clear in the case of 2-dimensional

space; letting T =

a b

c d

, T [0,1]2 is the parallelogram with vertices at (0,0), (a,c), (b,d) and

(a+ b,c+d). The area of this parallelogram is then given as

λ(T [0,1]2) = |det(T )|= |ad− bc|.

Note that the angles of the parallelogram are given as the angle θ between the vectors (a,c) and
(b,d), specifically

θ = arccos
( |ab+ cd|√

a2 + c2
√
b2 +d2

)

and π− θ. In the special case that (a,c) and (b,d) are orthogonal and are both of length 1,
that is, ab+ cd= 0 and

√
a2 + c2 =

√
b2 +d2 = 1, we can see that θ = π

2 and the lengths of each
edge of the parallelogram T [0,1]2 equal 1. In other words, when (a,c) and (b,d) are orthogonal
and of length 1, T [0,1]2 is equivalent to a rotation of the unit square. Since (a,c) and (b,d)
are orthogonal and of length 1 if and only if T ′T = I2, we can see that T [0,1]2 rotates the unit
square when T is an orthogonal matrix. This is why multiplication by an orthogonal matrix is
often referred to as a rotation.

In a general euclidean k-space, the same idea holds. Given T = (v1, · · · ,vk) ∈ Rk×k, the
transformation T [0,1]k is the parallelepiped with vertices at 0 and vi1 + · · ·+vim , where 1≤m≤ k
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and 1≤ i1, · · · , im ≤ k are distinct indices. Therefore, T [0,1]k has

k∑
i=0

k
i

= 2k

vertices, the same number of vertices as [0,1]k. If T is an orthogonal matrix, that is, if

T ′T =


v′1v1 · · · v′1vk

... . . . ...
v′kv1 · · · v′kvk

= Ik,

then the angle between any non-parallel edges, which are computed using the inner product of
two vertices with distinct summands, is equal to 0, and the length of each edge is equal to 1.
Therefore, T [0,1]k simply becomes a rotation of the unit cube [0,1]k, so that a transformation
of a set using an orthognoal matrix once again represents a rotation of the original set.
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4.5 Continuity Properties of Measurable Functions

So far in this chapter, we have relied on linear functionals defined over the set of continuous
compactly supported functions to construct and derive properties of Borel measures. This nat-
urally leads one to question whether there exists a more direct relationship between continuous
compactly supported functions and measurable functions. The answer to this is precisely the
content of Lusin’s theorem, stated below:

Theorem 4.30 (Lusin’s Theorem)
Let (E,τ) be a locally compact Hausdorff space and B(E,τ) the corresponding Borel σ-algebra.
Let (E,E ,µ) be a measure space with properties i) to iv) of the Riesz representation theorem:

i) µ(K)<+∞ for any compact K ⊂ E

ii) Any E-measurable set is outer regular; for any A ∈ E ,

µ(A) = inf{µ(V ) |A⊂ V,V ∈ τ}

iii) Any E-measurable set with finite measure or any open set is inner regular; for any A ∈ E
such that µ(A)<+∞ or A ∈ τ ,

µ(A) = sup{µ(K) |K ⊂A,K is compact}

iv) (E,E ,µ) is complete, and E contains all Borel sets.

Suppose f be a complex E-measurable function such that µ({f 6= 0})<+∞. For any ε > 0, there
exists a continuous compactly supported function g ∈ Cc(E,τ) such that

µ({f 6= g})< ε.

Proof) Let f ∈ E+ be a non-negative measurable function taking values in [0,1) with compact
support K, and choose some ε > 0.
Let {sn}n∈N+ a sequence of E-measurable simple functions on E increasing to f , defined
as in theorem 2.10. Define {fn}n∈N+ as f1 = s1 and fn = sn − sn−1 ≥ 0 for n ≥ 2,
{fn}n∈N+ is a sequence of E-measurable simple functions such that

f = lim
n→∞

sn = lim
n→∞

n∑
i=1

fi =
∞∑
n=1

fn.
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Furthermore, for any n ∈N+, because f(x)< 1 for any x ∈ E,

sn =
n2n∑
k=1

k−1
2n · If−1([ k−1

2n , k2n )) +n · If−1([n,+∞])

=
n2n∑
k=1

k−1
2n · IAnk ,

where Ank = f−1
([

k−1
2n ,

k
2n
))

for 1≤ k ≤ n2n. Since

Ank = f−1
([2k−2

2n+1 ,
2k−1
2n+1

))
∪f−1

([2k−1
2n+1 ,

2k
2n+1

))
=An+1,2k−1∪An+1,2k,

we have

fn+1 = sn+1−sn =
(n+1)2n+1∑

k=1

k−1
2n+1 · IAn+1,k −

n2n∑
k=1

k−1
2n · IAnk

=
2n+1∑
k=1

k−1
2n+1 · IAn+1,k −

2n∑
k=1

k−1
2n · IAnk

=
2n∑
k=1

2k−2
2n+1 · IAn+1,2k−1 +

2n∑
k=1

2k−1
2n+1 · IAn+1,2k

−
2n∑
k=1

2k−2
2n+1 ·

(
IAn+1,2k−1 + IAn+1,2k

)

=
2n∑
k=1

1
2n+1 · IAn+1,2k

= 1
2n+1

( 2n∑
k=1

IAn+1,2k

)
= 1

2n+1 IAn+1 ,

where

An+1 = f−1
( 2n⋃
k=1

[2k−1
2n+1 ,

2k
2n+1

))
⊂K

and we used the fact that

An+1,k = f−1
([
k−1
2n+1 ,

k

2n+1

))
= ∅

for any 1 ≤ k ≤ (n+ 1)2n+1 such that k ≥ 2n+1 + 1 because 0 ≤ f < 1 on E to justify
the second equality.
As for f1, we can see that

f1 = s1 =
2∑

k=1

k−1
2 · IA1k = 1

2 · IA1 ,
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where we define A1 =A12 = f−1
([

1
2 ,1
))
⊂K. It now follows that

f =
∞∑
n=1

fn =
∞∑
n=1

1
2n · IAn

for a sequence {An}n∈N+ of E-measurable sets such that An ⊂K for any n ∈N+.

Since K is a compact subset of the open set E, by theorem 1.14 it follows that there
exists an open set V with compact closure V such taht K ⊂ V ⊂ V ⊂ E.
For any n ∈N+, µ(An) ≤ µ(K) < +∞ by the monotonicity of µ. This means that An
is both inner and outer regular, so that there exist an open set Gn ∈ τ and a compact
set Kn such that Kn ⊂An ⊂Gn and

µ(Gn)< µ(An) + ε

2n+1 and µ(An)− ε

2n+1 < µ(Kn).

Defining Vn = Gn ∩V , Vn ∈ τ and An ⊂ Vn because An ⊂ K ⊂ V . It also holds that
µ(Vn)≤ µ(Gn)< µ(An) + ε

2n+1 . By implication,

µ(Vn \An)≤ µ(Vn)−µ(An)< ε

2n+1

µ(An \Kn)≤ µ(An)−µ(Kn)< ε

2n+1 ,

and as such

µ(Vn \Kn) = µ(Vn \An) +µ(An \Kn)< ε

2n .

By Urysohn’s lemma, there exists an hn ∈ Cc(E,τ) such that Kn ≺ hn ≺ Vn, so that
hn = 1 on Kn, {hn 6= 0} ⊂ Vn and hn ∈ [0,1] on E. Define the function

g =
∞∑
n=1

1
2nhn;

because { 1
2nhn}n∈N+ is a sequence of non-negative E-measurable functions on E, by the

MCT for series g is also a non-negative E-measurable function. Furthermore, because∣∣∣∣ 1
2nhn

∣∣∣∣≤ 1
2n

on E for any n ∈N+, where ∑n
1

2n = 1<+∞, by the Weierstrass M -test the sequence
{gn}n∈N+ of continuous functions defined as

gn =
n∑
i=1

1
2ihi

for any n ∈N+ converges uniformly to g. Since continuity is preserved across uniform
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limits, g is also a continuous function on E.
Additionally, because

Kn ⊂An ⊂ Vn ⊂ V ⊂ V ,

and

{g 6= 0} ⊂
⋃
n

{hn 6= 0} ⊂
⋃
n

{hn 6= 0} ⊂
⋃
n

Vn ⊂ V ,

the support {g 6= 0} of g is a closed subset of the compact set V and thus compact. We
have so far shown that g ∈ Cc(E,τ).

Now note that, because

{f 6= g} ⊂
⋃
n

{IAn 6= hn},

we have

µ({f 6= g})≤
∞∑
n=1

µ({IAn 6= hn}).

For any n ∈ N+, IAn(x) 6= hn(x) implies x ∈ Vn \Kn (they are both 0 outside Vn and
both 1 on Kn), so by monotonicity,

µ({f 6= g})≤
∞∑
n=1

µ(Vn \Kn)≤
∞∑
n=1

ε

2n = ε.

We have thus shown that there existsa continuous compactly supported function g on
E such that f and g differ on a set of measure no more than ε.

Suppose that f is now an E-measurable non-negative function such that |f | <M for
some M ∈ (0,+∞) and µ({f 6= 0})<+∞. Defining A= {f 6= 0}, since µ(A)<+∞, A
is inner regular, so that there exists a compact K such that K ⊂A and

µ(A)− ε2 < µ(K),

and by implication

µ(A\K)< ε

2 .

Define

f̄ = 1
M
f · IK .
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Then, f̄ is a E-measurable non-negative function taking values in [0,1) with compact
support K. By the preceding result, there exists a ḡ ∈ Cc(E,τ) such that

µ({f̄ 6= ḡ})< ε

4 .

Defining g =M · ḡ, we can see that

µ({f 6= g}∩A)≤ µ({f 6= g}∩A∩K) +µ({f 6= g}∩A∩Kc)

≤ µ({f̄ 6= ḡ}) +µ(A∩Kc)< 3
4ε.

Furthermore,

µ({f 6= g}∩Ac) = µ({g 6= 0}∩{f = 0})≤ µ({ḡ 6= f̄})< ε

4 ,

so we have

µ({f 6= g})≤ µ({f 6= g}∩A) +µ({f 6= g}∩Ac)< ε.

Finally, let f be a non-negative real-valued E-meausurable function with µ({f 6= 0})<
+∞. Defining the sequence {Bn}n∈N+ of E-measurable sets as

Bn = {f ≥ n}

for any n ∈N+, since Bn+1 ⊂Bn for any n ∈N+,

⋂
n

Bn = ∅

because f is real-valued, and µ(B1) = µ({f > 1})≤ µ({f 6= 0})<+∞, by the sequential
continuity of measures

lim
n→∞

µ(Bn) = µ

(⋂
n

Bn

)
= 0.

This implies that there exists an N ∈N+ such that µ(BN )< ε
2 .

Define f̄ = f · IBcN . Then, f̄ is a E measurable non-negative function bounded above
by N and with µ({f̄ 6= 0})≤ µ({f 6= 0})<+∞. By the preceding result, there exists a
g ∈ Cc(E,τ) such that

µ({f̄ 6= g})< ε

2 .
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Therefore,

µ({f 6= g})≤ µ({f 6= g}∩Bc
N ) +µ({f 6= g}∩BN )

≤ µ({f̄ 6= g}) +µ(BN )< ε.

The claim now follows easily for the arbitrary complex valued E-measurable function
f such that µ({f 6= 0})<+∞. Since

f = (Re(f)+−Re(f)−) + i · (Im(f)+− Im(f)−),

where Re(f)±, Im(f)± ∈ E+, and

{f = 0} ⊂ {Re(f)+ =Re(f)−}∩{Im(f)+ = Im(f)−}= {Re(f)± = 0}∩{Im(f)± = 0},

we have

{Re(f)± 6= 0}∪{Im(f)± 6= 0} ⊂ {f 6= 0},

so that

µ({Re(f)± 6= 0}),µ({Im(f)± 6= 0})≤ µ({f 6= 0})<+∞.

From the preceding result, it follows that there exist functions g1,g2 ∈ Cc(E,τ) and
h1,h2 ∈ Cc(E,τ) such that

µ({Re(f)+ 6= g1}),µ({Re(f)− 6= g2}),µ({Im(f)+ 6= h1}),µ({Im(f)− 6= h2})<
ε

4 .

Defiing g = (g1−g2) + i · (h1−h2) ∈ Cc(E,τ), we can now see that

|f −g| ≤
∣∣∣Re(f)+−g1

∣∣∣+ ∣∣Re(f)−−g2
∣∣+ ∣∣∣Im(f)+−h1

∣∣∣+ ∣∣Im(f)−−h2
∣∣,

which implies that

{f 6= g} ⊂ {Re(f)+ 6= g1}∪{Re(f)− 6= g2}∪{Im(f)+ 6= h1}∪{Im(f)− 6= h2},

and as such

µ({f 6= g})< ε.

Q.E.D.
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Chapter 5

Lp Spaces

5.1 Lp Spaces as Vector Spaces

Let (E,E ,µ) be a measure space.
We start by noting that almost everywhere equivalence is an equivalence relation. To see this,
first denote f ∼ g if f = g a.e. [µ] for some f,g : E→ C, where f,g are E-measurable complex-
valued:

i) (Reflexivity) For any E-measurable numerical or complex function f , since f(x) = f(x) for
any x ∈ E, f = f a.e. [µ] and f ∼ f .

ii) (Symmetry) If f ∼ g, then g = f a.e. [µ] as well, so that g ∼ f .

iii) (Transivitiy) If f ∼ g and g ∼ h, then letting A= {f 6= h}, since A⊂ {f 6= g}∪{g 6= h}, by
the subadditivity of measures

0≤ µ(A)≤ µ({f 6= g}) +µ({g 6= h}) = 0,

so that µ(A) = 0. By definition, f ∼ h.

In light of the above, for any E-measurable numerical or complex function f we can define the
equivalence class

[f ]µ = {g : E→ C | g is E-measurable and f = g a.e. [µ]},

or the set of all E-measurable complex functions that are equal to f µ-almost everywhere. For
any E-measurable numerical or complex functions f,g, f ∼ g if and only if [f ]µ = [g]µ; this follows
easily from the fact that almost everywhere equivalence is an equivalence relation. Define E/C
as the collection of all equivalence classes of the above form.

Since the integrals of any µ-a.e. equivalent µ-integrable functions are equal, for any p ∈ [1,+∞)
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we can consider the following definition of the Lp space Lp(E ,µ):

Lp(E ,µ) =
{

[f ]µ ∈ E/C
∣∣∣∫
E
|f |pdµ <+∞

}
,

where
∫
E |f |

pdµ =
∫
E |g|

pdµ for any g ∈ [f ]µ indicates that
∫
E |g|

pdµ < +∞ for any g ∈ [f ]µ if
[f ]µ ∈ Lp(E ,µ). In this sense, Lp(E ,µ) is the collection of every equivalence class [f ]µ that is
“integrable” in the pth power.
Note that, because p can be equal to 1, we have redefined L1(E ,µ) as a collection of equivalence
classes instead of a set of functions.

Lp(E ,µ) defined in this manner can be shown to be a vector space over the complex field. Define
the addition and scalar multiplication of equivalence classes in E/C by the addition and scalar
multiplication of the representatives of those equivalence classes:

[f ]µ+ [g]µ = [f +g]µ
z · [f ]µ = [zf ]µ

for any [f ]µ, [g]µ ∈L1(E ,µ) and z ∈C, where the notations on the right hand side are well defined
because measurability of complex functions is preserved across addition and scalar multiplica-
tion. We now verify the axioms of a vector space.

1) Closedness under Addition and Scalar Multiplication
Choose any z ∈ C and [f ]µ, [g]µ ∈ Lp(E ,µ). By definition,

z · [f ]µ+ [g]µ = [zf +g]µ.

To see that |zf +g|p is µ-integrable, note that, for any x,y ∈ C,

|x+y|p ≤ (|x|+ |y|)p ≤ 2p−1(|x|p+ |y|p),

where the last inequality follows from the convexity of the function ψ : (0,+∞)→ (0,+∞)
defined as ψ(a) = ap for any a≥ 0.1 By the monotonicity and linearity of integration,∫
E
|zf +g|pdµ≤ 2p−1 ·

∫
E

(|z|p · |f |p+ |g|p)dµ= 2p−1|z|p ·
∫
E
|f |pdµ+ 2p−1 ·

∫
E
|g|pdµ <+∞,

1To be more specific, the first derivative of ψ at any a ∈ (0,+∞) is ψ′(a) = pap−1, and its second derivative
is ψ′′(a) = p(p− 1)ap−2. Since p ≥ 1, this meas that ψ′′(a) ≥ 0 for any a > 0, or that ψ is a convex function on
(0,+∞). Therefore, for any x,y ∈ C, if x,y are both not 0,(

|x|
2 + |y|2

)p

= ψ
(1

2 |x|+
1
2 |y|

)
≤ 1

2ψ(|x|) + 1
2ψ(|y|) = 1

2
(
|x|p + |y|p

)
by convexity. Multiplying both sides by 2p we get (|x|+ |y|)p ≤ 2p−1(|x|p + |y|p).
On the other hand, if x= 0, then

(|x|+ |y|)p = |y|p ≤ 2p−1|y|p = 2p−1(|x|p + |y|p).

The same holds when y = 0 as well.
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where the last inequality follows because [f ]µ, [g]µ ∈ Lp(E ,µ). Therefore,

z · [f ]µ+ [z]µ ∈ Lp(E ,µ),

and Lp(E ,µ) is closed under addition and scalar multiplication.

2) Commutativity of Addition

For any [f ]µ, [g]µ ∈ Lp(E ,µ),

[f ]µ+ [g]µ = [f +g]µ = [g+f ]µ = [g]µ+ [f ]µ,

where the middle equality follows from the commutatitivty of the pointwise addition of
complex functions.

3) Associativity of Addition

For any [f ]µ, [g]µ, [h]µ ∈ Lp(E ,µ),

([f ]µ+ [g]µ) + [h]µ = [f +g]µ+ [h]µ = [(f +g) +h]µ
= [f + (g+h)]µ = [f ]µ+ [g+h]µ = [f ]µ+ ([g]µ) + [h]µ,

which follows by the associativity of the pointwise addition of complex functions.

4) Existence of the Additive Identity

Suppose [f ]µ ∈ Lp(E ,µ), and define 0F as the function on E defined as 0F (x) = 0 for
any x ∈ E. Clearly, the zero function is measurable and complex-valued, so [0F ]µ ∈ E/C.
Furthermore, ∫

E
|0F |pdµ= 0<+∞,

so by definition [0F ]µ ∈ Lp(E ,µ). Now note that

[f ]µ+ [0F ]µ = [f + 0F ]µ = [f ]µ

since 0F is the additive identity for complex functions defined on E.
By definition, [0F ]µ is the additive identity on Lp(E ,µ).

5) Existence of Additive Inverses

Suppose [f ]µ ∈ Lp(E ,µ). Then, because −f is a E-measurable complex function such that∫
E
|−f |pdµ=

∫
E
|f |pdµ <+∞,
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by definition [−f ]µ ∈ Lp(E ,µ). Now note that

[f ]µ+ [−f ]µ = [f −f ]µ = [0F ]µ,

since −f is the additive inverse of f . It follows that [−f ]µ is the additive inverse of [f ]µ.

6) Commutativity of Scalar Multiplication

Suppose [f ]µ ∈ Lp(E ,µ) and z,u ∈ C. Then,

z · (u · [f ]µ) = z · [uf ]µ = [z(uf)]µ = [(zu)f ]µ = (zu) · [f ]µ

by the commutativity of scalar multiplication of complex functions defined on E.

7) Scalar Multiplication by the Identity

For any [f ]µ ∈ Lp(E ,µ), becauase 1 is the multiplicative identity of the complex field,

1 · [f ]µ = [1 ·f ]µ = [f ]µ

by the fact that 1 ·f = f on E.

8) Distributive Law I

For any [f ]µ, [g]µ ∈ Lp(E ,µ) and z ∈ C,

z · ([f ]µ+ [g]µ) = z · [f +g]µ = [z · (f +g)]µ = [zf +zg]µ = z · [f ]µ+z · [g]µ

by the corresponding distributive law for complex functions defined on E.

9) Distributive Law II

For any [f ]µ ∈ Lp(E ,µ) and z,u ∈ C,

(z+u) · [f ]µ = [(z+u) ·f ]µ = [zf +uf ]µ = z · [f ]µ+u · [f ]µ

by the corresponding distributive law for complex functions defined on E.

Since Lp(E ,µ) satisfies all the vector space axioms, it is indeed a vector space over the complex
field. The whole host of vector space results thus also applies to the vector space (Lp(E ,µ),C).
Note, however, that in general Lp(E ,µ) is an infinite-dimensional space.
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5.2 Lp Spaces as Normed Vector Spaces

To facilitate the exposition of this section, we first prove some results related to convex functions
defined on the real line and present a few useful inequalities.

5.2.1 Convex Functions and Jensen’s Inequality

For any open interval (a,b) where −∞≤ a < b≤+∞, the real valued function ϕ : (a,b)→ R is
said to be convex if, for any x,y ∈ (a,b) and t ∈ [0,1],

ϕ(tx+ (1− t)y)≤ tϕ(x) + (1− t)ϕ(y).

For any a < x < y < z < b, letting t= y−x
z−x ∈ (0,1), we thus have

ϕ(tx+ (1− t)z)≤ tϕ(x) + (1− t)ϕ(z);

because tx+ (1− t)z = z− t(z−x) = y, the above inequality becomes

ϕ(y)−ϕ(x)
y−x

≤ ϕ(z)−ϕ(x)
z−x

.

Similarly, letting t= z−y
z−x ∈ (0,1),

ϕ(tx+ (1− t)z)≤ tϕ(x) + (1− t)ϕ(z),

and since tx+ (1− t)z = z+ t(x−z) = y, the above inequality becomes

ϕ(y)≤ ϕ(z)− z−y
z−x

(ϕ(z)−ϕ(x)) ,

or

ϕ(z)−ϕ(x)
z−x

≤ ϕ(z)−ϕ(y)
z−y

.

Putting the two inequalities together yields

ϕ(y)−ϕ(x)
y−x

≤ ϕ(z)−ϕ(y)
z−y

.

Using the properties shown above, we can prove that any convex function ϕ : (a,b)→ R is con-
tinuous on (a,b):
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Lemma 5.1 (Continuity of Convex Functions)
Every convex function defined on a real open interval is continuous with respect to the euclidean
metric on R.

Proof) Choose any x ∈ (a,b), and a sequence {xn}n∈N+ in (a,b) that increases to x but does
not contain x. Then, for any n ∈N+, since x1 ≤ xn < x, we have

ϕ(x)−ϕ(x1)
x−x1

≤ ϕ(x)−ϕ(xn)
x−xn

.

Rearranging terms yields

ϕ(xn)≤ xn−x1
x−x1

ϕ(x) + x−xn
x−x1

ϕ(x1),

and because the right hand side converges to ϕ(x) as n→∞, we have

limsup
n→∞

ϕ(xn)≤ ϕ(x).

Similarly, letting x < y < b,

ϕ(x)−ϕ(xn)
x−xn

≤ ϕ(y)−ϕ(xn)
y−xn

,

which can be rearranged into

ϕ(x)≤ x−xn
y−xn

ϕ(y) + y−x
y−xn

ϕ(xn).

Taking the limit inferior on both sides yields

ϕ(x)≤ liminf
n→∞

ϕ(xn).

Therefore,

limsup
n→∞

ϕ(xn) = liminf
n→∞

ϕ(xn) = ϕ(x) = lim
n→∞

ϕ(xn),

and because this holds for any sequence increasing to x,

ϕ(x) = lim
y→x−

ϕ(y).

Now consider a sequence {xn}n∈N+ in (a,b) decreasing to x but not containing x. Then,
for any n ∈N+, x < xn ≤ x1, and

ϕ(xn)−ϕ(x)
xn−x

≤ ϕ(x1)−ϕ(x)
x1−x

.
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Rearranging terms yields

ϕ(xn)≤ x1−xn
x1−x

ϕ(x) + xn−x
x1−x

ϕ(x1),

and taking the limit superior on both sides, we have

limsup
n→∞

ϕ(xn)≤ ϕ(x).

Letting a < y < x, since y < x < xn for any n ∈N+, we can see that

ϕ(x)−ϕ(y)
x−y

≤ ϕ(xn)−ϕ(y)
xn−y

.

Rearranging terms as above, we end up with

ϕ(x) + x−xn
xn−y

ϕ(y)≤ x−y
xn−y

ϕ(xn),

so taking limit inferiors on oboth sides,

ϕ(x)≤ liminf
n→∞

ϕ(xn).

As in the case for the left hand side limit, this implies that

lim
n→∞

ϕ(xn) = ϕ(x)

and therefore that

ϕ(x) = lim
y→x+

ϕ(y).

Since ϕ(x) = limy→x+ ϕ(y) = limy→x− ϕ(y), it follows that

ϕ(x) = lim
y→x

ϕ(y),

and therefore ϕ is continuous at x.2

Q.E.D.
2To make the proof truly rigorous, we must show that, if ϕ(xn)→ ϕ(x) for any sequence {xn}n∈N+ decreasing

or increasing to x, then ϕ(y)→ ϕ(x) as y→ x. This can be shown by proving the contrapositive.
Specifically, suppose that ϕ(y) does not converge to ϕ(x) as y→ x. Then, there exists a ε > 0 such that, for any
δ > 0 there exists a y ∈ (a,b) such that |y−x| < δ and |ϕ(y)−ϕ(x)| ≥ ε. This means that, for any n ∈ N+, we
can choose an xn ∈ (a,b) such that |xn−x|< 1

n and |ϕ(xn)−ϕ(x)| ≥ ε. Clearly, {xn}n∈N+ is a sequence in (a,b)
converging to x, and xn 6= x for any n ∈N+.
Suppose that there are only finitely many n ∈ N+ such that xn < x; this means that there are infinitely many
n ∈ N+ such that x < xn, since xn 6= x for all n. A similar argument shows that there must either be infinitely
many n ∈N+ such that xn > x or infinitely many n ∈N+ such that xn < x.
Without loss of generality, suppose that x< xn for infinitely many n∈N+. Then, we can construct a subsequence
{xnk}k∈N+ of {xn}n∈N+ that decreases to x, using the fact that xn→ x as n→∞. By design, |ϕ(xnk )−ϕ(x)| ≥ ε,
so ϕ(xnk ) does not converge to ϕ(x) as k→∞.
We have just shown that there must exist a sequence {xn}n∈N+ in (a,b) that does not contain x and either
increases or decreases to x such that ϕ(xn) does not converge to ϕ(x). The claim then follows by contraposition.
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Another useful property of convex functions is that they are bounded below. If the convex
function in question is twice differentiable, then this is very easy to show, since their second
derivative must always be increasing and thus they have a global minimum. We can show that
this is true even if the function is not differentiable:

Lemma 5.2 (Boundedness of Convex Functions)
Every convex function defined on a real open interval is bounded below.

Proof) Let ϕ : (a,b)→ R be a convex function, where −∞≤ a < b ≤ +∞. Suppose that ϕ is
not bounded below. Then, there exists a sequence {xn}n∈N+ on (a,b) such that

ϕ(xn)↘−∞.

Since {xn}n∈N+ takes values in the compact set [a,b], by the equivalence of sequential
compactness and compactness there exists a subsequence {xnk}k∈N+ of {xn}n∈N+ that
converges to some x ∈ [a,b]. If x ∈ (a,b), then by the continuity of ϕ,

ϕ(x) = lim
n→∞

ϕ(xn) =−∞,

which contradicts the fact that ϕ(x) ∈ R. Therefore x= a or x= b.

Without loss of generality, suppose x= a. Because {xnk}k∈N+ is a sequence converging
to a, for ε > 0 chosen so that a+ 2ε < b, there exists an N ∈N+ such that

|xnk −a|= xnk −a < ε

for any k≥N . Denoting a < y = a+ε < a+2ε= z < b, this implies that, for any k≥N ,

a < xnk < y < z < b.

Defining tk = z−y
z−xnk

∈ (0,1) for any k ∈N+, tk→ z−y
z−a = t ∈ (0,1) as k→∞, and by the

convexity of ϕ,

ϕ(y) = ϕ(tkxnk + (1− tk)z)≤ tkϕ(xnk) + (1− tk)ϕ(z).

Sending k→∞ on both sides yields

ϕ(y)≤ t · (−∞) + (1− t)ϕ(z) =−∞,

which implis that ϕ(y) =−∞. This is a contradiction because ϕ is real-valued, and as
such, ϕ must be bounded below.
Q.E.D.
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Let (E,E ,µ) be a probability space. We will now prove a famous inequality involving convex
functions:

Theorem 5.3 (Jensen’s Inequality)
Let (E,E ,µ) be a probability space, ϕ : (a,b)→ R a convex function for some −∞≤ a < b≤∞,
and f a real-valued E-measurable function that takes values in (a,b). Then, f is µ-integrable,∫
E fdµ ∈ (a,b) and ϕ◦f is also an E-measurable real valued function.

Morever, the integral of ϕ◦f with respect to µ exists in the extended sense, and

ϕ

(∫
E
fdµ

)
≤
∫
E

(ϕ◦f)dµ.

Proof) There are many items to prove in this theorem: hence we proceed in steps.

Step 1: The Measurability of ϕ◦f

Because ϕ is convex, it is continuous on (a,b). Before using the results that continuous
functions are measurable and the composition of measurable functions is measurable,
note that ϕ is defined on a subset (a,b) of R, and that we have not defined a topology
on (a,b). This means that we cannot conclude that ϕ is measurable based on its conti-
nuity, and as such that we cannot rely on previous results at the current stage.

Instead, recall the results from PMA (Baby Rudin). In chapter 4 of that textbook, we
learned that, for any set B open relative to R (we now know that this basically means
that B is an element of the metric topology τR on R), ϕ−1(B) must be a set that is
open relative to (a,b) by the continuity of ϕ. Chapter 2 of the textbook also tells us
that a set open relative to (a,b) is the intersection of (a,b) and a set open relative to
R, so there exists an A ∈ τR such that ϕ−1(B) = A∩ (a,b). Since A∩ (a,b) is itself an
open set in R, we can see that ϕ−1(B) ∈ τR.
This then implies that

(ϕ◦f)−1 (B) = f−1(ϕ−1(B)) ∈ E

because f is measurable and τR ⊂ B(R). Finally, τR is a set that generates the Borel
σ-algebra B(R), so the fact that (ϕ◦f)−1 (B) ∈ E for any B ∈ τR indicates that ϕ◦f is
a E-measurable real function.
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Step 2:
∫
E fdµ is contained in (a,b)

For any x ∈E, a < f(x)< b; because µ is a probability measure, constant functions are
always µ-integrable, and therefore, by the monotonicity of integration,

a= a ·µ(E) =
∫
E
adµ≤

∫
E
fdµ≤

∫
E
bdµ= b ·µ(E) = b,

which tells us that
∫
E fdµ ∈ [a,b] and thus that f is µ-integrable.

Suppose that
∫
E fdµ= a. Then, by the linearity of integration∫

E
gdµ=

∫
E
fdµ−a= 0.

Since g = f −a > 0 on E because f(x) > a for any x ∈ E, the vanishing property for
non-negative functions tells us that g = 0 a.e. [µ]. This, however, contradicts the fact
that g > 0 everywhere on E, so a <

∫
E fdµ. It can be shown through a similar process

that
∫
E fdµ < b, so

∫
E fdµ ∈ (a,b).

Step 3: An Auxiliary Inequality for Convex Functions

To show the main inequality, we exploit a special property of convex function. Recall
that ϕ, being a convex function, satisfies

ϕ(y)−ϕ(x)
y−x

≤ ϕ(z)−ϕ(y)
z−y

for any a < x < y < z < b. Fixing y, define

βy = sup
x∈(a,y)

ϕ(y)−ϕ(x)
y−x

,

which exists in R because the set {ϕ(y)−ϕ(x)
y−x | x∈ (a,y)} is bounded above by ϕ(z)−ϕ(y)

z−y ∈
R for any y < z < b and the real line possess the least upper bound property. By the
definition of the supremum as the least upper bound, we have

βy ≤
ϕ(z)−ϕ(y)

z−y
.

for any z ∈ (y,b). Multiplying both sides by z−y now yields the inequality

ϕ(z)≥ ϕ(y) +βy(z−y)

for any z ∈ (y,b). For any a < x < y,

ϕ(y)−ϕ(x)
y−x

≤ βy
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by definition of the supremum, and as such

ϕ(x)≥ ϕ(y) +βy(x−y).

Therefore, for any z ∈ (a,b), we have

ϕ(z)≥ ϕ(y) +βy(z−y),

where βy is the supremum defined above.

Now put y =
∫
E fdµ ∈ (a,b); then, by the preceding result, for any x ∈ E

(ϕ◦f)(x) = ϕ(f(x))≥ ϕ(y) +βy(f(x)−y),

since f(x) ∈ (a,b). Therefore,

βy ·f +k ≤ ϕ◦f

on E, where we put k = ϕ(y)−βy ·y ∈R. Note that βy ·f +k ∈ L1(E ,µ) because f and
k are µ-integrable (µ is a probability measure).

Step 5: Jensen’s Inequality when ϕ◦f is Integrable

Suppose that ϕ◦f is µ-integrable. Then, by the monotonicity and linearity of integra-
tion,

βy ·
∫
E
fdµ+k =

∫
E

(βy ·f +k)dµ≤
∫
E

(ϕ◦f)dµ,

and because k = ϕ(y)−βy ·y = ϕ(
∫
E fdµ)−βy ·

∫
E fdµ, we have

ϕ

(∫
E
fdµ

)
≤
∫
E

(ϕ◦f)dµ.

Step 6: Jensen’s Inequality when ϕ◦f is not Integrable

On the other hand, suppose that ϕ◦f is not µ-integrable, that is, that either
∫
E (ϕ◦f)+ dµ=

+∞ or
∫
E (ϕ◦f)− dµ= +∞. Since ϕ is convex and a convex function is bounded below,

letting M ≤ ϕ(x) for any x ∈ (a,b) and some −∞ <M < 0, M ≤ min(ϕ,0) and thus
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ϕ− ≤−M , which implies that

intE (ϕ◦f)− dµ≤−M <+∞.

Therefore, if ϕ◦f is not µ-integrable, then it must be the case that∫
E

(ϕ◦f)+ dµ= +∞, while
∫
E

(ϕ◦f)− dµ <+∞.

This means that the integral of ϕ◦f is defined over E in the extended sense and equals∫
E

(ϕ◦f)dµ=
∫
E

(ϕ◦f)+ dµ−
∫
E

(ϕ◦f)− dµ= +∞.

It is now trivial that

ϕ

(∫
E
fdµ

)
≤+∞=

∫
E

(ϕ◦f)dµ.

Q.E.D.

Jensen’s inequality, in the form presented above, says that the convex function of a measurable
function is also measurable, and that the convex function of the integral is always less than or
equal to the integral of the convex function, where the latter integral always exists in (−∞,+∞].
Thus, it furnishes us with the measurability and (in the extended sense) the existence of the
integral of convex functions of measurable functions, as well as a lower bound to that integral.

If the integral above is interpreted as an expectation with respect to the probability measure µ,
then it yields the version of Jensen’s inequality often encountered in probability theory.
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5.2.2 Hölder’s Inequality and Minkowski’s Inequality

Here we present two inequalities crucial to establishing the algebraic propreties of Lp spaces.
Hölder’s inequality is a generalized version of the Cauchy-Schwarz inequality, and Minkowski’s
inequality is the generalization of the triangle inequality.
We first present an inequality that will prove useful, not only in the proof of Hölder and
Minkowski’s Inequalities, but in general. It is proved in this text as a corollary of Jensen’s
inequality, but there are more classical ways to prove it (see: exercise 10 of chapter 6 in PMA):

Lemma 5.4 (Young’s Inequality)
For any x,y ∈ [0,+∞] and p,q ∈ (1,+∞) such that 1

p + 1
q = 1,

xy ≤ 1
p
xp+ 1

q
yq.

When x,y ∈ [0,+∞), then the above inequality is an equality if and only if xp = yq.

Proof) The case for x = 0 and x = +∞ are obvious, as is the corresponding case for y. If
x = 0 and the inequality holds as an equality, then 0 = 1

qy
q and thus y = 0, implying

xp = yq = 0. The same goes for when y = 0.

Now let x,y ∈ (0,+∞). The claim follows easily in this case as well:

xy = elog(xy) = elog(x)+log(y)

= e
1
p

(p log(x))+ 1
q

(q log(y))

≤ 1
p
ep log(x) + 1

q
eq log(y) (Convexity of the exponential function)

= 1
p
xp+ 1

q
yq.

In addition, note that

xy = e
1
p

(p log(x))+ 1
q

(q log(y))

= 1
p
xp+ 1

q
yq = 1

p
ep log(x) + 1

q
eq log(y),

if and only if p log(x) = q log(y), or xp = yq. Sufficiency is obvious, and necessity follows
since, if p log(x) 6= q log(y), then

e
1
p

(p log(x))+ 1
q

(q log(y))
<

1
p
ep log(x) + 1

q
eq log(y)

by 1
p ∈ (0,1) and the strict convexity of the exponential function.

Q.E.D.
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Theorem 5.5 (Hölder and Minkowski’s Inequalities)
Let (E,E ,µ) be a measure space, and f,g non-negative E-measurable functions. Then, the fol-
lowing inequalities hold:

• (Hölder’s Inequality) For any p,q ∈ (1,+∞) such that 1
p + 1

q = 1,

∫
E

(fg)dµ≤
(∫

E
fpdµ

) 1
p
(∫

E
gqdµ

) 1
q

.

If [f ]µ, [g]µ ∈ Lp(E ,µ), then the inequality is an equality if and only if there exist a,b ∈
[0,+∞) such that a > 0 or b > 0 and a ·fp = b ·gq a.e. [µ].

• (Minkowski’s Inequality) For any p ∈ [1,+∞),

(∫
E

(f +g)pdµ
) 1
p

≤
(∫

E
fpdµ

) 1
p

+
(∫

E
gpdµ

) 1
p

.

Proof) We also proceed in steps with the proof of this theorem.

Step 1: Proving Hölder’s Inequality

Let p,q ∈ (1,+∞) satisfy 1
p + 1

q = 1. Define A= (
∫
E f

pdµ)
1
p and B = (

∫
E g

qdµ)
1
q , which

are both well-defined in [0,+∞] because the integrals are of non-negative measurable
functions.
If A = +∞, then because the right hand side of the inequality becomes +∞, it holds
trivially; the same goes for the case where B = +∞.
If A = 0, then by the vanishing property of non-negative functions, fp = 0 and thus
f = 0 a.e. [µ], meaning that fg = 0 a.e. [µ] and∫

E
(fg)dµ= 0 =A ·B.

The same goes for the case where B = 0.

It remains to prove the inequality for the case where A,B ∈ (0,+∞). To this end, define
the functions F,G : E→ [0,+∞] as

F (x) = f(x)
A

and G(x) = g(x)
B

for any x ∈ E. Because f,g are measurable non-negative functions, so are F,G, and
they satisfy∫

E
F pdµ= 1

Ap
·
∫
E
fpdµ= 1 and

∫
E
Gqdµ= 1

Bq
·
∫
E
gqdµ= 1

by the linearity of integration.
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For any x ∈ E, F (x),G(x) ∈ [0,+∞], so by Young’s inequality,

F (x)G(x)≤ 1
p
F (x)p+ 1

q
G(x)q.

The functions fg, FG and 1
pF

p+ 1
qG

q are both measurable non-negative functions, so
their integrals exist, and by the monotonicity and linearity of integration,

1
AB

∫
E

(fg)dµ=
∫
E

(FG)dµ≤ 1
p

∫
E
F pdµ+ 1

q

∫
E
Gqdµ= 1

p
+ 1
q

= 1.

Thus, multiplying both sides by AB > 0 yields

∫
E

(fg)dµ≤AB =
(∫

E
fpdµ

) 1
p
(∫

E
gqdµ

) 1
q

,

which is the desired inequality.

Step 2: Necessary Conditions for Hölder’s Inequality to hold as an Equality

To derive the necessary conditions when the inequality is an equality in the case where
[f ]µ, [g]µ ∈ Lp(E ,µ), first assume that A= 0 or B = 0. Without loss of generality, sup-
pose that A= 0. Then, because f = 0 a.e. [µ], the inequality always holds as an equality
and 1 ·fp = 0 ·gq a.e. [µ].

Now assume that A,B ∈ (0,+∞). Because f,g are now real non-negative valued, F,G
defined above must take values in [0,+∞).
We showed above that FG≤ 1

pF
p+ 1

qG
q, so defining

h= 1
p
F p+ 1

q
Gq−FG,

which is well-defined because F,G are real valued, h is a measurable non-negative
function.
Suppose that Hölder’s inequality holds as an equality, that is,

∫
E(fg)dµ=AB. Dividing

both sides by AB reveals that this is equivalent to∫
E
FGdµ= 1 = 1

p
+ 1
q

=
∫
E

(1
p
F p+ 1

q
Gq
)
dµ,

and by the linearity of integration,∫
E
hdµ=

∫
E

(1
p
F p+ 1

q
Gq−FG

)
dµ= 0.

By the vanishing property of non-negative functions, this means that h= 0 a.e. [µ].
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For any x ∈ E such that h(x) = 0,

F (x)G(x) = 1
p
F (x)p+ 1

q
G(x)q.

Here, F (x),G(x) ∈ [0,+∞), so by the necessary condition for Young’s inequality to be
an equality, we have F (x)p =G(x)q.
This holds for any x ∈ E such that h(x) = 0, so F p =Gq, or B ·fp =A ·gq, a.e. [µ].

Step 3: Sufficient Conditions for Hölder’s Inequality to hold as an Equality

Finally, it remains to show that a ·fp = b · gq a.e. [µ] for some a,b ∈ [0,+∞) such that
a > 0 or b > 0 is a sufficient condition for the inequality to hold as an equality when
[f ]µ, [g]µ ∈ Lp(E ,µ). Suppose without loss of generality that a > 0. Then, f =

(
b
a

) 1
p g

q
p ,

which implies that ∫
E
fpdµ= b

a
·
∫
E
gqdµ,(∫

E
fpdµ

) 1
p

=
(
b

a

) 1
p
(∫

E
gqdµ

) 1
p

and

∫
E

(fg)dµ=
(
b

a

) 1
p

·
∫
E
g
p+q
p dµ=

(
b

a

) 1
p

·
∫
E
gqdµ

=
(
b

a

) 1
p

·
(∫

E
gqdµ

) 1
p
(∫

E
gqdµ

) 1
q

=
(∫

E
fpdµ

) 1
p
(∫

E
gqdµ

) 1
q

.

Therefore, the stated condition is also sufficient for Hölder’s inequality to hold as an
equality.
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Step 4: Proving Minkowski’s Inequality

Minkowski’s inequality is much easier to prove using Hölder’s inequality. Let p∈ [1,+∞).
If p= 1, then the result follows from the linearity of integration:∫

E
(f +g)dµ=

∫
E
fdµ+

∫
E
gdµ.

Now let p ∈ (1,+∞). If
∫
E f

pdµ = +∞ or
∫
E g

pdµ = +∞, then the inequality holds
trivially, so let

∫
E f

pdµ,
∫
E g

pdµ ∈ [0,+∞). In this case, due to the closedness of Lp

spaces under addition and scalar multiplication,
∫
E(f +g)pdµ <+∞ as well.

If
∫
E(f + g)pdµ = 0, then the inequality also holds trivially, so assume

∫
E(f + g)pdµ ∈

(0,+∞). Note that

(f +g)p = (f +g)(f +g)p−1 = f · (f +g)p−1 +g · (f +g)p−1.

Letting r = p
p−1 , because 1

r + 1
p = p−1

p + 1
p = 1, by Hölder’s inequality we have

∫
E

(
f · (f +g)p−1

)
dµ≤

(∫
E
fpdµ

) 1
p
(∫

E
(f +g)(p−1)rdµ

) 1
r

=
(∫

E
fpdµ

) 1
p
(∫

E
(f +g)pdµ

)1− 1
p

,

and likewise,

∫
E

(
g · (f +g)p−1

)
dµ≤

(∫
E
gpdµ

) 1
p
(∫

E
(f +g)pdµ

)1− 1
p

.

By the linearity of integration, it follows that∫
E

(f +g)pdµ=
∫
E

(
f · (f +g)p−1

)
dµ+

∫
E

(
g · (f +g)p−1

)
dµ

≤
(∫

E
fpdµ

) 1
p
(∫

E
(f +g)pdµ

)1− 1
p

+
(∫

E
gpdµ

) 1
p
(∫

E
(f +g)pdµ

)1− 1
p

=
[(∫

E
fpdµ

) 1
p

+
(∫

E
gpdµ

) 1
p

](∫
E

(f +g)pdµ
)1− 1

p

.

Since
∫
E(f+g)pdµ ∈ (0,+∞), we can divide both sides by (

∫
E(f +g)pdµ)1− 1

p to obatin
the desired result

(∫
E

(f +g)pdµ
) 1
p

≤
(∫

E
fpdµ

) 1
p

+
(∫

E
gpdµ

) 1
p

.

Q.E.D.
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5.2.3 The Lp Norm

Let (E,E ,µ) be a measure space. We proved in section 1 that, for any p ∈ [1,+∞), the space
Lp(E ,µ) of equivalence classes is a vector space over the complex field. We now define a norm
on this vector space, so that it may be rendered a normed vector space.

Define the function ‖·‖p as

‖[f ]µ‖p =
(∫

E
|f |pdµ

) 1
p

for any [f ]µ ∈ E/C. Clearly, ‖[f ]µ‖p ∈R+ if [f ]µ ∈ Lp(E ,µ). In addition, we can show the follow-
ing properties of ‖·‖p:

• Suppose ‖[f ]µ‖p = 0 for some [f ]µ ∈ Lp(E ,µ). Then,

∫
E
|f |pdµ= 0,

and by the vanishing property for non-negative functions, |f |p = 0, or equivalently, f = 0
a.e. [µ]. This indicates that [f ]µ = [0F ]µ, where [0F ]µ is the additive identity on Lp(E ,µ).
Conversely, we can see that

‖[0F ]µ‖p =
(∫

E
|0F |pdµ

) 1
p

= 0.

Therefore, ‖[f ]µ‖= 0 if and only if [f ]µ = [0F ]µ.

• For any [f ]µ ∈ Lp(E ,µ) and z ∈ C,

‖z · [f ]µ‖p = ‖[zf ]µ‖p =
(∫

E
|zf |pdµ

) 1
p

=
(∫

E
|z|p|f |pdµ

) 1
p

= |z| ·
(∫

E
|f |pdµ

) 1
p

= |z| · ‖[f ]µ‖p

by the linearity of integration.
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• For any [f ]µ, [g]µ ∈ Lp(E ,µ),

‖[f ]µ+ [g]µ‖p = ‖[f +g]µ‖p =
(∫

E
|f +g|pdµ

) 1
p

≤
(∫

E
(|f |+ |g|)p dµ

) 1
p

(The Triangle Inequality)

≤
(∫

E
|f |pdµ

) 1
p

+
(∫

E
|g|pdµ

) 1
p

(Minkowski’s inequality)

= ‖[f ]µ‖p+‖[g]µ‖p.

Therefore, ‖·‖p is a well-defined norm on Lp(E ,µ), and (LP (E ,µ),‖·‖p) is a normed vector space
over the complex field. Since the definition of the Lp norm ‖·‖p uses only the representative f
of any equivalence class [f ]µ in Lp(E ,µ), we can define

‖f‖p = ‖[f ]µ‖p =
(∫

E
|f |pdµ

) 1
p

for any E-measurable complex function f . Note that, for any two such functions f,g, ‖f‖p = ‖g‖p
if and only if [f ]µ = [g]µ.

Letting dp : Lp(E ,µ)×Lp(E ,µ)→R+ be the metric on Lp(E ,µ) induced by the Lp norm, defined
as

dp([f ]µ, [g]µ) = ‖[f ]µ− [g]µ‖p

for any [f ]µ, [g]µ ∈Lp(E ,µ), (Lp(E ,µ),dp) is a metric space. If a sequence {[fn]µ}n∈N+ in Lp(E ,µ)
converges to some [f ]µ ∈ Lp(E ,µ) in the metric dp, that is, if

lim
n→∞

dp([fn]µ, [f ]µ) = 0,

then we say that {[fn]µ}n∈N+ converges to [f ]µ in Lp.
Similarly, for any sequence of complex functions {fn}n∈N+ such that

∫
E |fn|

pdµ < +∞ for any
n ∈N+ satisfies

lim
n→∞

‖fn−f‖p = 0

for some complex valued function f such that
∫
E |f |

pdµ <+∞, we say that {fn}n∈N+ converges
to f in Lp, and denote this relation by

fn
Lp→ f.
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5.3 The Completeness of Lp Spaces

Let (E,E ,µ) be a measure space and (Lp(E ,µ),‖·‖p) the normed vector space defined above, for
some 1≤ p <+∞.
In this section, we show that (Lp(E ,µ),‖·‖p) is a Banach space over the complex field, that is,
the normed vector space (Lp(E ,µ),‖·‖p) is a complete metric space with respect to the metric
dp induced by the norm ‖·‖p.

Theorem 5.6 (The Riesz-Fischer Theorem)
Let (E,E ,µ) be a measure space and ‖·‖p the corresponding Lp space for some 1≤ p<+∞. Then,
for any sequence {fn}n∈N+ of E-measurable complex valued functions such that ‖fn‖p <+∞ for
any n ∈N+ and

lim
n,m→∞

‖fn−fm‖p = 0,

there exists a E-measurable complex function f such that ‖f‖p <+∞ and

lim
n→∞

‖fn−f‖p = 0.

Proof) By assumption, there exists an n1 ∈N+ such that

‖fn−fm‖p < 2

for any n,m≥ n1.
Now suppose that, for some k ≥ 1, we have chosen natural numbers n1 < · · · < nk

such that, for 1 ≤ i ≤ k, ‖fn−fm‖p < 2−i for any n,m ≥ ni. Then, we can choose an
nk+1 ∈N+ such that nk+1 > nk and

‖fn−fm‖p < 2−(k+1)

for any n,m≥ nk+1.
Constructing the subsequence {fni}i∈N+ in the above manner, we can see that, for any
i ∈N+,

∥∥fni+1−fni
∥∥
p
< 2−i

because ni+1,ni ≥ ni.

Define the sequence {gk}k∈N+ of E-measurable non-negative functions as

gk =
k∑
i=1

∣∣fni+1−fni
∣∣
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for any k ∈N+. Because all the summands are non-negative,

g =
∞∑
i=1

∣∣fni+1−fni
∣∣= lim

k→∞
gk

is a well-defined E-measurable non-negative function. It now follows that

gpk→ gp

pointwise as k→∞. By Fatou’s lemma and Minkowski’s inequality,

‖g‖p =
(∫

E
gpdµ

) 1
p

=
(∫

E

(
liminf
k→∞

gpk

)
dµ

) 1
p

≤
(

liminf
k→∞

∫
E
gpkdµ

) 1
p

(Fatou’s lemma)

= liminf
k→∞

‖gk‖p (x 7→ x
1
p is a continuous mapping)

≤
∞∑
i=1

∥∥fni+1−fni
∥∥
p

(Minkowski’s inequality and non-negative summands)

≤
∞∑
i=1

2−i = 1. (Choice of n1 < n2 < · · ·)

Therefore, gp is µ-integrable, which tells us by the finiteness property that gp < +∞,
or equivalently, g <+∞, a.e. [µ]. In other words, the series

∞∑
i=1

(fni+1−fni)

converges absolutely for µ-almoset every x ∈ E.

Let E0 ∈ E be the almost sure set on which the above series converges absolutely, and
define

fx =
∞∑
i=1

(fni+1(x)−fni(x)) +fn1(x) ∈ C

for any x ∈ E0. Let the function f : E→ C be defined as

f(x) =

fx if x ∈ E0

0 otherwise
.

Then, for any x ∈ E,

f(x) = lim
k→∞

(
k∑
i=1

(fni+1(x)−fni(x)) +fn1(x)
)

= lim
k→∞

fnk+1(x),

so that the sequence {fni}i∈N+ converges pointwise to f for µ-almost every x ∈ E.
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Since f can be viewed as the pointwise limit of the sequence of measurable functions
{fni · IE0}i∈N+ , f is itself a E-measurable complex function.

It now remains to show that f is the Lp limit of the sequence {fn}n∈N+ . For any ε > 0,
by assumption there exists an N ∈N+ such that

‖fn−fm‖p < ε

for any n,m≥N . Since {ni}i∈N+ is a subsequence of N+,

‖fni−fm‖p < ε

for any m≥N and large enough i, which implies that

liminf
i→∞

‖fni−fm‖p < ε

for any m≥N .
As such, for any m≥N ,

‖f −fm‖p =
(∫

E
|f −fm|pdµ

) 1
p

≤ liminf
i→∞

(∫
E
|fni · IE0−fm|

pdµ

) 1
p

(Fatou’s lemma)

= liminf
i→∞

(∫
E
|fni−fm|

pdµ

) 1
p

(µ(Ec0) = 0)

= liminf
i→∞

‖fni−fm‖p < ε.

This holds for any ε > 0, so

lim
m→∞

‖f −fm‖p = 0,

and because this implies that there exists an N ∈N+ such that

‖f −fm‖p < 1

for any m≥N , we have

‖f‖p ≤ ‖f −fN‖p+‖fN‖p <+∞

by Minkowski’s inequality. This tells us that f is a E-measurable complex function such
that ‖f‖p <+∞ and

lim
n→∞

‖fn−f‖p = 0.

Q.E.D.
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In the course of proving the above theorem, we also showed the following corollary:

Corollary to the Riesz-Fischer Theorem Letting (E,E ,µ) and {fn}n∈N+ satisfy the
hypotheses of the Riesz-Fischer theorem, there exists a E-measurable complex function f and a
subsequence {fni}i∈N+ of {fn}n∈N+ such that

lim
i→∞

fni(x) = f(x)

for µ-almost every x ∈ E.

Proof) This result was proved during the proof of the above theorem.
Q.E.D.

From the Riesz-Fischer theorem we can easily deduce that (Lp(E ,µ),dp) is a complete metric
space. Let {[fn]µ}n∈N+ ⊂ Lp(E ,µ) be a sequence that is Cauchy in dp, that is,

lim
n,m→∞

dp([fn]µ, [fm]µ) = lim
n,m→∞

‖fn−fm‖p = 0.

This tells us that {fn}n∈N+ is a sequence of E-measurable complex functions that satisfies the
conditions of the Riesz-Fischer theorem, and as such that there exists a E-measurable complex
function f such that ‖f‖p <+∞ and

lim
n→∞

‖fn−f‖p = 0.

This makes [f ]µ ∈ Lp(E ,µ) is the Lp limit of the sequence {[fn]µ}n∈N+ , and we have shown that
any sequence in Lp(E ,µ) that is Cauchy in dp is also convergent in dp.
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5.4 L∞ Spaces

5.4.1 The Essential Supremum

Let (E,E ,µ) be a measure space, and consider a E-measurable non-negative function f . Define
the set S ⊂ R as

S = {α ∈ R | µ(f−1((α,+∞])) = 0},

that is, the collection of all real numbers α such that f is less than or equal to α a.e. [µ]. Now
define β ∈ [0,+∞] as

β = inf S,

where we adopt the convention that the infimum of an empty set is +∞. If S 6= ∅, then β ∈ R+

by the least upper bound property of the real line, since S is nonempty in this case and bounded
below by 0.
Heuristically, β is the upper bound of f on sets that are not of measure zero. For this reason, β
is called the essential supremum of f .
Note that, if S 6= ∅, β must be an element of S, since

f−1 ((β,+∞]) =
⋃
n

f−1
((

β+ 1
n
,+∞

])

and thus

µ(f−1((β,+∞]))≤
∞∑
n=1

µ

(
f−1

((
β+ 1

n
,+∞

]))
= 0,

by countable additivity; each summand on the right hand side is 0 because, by the definition of
the infimum, for any n ∈N+ there exists an α ∈ S such that β ≤ α < β+ 1

n , so that

µ

(
f−1

((
β+ 1

n
,+∞

]))
≤ µ(f−1((α,+∞])) = 0.

For any E-measurable function f , we define ‖f‖∞ as the essential supremun of |f | ∈ E+. The
following are properties of the essential supremum:
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Lemma 5.7 Let (E,E ,µ) be a measure space, f,g complex-valued E-measurable functions,
and z ∈ C. Then, the following inequalities hold:

i) ‖0F‖∞ = 0; the eseential supremum of the 0 function is 0.

ii) ‖f +g‖∞ ≤ ‖f‖∞+‖g‖∞; the essential supremum satisfies the triangle inequality.

iii) ‖zf‖∞ = |z| · ‖f‖∞; the essential supremum is invariant under scalar multiplication.

iv) If f = g a.e. [µ], then ‖f‖∞ = ‖g‖∞; the essential supremum is invariant for functions that
are almost everywhere equivalent.

Proof) i) Note that

{0F > α}=

∅ if α≥ 0

E if α < 0
,

which implies that

{α ∈ R | µ(0−1
F ((α,+∞])) = 0}= [0,+∞).

Therefore,

‖0F‖∞ = inf[0,+∞) = 0.

ii) For any E-measurable function f and g, if ‖f‖∞ = +∞ or ‖g‖∞ = +∞, then the
inequality

‖f +g‖∞ ≤ ‖f‖∞+‖g‖∞

holds trivially, so assume that ‖f‖∞,‖g‖∞ ∈ [0,+∞), or in other words, that the
sets

Sf = {α ∈ R | µ(|f |−1((α,+∞])) = 0}

and

Sg = {α ∈ R | µ(|g|−1((α,+∞])) = 0}

are nonempty.
In this case, defining

Sf+g = {α ∈ R | µ(|f +g|−1((α,+∞])) = 0},
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because |f +g| ≤ |f |+ |g| by the triangle inequality, for any α ∈ Sf and β ∈ Sg,

|f +g|−1((α+β,+∞])⊂ |f |−1((α,+∞])∪|g|−1((β,+∞]),

so that

µ(|f +g|−1((α+β,+∞]))≤ µ(|f |−1((α,+∞])) +µ(|g|−1((α,+∞])) = 0

and α+β ∈ Sf+g. By implication,

‖f +g‖∞ = inf Sf+g ≤ α+β

by the definition of the infimum, and because this holds for any α∈ Sf and β ∈ Sg,

‖f +g‖∞ ≤ inf Sf + inf Sg = ‖f‖∞+‖g‖∞.

iii) If z = 0, then zf = 0 on E and

‖zf‖∞ = ‖0F‖∞ = 0 = |z| · ‖f‖∞.

Now suppose z 6= 0, and define

Szf = {α ∈ R | µ(|zf |−1((α,+∞])) = 0}

and

Sf = {α ∈ R | µ(|f |−1((α,+∞])) = 0}.

For any α ∈ Szf ,

|zf |−1((α,+∞]) = {|zf |> α}=
{
|f |> α

|z|

}
= |f |−1

((
α

|z|
,+∞

])
,

so that

µ

(
|f |−1

((
α

|z|
,+∞

]))
= µ(|zf |−1((α,+∞])) = 0,

which implies that α
|z| ∈ Sf . By implication,

‖f‖∞ = inf Sf ≤
α

|z|
,

or |z| · ‖f‖∞ ≤ α. and because this holds for any α ∈ Szf ,

|z| · ‖f‖∞ ≤ inf Szf = ‖zf‖∞.
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This inequality also implies that

1
|z|
· ‖zf‖∞ =

∣∣∣∣1z
∣∣∣∣ · ‖zf‖∞ ≤ ‖f‖∞,

and as such that

‖zf‖∞ ≤ |z| · ‖f‖∞.

Putting the two inequalities together, we have

‖zf‖∞ = |z| · ‖f‖∞.

iv) Assume that f = g a.e. [µ]. Suppose

µ(|f |−1 ((α,+∞]) = 0.

This implies that

0 =
∫
E

(
I(α,+∞] ◦ |f |

)
dµ=

∫
E

(
I(α,+∞] ◦ |g|

)
dµ= µ(|g|−1 ((α,+∞]) ,

where the second equality follows because

I(α,+∞] ◦ |f |= I(α,+∞] ◦ |g|

a.e. [µ]. It follows that the essential supremum of |f | and |g| are equal, or equiva-
lently, that ‖f‖∞ = ‖g‖∞.

Q.E.D.
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5.4.2 L∞ Spaces as Banach Spaces

Let (E,E ,µ) be a measure space. By the result proven above, for any [f ]µ ∈ E/C and g ∈ [f ]µ,

‖f‖∞ = ‖g‖∞.

Therefore, it makes sense to define

‖[f ]µ‖∞ = ‖f‖∞

for any equivalence class [f ]µ ∈ E/C and a representative f of that class.
We can now define L∞(E ,µ) as the following collection of equivalence classes:

L∞(E ,µ) = {[f ]µ ∈ E/C | ‖f‖∞ <+∞},

that is, as the collection of all equivalence classes whose essential supremum is finite. L∞(E ,µ)
is called the collection of all essentially bounded measurable equivalence classes.

Like with Lp spaces for p ∈ [1,+∞), L∞(E ,µ) is also a vector space over the complex field. To
see this, we first need to verify that it is closed under addition and scalar multiplication. For
any [f ]µ, [g]µ ∈ L∞(E ,µ) and z ∈ C,

‖z · [f ]µ+ [g]µ‖∞ = ‖zf +g‖∞
≤ ‖zf‖∞+‖g‖∞ = |z| · ‖f‖∞+‖g‖∞ <+∞,

so z · [f ]µ+ [g]µ ∈ L∞(E ,µ).
We can show that L∞(E ,µ) satisfies the rest of the vector space axioms through the exact same
steps we went through to show that Lp(E ,µ) is a vector space, so L∞(E ,µ) is a vector space over
the complex field.

Furthermore, (L∞(E ,µ),‖·‖∞) is a normed vector space. To see this, note that

• If ‖[f ]µ‖∞ = 0, then defining

S = {α ∈ R | µ(|f |−1((α,+∞])) = 0},

‖f‖∞ = inf S = 0. Thus, for any n ∈N+, there exists an α ∈ S such that α < 1
n ; because

|f |−1((1/n,+∞])⊂ |f |−1((α,+∞])

and µ(|f |−1((α,+∞])) = 0, we have µ(|f |−1((1/n,+∞])) = 0, or equivalently,

µ

({
|f |> 1

n

})
= 0.
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Since

{|f |> 0}=
⋃
n

{
|f |> 1

n

}
,

it follows from countable subadditivity that

µ({|f |> 0})≤
∞∑
n=1

µ

({
|f |> 1

n

})
= 0,

so that

µ({f 6= 0}) = 0.

In other words, f = 0F a.e. [µ], and we have [f ]µ = [0F ]µ.
On the other hand,

‖[0F ]µ‖∞ = ‖0F‖∞ = 0.

We have shown that ‖[f ]µ‖∞ = 0 if and only if [f ]µ = [0F ]µ.

• For any z ∈ C and [f ]µ ∈ L∞(E ,µ),

‖z · [f ]µ‖∞ = ‖zf‖∞ = |z| · ‖f‖∞ = |z| · ‖[f ]µ‖∞.

• For any [f ]µ, [g]µ ∈ L∞(E ,µ),

‖[f ]µ+ [g]µ‖∞ = ‖f +g‖∞ ≤ ‖f‖∞+‖g‖∞ = ‖[f ]µ‖∞+‖[g]µ‖∞.

By definition, ‖·‖∞ is a norm on the vector space L∞(E ,µ); it is called the L∞ norm. Letting
d∞ be the metric induced by this norm, (L∞(E ,µ),d∞) is a metric space, and we can show, like
with the Lp-spaces studied earlier, that this metric space is complete.
The following result proves that (L∞(E ,µ),‖·‖∞) is a Banach space over the complex field.

Theorem 5.8 Let (E,E ,µ) be a measure space, and {fn}n∈N+ a sequence of E-measurable
complex functions such that ‖fn‖∞ <+∞ for any n ∈N+ and

lim
n,m→∞

‖fn−fm‖∞ = 0.

Then, there exists a E-measurable complex function f such that ‖f‖∞ <+∞ and

lim
n→∞

‖fn−f‖∞ = 0.
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Proof) For any k,n,m∈N+, by the definition of the essential supremum and the result proven
earlier,

µ({|fk|> ‖fk‖∞}) = µ({|fm−fn|> ‖fm−fn‖∞}) = 0.

Defining

Ak = {|fk|> ‖fk‖∞} and Bm,n = {|fm−fn|> ‖fm−fn‖∞}

and

E0 =
⋃
k,m,n

(Ak ∪Bm,n) ,

it follows from countable suabdditivity that µ(E0) = 0. Thus,

|fn−fm| ≤ ‖fm−fn‖∞ and |fk| ≤ ‖fk‖∞

almost everywhere on E, and because ‖fm−fn‖∞→ 0 as m,n→∞,

lim
n,m→∞

|fn−fm|= 0

uniformly on Ec0. For any x ∈ Ec0, this means that {fn(x)}n∈N+ is a Cauchy sequence
on the complex plane, and by the completeness of C under the euclidean metric, there
exists an fx ∈ C such that fn(x)→ fx as n→∞. Defining f : E→ C as

f(x) =

fx if x ∈ Ec0
0 otherwise

,

we can say that fn→ f pointwise almost everywhere on E, and because f = limn→∞ fn ·
IEc0 , f is a E-measurable complex function.

We can easily show that this convergence implies the convergence of ‖fn−f‖∞ to 0.
Choose any ε > 0, and note that, by assumption, there exists an N ∈N+ such that

‖fn−fm‖∞ < ε

for any n,m≥N . Since |fn(x)−fm(x)| ≤ ‖fn−fm‖∞ < ε for any n,m≥N and x∈Ec0,
taking m→∞ on both sides yields

|fn(x)−f(x)| ≤ ε
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for any n≥N and x ∈ Ec0. In other words,

|fn−f |−1((ε,+∞])⊂ E0

for any n≥N , and as such

µ(|fn−f |−1((ε,+∞])) = 0

for any n≥N . By implication, for any n≥N ,

‖fn−f‖∞ ≤ ε,

and because this holds for any ε > 0, by definition

lim
n→∞

‖fn−f‖∞ = 0.

It remains to show that ‖f‖∞ < +∞, but this follows by noting that there exists an
N ∈N+ such that

‖fN −f‖∞ < 1,

which is implied by the convergence result above, and

‖f‖∞ ≤ ‖fN −f‖∞+‖fN‖∞ = 1 +‖fN‖∞ <+∞

by the triangle inequality.
Q.E.D.

Again, we state the following corollary separately from the theorem above:

Corollary to Theorem 5.8 Letting (E,E ,µ) and {fn}n∈N+ satisfy the hypotheses of theorem
5.8, there exists a E-measurable complex function f such that

lim
n→∞

fn(x) = f(x)

for µ-almost every x ∈ E.

Proof) This result was proved during the proof of the above theorem.
Q.E.D.

From theorem 5.8 we can easily deduce that (L∞(E ,µ),d∞) is a complete metric space. Let
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{[fn]µ}n∈N+ ⊂ L∞(E ,µ) be a sequence that is Cauchy in d∞, that is,

lim
n,m→∞

‖fn−fm‖∞ = 0.

This tells us that {fn}n∈N+ is a sequence of E-measurable complex functions satisfying the
conditions of theorem 5.8, and as such that there exists a E-measurable complex function f such
that ‖f‖∞ <+∞ and

lim
n→∞

‖fn−f‖∞ = 0.

This makes [f ]µ ∈ L∞(E ,µ) is the L∞ limit of the sequence {[fn]µ}n∈N+ , and we have shown
that any sequence in L∞(E ,µ) that is Cauchy in d∞ is also convergent in d∞.

We have thus shown that Lp spaces for 1 ≤ p < +∞ and L∞ spaces share much of the same
properties: most notably, under their chosen norms, they are Banach spaces over the complex
field. For this reason, going forward we use the term Lp space to refer to both spaces with
1≤ p <+∞ and those with p= +∞.
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5.5 Continuity Properties of Lp Functions

Let (E,τ) be a locally compact Hausdorff space with corresponding Borel σ-algebra B(E,τ),
and (E,E ,µ) a measure space satisfying the conditions of the Riesz Representation theorem: to
state them for completeness,

i) µ(K)<+∞ for any compact K ⊂ E

ii) Any E-measurable set is outer regular; for any A ∈ E ,

µ(A) = inf{µ(V ) |A⊂ V,V ∈ τ}

iii) Any E-measurable set with finite measure or any open set is inner regular; for any A ∈ E
such that µ(A)<+∞ or A ∈ τ ,

µ(A) = sup{µ(K) |K ⊂A,K is compact}

iv) (E,E ,µ) is complete, and E contains all Borel sets.

In section 2.4, we proved the continuity of E-measurable complex functions, namely that for any
E-measurable complex function f that takes non-zero values on a set of finite measure, there
exists a continuously compactly supported complex function that is arbitrarily close to f ; this
is the content of Lusin’s theorem.
Here, we show a similar result for Lp functions, or complex measurable functions f such that
‖f‖p <+∞.
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Theorem 5.9 Let (E,τ), E and µ be the topological space, σ-algeba and measure with the
properties stated above. Then, for any 1 ≤ p < +∞, ε > 0 and E-measurable complex function
f such that ‖f‖p <+∞, there exists a g ∈ Cc(E,τ) such that

‖f −g‖p < ε.

Proof) First note that, for any g ∈ Cc(E,τ), ‖g‖p <+∞. To see this, let K = {g 6= 0}; by the
extreme value theorem, the continuity of |g| and the compactness of K ensures that
there exists some x∗ ∈ K such that |g(x∗)| = maxx∈K |g(x)|. Since g(x) = 0 for any
x ∈Kc, it follows that∫

E
|g|pdµ=

∫
K
|g|pdµ+

∫
Kc
|g|pdµ

=
∫
K
|g|pdµ (|g(x)|= 0 for any x ∈Kc)

≤ |g(x∗)|p ·µ(K)<+∞,

since g(x∗) ∈ C and µ(K)<+∞ due to the compactness of K. Therefore,

‖g‖p =
(∫

E
|g|pdµ

) 1
p

<+∞.

To prove the actual claim of the theorem, we first start with indicator functions and
build ourselves up to arbitrary complex measurable functions.

Let A ∈ E such that µ(A)<+∞; then,

‖IA‖p =
(∫

E
IAdµ

) 1
p

= µ(A)
1
p <+∞.

Because A has finite measure under µ, A is both inner and outer regular. In other
words, there exist an open set V ∈ τ and a compact set K such that K ⊂A⊂ V and

µ(V )< µ(A) + εp

2 and µ(A)− ε
p

2 < µ(K).

By implication,

µ(V \A)≤ µ(V )−µ(A)< εp

2 ,

µ(A\K)≤ µ(A)−µ(K)< εp

2 , and

µ(V \K) = µ(V \A)−µ(A\K)< εp.

By Urysohn’s lemma, there exists a g ∈Cc(E,τ) such that K ≺ g ≺ V , so that g(x) = 1
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for any x ∈ K, {g 6= 0} ⊂ V , and g(x) ∈ [0,1] for any x ∈ E. It follows that g(x) =
IA(x) = 0 for x ∈ V c and g(x) = IA(x) = 1 for x ∈K, so that {g 6= IA} ⊂ V \K and thus

|g− IA| ≤ IV \K .

Therefore,

‖g− IA‖p =
(∫

E
|g− IA|pdµ

) 1
p

≤
(∫

E
IV \Kdµ

) 1
p

= µ(V \K)
1
p < ε.

Let f be a E-measurable simple function such that ‖f‖p <+∞. Letting the canonical
form of f be

f =
n∑
i=1

αi · IAi ,

where α1, · · · ,αn ∈ (0,+∞) are distinct and A1, · · · ,An ∈ E are disjoint,

‖f‖p =
(∫

E
|f |pdµ

) 1
p

=
(

n∑
i=1

αpi ·µ(Ai)
) 1
p

<+∞,

so µ(A1), · · · ,µ(An)<+∞. As such, for any 1≤ i≤ n, by the previous result there exist
g1, · · · ,gn ∈ Cc(E,τ) such that

‖IAi−gi‖p <
ε

n ·αi
.

Define

g =
n∑
i=1

αi ·gi;

because the linear combination of continuous functions is continuous, g is a continuous
non-negative valued function, and since

{g 6= 0} ⊂
n⋃
i=1
{gi 6= 0},

where each {gi 6= 0} is compact because gi is compactly supported, {g 6= 0} is also
compact and thus g ∈ Cc(E,τ).
Finally, due to the fact that

|f −g| ≤
n∑
i=1

αi · |IAi−gi|,
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by Minkowski’s inequality we have

‖f −g‖p ≤
n∑
i=1

αi · ‖IAi−gi‖p

<
n∑
i=1

ε

n
= ε.

Now let f be a E-measurable non-negative function such that ‖f‖p<+∞. Then, letting
{sn}n∈N+ be a sequence of E-measurable simple functions increasing to f , because
sn ≤ f and thus ‖sn‖p ≤ ‖f‖p < +∞ for any n ∈ N+, by the preceding result there
exists a gn ∈ Cc(E,τ) such that

‖sn−gn‖p <
ε

2 .

Note that {|f −sn|p}n∈N+ is a sequence of E-measurable non-negative functions that
converges pointwise to 0, and

|f −sn|p = (f −sn)p ≤ (f −s1)p

for any n ∈N+, where

‖f −s1‖p ≤ ‖|f |+ |s1|‖p ≤ ‖f1‖p+‖s1‖p <+∞

by Minkowski’s inequality and thus
∫
E |f −s1|pdµ <+∞. By the DCT,

lim
n→∞

‖f −sn‖p =
(

lim
n→∞

∫
E
|f −sn|pdµ

) 1
p

=
(∫

E

(
lim
n→∞

|f −sn|p
)
dµ

) 1
p

= 0.

As such, there exist an N ∈N+ such that

‖f −sn‖p <
ε

2

for any n≥N ; thus, by Minkowski’s inequality again,

‖f −gN‖p = ‖|f −sN |+ |sN −gN |‖p ≤ ‖f −sN‖p+‖sN −gN‖p < ε,

where gN ∈ Cc(E,τ).

Finally, let f be an arbitrary E-measurable complex function such that ‖f‖p < +∞.
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Then,

f =
(
Re(f)+−Re(f)−

)
+ i ·

(
Im(f)+− Im(f)−

)
,

where Re(f)±, Im(f)± ∈ E+, and because

∣∣Re(f)±
∣∣2, ∣∣Im(f)±

∣∣2 ≤ |f |2 =
(
Re(f)+ +Re(f)−

)2
+
(
Im(f)+ + Im(f)−

)2
,

‖Re(f)±‖p,‖Im(f)±‖p < +∞. From the preceding result, it follows that there exist
functions g1,g2 ∈ Cc(E,τ) and h1,h2 ∈ Cc(E,τ) such that

∥∥∥Re(f)+−g1
∥∥∥
p
,
∥∥Re(f)−−g2

∥∥
p,
∥∥∥Im(f)+−h1

∥∥∥
p
,
∥∥Im(f)−−h2

∥∥
p <

ε

4 .

Defiing g = (g1−g2) + i · (h1−h2) ∈ Cc(E,τ), we can now see that

|f −g| ≤
∣∣∣Re(f)+−g1

∣∣∣+ ∣∣Re(f)−−g2
∣∣+ ∣∣∣Im(f)+−h1

∣∣∣+ ∣∣Im(f)−−h2
∣∣,

so by Minkowski’s inequality,

‖f −g‖p ≤
∥∥∥Re(f)+−g1

∥∥∥
p

+
∥∥Re(f)−−g2

∥∥
p+

∥∥∥Im(f)+−h1
∥∥∥
p

+
∥∥Im(f)−−h2

∥∥
p < ε.

Q.E.D.
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We conclude with another theorem, which approximates Lp-functions not with continuous func-
tions but this time with functions with finite ranges.

Theorem 5.10 Let (E,E ,µ) be a measure space. Then, for any 1 ≤ p < +∞, ε > 0 and
E-measurable function f : E→ C such that∫

E
|f |pdµ <+∞,

there exists a E-measurable function s with a finite range satisfying µ({s 6= 0})<+∞ such that

‖f −s‖p < ε.

Proof) Suppose f is a non-negative E-measurable function such that
∫
E |f |

pdµ < +∞. Then,
there exists a sequence {sn}n∈N+ of E-measurable simple functions increasing to f . By
definition, for any n ∈N+ we have

|f −sn|p = (f −sn)p ≤ fp,

where |f −sn|p→ 0 pointwise as n→∞. By the DCT,

lim
n→∞

|f −sn|p =
(

lim
n→∞

∫
E
|f −sn|pdµ

) 1
p

= 0.

As such, there exists an N ∈N+ such that

|f −sN |p < ε.

sN has a finite range (it is a simple function), and by the monotonicity of integration,∫
E
spNdµ≤

∫
E
fpdµ <+∞,

making it an Lp function. Letting the canonical form of sN be

sN =
n∑
i=1

αi · IAi

for α1, · · · ,αn ∈ (0,+∞) and A1, · · · ,An ∈ E , because

∫
E
spNdµ=

n∑
i=1

αpi ·µ(Ai)<+∞,

µ(A1), · · · ,µ(An)<+∞, which implies that

µ({sN 6= 0}) = µ(A1∪·· ·∪An)≤
n∑
i=1

µ(Ai)<+∞.
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Now let f be a complex-valued E-measurable function such that
∫
E |f |

pdµ < +∞. By
implication, Re(f)± and Im(f)± are all E-measurable non-negative Lp-functions, so by
the preceding result, there exist s+,s−,h+,h− ∈ E+ with a finite range in R+ such that
{si 6= 0},{hi 6= 0} have finite measure under µ for i= +,− and

∥∥Re(f)±−s±
∥∥
p <

ε

4 and
∥∥Im(f)±−h±

∥∥
p <

ε

4 .

Defining g = (s+−s−) + i · (h+−h−), g has a finite range,

µ({g 6= 0})≤ µ({s+ 6= 0}) +µ({s− 6= 0}) +µ({h+ 6= 0}) +µ({h− 6= 0})<+∞,

and

‖f −g‖p ≤
∥∥∥Re(f)+−s+

∥∥∥
p

+
∥∥Re(f)−−s−

∥∥
p+

∥∥∥Im(f)+−h+
∥∥∥
p

+
∥∥Im(f)−−h−

∥∥
p < ε

by Minkowski’s inequality.
Q.E.D.

Another way to phrase the result of the above theorem is to say that the set of all E-measurable
complex functions s with finite range such that µ({s 6= 0}) < +∞ is dense in the set of all Lp

functions with respect to the metric dp.
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Chapter 6

Hilbert Space Theory

6.1 Inner Product Spaces

Let H be a complex vector space with additive identity 0H . The operator 〈·, ·〉 : H×H → C is
an inner product on H if it satisfies the following conditions:

i) Conjugate Symmetry
For any x,y ∈H,

〈x,y〉= 〈y,x〉

ii) Linearity in First Argument
For any x,y,z ∈H and α ∈ C,

〈α ·x+y,z〉= α · 〈x,z〉+ 〈y,z〉.

iii) Positive Definiteness
For any x ∈H such that x 6= 0H ,

〈x,x〉> 0.

The pair (H,〈·, ·〉) is called an inner product space over the complex field. The following prop-
erties of the inner product follow immediately:

• Antilinearity in Second Argument
For any x,y,z ∈H and α ∈ C,

〈z,α ·x+y〉= 〈α ·x+y,z〉= α · 〈x,z〉+ 〈y,z〉

= α · 〈x,z〉+ 〈y,z〉

= α · 〈z,x〉+ 〈z,y〉.
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• Inner Product of the Additive Identity
For any x ∈H,

〈0H ,x〉= 〈x−x,x〉= 〈x,x〉−〈x,x〉= 0.

It follows that

〈x,0H〉= 〈0H ,x〉= 0,

and that 〈0H ,0H〉= 0. We can thus see that 〈x,x〉= 0 if and only if x= 0H .

• Expansion of Inner Product of Sum
For any x,y ∈H,

〈x+y,x+y〉= 〈x,x+y〉+ 〈y,x+y〉

= 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉

= 〈x,x〉+ 〈y,y〉+ 〈x,y〉+ 〈x,y〉

= 〈x,x〉+ 2 ·Re(〈x,y〉) + 〈y,y〉.

Given an inner product 〈·, ·〉 on H, we can define the operator ‖·‖ :H → R+ as

‖x‖=
√
〈x,x〉

for any x ∈H.
The following are two useful inequalities involving inner products and ‖·‖:
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Lemma 6.1 Let (H,〈·, ·〉) be an inner product space over the complex field. The following
inequalities hold true:

i) Cauchy-Schwarz Inequality
For any x,y ∈H,

|〈x,y〉| ≤ ‖x‖ · ‖y‖.

ii) The Triangle Inequality
For any x,y ∈H,

‖x+y‖ ≤ ‖x‖+‖y‖.

iii) The Parallelogram Law
For any x,y ∈H,

‖x+y‖2 +‖x−y‖2 = 2 · ‖x‖2 + 2 · ‖y‖2.

Proof) We first prove the Cauchy-Schwarz inequality. Let x,y ∈H. If ‖y‖=
√
〈y,y〉= 0, then

y= 0H and 〈x,y〉= 0, so the inequality follows trivially. As such, we assume that ‖y‖> 0.
Define α= 〈x,y〉. Then, for any r ∈ R,

0≤ 〈x− rαy,x− rαy〉= 〈x,x− rαy〉− rα · 〈y,x− rαy〉

= 〈x,x〉− rα · 〈x,y〉− rα · 〈x,y〉+ r2|α|2 · 〈y,y〉

= ‖x‖2−2r · |〈x,y〉|2 + r2|〈x,y〉|2 · ‖y‖2.

Putting r = 1
‖y‖2 , it follows that

0≤ ‖x‖2−2 |〈x,y〉|
2

‖y‖2
+ |〈x,y〉|

2

‖y‖2
,

and as such,

|〈x,y〉|2

‖y‖2
≤ ‖x‖2,

which implies that |〈x,y〉|2 ≤ ‖x‖2 · ‖y‖2. Taking square roots on both sides implies the
Cauchy-Schwarz inequality.
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The triangle inequality is now easily proven. For any x,y ∈H,

‖x+y‖2 = 〈x+y,x+y〉= ‖x‖2 +‖y‖2 + 2 ·Re(〈x,y〉)

≤ ‖x‖2 +‖y‖2 + 2 · |〈x,y〉|

≤ ‖x‖2 +‖y‖2 + 2‖x‖‖y‖ (Cauchy-Schwarz Inequality)

= (‖x‖+‖y‖)2 ,

which implies that

‖x+y‖ ≤ ‖x‖+‖y‖.

Finally, to see that the parallelogram law holds, simply note that

‖x+y‖2 +‖x−y‖2 = 〈x+y,x+y〉+ 〈x−y,x−y〉

= 〈x,x〉+ 2 ·Re(〈x,y〉) + 〈y,y〉+ 〈x,x〉+ 2 ·Re(〈x,−y〉) + 〈−y,−y〉

= 2〈x,x〉+ 2〈y,y〉= 2‖x‖2 + 2‖y‖2.

Q.E.D.
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We can now show that ‖·‖ is a norm on H:

• If ‖x‖ = 0 for some x ∈ H, then 〈x,x〉 = 0 and x = 0H . Conversely, if x = 0H , then
‖x‖=

√
〈0H ,0H〉= 0. Thus, ‖x‖= 0 if and only if x= 0H .

• For any α ∈ C and x ∈H,

‖α ·x‖=
√
〈α ·x,α ·x〉

=
√
αα · 〈x,x〉

= |α| ·
√
〈x,x〉= |α| · ‖x‖.

• For any x,y ∈H,

‖x+y‖ ≤ ‖x‖+‖y‖

by the above lemma.

We call ‖·‖ the norm induced by the inner product 〈·, ·〉. Furthermore, letting d : H×H → R+

be defined as

d(x,y) = ‖x−y‖

for any x,y ∈ H, we saw in the previous chapter that d defines a metric on H. We call d the
metric induced by the norm ‖·‖, or the inner product 〈·, ·〉.

Let (H,〈·, ·〉) be an inner product space over the complex field and d the metric induced by 〈·, ·〉.
The following result shows that we can construct elementary continuous functions on the metric
space (H,d) using the inner product:

Lemma 6.2 Let (H,〈·, ·〉) be an inner product space over the complex field and ‖·‖ and d the
norm and metric induced by 〈·, ·〉. For any z ∈H, the mappings

x 7→ ‖x‖, x 7→ 〈x,z〉, x 7→ 〈z,x〉

defined on E are uniformly continuous with respect to d and the euclidean metric on their target
spaces.

Proof) For any z ∈H, define the functions f : E→ R, g,h : E→ C as

f(x) = ‖x‖, g(x) = 〈x,z〉 and h(x) = 〈z,x〉
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for any x ∈ E. Because

|f(x)−f(y)|= |‖x‖−‖y‖| ≤ ‖x−y‖

for any x,y ∈ E by the triangle inequality, f is Lipschitz continuous on E.
Likewise, for any x,y ∈ E,

|g(x)−g(y)|= |〈x,z〉−〈y,z〉|= |〈x−y,z〉| ≤ ‖x−y‖ · ‖z‖

and

|h(x)−h(y)|= |〈z,x〉−〈z,y〉|= |〈z,x−y〉| ≤ ‖x−y‖ · ‖z‖

by the (anti)linearity of the inner product and the Cauchy-Schwarz inequality, which
tells us that both g and h are Lipschitz continuous.
Q.E.D.

Let ‖·‖ and d be as above. A subspace V of H is called a closed subspace of H if V is a linear
subspace of H that is also closed with respect to the metric d.
Note that, for any linear subspace V of H, the closure V of V with respect to the metric d is a
closed linear subspace of H. To see this, let V be a subspace of H and note that:

• 0H ∈ V ⊂ V and

• For any x,y ∈ V and α ∈C, there exists sequences {xn}n∈N+ ,{yn}n∈N+ ⊂ V that converge
to x,y in the metric d; for any n ∈N+,

‖α ·xn+yn− (α ·x+y)‖ ≤ |α| · ‖xn−x‖+‖yn−y‖

by the definition of the norm, which tells us that

lim
n→∞

(α ·xn+yn) = α ·x+y,

and because each α ·xn + yn ∈ V by the definitio of a linear subspace, α ·x+ y is a limit
point of V and therefore contained in V .

Through the norm of a vector, normed vector spaces introduce the concept of the magnitude
of a vector. Inner product spaces go one step further and allow us to define the angle between
two vectors as their inner product. In particular, it is of great interest when two vectors are
orthogonal, or when their inner product equals 0. We say two vectors x,y ∈H are orthonormal
if ‖x‖= ‖y‖= 1 and 〈x,y〉= 0.

382



6.1.1 Orthogonal Sets and Orthogonal Complements

We first define the concept of orthogonal sets and introduce orthogonal complements of sub-
spaces.
Let (H,〈·, ·〉) be a complex inner product space. A subset V of H is said to be orthogonal if, for
any x,y ∈ V such that x 6= y, 〈x,y〉= 0, that is, if any two distinct elements of V are orthogonal.
Note that V is linearly independent if V is an orthogonal set of non-zero vectors; to see this,
choose any finite subset F = {x1, · · · ,xn} of V and suppose

α1x1 + · · ·+αnxn = 0H

for some α1, · · · ,αn ∈ C. Then, for any 1≤ j ≤ n,

0 = 〈0H ,xj〉= 〈
n∑
i=1

αixi,xj〉

=
n∑
i=1

αi · 〈xi,xj〉= αj · 〈xj ,xj〉.

Since xj 6= 0H , 〈xj ,xj〉 6= 0, which implies that αj = 0. This holds for 1≤ j≤n, so α1 = · · ·=αn = 0
and as such F is linearly independent. This again holds for any finite subset of V , so by definition
V is also linearly independent.

For any subspace V of H, the orthogonal complement of V is defined as the collection of all
vectors in H that are orthogonal to every element of V : formally,

V ⊥ = {x ∈H | 〈x,z〉= 0 for any z ∈ V }.

The following are some notable properties of the orthogonal complement of a linear subspace:

Lemma 6.3 Let (H,〈·, ·〉) be an inner product space over the complex field and ‖·‖ and
d the norm and metric induced by 〈·, ·〉. For any linear subspace V of H and its orthogonal
complement, the following hold true:

i) V ⊥ is a closed linear subspace of H.

ii) V and V ⊥ are independent linear subspaces, that is, x+y= 0H for some x∈ V and y ∈ V ⊥

implies x= y = 0H .

Proof) i) V ⊥ satisfies the following conditions to be a linear subspace:

– 0H ∈ V ⊥ because 〈0H ,z〉= 0 for any z ∈ V

– For any α ∈ C and x,y ∈ V ⊥, because

〈x,z〉= 〈y,z〉= 0
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for any z ∈ V , by the linearity of the inner product we have

〈α ·x+y,z〉= α · 〈x,z〉+ 〈y,z〉= 0,

so that α ·x+y ∈ V ⊥ as well.

Finally, we can see that V ⊥ is a closed subset of H; note that

V ⊥ =
⋂
x∈V
{x}⊥.

For any x ∈ V , define the function h : H → C as h(y) = 〈y,x〉 for any y ∈ E; we
saw in lemma 6.2 that h is continuous with respect to the metric d, and because
{0} is a closed set and

{x}⊥ = {y ∈H | 〈y,x〉= 0}= h−1 ({0}) ,

{x}⊥ is a closed subset of H. As such, V ⊥, being the intersection of closed sets,
must also be closed.

ii) For any x ∈ V and y ∈ V ⊥, if x+y = 0H , then

0 = 〈0H ,x〉= 〈x+y,x〉= 〈x,x〉

because 〈y,x〉= 0, so that x= 0H and thus y = 0H .

Q.E.D.
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6.1.2 Finite-Dimensional Orthonormal Sets

A subset V of H is orthonormal if it is an orthogonal set such that 〈x,x〉 = ‖x‖2 = 1 for any
x ∈ V , that is, if the norm of each element of V has been normalized to 1. Succinctly, V is an
orthonormal set if

〈x,y〉=

1 if x= y

0 if x 6= y

for any x,y ∈ V .

Let A be an arbitrary index set and {uα | α ∈ A} an orthonormal set contained in H. For any
x ∈H, we can then define

x̂(α) = 〈x,uα〉

for any α ∈ A. The collection {x̂(α) | α ∈ A} is called the set of Fourier coefficients of x with
respect to the orthonormal set {uα | α ∈A}.

The following are propreties of finite orthonormal sets:

Lemma 6.4 Let (H,〈·, ·〉) be an inner product space over the complex field and ‖·‖ and d

the norm and metric induced by 〈·, ·〉. Let A be an arbitrary index set, V = {uα | α ∈ A} an
orthonormal set, and F a finite subset of A. Denote by MF the span of {uα | α ∈ F}. The
following hold true:

i) If ϕ : A→ C is a complex function that equals 0 ouside of F , then the vector y ∈MF

defined as

y =
∑
α∈F

ϕ(α) ·uα

satisfies ŷ(α) = ϕ(α) for any α ∈A, and

‖y‖2 =
∑
α∈F
|ϕ(α)|2.

ii) If x ∈H and the vector sF (x) ∈MF is defined as

sF (x) =
∑
α∈F

x̂(α) ·uα,

then for any y ∈MF ,

〈x−sF (x),y〉= 0 and ‖x−sF (x)‖ ≤ ‖x−y‖,
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where the inequality holds as an equality if and only if y = sF (x). In addition,

∑
α∈F
|x̂(α)|2 ≤ ‖x‖2.

Proof) i) Define y = ∑
α∈F ϕ(α) ·uα, as in the statement of the lemma. By definition, for

any α ∈A,

ŷ(α) = 〈y,uα〉= 〈
∑
α′∈F

ϕ(α′) ·uα′ ,uα〉

=
∑
α′∈F

ϕ(α′) · 〈uα′ ,uα〉

=

ϕ(α) if α ∈ F

0 if α /∈ F

by definition of V as an orthonormal set. Since ϕ(α) = 0 if α /∈ F , it follows that
ŷ(α) = ϕ(α) for any α ∈A.
Furthermore,

‖y‖2 = 〈
∑
α∈F

ϕ(α) ·uα,
∑
α′∈F

ϕ(α′) ·uα′〉

=
∑
α∈F

∑
α′∈F

ϕ(α)ϕ(α′) · 〈uα,uα′〉

=
∑
α∈F
|ϕ(α)|2 · 〈uα,uα〉

=
∑
α∈F
|ϕ(α)|2.

ii) For any x ∈H, define sF (x) as in the statement of the lemma.
For any v ∈MF , there exist bα ∈ C for any α ∈ F such that

v =
∑
α∈F

bα ·uα.

Therefore,

〈x−sF (x),v〉= 〈x,v〉−〈sF (x),v〉= 〈x,
∑
α∈F

bα ·uα〉−〈
∑
α∈F

x̂(α) ·uα,
∑
α∈F

bα ·uα〉

=
∑
α∈F

bα · 〈x,uα〉−
∑
α∈F

∑
α′∈F

x̂(α)bα′ · 〈uα,uα′〉

=
∑
α∈F

bαx̂(α)−
∑
α∈F

x̂(α)bα = 0.
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In addition, for any y ∈MF , note that

‖x−y‖2 = 〈x−y,x−y〉= 〈(x−sF (x)) + (sF (x)−y),(x−sF (x)) + (sF (x)−y)〉

= ‖x−sF (x)‖2 +‖sF (x)−y‖2 + 2 ·Re(〈x−sF (x),sF (x)−y〉).

Because sF (x),y ∈MF , their difference is also in MF , and as such

〈x−sF (x),sF (x)−y〉= 0

by the preceding result. This implies that

‖x−y‖2 = ‖x−sF (x)‖2 +‖sF (x)−y‖2 ≥ ‖x−sF (x)‖2,

where the equality holds if and only if y = sF (x).
Finally, putting y = 0H in the above inequality yields

‖x‖2 = ‖x−sF (x)‖2 +‖sF (x)‖2 ≥ ‖sF (x)‖2,

where

‖sF (x)‖2 =
∑
α∈F
|x̂(α)|2.

Q.E.D.

The above lemma is quite useful when it comes to finite-dimensional inner product spaces.
Specifically, it allows us to express any vector as the linear combination of some orthonormal
basis with coefficients given as inner products. First, we show that any finite-dimensional in-
ner product space has an orthonormal basis, that is, a basis comprised of orthonormal vectors.
Unlike with the case of bases and vector spaces, where any vector space has a basis, it is not
the case that any infinite-dimensional inner product space has an orthonormal basis. However,
Hilbert spaces are special in that they do admit an orthonormal basis; this is studied in more
detail in a later section.
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Theorem 6.5 (Gram-Schmidt Orthogonalization Process)
Let (H,〈·, ·〉) be an n-dimensional inner product space over the field F = R or C, with norm
‖·‖ induced by 〈·, ·〉. Then, given any basis B = {v1, · · · ,vn}, we can construct an basis B′ =
{u1, · · · ,un} of non-zero orthogonal vectors as follows:

u1 = v1

uk = vk−
k−1∑
i=1

〈vk,ui〉
‖ui‖2

·ui for any 1< k ≤ n.

Furthermore, this implies that H has an orthonormal basis.

Proof) We proceed by induction to show that, for any 1 ≤ k ≤ n, the set {u1, · · · ,uk} is an
orthogonal set of non-zero vectors that spans span({v1, · · · ,vk}). The case for k = 1
follows trivially becuase u1 = v1.

Now suppose that the claim holds for some 1≤ k < n. If uk+1 is a zero vector, then

vk+1 =
k∑
i=1

〈vk+1,ui〉
‖ui‖2

·ui,

so that vk+1 ∈ span({u1, · · · ,uk}) = span({v1, · · · ,vk}). However, this contradicts the fact
that {v1, · · · ,vk+1} are linearly independent, so uk+1 must be non-zero. Furthermore,
for any 1≤ j < k+ 1,

〈uk+1,uj〉=
〈
vk+1−

k∑
i=1

〈vk+1,ui〉
‖ui‖2

·ui, uj
〉

= 〈vk+1,uj〉−
k∑
i=1

〈vk+1,ui〉
‖ui‖2

· 〈ui,uj〉

by the linearity of the inner product in the first argument. Since 〈ui,uj〉 = 0 for any
1≤ i 6= j ≤ k by the inductive hypothesis, we have

〈uk+1,uj〉= 〈vk+1,uj〉−
〈vk+1,uj〉
‖uj‖2

· 〈uj ,uj〉= 〈vk+1,uj〉−〈vk+1,uj〉= 0.

This shows us that {u1, · · · ,uk+1} is an orthogonal set of non-zero vectors. To see that
this set spans span({v1, · · · ,vk+1}), note that

vk+1 = uk+1−
k∑
i=1

〈vk+1,ui〉
‖ui‖2

·ui ∈ span({u1, · · · ,uk+1}),

while each vj ∈ span({u1, · · · ,uk}) ⊂ span({u1, · · · ,uk+1}) for 1 ≤ j ≤ k. By implica-
tion, span({v1, · · · ,vk+1})⊂ span({u1, · · · ,uk+1}). The reverse inclusion follows by not-
ing that ui ∈ span({v1, · · · ,vk}) for 1≤ i≤ k, so that uk+1 ∈ span({v1, · · · ,vk+1}) as well.
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It now follows from induction that {u1, · · · ,un} is an orthogonal set of non-zero vectors
that spans span({v1, · · · ,vn}) =H. H then has orthonormal basis

{ u1
‖u1‖

, · · · , un
‖un‖

}
.

Q.E.D.

Corollary to Lemma 6.4 Let (H,〈·, ·〉) be an n-dimensional inner product space over the
field F = R or C, with norm ‖·‖ induced by 〈·, ·〉 and orthonormal basis B = {u1, · · · ,un}. Then,
for any x ∈H,

x=
n∑
i=1

x̂(i) ·ui :=
n∑
i=1
〈x,ui〉 ·ui.

Proof) In the notation of lemma 6.4,

B = {uα | α ∈ {1, · · · ,n}},

so that f = {1, · · · ,n} acts as our finite set, and Mf =H because B is an orthonormal
basis of H. Fix x ∈H. By ii) of lemma 6.4,

〈
x−

n∑
i=1

x̂(i) ·ui, y
〉

= 0

for any y ∈Mf =H. Since x−∑n
i=1 x̂(i) ·ui ∈H as well, this implies that

∥∥∥∥∥x−
n∑
i=1

x̂(i) ·ui
∥∥∥∥∥

2

= 0,

or equivalently,

x=
n∑
i=1

x̂(i) ·ui.

Q.E.D.

The Gram-Schmidt orthogonalization process can also be used to obtain a useful decompo-
sition of matrices, called the QR decomposition. This is presented below:
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Corollary to Lemma 6.4 (QR Decomposition)
Let A ∈Rn×n be a non-singular matrix. Then, there exists an orthogonal matrix Q ∈Rn×n and
an upper triangular matrix R ∈ Rn×n with positive diagonal entries such that A=QR.

Proof) The decomposition follows by simply considering Rn as a real inner product space with
the standard inner product 〈·, ·〉 given by 〈x,y〉= x′y for any x,y ∈ Rn.

Let A1, · · · ,An ∈ Rn be the columns of A. Because A is non-singular, its columns are
linearly independent and thus form a basis of Rn. The Gram-Schmidt orthogonalization
process then shows us that we can construct an orthogonal basis {u1, · · · ,un} from
{A1, · · · ,An} by defining u1 =A1 and

uk =Ak−
k−1∑
i=1

〈Ak,ui〉
|ui|2

·ui

for any 2≤ k≤n. Defining qi = ui
|ui| for any 1≤ i≤n, the set {q1, · · · , qn} then constitutes

an orthonormal basis of Rn. Furthermore, we can invert the expression of the original
Gram-Schmidt process;

A1 = u1 = |u1| · q1 = 〈A1,
u1
|u1|
〉 · q1 = 〈A1, q1〉 · q1.

For any 2≤ k ≤ n, we similarly have

Ak+1 = uk+1 +
k∑
i=1

〈Ak+1,ui〉
|ui|2

·ui

= uk+1 +
k∑
i=1

1
|u1|
· 〈Ak+1, qi〉 ·ui

=
k∑
i=1
〈Ak+1, qi〉 · qi+ |uk+1| · qk+1.

Since

|uk+1|2 = 〈Ak+1,uk+1〉−
k∑
i=1

〈Ak+1,ui〉
|ui|2

· 〈ui,uk+1〉= 〈Ak+1,uk+1〉,

where the last equality follows because ui and uk+1 are orthogonal for any 1 ≤ i ≤ k,
we can see that

|uk+1| · qk+1 = 1
|uk+1|

〈Ak+1,uk+1〉 · qk+1 = 〈Ak+1, qk+1〉 · qk+1,

390



so that

Ak+1 =
k∑
i=1
〈Ak+1, qi〉 · qi+ |uk+1| · qk+1

=
k+1∑
i=1
〈Ak+1, qi〉 · qi.

Define Q ∈ Rn×n as the matrix with columns equal to q1, · · · , qn. By design, Q is an
orthogonal matrix, that is, QQ′ = Q′Q = In. Furthermore, we can see from the above
derivation that

Ak =
(
q1 · · · qn

)

〈Ak, q1〉

...
〈Ak, qk〉
O(n−k)×1


for any 1≤ k ≤ n, so defining R ∈ Rn×n as the upper triangular matrix such that

R=


〈A1, q1〉 · · · 〈An, q1〉

... . . . ...
0 · · · 〈An, qn〉

 ,

we can see that

A=
(
A1 · · · An

)
=QR.

The diagonal elements 〈A1, q1〉, · · · ,〈An, qn〉 are equal to |u1|, · · · , |un| respectively, and
as such are positive.

Q.E.D.
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6.1.3 Orthogonal Projections

sF (x) defined in the lemma 6.4 is the unqiue solution to the problem

min
y∈MF

‖x−y‖.

In other words, it is the linear combination of the vectors in {uα | α ∈ F} that is closest to, or
best approximates, the vector x in terms of the norm induced by the inner product 〈·, ·〉. We
call sF (x) the orthogonal projection of x on the linear subspace MF .
More generally, given some subset V of an inner product space (H,〈·, ·〉), we call y ∈ V an
orthogonal projection of x ∈H on V if

‖x−y‖= inf
z∈V
‖x−z‖.

The following are some general results on orthogonal projections:

Theorem 6.6 Let (H,〈·, ·〉) be an inner product space over the complex field and ‖·‖ and d

the norm and metric induced by 〈·, ·〉. Let V be a subset of H. The following hold true:

i) Let x ∈H, and suppose that y ∈ V is an orthogonal projection of x on V , that is,

‖x−y‖= inf
z∈V
‖x−z‖.

Then, y is the unique orthogonal projection of x on y if V is a convex set.

ii) Let x ∈H, and suppose that V is a subspace of H. Then, y ∈ V is the unique orthogonal
projection of x on V if and only if 〈x−y,z〉= 0 for any z ∈ V .

iii) Let V be a subspace of H.
Suppose that, for any x ∈H, there exists a unique orthogonal projection of x on V . Then,
H = V

⊕
V ⊥.

Moreover, denoting the mapping from x to its unique orthogonal projection on V by P ,
and the mapping from x to x−Px by Q, P,Q are linear transformations from H into V
and V ⊥, and Qx is the orthogonal projection of x on V ⊥.
For any x ∈H, we have

‖x‖2 = ‖Px‖2 +‖Qx‖2.

Proof) i) Let x ∈H, and suppose that y ∈ V is an orthogonal projection of x on V , that is,

‖x−y‖= inf
z∈V
‖x−z‖.
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Suppose that V is a convex set, and let y′ ∈ V be another orthogonal projection
of x on V . Denoting δ = ‖x−y‖= ‖x−y′‖, by the parallelogram law,

∥∥∥∥1
2
(
y−y′

)∥∥∥∥2
+
∥∥∥∥x− y+y′

2

∥∥∥∥2
= 2 ·

∥∥∥∥1
2(x−y)

∥∥∥∥2
+ 2 ·

∥∥∥∥1
2(x−y′)

∥∥∥∥2
.

Multiplying both sides by 4 and noting that y+y′
2 ∈ V because V is convex, we can

see that

∥∥y−y′∥∥2 = 2 ·
(
‖x−y‖2 +

∥∥x−y′∥∥2−2
∥∥∥∥x− y+y′

2

∥∥∥∥2)
≤ 2 ·

(
2δ2−2δ2

)
= 0,

since
∥∥∥x− y+y′

2

∥∥∥2
≥ δ2. Therefore, ‖y−y′‖ = 0 and y = y′, making y the unique

orthogonal projection of x on V .

ii) Let V be a subspace of H, and for any x∈H, suppose that y ∈ V is the orthogonal
projection of x on V (it is unique because V is convex). Then, by definition,

‖x−y‖ ≤ ‖x−z‖

for any z ∈ V . Choose any z ∈ V ; if z = 0H , then 〈x− y,z〉 = 0 trivially. Supose
that z 6= 0H . For any a ∈ C, y+az ∈ V because V is a subspace of H, and thus

‖x−y‖ ≤ ‖x− (y+az)‖= ‖(x−y)−az‖

by the definition of y as the orthogonal projection of x on V . Then, we have

‖x−y‖2 ≤ ‖(x−y)−az‖2 = 〈(x−y)−az,(x−y)−az〉

= ‖x−y‖2 + |a|2‖z‖2−a · 〈z,x−y〉− ā · 〈x−y,z〉,

so that

0≤ |a|2‖z‖2−a · 〈z,x−y〉− ā · 〈x−y,z〉.

Putting a= 〈x−y,z〉
‖z‖2 ∈ C, the above inequality becomes

0≤ |〈x−y,z〉|
2

‖z‖2
−2 · |〈x−y,z〉|

2

‖z‖2
=−|〈x−y,z〉|

2

‖z‖2
,
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and multiplying both sides by −‖z‖2, we obtain

|〈x−y,z〉|2 ≤ 0.

This implies that |〈x−y,z〉|2 = 0, or that 〈x−y,z〉= 0.

Now suppose that y ∈ V satisfies 〈x−y,z〉 for any z ∈ V . Then, for any z ∈ V ,

‖x−z‖2 = 〈(x−y) + (y−z),(x−y) + (y−z)〉= ‖x−y‖2 +‖y−z‖2 + 2 ·Re(〈x−y,y−z〉) .

Since y−z ∈ V (V is a subspace), by assumption we have 〈x−y,y−z〉= 0, so that

‖x−z‖2 = ‖x−y‖2 +‖y−z‖2 ≥ ‖x−y‖2.

This holds for any z ∈ V , so y is an orthogonal projection of x on V , and by the
convexity of V , it is the unique orthogonal projection of x on V .

iii) Let V be a subspace of H, and suppose that, for any x ∈H, there exists a unique
orthogonal projection of x on V . Define the mapping P : H → V so that Px is
the unique orthogonal projection of x on V for any x ∈ H. For any x ∈ H, by
the second result, we can see that 〈x−Px,z〉= 0 for any z ∈ V . This means that
x−Px ∈ V ⊥, so defining the mapping Q :H→ V ⊥ as Qx= x−Px for any x ∈H,

x= Px+Qx,

where Px ∈ V and Qx ∈ V ⊥, for any x ∈ H. This shows us that H = V
⊕
V ⊥,

where the sum becomes a direct sum because V and V ⊥ are independent.

To see that P and Q are linear, choose any x,y ∈H, a ∈ C, and note that

a · (Px+Qx) + (Py+Qy) = a ·x+y

= P (ax+y) +Q(ax+y)

by the decomposition above. Rearranging terms yields

P (ax+y)−a ·Px−Py = a ·Qx+Qy−Q(ax+y);

the left hand side is in V and the right hand side in V ⊥, and because V ∩V ⊥ = 0H
(if z ∈ V ∩V ⊥, then 〈z,z〉= ‖z‖2 = 0, or z = 0H ), this tells us that

P (ax+y)−a ·Px−Py = a ·Qx+Qy−Q(ax+y) = 0H .
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The linearity of P and Q follows immediately.

For any x ∈H and y ∈ V ⊥,

〈x−Qx,y〉= 〈Px,y〉= 0

because Px ∈ V ; by the previous result, this tells us that Qx ∈ V ⊥ is the unique
orthogonal projection of x on V ⊥.

Finally, choose any x ∈H, and note that

‖x‖2 = ‖Px+Qx‖2 = ‖Px‖2 +‖Qx‖2 + 2 ·Re(〈Px,Qx〉) = ‖Px‖2 +‖Qx‖2

because Px ∈ V and Qx ∈ V ⊥.

Q.E.D.

Note that, for any finite dimensional subspace V of an inner product space (H,〈·, ·〉), lemma
6.4 tells us that, for any x ∈ H, there exists a unique orthogonal projection of x on V . This
means that result iii) above applies to any finite dimensional subspace V of H: specifically,
H = V

⊕
V ⊥, and there exist linear mappings P,Q from H into V,V ⊥ such that Px is the or-

thogonal projection of x on V , Qx is that of x on V ⊥, and x= Px+Qx for any x ∈H.

Of course, we cannot even assert the existence of the orthogonal projection if the subspace in
question is not finite-dimensional. It is one of the most important properties of Hilbert spaces
that any closed convex subspace has a unique orthogonal projection.
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6.1.4 A Matrix Decomposition on Inner Product Spaces

The concept of orthogonality in inner product spaces also furnishes us with Schur’s matrix
decomopsition. Recall that, given an algebraically complete field F , a matrix A ∈ Fn×n is diag-
onalizable if and only if the algebraic multiplicity and geometric multiplicity are the same for
every eigenvalue of A. In terms of linear operators, given a vector space V over an algebraically
complete field and a linear operator T ∈ L(V ) on V , there exists a basis B of V such that [T ]B
is diagonal if and only if the algebraic multiplicity and geometric multiplicity are the same for
every eigenvalue of [T ]B. If V is an inner product space over the complex field, however, we can
show that there always exists an orthonormal basis B of V such that [T ]B is an upper triangular
matrix.

To derive the desired orthonormal basis B, we must first introduce the concept of the adjoint
of a linear operator. Let (H,〈·, ·〉) be an inner product space over the field F = R or C. For any
linear operator T ∈ L(H), we define the adjoint T ∗ of T as a linear operator T ∗ ∈ L(H) such
that

〈T (x),y〉= 〈x,T ∗(y)〉

for any x,y ∈H. The following theorem shows that an adjoint exists for any linear operator on
an inner product space:

Theorem 6.7 (Existence of Adjoint Operator)
Let (H,〈·, ·〉) be an n-dimensional inner product space over the field F = R or C. For any linear
operator T ∈ L(H), there exists a T ∗ ∈ L(H) such that

〈T (x),y〉= 〈x,T ∗(y)〉

for any x,y ∈H.

Proof) Let B = {v1, · · · ,vn} be an orthonormal basis of V . Choose any T ∈ L(H), and define
T ∗ :H →H as

T ∗(y) =
n∑
i=1
〈y,T (vi)〉 ·vi

for any y ∈H. T ∗ is clearly a linear operator on H: for any x,y ∈H,

T ∗(a ·x+y) =
n∑
i=1
〈a ·x+y,T (vi)〉 ·vi

= a ·
(

n∑
i=1
〈x,T (vi)〉 ·vi

)
+

n∑
i=1
〈y,T (vi)〉 ·vi = a ·T ∗(x) +T ∗(y)

by the linearity of the inner product in its first argument.
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In addition, for any x,y ∈H,

〈x,T ∗(y)〉=
〈
x,

n∑
i=1
〈y,T (vi)〉 ·vi

〉
=

n∑
i=1
〈T (vi),y〉 · 〈x,vi〉

=
〈 n∑
i=1
〈x,vi〉 ·T (vi), y

〉
=
〈
T

(
n∑
i=1
〈x,vi〉 ·vi

)
, y
〉

by the antilinearity of the inner product in its second argument. Since B is an orthonor-
mal basis of H,

x=
n∑
i=1
〈x,vi〉 ·vi,

so we have

〈x,T ∗(y)〉= 〈T (x),y〉.

This holds for any x,y ∈H, so by definition T ∗ is the adjoint of T .

Q.E.D.

The matrix representation of the adjoint operator is closely related to the original operator.
Let (H,〈·, ·〉) be an n-dimensional inner product space over the field F =R or C with orthonormal
basis B = {u1, · · · ,un}, and T ∈ L(H). Then, for any x ∈H,

cB(T (x)) = [T ]B · cB(x)

by definition; in light of the corollary to lemma 6.4,

cB(T (x)) =


〈T (x),u1〉

...
〈T (x),un〉

=


∑n
i=1〈T (ui),u1〉 · 〈x,ui〉

...∑n
i=1〈T (ui),un〉 · 〈x,ui〉



=


〈T (u1),u1〉 · · · 〈T (un),u1〉

... . . . ...
〈T (u1),un〉 · · · 〈T (un),un〉



〈x,u1〉

...
〈x,un〉

=


〈T (u1),u1〉 · · · 〈T (un),u1〉

... . . . ...
〈T (u1),un〉 · · · 〈T (un),un〉

cB(x),
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so it follows that

[T ]B =


〈T (u1),u1〉 · · · 〈T (un),u1〉

... . . . ...
〈T (u1),un〉 · · · 〈T (un),un〉

 ,

that is, the (i, j)th element of [T ]B is equal to 〈T (uj),ui〉.
Let T ∗ ∈ L(H) be the adjoint of T . Then, the (i, j)th element of [T ∗]B is given by

〈T ∗(uj),ui〉= 〈ui,T ∗(uj)〉= 〈T (ui),uj〉,

so that

[T ∗]B = [T ]∗B,

where we define A∗ =A′ as the conjugate transpose of A ∈ Fn×n.
Similarly, we can start from matrices instead of operators. Let LA ∈ L(Fn) be the left-

multiplication transformation corresponding to some A ∈ Fn; note that we can consider Fn an
inner product space over F with inner product 〈·, ·〉 defined as

〈x,y〉= x′y =
n∑
i=1

xiyi

for any x,y ∈ Fn. Letting A∗ be the conjugate transpose of A and LA∗ its left-multiplication
transformation, note that

〈LA(x),y〉= 〈Ax,y〉= x′A′y = x′A∗y = 〈x,A∗y〉= 〈x,LA∗(y)〉

for any x,y ∈ Fn, so that LA∗ = (LA)∗, the adjoint operator of LA.

One final concept we introduce is the concept of splitting polynomials. We say a polynomial
with coefficients taking values in F splits over the field F if it can be expressed as the product
of linear factors with zeros in F . Note that the characteristic polynomial of any real or complex
valued matrix splits over the complex field due to the algebraic completeness of the complex
field.

We are ready now to present Schur’s decomposition. It is easier to prove it in terms of linear
operators instead of matrices, so this version of the theorem is what we prove.
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Theorem 6.8 (Schur’s Theorem)
Let (H,〈·, ·〉) be an n-dimensional inner product space over the field F = R or C. For any linear
operator T ∈ L(H) whose characteristic polynomial splits over F , there exists an orthonormal
basis B= {u1, · · · ,un} of V such that the left-multiplication matrix [T ]B ∈Cn×n of T with respect
to B is upper triangular.

Proof) We proceed by induction on the dimension n. If n = 1, then [T ]B is trivially upper
triangular for any basis B of H, so the claim holds.

Now suppose that the theorem holds for some n≥ 1, and let H be an (n+1)-dimensional
inner product space. Choose any T ∈ L(H), and let T ∗ ∈ L(H) be the adjoint of T . We
proceed in steps:

Step 1: Finding an Eigenvalue, Eigenvector Pair for T ∗

By assumption, the characteristic polynomial of T splits over F , so that it admits at
least one solution µ ∈ F ; by the definition of the characteristic polynomial, this µ is an
eigenvalue of T , and as such there exists a non-zero u ∈H such that

T (u) = µ ·u.

By the definition of the adjoint operator,

0 = 〈0H ,v〉= 〈T (u)−µ ·u,v〉= 〈T (u),v〉−µ · 〈u,v〉

= 〈u,T ∗(v)〉−µ · 〈u,v〉= 〈u,T ∗(v)−µ ·v〉.

for any v ∈H. Defining IH ∈ L(H) as the identity operator on H, the above equation
shows us that the non-zero vector u is orthogonal to T ∗(v)−µ ·v = (T ∗−µ · IH)(v) for
any v ∈H, where T ∗−µ ·IH is a linear operator on H. Suppose u ∈R(T ∗−µ ·IH), the
range of T ∗−µ · IH . Then, there exist a v ∈ H such that u = (T ∗−µ · IH)(v), which
implies that u is orthogonal to itself and must be a zero vector, a contradiction. In
other words, u /∈ R(T ∗−µ · IH); since R(T ∗−µ · IH) has rank less than n+ 1, by the
rank-nullity theorem, the null space of T ∗−µ · IH has non-zero rank. In other words,
there exists a non-zero v ∈H such that

(T ∗−µ · IH)(v) = 0H ,

that is, T ∗(v) = µ ·v. It follows that λ := µ is an eigenvalue of T ∗ with eigenvector v.

Step 2: Applying the Inductive Hypothesis

Let W = span({v}). Then, since W is a finite dimensional vector space, H =W
⊕
W⊥,
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where W⊥ is the orthogonal complement of W . Since W has dimension equal to 1, W⊥

has dimension dim(H)−1 = n.

Define U :W⊥→H as the restriction of T to W⊥, that is, U(x) = T (x) for any x∈W⊥.
For any x ∈W⊥, note that

〈U(x),v〉= 〈T (x),v〉= 〈x,T ∗(v)〉= λ · 〈x,v〉= 0,

so that U(x) ∈W⊥ as well. Therefore, U is a linear operator on W⊥, an n-dimensional
space, by the inductive hypothesis there exists an orthonormal basis B = {u1, · · · ,un}
of W⊥ such that [U ]B is upper triangular.

Step 3: Constructing the Orthonormal Basis

Now define u= v
‖v‖ and

B′ =
{
u,u1, · · · ,un

}
.

B′ is a collection of n+ 1 orthonormal vectors in H, so it forms an orthonormal basis
of H. Furthermore,

〈T (uj),ui〉= 〈U(uj),ui〉= [U ]B(i, j)

for any 1≤ i, j ≤ n and

〈T (u) ,ui〉= 〈u,T ∗(ui)〉= λ · 〈u,ui〉= 0

for 1≤ i≤ n. Therefore,

[T ]B′ =


〈T (u) ,u〉 〈T (u1) ,u〉 · · · 〈T (un) ,u〉
〈T (u) ,u1〉 〈T (u1) ,u1〉 · · · 〈T (un) ,u1〉

...
... . . . ...

〈T (u) ,un〉 〈T (u1) ,un〉 · · · 〈T (un) ,un〉



=

 λ B

On×1 [U ]B

 ,
where B ∈ C1×n. The upper triangularity of [U ]B implies that [T ]B′ is also upper tri-
angular, so B′ is an orthonormal basis of H such that [T ]B′ is upper triangular. The
theorem now follows by induction.

Q.E.D.
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Corollary to Theorem 6.8 (Schur Decomposition)
Let F = R or C, and A ∈ Fn×n a matrix whose characteristic polynomial splits over F . Then,
there exists a unitary matrix P ∈ Fn×n, that is, a matrix satisfying P−1 = P ∗, and an upper
triangular matrix U ∈ Fn×n with diagonal elements equal to the eigenvalues of A such that

A= PUP ∗.

Proof) Let H =Fn, define 〈·, ·〉 as the standard inner product on Fn, and put T =LA ∈L(Fn).
Since the characteristic polyonmial of T is exactly that of A, which splits over F , by
Schur’s theorem there exists an orthonormal basis B = {u1, · · · ,un} of Fn such that
[T ]B = U is upper triangular. By the change of basis formula, letting E = {e1, · · · ,en}
be the standard basis of Fn,

U = [T ]B = P−1
B→E · [T ]E ·PB→E

=
(
u1 · · · un

)−1
·A ·

(
u1 · · · un

)
.

Define P =
(
u1 · · · un

)
∈ Fn×n. Then,

P ∗P =


u1
′u1 · · ·u1

′un
... . . . ...

un
′u1 · · ·un′un

= In

because B is an orthonormal basis. Therefore, P is a hermitian matrix such that

A= PUP ∗.

Finally, the characteristic polynomial of A is given as

chA(λ) = det(A−λ · In) = det(U −λ · In) = (−1)n
n∏
i=1

(U(i, i)−λ),

where the last equality follows because U −λ · In is upper triangular. Therefore, the
diagonal elements of U are precisely the eigenvalues of A.

Q.E.D.

Since the characteristic polynomial of any complex-valued square matrix splits by the alge-
braic completeness of the complex field, Schur’s decomposition states that any complex matrix
A ∈ Cn×n admits the decomposition A= PUP ∗ for some hermitian P ∈ Cn×n and upper trian-
gular U ∈ Cn×n with diagonals equal to the eigenvalues of A.

401



6.1.5 Real Symmetric Matrices

Real symmetric matrices arise often in the study of probability and economics, and they possess
special convenient properties that are worth mentioning separately. We first present the principal
axis theorem, which states that any real symmetric matrix can be orthogonally diagonalized. It
makes heavy use of the Schur decomposition, and the proof sheds light on why Schur’s theorem
was formulated in terms of arbitrary fields instead of only the complex field.

Theorem 6.9 (Principal Axis Theorem)
Let A ∈ Rn×n be a symmetric matrix. Then, there exists an orthogonal matrix P ∈ Rn×n and a
diagonal matrix D ∈ Rn×n with diagonal entries equal to the eigenvalues of A such that

A= PDP ′.

Proof) We first show that any real symmetric matrix has real eigenvalues. Suppose λ ∈ C is
an eigenvalue of A. Then, there exists a non-zero vector x ∈ Cn such that

Ax= λx.

Pre-multiplying both sides by the conjugate transpose of x shows us that

x′Ax= λ · |x|2,

and taking conjugate transpose on both sides, because A is real valued and symmetric,

(
x′Ax

)∗ = x′Ax= λ · |x|2

= λ · |x|2.

x is non-zero, so dividing both sides by |x|2 > 0 shows us that λ= λ, or that λ ∈ R.

The characteristic polynomial chA of A is a polynomial with real and therefore complex
coefficients. Therefore, viewed as a complex polynomial, it splits due to the algebraic
completeness of the complex field, that is, it can be expressed as the product of linear
factors:

chA(z) = (−1)n
n∏
i=1

(z−λi),

where λ1, · · · ,λn ∈C are the eigenvalues of A. However, as we just saw above, all these
eigenvalues are real valued, so chA splits even when perceived as a polynomial on the
real field, that is, it splits over the real field.

We have shown that A is a real valued matrix whose characterisic polynomial splits
over the real field. Thus, by Schur’s decomposition, there exists a unitary matrix P ∈
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Rn×n and an upper triangular matrix D ∈ Rn×n with diagonal elements equal to the
eigenvalues of A such that

A= PDP ∗.

Since the conjugate transpose of the real matrix P is simply its transpose P ′, it follows
that P ′P =P ∗P = In; that is, P is an orthogonal matrix. In addition, since A=A′=A∗

due to the real-valuedness and symmetry of A,

A=A∗ = PD∗P ∗ = PDP ∗.

Premultiplying both sides by P−1 and postmultiplying by P yields D∗ =D, that is, D
is unitary. Since D was constructed as an upper triangular matrix, this implies that D
is diagonal. Putting these results together, we can write

A= PDP ′,

where the columns of P are the eigenvectors of A corresponding to the eigenvalues
comprising the diagonals of D.

Q.E.D.

The diagonalizability of symmetric matrices greatly simplifies many computations. The de-
termination of positive/negative definiteness is one of these. We say that a symmetric A ∈Rn×n

is:

• Positive Definite
If, for any non-zero α ∈ Rn, α′Aα > 0.

• Negative Definite
If, for any non-zero α ∈ Rn, α′Aα < 0.

• Positive Semidefinite
If, for any α ∈ Rn, α′Aα≥ 0.

• Negative Semidefinite
If, for any α ∈ Rn, α′Aα≤ 0.

If A does not belong to any of the above categories, we say that A is indefinite. The following
provides a convenient characterization of (semi)definiteness:
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Lemma 6.10 (Eigenvalue Criterion for Definiteness) Let A ∈ Rn×n be a symmetric
matrix whose (real) eigenvalues can be ordered as λ1 ≥ ·· · ≥ λn. Then, A is positive definite
(semidefinite) if and only if λn > 0 (λn ≥ 0). Similarly, A is negative definite (semidefinite) if
and only if λ1 < 0 (λ1 ≤ 0).

Proof) We show the result holds for positive (semi)definite matrices; the negative (semi)definite
case follows easily by symmetry. Let A ∈ Rn×n be a symmetric matrix. Letting A =
P ′DP be its eigendecomposition, for any non-zero α ∈ Rn we have

α′Aα= α′P ′DPα= β′Dβ =
n∑
i=1

λi ·β2
i ,

where β=Pα∈Rn. Note that, if β= 0, then α is also the zero vector by the invertibility
of P , a contradiction; therefore, β is non-zero, so that at least one β2

i is strictly positive.
Let {e1, · · · ,en} be the standard basis of Rn.

If A is positive definite, then for any 1≤ i≤ n, putting α= P ′ei shows us that

α′Aα= λi > 0.

Thus, all of the eigenvalues of A are positive. Conversely, if every eigenvalue of A is
positive, then

α′Aα=
n∑
i=1

λi ·β2
i > 0

for any non-zero α ∈ Rn, since at least one β2
i is positive. The equivalence for positive

semidefinite matrices follows by replacing both strict inequalities with non-strict in-
equalities.

Q.E.D.

The eigenvalue characterization of positive definite matrices leads naturally to the following
decomposition for positive definite matrices, which is one of the most widely used decomposi-
tions in statistics and economics.

Theorem 6.11 (Cholesky Decomposition)
Let A∈Rn×n be a symmetric positive definite matrix. Then, there exists a unique decomposition
of A into the product LL′, where L ∈Rn×n is a lower triangular matrix with positive diagonals.

Proof) Since A is a symmetric matrix, it has eigendecomposition A= P ′DP , where P ∈Rn×n

is an orthogonal matrix and D ∈Rn×n is a diagonal matrix with diagonal entries equal
to the eigenvalus of A. Since A is positive definite, the eigenvalues λ1, · · · ,λn of A are
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all positive, so that D is invertible with square root defined as

D
1
2 =


√
λ1 · · · 0
... . . . ...
0 · · ·

√
λn

 .

We can now write

A= P ′DP =
(
P ′D

1
2
)(
D

1
2P
)

=
(
D

1
2P
)′(

D
1
2P
)
.

The matrix B =D
1
2P is invertible because it is the product of two invertible matrices;

therefore, it has QR decomposition B =QL′, where Q ∈Rn×n is an orthogonal matrix
and L ∈ Rn×n is a lower triangular matrix with positive diagonals. It follows that

A=B′B = LQ′QL′ = LL′,

where the final equality follows because Q is orthogonal.

To show the uniqueness of this decomposition, let A=NN ′ be a decomposition of A,
where N ∈ Rn×n is a lower triangular matrix with positive diagonals. Then,

In = L−1A(L−1)′ = L−1NN ′(L−1)′ = (L−1N)(L−1N)′.

Defining C =L−1N , this shows us that CC ′= In. At the same time, it is lower triangular
with positive diagonals, since the inverse and product of lower triangular matrices with
positive diagonals are lower triangular with positive diagonals. The (i, j)th element of
the matrix CC ′ is therefore given as

n∑
k=1

C(i,k)C ′(k,j) =
n∑
k=1

C(i,k)C(j,k) =
min(i,j)∑
k=1

C(i,k)C(j,k)

=

1 if i= j

0 if i 6= j
.

Putting i = 1, this implies that C(1,1)2 = 1 and that C(1,1)C(j,1) = 0 for any j > 1.
It follows that C(1,1) = 1 and C(j,1) = 0 for j > 1.

Now suppose, for some 1≤ k < n, that we have shown

– C(i, i) = 1

– C(j, i) = 0 for any j > i

– C(i, j) = 0 for any j < i

for any 1≤ i≤ k.
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Then,

k+1∑
i=1

C(k+ 1, i)2 = 1,

and

j∑
i=1

C(k+ 1, i)C(j, i) = 0 for any j < k+ 1

k+1∑
i=1

C(k+ 1, i)C(j, i) = 0 for any j > k+ 1.

Sicne C(k+1, i) = 0 for any i < k+1, we have C(k+1,k+1)2 = 1 and thus C(k+1,k+
1) = 1.

Furthermore, if j < k+ 1, then for any 1≤ i < j, we have C(j, i) = 0, so that

0 =
j∑
i=1

C(k+ 1, i)C(j, i) = C(k+ 1, j)C(j,j) = C(k+ 1, j).

Lastly, if j > k+ 1, then C(j, i) = 0 for any 1≤ i≤ k, so

0 =
k+1∑
i=1

C(k+ 1, i)C(j, i) = C(k+ 1,k+ 1)C(j,k+ 1) = C(j,k+ 1).

It follows that C(j,k+ 1) = 0.

Therefore, by induction, we can find that C = In, or L=N .

Q.E.D.
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6.2 Properties of Hilbert Spaces

Let (H,〈·, ·〉) be an inner product space over the complex field, and ‖·‖ and d the norm and
metric induced by 〈·, ·〉. If the metric space (H,d) is complete, then we call (H,〈·, ·〉) a Hilbert
space.

6.2.1 The Projection Theorem

If V is a finite-dimensional linear subspace of an inner product space (H,〈·, ·〉), we saw above in
theorem 6.5 that, for any x ∈H, there always exists an orthogonal projection of x onto V and
as such that H can be expressed as the direct sum of V and its orthogonal complement V ⊥.

In general, there does not always exist an orthogonal projection of a vector x ∈H onto an arbi-
trary subset V of H. However, Hilbert spaces are special in that, for any closed convex subset
V of H and some x ∈H, there always exists an orthogonal projection of x onto V .
This property, called the Hilbert projection theorem, allows us to work with orthgonal projec-
tions without worrying about their existence in infinite-dimensional spaces (for example, function
spaces like L2 spaces), and as such forms the cornerstone of many important mathematical re-
sults, including but not limited to the Radon-Nikodym theorem and the characterization of
conditional expectations.
The projection theorem is stated below:

Theorem 6.12 (The Hilbert Projection Theorem)
Let (H,〈·, ·〉) be a Hilbert space over the complex field and ‖·‖ and d the norm and metric
induced by 〈·, ·〉. For any nonempty closed convex subset V of H and x ∈ H, there exists a
unique y ∈ V such that

‖x−y‖= inf
z∈V
‖x−z‖.

Furthermore, if V is a closed subspace of H, then the following hold true:

i) H = V
⊕
V ⊥.

ii) Defining Px as the unique orthogonal projection of x on V for any x ∈H, the mapping
x 7→ Px is a linear transformation from H into V .

iii) Defining Qx= x−Px for any x ∈H, the mapping x 7→Qx is a linear transformation from
H into V ⊥, and Qx is an orthogonal projection of x on V ⊥ for any x ∈H.

iv) For any x ∈H, x= Px+Qx and

‖x‖2 = ‖Px‖2 +‖Qx‖2.
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Proof) Choose any x ∈H. Since the set

{z ∈ V | ‖x−z‖}

is nonempty due to the nonemptiness of V and bounded below by 0, the infimum

δ = inf
z∈V
‖x−z‖

exists in R+. For any n ∈ N+, by the definition of the infimum there exists a yn ∈ V
such that

δ ≤ ‖x−yn‖< δ+ 1
n
,

or equivalently,

|‖x−yn‖− δ|<
1
n
,

so the sequence {‖x−yn‖}n∈N+ converges to δ.
For any m,n ∈N+, by the parallelogram law we can see that

∥∥∥∥1
2 (yn−ym)

∥∥∥∥2
+
∥∥∥∥x− yn+ym

2

∥∥∥∥2
= 2 ·

∥∥∥∥1
2 (x−yn)

∥∥∥∥2
+ 2 ·

∥∥∥∥1
2 (x−ym)

∥∥∥∥2
,

and because yn+ym
2 ∈ V by the convexity of V ,

δ2 = inf
z∈V
‖x−z‖2 ≤

∥∥∥∥x− yn+ym
2

∥∥∥∥2

and we have

‖yn−ym‖2 ≤ 2‖x−yn)‖2 + 2‖x−ym‖2−4δ2.

Taking n,m→∞ on both sides, since

lim
n→∞

‖x−yn)‖2 = lim
m→∞

‖x−ym‖2 = δ2,

the right hand side converges to 0 and thus

lim
n,m→∞

‖yn−ym‖2 = 0.

This shows us that {yn}n∈N+ ⊂ V is Cauchy in the metric d; by the completeness of
the metric space (H,d), there exists a y∗ ∈H such that yn→ y∗ as n→∞ in the metric
d. Finally, because V is a closed subset of H and {yn}n∈N+ is a sequence in V , y∗ ∈ V
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as well. The continuity of the mapping y 7→ ‖x−y‖ on H now tells us that

‖x−y∗‖= lim
n→∞

‖x−yn‖= δ = inf
z∈V
‖x−z‖.

We have shown so far that y∗ is an orthogonal projection of x on V . Because V is
convex, by theorem 6.5, y∗ is the unique orthogonal projection of x on V .

Suppose that V is a closed subspace of H. Then, because V is a closed convex subset
of H, by the result above, for any x ∈H there exists a unique orthogonal projection of
x on V . By theorem 6.6, we can now see that properties i) to iv) above hold true.

Q.E.D.

Corollary to the Hilbert Projection Theorem Let (H,〈·, ·〉) be a Hilbert space over the
complex field and ‖·‖ and d the norm and metric induced by 〈·, ·〉. For any nonempty closed
convex subset V of H, there exists a unique y ∈ V of smallest norm, that is, a unique element
y ∈ V such that ‖y‖ ≤ ‖z‖ for any z ∈ V .

Proof) This follows immediately from the Hilbert Projection Theorem. Specifically, because V
is a closed convex subset of the hilbert space H, there exists a unique y ∈ V such that

‖y‖= ‖0H −y‖= inf
z∈V
‖0H −z‖= inf

z∈V
‖z‖.

Q.E.D.
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6.2.2 A Representation Theorem

A useful application of the Projection Theorem is the Representation Theorem, which tells us,
much like the Riesz representation theorem studied in chapter 4, that any linear functional on a
Hilbert space can be represented as the inner product with some element of that space. Coinci-
dentally, this theorem is also called the Riesz representation theorem, so in order to distinguish
between the two representation theorems, we will call the present theorem the Riesz represen-
tation theorem for Hilbert spaces.
The statement and proof of the theorem are given below:

Theorem 6.13 (The Riesz-Fréchet Representation Theorem)
Let (H,〈·, ·〉) be a Hilbert space over the complex field and ‖·‖ and d the norm and metric
induced by 〈·, ·〉. For any continuous linear functional L∈L(H,C), there exists a unique element
ϕ ∈H (also called the Riesz representation of L) such that

L(x) = 〈x,ϕ〉

for any x ∈H.

Proof) We first show uniqueness. Suppose that there exist ϕ1,ϕ2 ∈H such that

L(x) = 〈x,ϕi〉

for any x ∈H and i= 1,2. Then,

L(ϕ1−ϕ2) = 〈ϕ1−ϕ2,ϕ1〉= 〈ϕ1−ϕ2,ϕ2〉,

so that

‖ϕ1−ϕ2‖2 = 〈ϕ1−ϕ2,ϕ1〉−〈ϕ1−ϕ2,ϕ2〉= 0.

This implies that ϕ1 = ϕ2, and that the Riesz representation of L, if it exists, is unique.

To show existence, first define V as the null space of L. Since V = L−1({0}), where
{0} is closed and L continuous with respect to the metric d, V is a closed subset of
H. Furthermore, V is a linear subspace, so by the Hilbert Projection Theorem, H =
V
⊕
V ⊥, that is, for any x∈H there exists a unique P (x)∈ V such that x−P (x)∈ V ⊥.

If the rank of L is 0, then L(x) = 0 for any x ∈H and thus ϕ= 0H .
Suppose now that the rank of L is 1 (full rank). In this case, there exists a x ∈H such
that L(x) 6= 0, and V is a proper subset of H. Then, x−P (x) ∈ V ⊥ but x−P (x) 6= 0H
because P (x) ∈ V but x /∈ V , which tells us that V ⊥ 6= {0H}.
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Choose some z ∈ V ⊥ such that |z|= 1, and for any x ∈H, define

u(x) = L(x) ·z−L(z) ·x.

It follows that

L(u(x)) = L(x) ·L(z)−L(z) ·L(x) = 0

by linearity, so u(x) ∈ V and 〈u(x),z〉= 0. Therefore,

0 = 〈u(x),z〉= 〈L(x) ·z−L(z) ·x,z〉= L(x) · 〈z,z〉−L(z) · 〈x,z〉= L(x)−〈x,L(z) ·z〉,

and rearranging terms, we have

L(x) = 〈x,L(z) ·z〉.

This holds for any x ∈H, so it follows that ϕ= L(z) ·z.
Q.E.D.
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6.3 Hilbert Spaces and L2 Spaces

The most important Hilbert space are L2 spaces. In this section, we will show both that L2

spaces are Hilbert spaces, and that any Hilbert space can be represented as an L2 space.

6.3.1 L2 Spaces as Hilbert Spaces

Let (E,E ,µ) be a measure space, and L2(E ,µ) the L2-space associated with this measure space.
Define the operation 〈·, ·〉2 : L2(E ,µ)×L2(E ,µ)→ C as

〈[f ]µ, [g]µ〉2 =
∫
E
fgdµ

for any [f ]µ, [g]µ ∈ L2(E ,µ); this integral is well-defined because both f and g are µ-integrable.
〈·, ·〉2 is easily shown to be an inner product on L2(E ,µ):

• For any [f ]µ, [g]µ ∈L2(E ,µ), becausae Re(f), Im(f),Re(g), Im(g) are all µ-integrable real-
valued random variables,

〈[f ]µ, [g]µ〉2 =
∫
E
fgdµ=

∫
E

(Re(f) + i · Im(f))(Re(g)− i · Im(g))dµ

=
∫
E

(Re(f)Re(g) + Im(f)Im(g))dµ+ i ·
∫
E

(Im(f)Re(g)−Re(f)Im(g))dµ

=
∫
E

(Re(f)Re(g) + Im(f)Im(g))dµ+ i ·
∫
E

(Re(f)Im(g)− Im(f)Re(g))dµ

=
∫
E

(Re(f)− i · Im(f))(Re(g) + i · Im(g))dµ

=
∫
E
fgdµ= 〈[g]µ, [f ]µ〉2

by the linearity of integration.

• For any [f ]µ, [g]µ, [h]µ ∈ L2(E ,µ) and z ∈ C,

〈z · [f ]µ+ [g]µ, [h]µ〉2 =
∫
E

(zf +g)hdµ

= z ·
∫
E
fhdµ+

∫
E
ghdµ

= z · 〈[f ]µ, [h]µ〉2 + 〈[g]µ, [h]µ〉2

again by the linearity of integration.

• For any [f ]µ ∈ L2(E ,µ) such that [f ]µ 6= [0F ]µ,

〈[f ]µ, [f ]µ〉2 =
∫
E
|f |2dµ≥ 0
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because |f |2 is a non-negative E-measurable function. If 〈[f ]µ, [f ]µ〉2 = 0, then by the van-
ishing property of non-negative functions, |f |2 = 0, or equivalently, f = 0F a.e. [µ]. This
contradicts the assumption that [f ]µ 6= [0F ]µ, so

〈[f ]µ, [f ]µ〉2 > 0.

Therefore, (L2(E ,µ),〈·, ·〉2) is an inner product space over the complex field. Furthermore, the
norm ‖·‖2 induced by 〈·, ·〉2 is defined as

‖[f ]µ‖2 =
√
〈[f ]µ, [f ]µ〉2 =

(∫
E
|f |2dµ

) 1
2
,

so ‖·‖2 is just the L2 norm on L2(E ,µ). The Riesz-Fischer Theorem showed that (L2(E ,µ),‖·‖2)
is a Banach space, so by extension (L2(E ,µ),〈·, ·〉2) is a Hilbert space.

Note also that, for the Hilbert space (L2(E ,µ),〈·, ·〉2), the Cauchy Schwarz inequality and trian-
gle inequality are just versions of Hölder’s inequality and Minkowski’s inequality.

One of the most important examples of an application of Hilbert space methods to L2 spaces is
the Radon-Nikodym theorem, which will be studied in the next section.
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6.3.2 Integrals with respect to the Counting Measure

Before moving onto the converse result, that any Hilbert space can be represented as an L2

space, we first focus on the representation of integrals with respect to the counting measure on
an arbitrary set.

Let A be an arbitrary set and A = 2A its discrete σ-algebra. For any non-negative function
ϕ :A→ [0,+∞], which is trivially A-measurable, we define

∑
α∈A

ϕ(α) = sup
F⊂A, F is finite

∑
α∈F

ϕ(α),

that is, as the supremum of the sum of ϕ over finite subsets of A.
The following is the main result of this section:

Lemma 6.14 Let A be an arbitrary set and c the counting measure on (A,2A). Then, for any
non-negative function ϕ :A→ [0,+∞],

∑
α∈A

ϕ(α) =
∫
A
ϕdc,

that is, the sum of the values of ϕ on A is exactly that of the integral of ϕ with respect to the
counting measure on A.
Furthermore, if ϕ is c-integrable, that is, ∑α∈Aϕ(α)<+∞, then

{α ∈A | ϕ(α) 6= 0}

is at most countable.

Proof) Suppose that ϕ(α) = +∞ for some α ∈ A. Then, ϕ · I{α} ≤ ϕ on A, and by the mono-
tonicity of integration, ∫

A
ϕdc≥

∫
A

(
ϕ · I{α}

)
dc= ϕ(α) = +∞,

which implies that
∫
Aϕdc= +∞. Similarly, because {α} is a finite subset of A,

+∞= ϕ(α)≤
∑
α′∈A

ϕ(α),

so that

∑
α∈A

ϕ(α) = +∞=
∫
A
ϕdc.

Now suppose that ϕ(α)<+∞ for any α ∈A.
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This means that, for any finite subset F of A, the function

f =
∑
α∈F

ϕ(α) · I{α}

is a (trivially) measurable simple function, with integral∫
A
fdc=

∑
α∈F

ϕ(α).

Because f ≤ ϕ on A, by the monotonicity of integration,

∑
α∈F

ϕ(α) =
∫
A
fdc≤

∫
A
ϕdc.

This holds for any finite subset F of A, so

∑
α∈A

ϕ(α)≤
∫
A
ϕdc.

To establish the reverse inequality, we may assume that ∑α∈Aϕ(α) < +∞ without
loss of generality (otherwise, it is trivial). Suppose that the inequality above is strict.
Then, by the definition of

∫
Aϕdc as the supremum of measurable simple functions on

A majorized by ϕ, there exists a simple function s on A such that s≤ ϕ on A and

∑
α∈A

ϕ(α)<
∫
A
sdc.

Letting {a1, · · · ,an}⊂ (0,+∞) be the finite non-zero values s takes, for any finite subset
F ⊂A

∑
α∈F

s(α)≤
∑
α∈F

ϕ(α)≤
∑
α∈A

ϕ(α)

because s≤ ϕ on A. By implication,

∑
α∈A

s(α)≤
∑
α∈A

ϕ(α)<+∞,

For any 1≤ i≤ n, this means that s−1({ai}) is a finite set, since if s−1({ai}) contains
more than 1

ai

∑
α∈Aϕ(α) elements, then choosing a finite subset J of s−1({ai}) with

more than 1
ai

∑
α∈Aϕ(α) elements, we have

∑
α∈A

s(α)≥
∑
α∈J

s(α) = ai · |J |>
∑
α∈A

ϕ(α),

a contradiction. Therefore, {s 6= 0}= s−1({a1})∪·· ·∪s−1({an}) must be a finite set.
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Defining F = {s 6= 0}, we can now see that∫
A
sdc=

∑
α∈F

s(α)≤
∑
α∈A

s(α)

but ∫
A
sdc=

∑
α∈F

s(α)>
∑
α∈A

ϕ(α),

a contradiction. It follows that

∑
α∈A

ϕ(α) =
∫
A
ϕdc.

Finally, to show the second result, suppose ∑α∈Aϕ(α) < +∞. This means that there
exists a natural number M such that ∑α∈Aϕ(A)<M .
For any n ∈N+, define the set

An = {α ∈A | ϕ(α)> 1
n
}.

If An contains more than nM elements, then we can choose a finite subset J of An with
more than nM elements, for which

∑
α∈A

ϕ(α)≥
∑
α∈J

ϕ(α)> 1
n
|J |>M,

since ϕ(α)> 1
n for any α ∈ J . This is a contradiction, so An must contain at most nM

elements; An is a finite set.
This holds for any n ∈N+, and

{α ∈A | ϕ(α) 6= 0}=
⋃
n

{α ∈A | ϕ(α)> 1
n
}=

⋃
n

An,

so ϕ is non-zero for at most countably many points in A.
Q.E.D.

We have thus shown that the integral of a non-negative function with respect to the counting
measure is the sum of that function over the set on which it is defined.
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For any 1 ≤ p ≤ +∞,the Lp space on A with respect to the counting measure c on A, denoted
Lp(2A, c), is often denoted `p(A).
If two functions ϕ,ξ :A→ C are equivalent a.e. [c], then by definition

c({ϕ 6= ξ}) = 0.

This means that {ϕ 6= ξ} contains 0 elements, or that it is the empty set, which in turn indicates
that ϕ= ξ everywhere on A. In other words, the equivalence class [ϕ]c = {ϕ}, so that `p(A) does
not need to be understood as the collection of equivalence classes, but rather as the collection
of complex functions on A.

If 1≤ p <+∞, ϕ ∈ `p(A) if and only if∫
A
|ϕ|pdc=

∑
α∈A
|ϕ(α)|p <+∞,

so `p(A) can be viewed as the collection of functions ϕ on A such that

∑
α∈A
|ϕ(α)|p <+∞.

For any ϕ :A→ C, defining

S = {β ∈ R | c(|ϕ|−1((β,+∞])) = 0}=
[

sup
α∈A
|ϕ(α)|,+∞

]
,

the essential supremum of |ϕ| with respect to the counting measure is

‖ϕ‖∞ = inf S = sup
α∈A
|ϕ(α)|.

Therefore, `∞(A) is the collection of all bounded functions ϕ on A.

For any 1≤ p <+∞, by theorem 5.10 the set of all complex-valued functions s on A with finite
range such that c({s 6= 0}) < +∞ is dense in `p(A). c({s 6= 0}) < +∞ implies that {s 6= 0} is a
finite subset of A, that is, if s(α) 6= 0 for a finite number of α ∈A. Conversely, if some complex-
valued function s : A→ [0,+∞] is non-zero on a finite subset F of A, then s has finite range
{0}∪{s(α) | α ∈ F}, and c({s 6= 0}) = c(F )<+∞.
Therefore, the collection of all complex-valued functions s on A that are non-zero only for finitely
many α ∈A is dense in `p(A) for any 1≤ p <+∞.
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6.3.3 Aribtrary Orthonormal Sets

So far, we have studied the property of finite orthonormal sets in inner product spaces and
the projection property of closed convex subsets of Hilbert spaces. We now extend our analysis
to arbtirary orthonormal sets in Hilbert spaces. To this end, we introduce the concept of the
isometry.

Let (E,d) and (F,ρ) be metric spaces. We say a function f : E→ F is an isometry from (E,d)
to (F,ρ) if

d(x,y) = ρ(f(x),f(y))

for any x,y ∈E. In other words, it is a distance-preserving function; in this sense, it is iso-metric.
Note the following result concerning isometries:

Lemma 6.15 Let (E,d) and (F,ρ) be metric spaces, where (E,d) is complete. Suppose that
f : E→ F is a function such that

i) f is continuous

ii) There exists a subset E0 of E that is dense in E such that

d(x,y) = ρ(f(x),f(y))

for any x,y ∈ E0, and

iii) The image f(E0) is dense in F .

Then, f is an isometry from (E,d) onto (F,ρ).

Proof) We first show that f is an isometry from (E,d) to (F,ρ).
For any x,y ∈ E and ε > 0, by the continuity of f on E, there exists a 0< δ < ε

2 such
that

ρ(f(x),f(z))< ε

2 ρ(f(y),f(w))< ε

2

for any z,w ∈ E such that d(x,z),d(y,w)< δ.
By the denseness of E0 in E, there exist x0,y0 ∈ E0 such that d(x,x0),d(y,y0) < δ, so
that

ρ(f(x),f(x0))< ε

2 ρ(f(y),f(y0))< ε

2 .

Since f is isometric on E0,

d(x0,y0) = ρ(f(x0),f(y0)),
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and by the triangle inequality,

|ρ(f(x),f(y))−ρ(f(x0),f(y0))|< ρ(f(x),f(x0)) +ρ(f(y),f(y0))< ε

and

|d(x,y)−d(x0,y0)| ≤ d(x,x0) +d(y,y0)< 2 · δ < ε.

By implication,

|d(x,y)−ρ(f(x),f(y))| ≤ |d(x,y)−d(x0,y0)|+ |ρ(f(x),f(y))−ρ(f(x0),f(y0))|< 2ε.

This holds for any ε > 0, so

d(x,y) = ρ(f(x),f(y)),

and f is an isometry from (E,d) into (F,ρ).

To show that f maps onto F , choose any y ∈ F . Because f(E0) is dense in F , there
exists a sequence {yn}n∈N+ ⊂ f(E0) that converges to y in the metric ρ. For any n∈N+,
there exists an xn ∈N+ such that f(xn) = yn, since yn ∈ f(E0). f is an isometry and
{yn}n∈N+ , being a convergent sequence, is also Cauchy in ρ, so

lim
n,m→∞

d(xn,xm) = lim
n,m→∞

ρ(f(xn),f(xm)) = 0,

indicating that {xn}n∈N+ is Cauchy in d. Finally, by the completeness of (E,d), there
exists an x ∈ E such that xn→ x in the metric d, and by the continuity of f , we can
see that

f(x) = lim
n→∞

f(xn) = lim
n→∞

yn = y.

This indicates that y = f(x) ∈ f(E), and as such that f maps onto F .
Q.E.D.

The next theorem uses the fact that, for any Hilbert space (H,〈·, ·〉) with norm ‖·‖ and metric
d, (H,d) is complete by the Riesz-Fischer theorem. It follows that, for any closed subset V of
H, (V,d) is also a complete metric space.
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Theorem 6.16 Let (H,〈·, ·〉) be a complex Hilbert space with induced norm and metric ‖·‖
and d. Suppose A is an arbitrary index set and V = {uα | α ∈ A} an orthonormal subset of H.
Denote by P the span of V . Then, for any x ∈H,

∑
α∈A
|x̂(α)|2 ≤ ‖x‖2, (Bessel’s Inequality)

and the mapping x 7→ x̂ is a continuous mapping from H into `2(A) whose restriction to the
closure P of P is an isometry from P onto `2(A).

Proof) For any x ∈H, recall that the function x̂ on A is defined as

x̂(α) = 〈x,uα〉

for any α ∈ A. For any finite subset F of A, since {uα | α ∈ F} is a finite orthonormal
set in H, by lemma 6.4 we have

∑
α∈F
|x̂(α)|2 ≤ ‖x‖2.

As such,

∑
α∈A
|x̂(α)|2 = sup

F⊂A, F is finite

∑
α∈F
|x̂(α)|2 ≤ ‖x‖2.

Since ‖x‖2 < +∞, this implies that ∑α∈A |x̂(α)|2 < +∞, and as such that x̂ ∈ `2(A).
Let 〈·, ·〉2 be the inner product on `2(A) defined as

〈ϕ,ξ〉2 =
∫
A
ϕξdc=

∑
α∈A

ϕ(α)ξ(α)

for any ϕ,ξ ∈ `2(A), and ‖·‖2 and d2 the norm and metric induced by this inner product.

Define the function f :H→ `2(A) as f(x) = x̂ for any x∈H. For any a∈C and x,y ∈H,
denote z = ax+y and note that

ẑ(α) = 〈z,uα〉= a · 〈x,uα〉+ 〈y,uα〉= a · x̂(α) + ŷ(α)

for any α ∈A, so that

f(ax+y) = ẑ = a · x̂(α) + ŷ(α) = a ·f(x) +f(y).

We have thus shown that f is a linear transformation mapping from H into `2(A).
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Furthermore, for any x,y ∈H,

‖f(x)−f(y)‖22 = ‖x̂− ŷ‖22 =
∫
A
|x̂− ŷ|2dc

=
∑
α∈A
|x̂(α)− ŷ(α)|2 =

∑
α∈A

∣∣∣ ˆ(x−y)(α)
∣∣∣2 (Linearity of f)

≤ ‖x−y‖2. (Bessel’s inequality)

Therefore, f is a continuous lienar transformation with respect to the metrics d and
d2.

Finally, let g : P → `2(A) be the restriction of f to P . We will show that (P ,d),
(`2(A),d2) and g satisfy the conditions of lemma 6.14.
Because P is a closed subset of H, (P ,d) is a complete metric space. g is continuous
on P due to the continuity of f on H.
P is a subset of P that is dense in P . Choose any x,y ∈ P ; because x,y are finite linear
combinations of the vectors in V , there exists a finite subset F of A such that

x=
∑
α∈F

xα ·uα and y =
∑
α∈F

yα ·uα.

It follows that

x̂(α) =

xα if α ∈ F

0 if α /∈ F
and ŷ(α) =

yα if α ∈ F

0 if α /∈ F
,

so that

d2(g(x),g(y))2 = ‖x̂− ŷ‖22 =
∑
α∈A
|x̂(α)− ŷ(α)|2

=
∑
α∈F
|xα−yα|2 =

∥∥∥∥∥∑
α∈F

(xα−yα) ·uα
∥∥∥∥∥

2

= ‖x−y‖2 = d(x,y)2.

This shows us that g is an isometry on P .
Finally, for any y ∈ g(P ), there exists an x∈P such that g(x) = x̂= y. Since x is a finite
linear combination of the vectors in V , we saw previously that x̂ is a complex-valued
function on A that is non-zero for only finitely many α ∈ A, specifically the elements
of F .
Conversely, suppose that y is some complex-valued function on A that is non-zero for
only finitely many α ∈ A. Letting y 6= 0 on the finite set F , define yα = y(α) for any
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α ∈ F . Then, y = x̂= g(x), where x ∈H is defined as

x=
∑
α∈F

yα ·uα.

Since x is a finite linear combination of the vectors in V , x ∈ P , and y ∈ g(P ).
Therefore, g(P ) is precisely the set of all complex-valued functions on A that are non-
zero only for finitely many α ∈ A, and as such is dense in `2(A) with respect to the
metric d2.

By lemma 6.15, it now follows that g is an isometry from (P ,d) onto (`2(A),d2).
Q.E.D.
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Since P is a subset of H, the above theorem essentially tells us that any function on A that is
square-summable is the Fourier coefficient of some vector in H.
The next result furnishes sufficient conditions for P in the previous theorem to coincide with
the entire space H.

Theorem 6.17 Let (H,〈·, ·〉) be a complex Hilbert space with induced norm and metric ‖·‖
and d. Suppose A is an arbitrary index set and V = {uα | α ∈ A} an orthonormal subset of H.
Denote by P the span of V . Then, the following are equivalent:

i) V is a maximal orthonormal subset of H; that is, there does not exist any x ∈H such that
x /∈ V and V ∪{x} is an orthonormal subset of H

ii) The span P of V is dense in H; that is, P =H

iii) For any x ∈H,

∑
α∈A
|x̂(α)|2 = ‖x‖2

iv) (Parseval’s Identity) For any x,y ∈H,

∑
α∈A

x̂(α)ŷ(α) = 〈x,y〉.

Proof) We will show that ii) → iii) → iv) → i) → ii).

ii) → iii)

If ii) holds, then by theorem 6.16, the mapping x 7→ x̂ is a continuous isometry from H

onto `2(A), so that, for any x,y ∈H,

∑
α∈A
|x̂(α)− ŷ(α)|2 =

∫
A
|x̂− ŷ|2dc= ‖x̂− ŷ‖22 = ‖x−y‖2.

Putting y = 0H leads to the equality iii).

iii) → iv)

We make use of the polar identity: for any x,y ∈H,

‖x+y‖2−‖x−y‖2 + i · ‖x+ iy‖2− i · ‖x− iy‖2 = 4 ·Re(〈x,y〉) + 4i · Im(〈x,y〉)

= 4(Re(〈x,y〉) + i · Im(〈x,y〉)) = 4 · 〈x,y〉.
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Therefore, using iii) and the polar identity again, we have

4 · 〈x,y〉= ‖x̂+ ŷ‖22−‖x̂− ŷ‖
2
2 + i · ‖x̂+ iŷ‖22− i · ‖x̂− iŷ‖

2
2

= 4 · 〈x̂, ŷ〉2 = 4 ·
∫
A
x̂ŷdc= 4 ·

∑
α∈A

x̂(α)ŷ(α),

which implies iv).

iv) → i)

Suppose that iv) is true but i) is not. Since this means V is not the maximally or-
thonormal subset of H, there exists some u ∈H that is not contained in V but {u}∪V
is an orthonormal subset of H. By definition, ‖u‖ = 1, so u 6= 0H , and 〈u,uα〉 = 0 for
any α ∈A. Putting x= y = u, by Parseval’s identity,

∑
α∈A
|û(α)|2 =

∑
α∈A

x̂(α)ŷ(α)

= 〈x,y〉= ‖u‖2 = 1.

However, because

û(α) = 〈u,uα〉= 0

for any α ∈ A, ∑α∈A |û(α)|2 = 0, which implies the equality 0 = 1, a contradiction.
Therefore, i) must hold true.

i) → ii)

Finally, suppose that i) holds, but ii) does not. P is a closed subset of H, and choosing
any x,y ∈ P , there exist sequences {xn}n∈N+ and {yn}n∈N+ in P that converge to x,y.
For any a ∈ C, because P is a subpsace of H, a ·xn+ yn ∈ P for any n ∈N+, and the
limit a ·x+y of the sequence {a ·xn+yn}n∈N+ must then belong in P . Finally, because
0H ∈ P , 0H belongs in P as well. Therefore, P is a closed subspace of H, and by the
Hilbert projection theorem, H = P

⊕
P
⊥.

We have assumed that P 6=H, that is, that P is a proper subset of H. This indicates
that there exists an x ∈H such that x 6= P , so this x can be decomposed into the sum
of x1 ∈ P and x2 ∈ P

⊥, where x2 6= 0H (otherwise, x= x1 ∈ P , a contradiction). Thus,
P
⊥ contains a non-zero element.

Choose u ∈ P⊥ so that ‖u‖= 1, which exists because P⊥ contains a non-zero element
and P

⊥ is a subspace of H. Defining V ′ = {u}∪V , we can see that, for any α ∈ A,
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because V ⊂ P ⊂ P ,

〈u,uα〉= 0.

This indicates that V ′ is an orthonormal subset of H, which contradicts the maximality
of V . Therefore, ii) must hold, and P =H.

Q.E.D.

A maximally orthonormal subset of an inner product space (H,〈·, ·〉) is called an orthonormal
basis, or a complete orthonormal subset, of H.
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6.3.4 Hilbert Spaces as L2 Spaces

Suppose that we know a maximally orthonormal set exists for any complex Hilbert space
(H,〈·, ·〉). In this case, letting V = {uα | α ∈A} be the maximal orthonormal set in question, by
the theorem above the span of V is dense in H, and by the theorem before that, we can tell that
the mapping x 7→ x̂ from H into `2(A) is a linear transformation and an isometry from H onto
`2(A).

This means that the mapping x 7→ x̂ becomes a surjective linear transformation from H into
`2(A). The isometry also tells us that, for any x,y ∈H, if x̂= ŷ, then

0 = ‖x̂− ŷ‖2 = ‖x−y‖

and that x = y, so that the mapping x 7→ x̂ is a bijective linear transformation. Denote this
mapping by L :H → `2(A).
Finally, for any a ∈ C and ϕ,ξ ∈ `2(A), letting x,y ∈ H be chosen so that L(x) = x̂ = ϕ and
L(y) = ŷ = ξ, we have

L−1(aϕ+ ξ) = L−1(a ·L(x) +L(y)) = L−1(L(ax+y))

= ax+y = a ·L−1(ϕ) +L−1(ξ).

In other words, the inverse mapping L−1 is also a linear transformation, which implies that L
is an isomorphism from H into `2(A).
Therefore, if we can just establish that H has a maximally orthonormal set, then the Hilbert
space H is isomorphic to the L2-space `2(A), and the isomorphism in question is exactly the
mapping that maps each vector of H to its Fourier coefficient. It is in this sense that any Hilbert
space can be regarded as an L2-space.

It is easy to establish that any Hilbert space has a maximally orthonormal subset with help
from the Hausdorff Maximality Theorem. Recall from the beginning of this text that, given that
the axiom of choice holds, so does the Hausdorff Maximality Theorem, which posits that any
partially ordered set contains a maximal totally ordered set, or a totally ordered subset that
does not have any totally ordered expansion. The main theorem is given below:

Theorem 6.18 Let (H,〈·, ·〉) be a complex inner product space. Every orthonormal set V
is contained in a maximally orthonormal set W , that is, an orthonormal set such that, for any
x /∈W , W ∪{x} is not orthonormal.

Proof) Let F be the collection of all orthonormal sets in H that contain V . F is a nonempty
partially ordered set under the set inclusion operator ⊂, so by the Hausdorff maximality
theorem, it has a subset G that is maximally totally ordered under set inclusion. Let
W be the union of every element of G. We will show that W is our desired maximal
orthonormal set.
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Choose any x,y ∈W . Since W = ⋃
B∈GB, there exist A,B ∈ G such that x ∈ A and

y ∈ B. G is totally ordered under set inclusion, so either A ⊂ B or B ⊂ A; assuming
A ⊂ B without loss of generality, x,y ∈ B, and because B is an orthonormal set con-
taining V by definition, 〈x,y〉= 1 if x= y and 〈x,y〉= 0 otherwise. This shows us that
W is an orthonormal set.

To show that W is maximal, choose some x /∈W and define W ∗ = W ∪{x}. If W ∗ is
an orthonormal set, then, because it contains V through W , W ∗ ∈ F . W is a proper
subset of W ∗, so W ∗ /∈ G. The collection G∗ = G ∪{W ∗} is then totally ordered under
set inclusion since, for any A ∈ G, A⊂W ⊂W ∗, and G is already totally orderd under
set inclusion. This contradicts the maximality of G, so there cannot exist an x /∈W
such that W ∪{x} is orthonormal. Therefore, W is a maximally orthonormal set that
contains V .

Q.E.D.

We have shown above that any orthonormal set in an inner product space can be extended to
an orthornomal basis for that space. Since any non-trivial inner product space (H,〈·, ·〉) has a
non-zero element x ∈H and { x

‖x‖} forms an orthonormal subset of H, the theorem implies that
any non-trivial inner product space has a maximally orthonormal subset.
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6.4 Lebesgue Decomposition and Radon-Nikodym Theorem

In this section we present the von Neumann proof of the Radon-Nikodym theorem, in which the
Lebesgue Decomposition theorem and the Radon-Nikodym theorem are proved in one stroke
using Hilbert space methods.

6.4.1 Absolute Continuity and Mutual Singularity

Let (E,E) be a measurable space, and µ, v two measures on (E,E). Recall that v is absolutely
continuous with respect to µ, or v << µ, if, for any A ∈ E , µ(A) = 0 implies v(A) = 0. If v is a
finite measure, then the following result shows us why the preceding relation is called absolute
”continuity”:

Lemma 6.19 Let (E,E) be a measurable space, and µ, v two measures on (E,E). If v is finite,
then v << µ if and only if, for any ε > 0, there exists a δ > 0 such that v(A)< ε for any A ∈ E
such that µ(A)< δ.

Proof) Suppose first that the ε− δ condition above holds, that is, for any ε > 0, there exists a
δ > 0 such that v(A)< ε for any A ∈ E such that µ(A)< δ. If µ(A) = 0 for some A ∈ E ,
then because µ(A)< δ, this implies that v(A)< ε as well. This holds for any ε > 0, so
v(A) = 0. This in turn holds for any A ∈ E , so v << µ.

To show that absolute continuity implies the ε− δ condition, we proceed by contrapo-
sition. Suppose that there exists a ε > 0 such that, for any δ > 0, there exists a A ∈ E
such that µ(A)< δ but v(A)≥ ε. In this case, we can choose a sequence {An}n∈N+ ⊂ E
such that v(An)≥ ε and µ(An)< 2−n for any n∈N+. Defining the sequence {Bn}n∈N+

as

Bn =
∞⋃
i=n

Ai

for any n ∈N+, {Bn}n∈N+ is a decreasing sequence of E-measurable sets. Furthermore,
for any n ∈N+,

µ(Bn)≤
∞∑
i=n

µ(Ai)≤
∞∑
i=n

2−i = 2−n+1 ·
( ∞∑
i=1

2−i
)

= 2−n+1,

which implies that

lim
n→∞

µ(Bn) = 0,

and because µ(B1)≤ 1<+∞, by the sequential continuity of measures,

µ(B) = lim
n→∞

µ(Bn) = 0.
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On the other hand, for any n ∈N+,

v(Bn)≥ v(An)≥ ε,

and because v(B1) < +∞ by the finiteness assumption, by sequential continuity we
have

v(B) = lim
n→∞

v(Bn)≥ ε.

Therefore, B ∈ E is a measurable set such that µ(B) = 0 but v(B) > 0, which tells us
that v is not absolutely continuous with respect to µ.
By contraposition, we can conclude that v << µ implies the ε− δ condition.
Q.E.D.

In section 3.2.4, we defined the indefinite integral of a non-negative measurable function with
respect to some measure; specifically, letting µ be a measure on (E,E) and f ∈ E+, the indefinite
integral v of f with respect to µ was a measure on (E,E) defined as

v(A) =
∫
A
fdµ

for any A ∈ E . We also saw that, for any g ∈ E+,∫
E
gdv =

∫
E
gfdµ.

There, we easily showed that v << µ. The Radon-Nikodym theorem tells us the exact opposite,
namely that, if v << µ and µ,v are σ-finite measures, then v must be the indefinite integral of
some non-negative measurable function h with respect to µ, so that the relation

v(A) =
∫
A
hdµ

holds for any A ∈ E . This function h is called the Radon-Nikodym derivative of v with respect
to µ.
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A concept closely related to absolute continuity is that of singularity.
Let µ be a measure on (E,E). If there exists a E0 ∈ E such that

µ(E0∩A) = µ(A)

for any A ∈ E , then we say that µ is concentrated on E0. Heuristically, this means that µ does
not assign a non-zero value to any measurable set outside E0. Note that, if µ is concentrated
on E0,E1 ∈ E , then it is also concentrated on E0∩E1: this can be seen by noting that, for any
A ∈ E ,

µ((E0∩E1)∩A) = µ(E0∩ (E1∩A)) = µ(E1∩A) = µ(A),

where we used the fact that µ is concentrated on E0 and E1 to justify the second and third
equalities.
Now let µ,v be two measures on (E,E). If there exist disjoint measurable sets E0,E1 ∈ E such
that µ is concentrated on E0 and v on E1, then we say that the measures µ,v are mutually
singular, and denote the relation by µ⊥ v.
The following are some properties of mutual singularity and absolute continuity:

Lemma 6.20 Let (E,E) be a measurable space, and µ,v1,v2 measures on (E,E). Then, the
following hold true:

i) If v1 ⊥ µ and v2 ⊥ µ, then v1 +v2 ⊥ µ.

ii) If v1 << µ and v2 << µ, then v1 +v2 << µ.

iii) If v1 << µ and v2 ⊥ µ, then v1 ⊥ v2.

iv) If v1 << µ and v1 ⊥ µ, then v1 = 0 on E .

Proof) i) Suppose that v1⊥µ and v2⊥µ. Then, there exist measurable sets E1,E2,E−1,E−2

such that E1∩E−1 = E2∩E−2 = ∅ and

vi(Ei∩A) = vi(A), µ(E−i∩A) = µ(A)

for i= 1,2. Denoting m= v1 +v2, it then follows that, for any A ∈ E ,

m((E1∪E2)∩A) = v1((E1∪E2)∩A) +v2((E1∪E2)∩A).

Note that

v1((E1∪E2)∩A) = v1((E1∩A)∪ (E2∩A))

= v1(E1∩A) +v1((E2∩A)\ (E1∩A))

= v1(E1∩A) +v1((E2 \E1)∩A);
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because v1 is concentrated on E1, v1(Ec1) = v1(E1∩Ec1) = 0, so that

v1((E2 \E1)∩A) = v1(E2∩Ec1∩A)≤ v1(Ec1) = 0

and therefore

v1((E1∪E2)∩A) = v1(E1∩A) = v1(A).

Likewise, v2((E1∪E2)∩A) = v2(A), so we have

m((E1∪E2)∩A) = v1(A) +v2(A) =m(A).

This holds for any A ∈ E , so it follows by definition that m is concentrated on
E1∪E2. E1∪E2 and E−1∩E−2 are disjoint, and µ is concentrated on E−1∩E−2,
so it follows that v1 +v2 =m⊥ µ.

ii) Suppose that v1 << µ and v2 << µ. Then, for any A ∈ E such that µ(A) = 0,
v1(A) = v2(A) = 0, which implies that (v1 + v2)(A) = 0 as well. By definition,
v1 +v2 << µ.

iii) Suppose that v1 << µ and v2 ⊥ µ. Then, there exist disjoint sets E0 and E2

such that v2 is concentrated on E2 and µ is concentrated on E0. By implication,
µ(Ec0) = µ(E0∩Ec0) = 0, so by absolute continuity, v1(Ec0) = 0. This indicates that,
for any A ∈ E ,

v1(A) = v1(E0∩A) +v1(Ec0∩A) = v1(E0∩A),

or that v1 is concentrated on E0. Since E0 and E2 are disjoint, this implies v1 ⊥ v2.

iv) Suppose that v1 <<µ and v1⊥µ. By the preceding result, this implies that v1⊥ v1,
or that there exist disjoint sets E1,E2 such that

v1(A) = v1(E1∩A) = v1(E2∩A)

for any A ∈ E . By implication,

v1(E1) = v1(E2∩E1) = v1(∅) = 0,

and as such, v1(A) = v1(E1∩A) = 0 for any A ∈ E .

Q.E.D.
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6.4.2 The Main Theorem

Now we are ready to prove the Lebesgue decomposition and Radon-Nikodym theorems. First,
we state some preliminary lemmas:

Lemma 6.21 Let (E,E) be a measurable space, and µ a σ-finite measure on (E,E). Then,
there exists a µ-integrable function w taking values in (0,1).

Furthermore, defining v : E → [0,+∞] as

v(A) =
∫
A
wdµ

for any A ∈ E , or the indefinite integral of w with respect to µ, v is a finite measure on (E,E)
such that µ << v.

Proof) Because µ is σ-finite, there exists a measurable partition {En}n∈N+ ⊂ E of E such that
µ(En)<+∞ for any n ∈N+. Now define the function w : E→ (0,1) as

w =
∞∑
n=1

2−n
1 +µ(En) · IEn ;

w is well-defined because each summand is non-negative, and it is E-measurable because
each IEn is measurable. Finally, by the MCT for series and the linearity of integration,

∫
E
wdµ=

∞∑
n=1

2−n
1 +µ(En) ·µ(En)≤

∞∑
n=1

2−n = 1<+∞,

so w is µ-integrable.

Now let v be defined as above. We already showed previously that v is a well-defined
measure on (E,E), and it is finite because

v(E) =
∫
E
wdµ≤ 1<+∞.

To show that µ is absolutely continuous with respect to v, let A ∈ E be a set such that
v(A) = 0. Then, ∫

A
wdµ=

∫
E

(w · IA)dµ= 0,

and by the vanishing property of non-negative functions, w · IA = 0 a.e. [µ], that is,

µ({w · IA > 0}) = 0.

Since w is positive everywhere on E, we can see that {w ·IA > 0}=A and as such that
µ(A) = 0. By definition, µ << v, and since v << µ by construction, this actually tells
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us that v and µ are equivalent measures.

Q.E.D.

The next result shows that, if the average of a complex function over any measurable set is
within the interval [0,1], the function itself takes values in [0,1] almost everywhere.

Lemma 6.22 Let (E,E) be a measurable space, and µ a finite measure on (E,E). If, for some
complex E-measurable f , we have

1
µ(A)

∫
A
fdµ ∈ [0,1],

for any A ∈ E with µ(A)> 0, then the function f takes values in [0,1] a.e. [µ].

Proof) We first show that Im(f) = 0 a.e. [µ]. For any A ∈ E such that µ(A)> 0,

1
µ(A)

∫
A
fdµ= 1

µ(A)

∫
A
Re(f)dµ+ i · 1

µ(A)

∫
A
Im(f)dµ ∈ [0,1],

so ∫
A
Im(f)dµ= 0.

Suppose that

µ({Im(f) 6= 0}) = µ
(
{Im(f)+ > 0}∪{Im(f)− > 0}

)
= µ

(
{Im(f)+ > 0}

)
+µ

(
{Im(f)− > 0}

)
> 0.

Suppose without loss of generality that µ
(
{Im(f)+ > 0}

)
> 0. Then, since

{Im(f)+ > 0}=
⋃
n

{Im(f)+ > 1/n}︸ ︷︷ ︸
An

,

by countable subadditivity

0< µ
(
{Im(f)+ > 0}

)
≤
∞∑
n=1

µ(An).

This implies that µ(An)> 0 for some n ∈N+; by design, 1
n · IAn ≤ Im(f)+ · IAn , so by

the monotonicity of integration,

0< 1
n
µ(An)≤

∫
An
Im(f)+dµ.
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Since Im(f)− = 0 on An, it follows that
∫
An
Im(f)−dµ= 0, and therefore

∫
An
Im(f)dµ=

∫
An
Im(f)+dµ > 0.

This contradicts the fact that
∫
A Im(f)dµ= 0 for anyA∈E with µ(A)> 0, so µ({Im(f) 6= 0}) =

0, or in other words, Im(f) = 0 a.e. [µ].

Denoting Re(f) = g, we can see that

1
µ(A)

∫
A
gdµ ∈ [0,1]

for any A ∈ E such that µ(A)> 0. Suppose that µ({g < 0})> 0. Since

{g < 0}=
⋃
n

{g <−1/n}︸ ︷︷ ︸
Bn

,

and

µ({g < 0})≤
∞∑
n=1

µ(Bn),

that µ({g < 0})> 0 indicates that there exists an n ∈N+ such that µ(Bn)> 0. It then
follows that g · IBn ≤− 1

n · IBn , so that
∫
Bn
gdµ≤− 1

n
µ(Bn)< 0,

or

1
µ(Bn)

∫
Bn
gdµ≤− 1

n
< 0

by the monotonicity of integration, which contradicts the fact that 1
µ(Bn)

∫
Bn
gdµ ≥ 0.

Therefore, µ({g < 0}) = 0, that is, g ≥ 0 a.e. [µ].

Likewise, because

1
µ(A)

∫
A

(1−g)dµ≥ 0

for any A ∈ E such that µ(A)> 0, 1−g ≥ 0, or equivalently, g ≤ 1, a.e. [µ].
Putting these results together, we can see that g ∈ [0,1] a.e. [µ], and because f = g a.e.
[µ], we can conclude that f ∈ [0,1] a.e. [µ].

Q.E.D.

The following is the statement and proof of the Lebesgue decomposition and Radon-Nikodym
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theorems, due to von Neumann:

Theorem 6.23 (The Lebesgue-Radon-Nikodym Theorem)
Let (E,E) be a measurable space, and µ, v σ-finite measures on (E,E). Then,

i) The Lebesgue Decomposition Theorem
There exist a unique pair of measures va and vs on (E,E) such that

v = va+vs, va << µ, vs ⊥ µ.

ii) The Radon-Nikodym Theorem
There exists a non-negative E-measurable h such that

va(A) =
∫
A
hdµ

for any A ∈ E . If va is finite, then h is unique a.e. [µ].

Proof) We first prove existence, and then move onto uniqueness. As with most complicated
proofs, we proceed in steps:

Step 1: Defining the Auxiliary Measure ϕ

Suppose initially that v is a finite measure. In this step, we define the auxiliary measure
ϕ as the sum of the finite measure v and a finite measure with respect to which µ is
absolutely continuous, constructed using lemma 6.21.

Let the E-measurable positive function w be chosen as in lemma 6.16, so that
∫
Ewdµ= 1

and w takes values in (0,1). Define the measure ϕ on (E,E) as

ϕ(A) = v(A) +
∫
A
wdµ

for any A ∈ E , which is a measure because the mappings A 7→ v(A) and A 7→
∫
Awdµ

are measures and the sum of measures is also a measure. Furthermore, because

ϕ(E) = v(E) +
∫
E
wdµ= v(E) + 1<+∞

due to the finiteness of v, ϕ is also a finite measure.
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For any E-measurable simple function f =∑n
i=1αi · IAi ,∫

E
fdϕ=

n∑
i=1

αi ·ϕ(Ai)

=
n∑
i=1

αi ·
(
v(Ai) +

∫
E

(w · IAi)dµ
)

=
∫
E
fdv+

∫
E
fwdµ

by the linearity of integration.
Now let f be a general non-negative E-measurable function and {sn}n∈N+ a sequence
of E-measurable non-negative functions increasing to f . Then, by repeated applications
of the MCT, ∫

E
fdϕ= lim

n→∞

∫
E
sndϕ

= lim
n→∞

(∫
E
sndv+

∫
E

(sn ·w)dµ
)

=
∫
E
fdv+

∫
E

(f ·w)dµ.

By implication, because
∫
E(f ·w)dµ ∈ [0,+∞] for any f ∈ E+,∫

E
fdv ≤

∫
E
fdv+

∫
E

(f ·w)dµ=
∫
E
fdϕ

for any f ∈ E+.

Step 2: Applying the Riesz Representation Theorem for Hilbert Spaces

In this step, we apply the representation theorem proved in the previous section to ex-
press integrals with respect to ϕ as integrals with respect to v. In effect, we are deriving
the Radon-Nikodym derivative of v with respect to ϕ.

For any [f ]ϕ ∈ L2(E ,ϕ),∫
E
|f |dv ≤

∫
E
|f |dϕ=

∫
E

(|f | ·1)dϕ

≤
(∫

E
|f |2dϕ

) 1
2
(∫

E
1dϕ

) 1
2

(Hölder’s inequality)

= ‖f‖2 ·ϕ(E)
1
2 <+∞

because ϕ(E)<+∞ (ϕ is a finite measure). Thus, f is v-integrable, and we can define
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the function L : L2(E ,ϕ)→ C as

L([f ]ϕ) =
∫
E
fdv

for any [f ]ϕ ∈ L2(E ,ϕ). Due to the linearity of integration, L is a linear functional on
L2(E ,ϕ), while the above inequality shows us that

|L([f ]ϕ)−L([g]ϕ)|=
∣∣∣∣∫
E
fdv−

∫
E
gdv

∣∣∣∣≤ ∫
E
|f −g|dv ≤ ‖[f ]ϕ− [g]ϕ‖2 ·ϕ(E)

1
2

for any [f ]ϕ, [g]ϕ ∈L2(E ,ϕ). Therefore, L is a continuous linear functional on the Hilbert
space (L2(E ,ϕ),〈·, ·〉2).

By the Riesz representation theorem for Hilbert spaces, there exists a [g]ϕ ∈ L2(E ,ϕ)
such that ∫

E
fdv = L([f ]ϕ) = 〈[f ]ϕ, [g]ϕ〉2 =

∫
E

(fg)dϕ

for any [f ]ϕ ∈ L2(E ,ϕ).
For any A ∈ E , because

∫
E IAdϕ = ϕ(A) < +∞ by the finiteness of ϕ, [IA]ϕ ∈ L2(E ,ϕ)

and therefore

v(A) =
∫
E
IAdv =

∫
E

(g · IA)dϕ=
∫
A
gdϕ.

For any A ∈ E such that ϕ(A)> 0, because

v(A) =
∫
E
IAdv ≤

∫
E
IAdϕ= ϕ(A),

the above equality implies that

1
ϕ(A)

∫
A
gdϕ= v(A)

ϕ(A) ∈ [0,1].

Since ϕ is a finite measure, by lemma 6.22, this allows us to conclude that g ∈ [0,1],
or equivalently, g = g ∈ [0,1] a.e. [ϕ]. Thus, we may assume that g ∈ [0,1] on E with-
out loss of generality, because g just needs to be an element of the equivalence class [g]ϕ.
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Step 3: Defining va and vs

In this step, using the representation derived above, we construct the measures va and
vs.

For any bounded f ∈ E+, we can now see that∫
E
fdv =

∫
E

(fg)dϕ=
∫
E

(fg)dv+
∫
E

(fgw)dµ,

and by the linearity of integration for integrable complex-valued functions, we have∫
E

(1−g)fdv =
∫
E

(fgw)dµ.

Define Ea = {0≤ g < 1} and Es = {g = 1}, and define the measures va,vs by

va(A) = v(Ea∩A) and vs(A) = v(Es∩A)

for any A∈ E . Then, va is concentrated on Ea and vs is concentrated on Es, and because
Ea,Es are disjoint measurable sets such that Ea∪Es = E, for any A ∈ E

v(A) = v(Ea∩A) +v(Es∩A) = va(A) +vs(A),

which shows us that v = va+vs.

Step 4: Showing that vs ⊥ µ

Putting f = IEs in the above equation yields∫
Es

(1−g)dv = 0 =
∫
Es
gwdµ=

∫
Es
wdµ

which implies µ(Es) = 0 by lemma 6.21. Therefore,

µ(A) = µ(Es∩A) +µ(Ea∩A) = µ(Ea∩A)

for any A ∈ E , which tells us that µ is concentrated on Ea and thus vs ⊥ µ.
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Step 5: Showing that va << µ

g is a bounded non-negative function, so for any n ∈N+ and A ∈ E , (1 +g+ · · ·+gn) ·
IEa∩A is also a bounded non-negative E-measurable function, meaning that∫

Ea∩A
(1−gn+1)dv =

∫
Ea∩A

(1−g)(1 +g+ · · ·+gn)dv

=
∫
Ea∩A

(1 +g+ · · ·+gn)gwdµ=
∫
Ea∩A

(g+ · · ·+gn+1)wdµ.

For any x ∈ Ea∩A, g(x)n+1↘ 0 as n→∞, so {(1− gn+1) · IEa∩A}n∈N+ is a sequence
in E+ increasing to IEa∩A, while {(g+ · · ·+ gn+1)w · IEa∩A}n∈N+ is a sequence in E+

increasing to g
1−gw · IEa∩A. Therefore, defining

h= g

1−gw · IEa ∈ E+,

which is a real-valued non-negative measurable function, by repeated applications of
the MCT, we have

va(A) = v(Ea∩A) = lim
n→∞

∫
Ea∩A

(1−gn+1)dv

= lim
n→∞

∫
Ea∩A

(g+ · · ·+gn+1)wdµ=
∫
A
hdµ.

This shows us that h is the Radon-Nikodym derivative of va with respect to µ, and as
such that va << µ.

Step 6: Extending the result to σ-finite measures

Now let v be a σ-finite measure. Then, there exists a partition {En}n∈N+ of E such
that v(En)<+∞ for any n ∈N+. As in lemma 2.14, for any n ∈N+, define the finite
measure vn on (E,E) as vn(A) = v(En∩A) for any A ∈ E . By design, each vn is con-
centrated on A, and we showed in that lemma that v =∑∞

n=1 vn.

By the preceding result, for any n ∈ N+, because vn is a finite measure, there exist
measures va,n and vs,n concentrated on disjoint subsets Ea,n and Es,n of En whose
union is En such that

– vn = va,n+vs,n,

– vs,n ⊥ µ (in particular, µ(Es,n) = 0),

– va,n << µ, and

– There exists a real-valued hn ∈ E+ such that, for any A ∈ E ,

va,n(A) =
∫
E
hndµ.
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Then, defining

va =
∞∑
n=1

va,n and vs =
∞∑
n=1

vs,n,

va, vs are measures on (E,E). We show that va and vs satisfy the following conditions:

– v = va+vs

For any A ∈ E ,

v(A) =
∞∑
n=1

vn(A) =
∞∑
n=1

va,n(A) +
∞∑
n=1

vs,n(A) = va(A) +vs(A).

– va ⊥ vs
Defining Ea =⋃

nEa,n and Es =⋃
nEs,n, because each En is partitioned into Ea,n

and Es,n, and {En}n∈N+ is itself a partition of E, {Ea,Es} is a partition of E.
Note that, for any A ∈ E ,

va(A) =
∞∑
n=1

va,n(A) =
∞∑
n=1

va,n(Ea,n∩A) =
∞∑
n=1

va,n(Ea∩A) = va(Ea∩A),

where we used the fact that Ea,n ⊂ Ea and

va,n(Ea∩A) = va,n(Ea,n∩A) +va,n(Eca,n∩Ea∩A) = va,n(Ea,n∩A)

for any n ∈N+ to justify the third equality. This shows us that va is concentrated
on Ea, and likewise, vs is concentrated on Es.

– vs ⊥ µ
Since

µ(Es) =
∞∑
n=1

µ(Es,n) = 0

by countable additivity, we can see that vs ⊥ µ.

– va << µ

Defining h=∑∞
n=1hn, h is a non-negative E-measurable function such that

va(A) =
∞∑
n=1

va,n(A) =
∞∑
n=1

∫
E

(hn · IA)dµ=
∫
A
hdµ

by the MCT for series. It follow sthat va << µ.
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Step 7: Uniqueness of the Radon-Nikodym Derivative for Finite va

Now we show that h is unique a.e. [µ] if va is finite. Let h′ ∈ E+ satisfy∫
A
hdµ= va(A) =

∫
A
h′dµ

for any A ∈ E . Since va is a finite measure, va(E) =
∫
E hdµ =

∫
E h
′dµ < +∞, meaning

that h,h′ are µ-integrable and, by the finiteness property of non-negative functions,
that there exist real-valued non-negative measurable functions h̄, h̄′ that are equivalent
to h,h′ a.e. [µ].
Since h̄, h̄′ are both real-valued µ integrable functions, the function k = h̄− h̄′ is also
real-valued and µ integrable. By the linearity of integration, we can see that∫

A
kdµ=

∫
A
h̄dµ−

∫
A
h̄′dµ=

∫
A
hdµ−

∫
A
h′dµ= 0

for any A ∈ E . By theorem 3.10, it now follows that k = 0, or equivalently, h̄ = h̄′ a.e.
[µ]. Together with the above result, we can conclude that h = h′ a.e. [µ], and as such
that h is unique up to a.e. equivalence.

Step 8: Uniqueness of the Lebesgue Decomposition

Suppose there exist measures ma,ms such that ma << µ, ms ⊥ µ and v = ma +ms.
Then,

v = va+vs =ma+ms.

Letting ma and ms be concentrated on Fa, Fs, where Fa ∩Fs = ∅ and Fa ∪Fs = E,
because ms ⊥ µ,

µ(Fs) = µ(Es) = 0.

Moreover, for any A ∈ E such that µ(A) = 0, because va << µ and ma << µ,

v(A) = va(A) +vs(A) = vs(A)

=ma(A) +ms(A) =ms(A).
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Now choose any A ∈ E . Since µ(Es∩A) = µ((Fs∩Es)∩A) = 0, we have

vs(A) = vs(Es∩A) (vs is concentrated on Es)

=ms(Es∩A) (vs =ms for µ-negligible sets)

=ms((Fs∩Es)∩A) (ms is concentrated on Fs)

= vs((Fs∩Es)∩A). (vs =ms for µ-negligible sets)

Likewise,

ms(A) =ms((Fs∩Es)∩A),

so it follows that

vs(A) = vs((Fs∩Es)∩A) =ms((Fs∩Es)∩A) =ms(A).

This holds for any A ∈ E , so vs =ms on E .

To show that va =ma, we proceed similarly. For any A ∈ E ,

vs(Ea∩A) =ms(Ea∩A) = 0,

and likewise, ms(Ea∩A) = vs(Fa∩A) = 0.
For any A ∈ E , we now have

va(A) = va(Ea∩A) = va(Ea∩A) +vs(Ea∩A) = v(Ea∩A) =ma(Ea∩A) +ms(Ea∩A)

=ma(Ea∩A) =ma((Fa∩Ea)∩A),

and by symmetry,

ma(A) = va((Fa∩Ea)∩A).

Finally, the fact that vs((Fa∩Ea)∩A) =ms((Fa∩Ea)∩A) = 0 implies that

ma(A) = va((Fa∩Ea)∩A) = v((Fa∩Ea)∩A)

=ma((Fa∩Ea)∩A) = va(A).

This holds for any A ∈ E , so va = ma on E and the pair (va,vs) is the unique pair of
measures on (E,E) such that v = va+vs, va << µ and vs ⊥ µ.

Q.E.D.
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The familiar form of the Radon-Nikodym theorem, which states that, if v <<µ, then there exists
a Radon-Nikodym derivative of v with respect to µ, now follows as a special case of the above
theorem.

Corollary to the Lebesgue-Radon-Nikodym Theorem
Let (E,E) be a measurable space, and µ, v σ-finite measures on (E,E). If v << µ, then there
exists a h ∈ E+ such that

v(A) =
∫
A
hdµ

for any A ∈ E . If, in addition, v is finite, then h is unique a.e. [µ].

Proof) By the Lebesgue-Radon-Nikodym theorem, there exists a unique pair of measures va
and vs on (E,E) such that v = va+vs, va << µ, and vs ⊥ µ. Furthermore, the theorem
tells us that there exists an h ∈ E+ such that

va(A) =
∫
A
hdµ

for any A ∈ E , and that h is unique up to a.e. equivalence if va is finite. The corollary
follows if we can just show that v = va on E .

Because v = va+vs << µ by assumption, for any A ∈ E such that µ(A) = 0, v(A) = 0,
and since va << µ as well, we have va(A) = 0. Therefore,

0 = v(A) = va(A) +vs(A) = vs(A),

which tells us that vs << µ. By lemma 6.20, because v2 << µ and vs ⊥ µ, v2 = 0 on E ,
which implies that

v(A) = va(A) +vs(A) = va(A)

for any A ∈ E .
Q.E.D.
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Given σ-finite measures µ,v on (E,E), the set of all Radon-Nikodym derivatives of v with respect
to µ is denoted by ∂v

∂µ . In general, ∂v
∂µ is a set of multiple E-measurable non-negative functions h

such that

v(A) =
∫
A
hdµ

for any A ∈ E .
However, if v is finite, since such an h is unique a.e. [µ], ∂v

∂µ becomes an equivalence class of
non-negative numerical functions. Furthermore, due to the finiteness of v,

v(E) =
∫
E
hdµ <+∞,

which, by the finiteness property of non-negative functions, tells us that there exists a real-valued
function f ∈ E+ that is equal to h a.e. [µ]. Since this f is complex-valued and its integral is finite,
we can see that [f ]µ ∈ L1(E ,µ).
Therefore, in this case we define ∂v

∂µ = [f ]µ, which is an element of the Banach space L1(E ,µ),
and call ∂v

∂µ ”the” Radon-Nikodym derivative of v with respect to µ.
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Chapter 7

Integration on Product Spaces

7.1 Product σ-algebras

Let (E1,E1), · · · ,(En,En) be measurable spaces. We define the set of all measurable rectangles as

R= {A1×·· ·×An |Ai ∈ Ei for all 1≤ i≤ n}.

R is then a collection of subsets of the product space E = E1×·· ·×En. In particular, R is a
π-system on E, since, for any A1×·· ·×An,B1×·· ·×Bn ∈R, we have

(A1×·· ·×An)∩ (B1×·· ·×Bn) = (A1∩B1)×·· ·× (An∩Bn) ∈R,

where we used the fact that σ-algebras are closed under finite intersections.
However, R is not a σ-algebra, since the union of measurable rectangles is not necessarily a
measurable rectangle; this can be seen easily by studying open rectangles on R2 = R×R.
We thus define the product σ-algebra E =⊗n

i=1Ei as the σ-algebra on E generated by R. This is
analogous to how the product topology was defined as the topology generated by the collection
of all open rectangles.
The measurable space (E,E) is then called the product of (E1,E1), · · · ,(En,En) and detnoed⊗n
i=1(Ei,Ei).

For any x ∈ E and 1 ≤ i ≤ n, we can write x−i for x without its ith coordinate, and denote
x= (xi,x−i). Likewise, we denote E−i =∏

j 6=iEj and E−i =⊗
j 6=iEj .

Given any A ∈ E , the i-section of A at x−i ∈ E−i is defined as

Ax−i = {x ∈ Ei | (x,x−i) ∈A},

and likewise, for any set F and function f :E→ F , the i-section of f at x−i ∈E−i is defined as

fx−i(x) = f(x,x−i)

for any x ∈ Ei.
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The following are some properties of product σ-algebras and sections of sets and functions:

Lemma 7.1 Let (E1,E1), · · · ,(En,En) be measurable spaces, and (E,E) their product. Then,
the following hold true:

i) For any A ∈ E and 1≤ i≤ n, the i-section Ax−i is Ei-measurable for any x−i ∈ E−i.

ii) Let (F,F) be a measurable space. For any function f : E→ F that is measurable relative
to E and F , the i-section fx−i is measurable relative to Ei and F for any x−i ∈ E−i.

Proof) i) Choose any 1≤ i≤ n and x−i ∈ E−i. Define

D = {A⊂ E |Ax−i ∈ Ei},

which is a collection of subsets of E. It is immediately clear that D contains all
measurable rectangles; for any A=A1×·· ·×An ∈ D, note that

Ax−i =

Ai if x−i ∈
∏
j 6=iAj

∅ otherwise
∈ Ei.

We can also show that D is a σ-algebra on E:

– E ∈ D because E is a measurable rectangle.

– For any A ∈ D, because

(Ac)x−i = {xi ∈ Ei | (xi,x−i) ∈Ac}= {xi ∈ Ei | (xi,x−i) /∈A}=
(
Ax−i

)c
,

and Ax−i ∈ Ei, it follows that (Ac)x−i ∈ Ei as well, so that Ac ∈ D.

– For any sequence {An}n∈N+ in D with union A=⋃
nAn, because

Ax−i = {xi ∈ Ei | (xi,x−i) ∈A}=
⋃
n

{xi ∈ Ei | (xi,x−i) ∈An}=
⋃
n

(An)x−i

and (An)x−i ∈ Ei for each n ∈N+, we have Ax−i ∈ Ei and thus A ∈ D.

It follows that D is a σ-algebra containing every measurable rectangle on E. Since
E is defined as the smallest σ-algebra containing the colleciton of measurable rect-
angles, we have E ⊂ D, that is, Ax−i ∈ Ei for any A ∈ E .

ii) Let f : E → F be any function measurable relative to E and F , and choose any
1≤ i≤ n, x−i ∈ E−i. Define h : Ei→ E as

h(x) = (x,x−i)
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for any x ∈ Ei. For any measurable rectangle A=A1×·· ·×An ∈ E ,

h−1(A) =

Ai if x−i ∈
∏
j 6=iAj

∅ otherwise

is a Ei-measurable set. The set of all measurable rectangles generates the product
σ-algebra E , so by the characterization of measurability, h is measurable relative
to Ei and E .
Since the section fx−i can be expressed as the composition f ◦h, where f is mea-
surable relative to E and F , and h is measurable relative to Ei and E , f ◦ h is
measuable relative to Ei and F .

Q.E.D.

The next result shows us that the product of Borel spaces generated by second countable topo-
logical spaces is the Borel space generated by the product of those spaces.

Lemma 7.2 Let (E1, τ1), · · · ,(En, τn) be second countable topological spaces with countable
bases B1, · · · ,Bn on E1, · · · ,En. Then, the Borel σ-algebra generated by the product topology
τ1×·· ·× τn is exactly the product of the Borel σ-algebras B(E1, τ1), · · · ,B(En, τn), that is,

B(E1×·· ·×En, τ1×·· ·× τn) = B(E1, τ1)
⊗
· · ·
⊗
B(En, τn).

Proof) Denote E =E1×·· ·×En, τ = τ1×·· ·× τn and E = B(E1, τ1)⊗ · · ·⊗B(En, τn). By def-
inition, B(E,τ) is generated by τ and E by R, the set of all measurable rectangles on E.

Define R as

R= {A1×·· ·×An |Ai ∈ Bi for any 1≤ i≤ n},

so that R⊂R. Recall that R is a countable base on E generating the product topology
τ . By lemma 2.2, this means that R generates B(E,τ).
Since R generates the product σ-algebra E and R⊂R, it follows that

B(E,τ) = σR⊂ σR= E .

To show that the reverse inclusion holds, first define the projection function πi :E→Ei

for any 1≤ i≤ n as

πi(x1, · · · ,xn) = xi
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for any (x1, · · · ,xn) ∈ E. For any A ∈ τi,

π−1
i (A) =A×E−i ∈R⊂ τ,

so that πi is continuous relative to τ and τi, and therefore measurable relative to B(E,τ)
and B(Ei, τi).
For A1×·· ·×An ∈R, we can see that

A1×·· ·×An =
n⋂
i=1

(Ai×E−i) =
n⋂
i=1

π−1
i (Ai);

since each Ai ∈ τi, it follows that each π−1
i (Ai) ∈ τ and therefore

A1×·· ·×An ∈ τ ⊂ B(E,τ).

Therefore, we can see that

R⊂ B(E,τ),

and because R generates E , we have

E = σR⊂ B(E,τ).

By implication,

E = B(E,τ),

and it is clear that, without the second countability condition, we would only have

E ⊂ B(E,τ).

Q.E.D.

A corollary to the above theorem is that, for the euclidean n-space Rn, because (R, τR) is a
second countable topological space,

B(Rn, τnR) = B(R)×·· ·×B(R)︸ ︷︷ ︸
n

.

Furthermore, because the product topology τnR is the euclidean topology τRn , we have

B(Rn) = B(R)×·· ·×B(R)︸ ︷︷ ︸
n

= B(R)n.

In other words, the Borel σ-algebra on Rn is the product of n Borel σ-algebras on R.
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7.2 Product Measures

So far, we have studied the generation of σ-algebras on product spaces using the σ-algebra on
each constituent space. In this section, we study how to create measures on those product spaces.
We primarily work with the product of two measurable spaces.
The main workhorse theorem is the following result. First, we define some requisite notation.
For measurable spaces (E,E) and (F,F) with product (E×F,E⊗F), for any set G and function
f : E×F →G, we denote the 1-section and 2-section of f by

fx(y) = f(x,y) and fy(x) = f(x,y)

for any x ∈ E, y ∈ F .

A setA⊂E×F is called an elementary set if there exist disjoint measurable rectanglesA1, · · · ,Am ∈
R such that A=⋃m

i=1Ai, that is, if it is the union of a finite number of measurable rectangles.
We denote the collection of all elementary sets on E×F by E . It is trivially true that R⊂ E ,
where R is the set of all measurable rectangles on E×F .
The following are important properties of E :

Lemma 7.3 Let (E,E) and (F,F) be measurable spaces, and E the collection of elementary
sets on E×F . Then, the following hold true:

i) E is an algebra on E

ii) E⊗F is the smallest monotone class containing E .

Proof) We first show that E is an algebra on E.
Clearly, E×F ∈ E because E×F is a measurable rectangle.

E is also closed under finite intersections.
To see this, let A,B ∈ E , where A1, · · · ,Am and B1, · · · ,Bk are disjoint measurable
rectangles such that A=A1∪·· ·∪Am and B =B1∪·· ·∪Bk. It then follows that

A∩B =
m⋃
i=1

(Ai∩B) =
m⋃
i=1

Ai∩
 k⋃
j=1

Bj

=
m⋃
i=1

k⋃
j=1

(Ai∩Bj).

Since Ai ∩Bj are disjoint for distinct (i, j), and the intersection of measurable rect-
angles is also a measurable rectangle, A∩B is the finite union of disjoint measurable
rectangles and therefore an elementary set.

Finally, we can see that E is closed under complements.
For any two measurable rectangles A1×B1,A2×B2 ⊂ E×F , note that

(A1×B1)\ (A2×B2) = ((A1 \A2)×B1)∪ ((A1∩A2)× (B1 \B2)) ,
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which is the union of two disjoint measurable rectangles and thus an elementary set. It
follows that, for any measurable rectangle A ∈R, since Ac = (E×F )\A, Ac ∈ E .
Now let A ∈ E , so that there exist disjoint measurable rectangles A1, · · · ,Am on E×F
such that A=A1∪·· ·∪Am. Then,

Ac =Ac1∩·· ·∩Ac2,

where Ac1, · · · ,Ac2 ∈ E . Since we showed above that the finite intersection of elementary
sets is elementary, this means that Ac ∈ E , and as such that E is closed under comple-
ments.

For any A,B ∈ E , we can now see that A∪B = (Ac∩Bc)c ∈ E , since E is closed under
both complements and finite intersections. As such, E is closed under finite unions as
well, which tells us that E is an algebra on E.

Now we need only apply the monotone class theorem to derive the second result.
The collection R of measurable rectangles on E×F generates E⊗F , and R is con-
tained in the collection E of elementary sets on E, so the σ-algebra generated by E

contains the product σ-algebra E⊗F ; E⊗F ⊂ σE .
On the other hand, because E is the collection of finite disjoint unions of measurable
rectangles, measurable rectangles are contained in E⊗F , and E⊗F is closed under
finite unions, E ⊂ E

⊗
F . This implies that the σ-algebra generated by E is contained

in E⊗F , and together with the preceding result, we can conclude that E⊗F is the
σ-algebra generated by E . Since E is an algebra on E, it now follows that by the mono-
tone class theorem that E⊗F is the smallest monotone class containing E .
Q.E.D.
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Theorem 7.4 Let (E,E ,µ) and (F,F ,v) be σ-finite measure spaces. Then, for any A∈ E⊗F ,
defining

ϕ(x) =
∫
F

(IA)xdv and ψ(y) =
∫
E

(IA)ydµ

for any x ∈ E and y ∈ F , ϕ and ψ are E- and F-measurable functions taking values in [0,+∞],
and ∫

E
ϕdµ=

∫
F
ψdv.

Proof) By σ-finiteness, there exist measurable partitions {En}n∈N+ and {Fn}n∈N+ of E and
F such that

µ(En),v(Fn)<+∞

for any n ∈N+.
From previous results we know that the sections (IA)x and (IA)y defined as

(IA)x(y) = IA(x,y) and (IA)y = IA(x,y)

are both non-negative F- and E-measurable functions for any x ∈ E and y ∈ F . Then,

ϕ(x) =
∫
F

(IA)xdv and ψ(y) =
∫
E

(IA)ydµ

are both well-defined in [0,+∞], for any x ∈ E and y ∈ F .
We now proceed in steps.
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Step 1: The Case for Measurable Rectangles and Elementary Sets

Throughout, for any A ⊂ E×F , let ϕA and ψA be the functions on E and F defined
as

ϕA(x) =
∫
F

(IA)xdv

ψA(y) =
∫
E

(IA)ydµ

for any x ∈ E, y ∈ F .
For any n,m ∈N+, denote Ωnm = En×Fm, and let M be the collection of subsets of
A of E×F that satisfy the following conditions:

A ∈ E
⊗
F

ϕA∩Ωnm ∈ E+

ψA∩Ωnm ∈ F+∫
E
ϕA∩Ωnmdµ=

∫
F
ψA∩Ωnmdv.

It is immediately clear that M contains every measurable rectangle on E×F ; for any
measurable rectangle A×B ⊂ E×F , because

I(A×B)∩Ωnm = I(A∩En)×(B∩Fm),

(I(A×B)∩Ωnm)x(y) = (I(A×B)∩Ωnm)y(x) = IA∩En(x)IB∩Fm(y)

for any x ∈ E and y ∈ F , we have

ϕ(A×B)∩Ωnm(x) = IA∩En(x) ·v(B∩Fm)

ψ(A×B)∩Ωnm(y) =
∫
E

(IA×B)ydµ= IB∩Fm(y) ·µ(A∩En)

for any x ∈ E and y ∈ F . Therefore, ϕ(A×B)∩Ωnm ∈ E+, ψ(A×B)∩Ωnm ∈ F+ and
∫
E
ϕ(A×B)∩Ωnmdµ= µ(A∩En)v(B∩Fm) =

∫
F
ψ(A×B)∩Ωnmdv.

By definition, A×B ∈M.

We can also show that M is closed under finite disjoint unions. Letting A,B ∈M be
disjoint, note that

I(A∪B)∩Ωnm = IA∩Ωnm + IB∩Ωnm

because A∩Ωnm and B∩Ωnm are disjoint, and as such the sections of I(A∪B)∩Ωnm are
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the sum of the sections of IA∩Ωnm and IB∩Ωnm . By implication,

ϕ(A∪B)∩Ωnm =
∫
F

(I(A∪B)∩Ωnm)xdv

=
∫
F

(IA∩Ωnm)xdv+
∫
F

(IB∩Ωnm)xdv = ϕA∩Ωnm +ϕB∩Ωnm

by the linearity of integration and likewise,

ψ(A∪B)∩Ωnm = ψA∩Ωnm +ψB∩Ωnm .

It follows that ϕ(A∪B)∩Ωnm ∈ E+, ψ(A∪B)∩Ωnm ∈ F+ and
∫
E
ϕ(A∪B)∩Ωnmdµ=

∫
E
ϕA∩Ωnmdµ+

∫
E
ϕB∩Ωnmdµ

=
∫
F
ψA∩Ωnmdv+

∫
F
ψB∩Ωnmdv =

∫
F
ψ(A∪B)∩Ωnmdv.

Therefore, A∪B ∈M.
Since every measurable rectangle is contained inM, and any elementary set is the finite
union of disjoint measurable rectangles, the above results tell us thatM contains every
elementary set on E×F .
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Step 2: The Case for Arbitrary E
⊗
F-Measurable Sets

Finally, we will show that M is a monotone class of sets on E×F .

i) For any increasing sequence {Ak}k∈N+ in M with limit A, note that, for any
k ∈N+, because Ak ∩Ωnm ⊂Ak+1∩Ωnm and ⋃k(Ak ∩Ωnm) =A∩Ωnm, we have

IAk∩Ωnm ≤ IAk+1∩Ωnm

on E×F and

lim
k→∞

IAk∩Ωnm = IA∩Ωnm .

This implies that {IAk∩Ωnm}k∈N+ is a sequence of non-negative E⊗F-measurable
functions increasing to IA∩Ωnm (where the measurability follows because each Ak

is measurable by hypothesis), and as such that {(IAk∩Ωnm)x}k∈N+ is a sequence
of non-negative F-measurable functions increasing to (IA∩Ωnm)x for any x ∈ E.
By the monotonicity of integration and the MCT, it follows that

ϕA∩Ωnm(x) =
∫
F

(IA∩Ωnm)xdv

= lim
k→∞

∫
F

(IAk∩Ωnm)xdv = lim
k→∞

ϕAk∩Ωnm(x)

and that

ϕAk∩Ωnm(x)≤ ϕAk+1∩Ωnm(x)

for any x∈E. Therefore, {ϕAk∩Ωnm}k∈N+ is an increasing sequence of non-negative
E-measurable functions (where the measurability follows by hypothesis) with limit
ϕA∩Ωnm .
As such, ϕA∩Ωnm ∈ E+ by the preservation of measurability across limits, and by
the MCT, ∫

E
ϕA∩Ωnmdµ= lim

k→∞

∫
E
ϕAk∩Ωnmdµ.

By a symmetric argument, {ψAk∩Ωnm}k∈N+ is also a sequence of non-negative
F-measurable functions increasing to ψA∩Ωnm which satisfy∫

F
ψA∩Ωnmdv = lim

k→∞

∫
F
ψAk∩Ωnmdv

by the MCT. Since ∫
E
ϕAk∩Ωnm =

∫
F
ψAk∩Ωnmdv
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for any k ∈N+ by the assumption that Ak ∈M, we have∫
E
ϕA∩Ωnmdµ= lim

k→∞

∫
E
ϕAk∩Ωnmdµ

= lim
k→∞

∫
F
ψAk∩Ωnmdv =

∫
F
ψA∩Ωnmdv.

By definition, A ∈M, so M is closed under increasing limits.

ii) Now let {Ak}k∈N+ be a decreasing sequence in M with limit A. In this case, by
the same reasoning as in the above case for increasing sequences of sets in M,
{(IAk∩Ωnm)x}k∈N+ is a sequence of non-negative E-measurable functions decreas-
ing to (IA∩Ωnm)x for any x ∈ E.

Because all of the functions in the above sequence are bounded above by (IΩnm)x =
IEn(x) · IFm , and ∫

F
(IΩnm)xdv = v(Fm)IEn(x)<+∞

because v(Fm)<+∞ by design, by the DCT we have

ϕA∩Ωnm(x) =
∫
F

(IA∩Ωnm)xdv

= lim
k→∞

∫
F

(IAk∩Ωnm)xdv = lim
k→∞

ϕAk∩Ωnm(x).

By the montonicity of integration, it follows that {ϕAk∩Ωnm}k∈N+ is a decreasing
sequence of non-negative E-measurable functions (where the measurability follows
because each Ak ∈M) with limit ϕA∩Ωnm , where each function in {ϕAk∩Ωnm}k∈N+

is bounded above by

ϕΩnm = v(Fm)IEn ,

whose integral with respect to µ is∫
E
ϕΩnmdµ= v(Fm)µ(En)<+∞.

By the DCT again, we have ϕA∩Ωnm ∈ E+ and∫
E
ϕA∩Ωnmdµ= lim

k→∞

∫
E
ϕAk∩Ωnmdµ.

By a symmetric argument for the 1-sections, we can conclude that {ψAk∩Ωnm}k∈N+

is a decreasing sequence of non-negative F-measurable functions with limit ψA∩Ωnm ∈
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F+, where ∫
F
ψA∩Ωnmdv = lim

k→∞

∫
F
ψAk∩Ωnmdv.

Because each Ak is contained in M,∫
E
ϕAk∩Ωnmdµ=

∫
F
ψAk∩Ωnmdv,

which implies that∫
E
ϕA∩Ωnmdµ= lim

k→∞

∫
E
ϕAk∩Ωnmdµ

= lim
k→∞

∫
F
ψAk∩Ωnmdv =

∫
F
ψA∩Ωnmdv.

Therefore, by definition A ∈M, and M is closed under decreasing limits.

M is a monotone class of sets containing E , the set of all elementary sets on E×F .
Because E⊗F is the smallest monotone class containing E , this implies that E ×F ⊂
M, that is,

ϕA∩Ωnm ∈ E+

ψA∩Ωnm ∈ F+∫
E
ϕA∩Ωnmdµ=

∫
F
ψA∩Ωnmdv.

for any A ∈ E⊗F .
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Step 3: Extending beyond En×Fm

Now choose any A ∈ E⊗F . Note that

A=
⋃
n

⋃
m

(A∩Ωnm) ,

where {A∩Ωnm = Bnm}n,m∈N+ is a sequence of disjoint subsets of E×F . We showed
above that, for any n,m ∈N+,

ϕBnm ∈ E+

ψBnm ∈ F+∫
E
ϕBnmdµ=

∫
F
ψBnmdv.

Since

IA =
∞∑
n=1

∞∑
m=1

IBnm

on E×F , we have

(IA)x =
∞∑
n=1

∞∑
m=1

(IBnm)x

for any x ∈ E, and as such, by the MCT for series,

ϕA(x) =
∞∑
n=1

∞∑
m=1

∫
F

(IBnm)xdv =
∞∑
n=1

∞∑
m=1

ϕBnm(x).

By the MCT for series, we can now say that ϕA ∈ E+ and

∫
E
ϕAdµ=

∞∑
n=1

∞∑
m=1

∫
E
ϕBnmdµ.

By a symmetric argument, it holds that ψA ∈ F+ and

∫
F
ψAdv =

∞∑
n=1

∞∑
m=1

∫
F
ψBnmdv,

so we have ∫
E
ϕAdµ=

∞∑
n=1

∞∑
m=1

∫
E
ϕBnmdµ

=
∞∑
n=1

∞∑
m=1

∫
F
ψBnmdv =

∫
F
ψAdv.

This holds for any A ∈ E⊗F , so the proof is complete.
Q.E.D.
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For any A ∈ E⊗F , we denote ∫
F
IA(x,y)dv(y) := ϕ(x)∫

E
IA(x,y)dµ(x) := ψ(y)

for any x ∈ E, y ∈ F and define∫
E

∫
F
IA(x,y)dv(y)dµ(x) :=

∫
E
ϕdµ∫

F

∫
E
IA(x,y)dµ(x)dv(y) :=

∫
F
ψdv.

The above theorem tells us that∫
F
IA(·,y)dv(y) ∈ E+,

∫
E
IA(x, ·)dµ(x) ∈ F+

and ∫
E

∫
F
IA(x,y)dv(y)dµ(x) =

∫
F

∫
E
IA(x,y)dµ(x)dv(y).

for any A ∈ E⊗F .
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The product measure µ×v on (E×F,E⊗F) is defined as

(µ×v)(A) =
∫
E

∫
F
IA(x,y)dv(y)dµ(x) =

∫
F

∫
E
IA(x,y)dµ(x)dv(y)

for any A ∈ E⊗F .
Clearly, (µ×v)(∅) = 0, and for any disjoint sequence of measurable sets {An}n∈N+ in E⊗F , we
have

IA =
∞∑
n=1

IAn

on E×F and thus, for any x ∈ E,

∫
F
IA(x,y)dv(y) =

∞∑
n=1

∫
F
IAn(x,y)dv(y)

by the MCT for series. Likewise, because {
∫
F IAn(·,y)dv(y)}n∈N+ is a sequence of non-negative

E-measurable functions, by the MCT for series again we have

(µ×v)(A) =
∫
E

∫
F
IA(x,y)dv(y)dµ(x)

=
∫
E

[ ∞∑
n=1

∫
F
IAn(x,y)dv(y)

]
dµ(x) =

∞∑
n=1

∫
E

∫
F
IAn(x,y)dv(y)dµ(x) =

∞∑
n=1

(µ×v)(An).

This shows us that µ×v is countable additive and therefore a measure on (E×F,E⊗F).
For any measurable rectangle A×B, we now have

(µ×v)(A×B) =
∫
E

(
IA(x) ·

∫
F
IB(y)dv(y)

)
dµ(x) = µ(A)v(B).

Note also that, becuase µ and v are σ-finite, µ×v is also σ-finite. To see this, let {En}n∈N+ and
{Fm}m∈N+ be partitions of E and F defined in the proof above. It follows that

(µ×v)(En×Fm) = µ(En)v(Fm)<+∞

for any n,m ∈ N+, and {En×Fm}n,m∈N+ is a measurable partition of E×F , so by definition
µ×v is σ-finite.
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7.3 Fubini’s Theorem

In the previous section, given σ-finite measure spaces (E,E ,µ) and (F,F ,v), we have defined a
σ-finite measure space (E×F,E⊗F ,µ×v), where µ×v is well-defined as

(µ×v)(A) =
∫
E

∫
F
IA(x,y)dv(y)dµ(x) =

∫
F

∫
E
IA(x,y)dµ(x)dv(y)

for any A ∈ E⊗F .
It is immediately clear that the leftmost term can be interpreted as the integral of the indicator
IA with respect to the product measure µ×v, and that the two terms on the right show that this
integral can be computed via integrals with respect to µ and v, where the order of integration is
immaterial. The objective of this section is to extend this result to arbitrary non-negative and
complex integrable functions on E×F .
The statement and proof of the theorem are given in the following:

Theorem 7.5 (Fubini’s Theorem)
Let (E,E ,µ) and (F,F ,v) be σ-finite measure spaces, and f a numerical or complex-valued
E
⊗
F-measurable function on E×F . Then, the following hold true:

i) If f takes values in [0,+∞], then the functions ϕ : E→ [0,+∞], ψ : F → [0,+∞] defined
as

ϕ(x) =
∫
F
fxdv and ψ(y) =

∫
E
fydµ

for any (x,y) ∈ E×F are measurable relative to E and F , and∫
E×F

fd(µ×v) =
∫
E
ϕdµ=

∫
F
ψdv.

ii) If f is complex valued and ∫
E
ϕ∗dµ <+∞

for the function ϕ∗ : E→ [0,+∞] defined as

ϕ∗(x) =
∫
F
|f |xdv

for any x ∈ E, then f is µ×v-integrable.

iii) If f is complex valued and µ×v-integrable, then fx is v-integrable for µ-a.e. x ∈ E, fy is
µ-integrable for v-a.e. y ∈ F , and for the functions ϕ : E→ C, ψ : F → C defined as

ϕ(x) =
∫
F
fxdv and ψ(y) =

∫
E
fydµ
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for almost every x ∈ E and y ∈ F , ϕ and ψ are measurable relative to E and F , and∫
E×F

fd(µ×v) =
∫
E
ϕdµ=

∫
F
ψdv ∈ C.

Proof) We again proceed in steps.

Step 1: Indicator Functions

Suppose f = IA for some A ∈ E⊗F . Then, defining

ϕ(x) =
∫
F
fxdv and ψ(y) =

∫
E
fydµ

for any x ∈ E, y ∈ F , by the definition of the product measure∫
E×F

fd(µ×v) = (µ×v)(A)

=
∫
E
ϕdµ=

∫
F
ψdv,

where the last equality follows from theorem 7.4.

Step 2: Simple Functions

Now let f be a measurable simple function on E×F with canonical form

f =
n∑
i=1

αi · IAi

for α1, · · · ,αn ∈ [0,+∞) and A1, · · · ,An ∈ E
⊗
F . Define ϕi : E→ [0,+∞] as

ϕi(x) =
∫
F

(IAi)xdv

for any x ∈ E and 1≤ i≤ n. We showed above that ϕi ∈ E+ and that

(µ×v)(Ai) =
∫
F
ϕidµ.

For any x ∈ E, we have

fx =
n∑
i=1

αi · (IAi)x,
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so that

ϕ(x) =
∫
F
fxdv =

n∑
i=1

αi ·
∫
F

(IAi)xdv =
n∑
i=1

αi ·ϕi(x),

implying that ϕ, being the linear combination of non-negative measurable functions, is
also measurable. Furthermore,

∫
E×F

fd(µ×v) =
n∑
i=1

αi · (µ×v)(Ai) =
n∑
i=1

αi ·
(∫

E
ϕidµ

)

=
∫
E

(
n∑
i=1

αi ·ϕi

)
dµ(x) =

∫
E
ϕdµ

by the linearity of integration.
By a symmetric argument, it follows that ψ ∈ F+ and∫

E×F
fd(µ×v) =

∫
F
ψdv.

Step 3: Non-negative Functions

Finally, let f ∈ (E⊗F)+ in general. Then, letting {fn}n∈N+ be an increasing sequence
of E⊗F-measurable simple functions, define ϕn : E→ [0,+∞] as

ϕn(x) =
∫
F

(fn)xdv

for any x ∈ E and n ∈N+. Because each fn is simple, we saw above that ϕn ∈ E+ and∫
E×F

fnd(µ×v) =
∫
E
ϕndµ.

For any x ∈ E, {(fn)x}n∈N+ is an increasing sequence of non-negative F-measurable
functions with limit fx. It then follows from the MCT that

ϕ(x) =
∫
F
fxdv = lim

n→∞

∫
F

(fn)xdv = lim
n→∞

ϕn(x).

Becausae ϕ is the pointwise limit of a sequence of non-negative E-measurable functions,
ϕ is itself non-negative E-measurable. Furthermore, for any n∈N+, by the monotonicity
of integration

ϕn(x) =
∫
F

(fn)xdv ≤
∫
F

(fn+1)xdv = ϕn+1(x)

for any x ∈ E, meaning that {ϕn}n∈N+ is a sequence of functions in E+ increasing to
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ϕ.
By the MCT again, ∫

E×F
fd(µ×v) = lim

n→∞

∫
E×F

fnd(µ×v)

= lim
n→∞

∫
E
ϕndµ=

∫
E
ϕdµ.

By a symmetric argument, it follows that ψ ∈ F+ and∫
E×F

fd(µ×v) =
∫
F
ψdv.

This proves the first part of the theorem.

Step 4: Real-valued Functions

Now let f be real-valued and assume that∫
E
ϕ∗dµ <+∞

for ϕ∗ : E→ [0,+∞] defined as

ϕ∗(x) =
∫
F
|f |xdv

for any x ∈ E. Becauase |f | = f+ + f−, we have |f |x = f+
x + f−x for any x ∈ E, which

implies that

ϕ∗(x) =
∫
F
|f |xdv =

∫
F
f+
x dv+

∫
F
f−x dv

for any x ∈ E. Define

ϕ±(x) =
∫
F
f±x dv

for any x ∈ E, so that ϕ∗ = ϕ+ +ϕ−. By the preceding result, ϕ± ∈ E+, and∫
E×F

f±d(µ×v) =
∫
E
ϕ±dµ.

We can now see that∫
E
ϕ∗dµ=

∫
E

(ϕ+ +ϕ−)dµ=
∫
E
ϕ+dµ+

∫
E
ϕ−dµ

=
∫
E×F

f+d(µ×v) +
∫
E×F

f−d(µ×v) =
∫
E×F
|f |d(µ×v).
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Since
∫
E ϕdµ <+∞, we have ∫

E×F
|f |d(µ×v)<+∞,

and as such f is µ×v-integrable.

Conversely, if f is µ×v-integrable, then∫
E×F

f±d(µ×v)<+∞.

Defining ϕ± ∈ E+ as above, this means that∫
E
ϕ±dµ <+∞,

so by the finiteness property,

µ({ϕ+ = +∞}) = µ({ϕ− = +∞}) = 0.

This indicates that

µ({ϕ+ = +∞}∪{ϕ− = +∞}) = 0

as well, or that

ϕ+(x) =
∫
F

(f+)xdv <+∞ and ϕ−(x) =
∫
F

(f−)xdv <+∞

for µ-a.e. x ∈ E. Because fx = (f+)x− (f−)x for any x ∈ E, this means that fx is v-
integrable for µ-a.e. x ∈ E.

It then follows that

ϕ(x) =
∫
F
fxdv =

∫
F

(f+)xdv−
∫
F

(f−)xdv = ϕ+(x)−ϕ−(x)

is well-defined for µ-a.e. x ∈ E, and that∫
E
ϕdµ=

∫
E
ϕ+dµ−

∫
E
ϕ−dµ

=
∫
E×F

f+d(µ×v)−
∫
E×F

f−d(µ×v) =
∫
E×F

fd(µ×v).

By a symmetric argument for the 1-section of f , we can see that fy is µ-integrable for
v-a.e. y ∈ F ,

ψ(y) =
∫
E
fydµ
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is well-defined for v-a.e. y ∈ E, and that∫
F
ψdv =

∫
E×F

fd(µ×v) =
∫
E
ϕdµ.

Step 5: Complex-valued Functions

Let f be a complex valued function such that∫
E
ϕ∗dµ <+∞

for the function ϕ∗ : E→ [0,+∞] defined as

ϕ∗(x) =
∫
F
|f |xdv

for any x ∈ E. Then, because |Re(f)| ≤ |f |, we can see that

ϕ∗∗(x) =
∫
F
|Re(f)|xdv ≤

∫
F
|f |xdv = ϕ∗(x)

for any x ∈ E, so that ∫
E
ϕ∗∗dµ≤

∫
E
ϕ∗dµ <+∞.

By the preceding result, this implies that the E⊗F-measurable real-valued function
Re(f) on E×F is µ×v-integrable.
By a symmetric argument, this holds for Im(f) as well, so it follows that f is µ× v-
integrable.

Now assume that f is a µ×v-integrable complex valued function. Then, by implication,
Re(f) and Im(f) are µ×v-integrable real-valued functions, and by the preceding result,
there exists an A ∈ E such that Re(f)x is v-integrable for any x ∈A,

ϕ1(x) =
∫
F
Re(f)xdv

is well-defined for any x ∈A, µ(Ac) = 0, and∫
E×F

Re(f)d(µ×v) =
∫
E
ϕ1dµ.
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Likewise, there exists a B ∈ E such that Im(f)x is v-integrable for any x ∈B,

ϕ2(x) =
∫
F
Im(f)xdv

is well-defined for any x ∈B, µ(Bc) = 0, and∫
E×F

Im(f)d(µ×v) =
∫
E
ϕ2dµ.

Since µ((A∩B)c) = 0, it follows that fx =Re(f)x+ i · Im(f)x is v-integrable for µ-a.e.
x ∈ E,

ϕ(x) =
∫
F
fxdv =

∫
F
Re(f)xdv+ i ·

∫
F
Im(f)xdv = ϕ1(x) + i ·ϕ2(x)

is well-defined for the same x ∈ E, and∫
E×F

fd(µ×v) =
∫
E×F

Re(f)d(µ×v) + i ·
∫
E×F

Im(f)d(µ×v)

=
∫
E
ϕ1dµ+ i ·

∫
E
ϕ2dµ=

∫
E
ϕdµ.

By a symmetric argument for the 1-section of f , we can seethat fy is µ-integrable for
v-a.e. y ∈ F ,

ψ(y) =
∫
E
fydµ

is well-defined for the same y ∈ F , and∫
E×F

fd(µ×v) =
∫
F
ψdv.

Q.E.D.
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In the notation of the above theorem, we denote∫
F
f(x,y)dv(y) :=

∫
F
fxdv = ϕ(x) and

∫
E
f(x,y)dµ(x) :=

∫
E
fydµ= ψ(y)

for any x ∈ E and y ∈ F , and likewise,∫
E

∫
F
f(x,y)dv(y)dµ(x) :=

∫
E
ϕdµ and

∫
F
intEf(x,y)dµ(x)dv(y) :=

∫
F
ψdv.

As such, the content of the theorem can be stated as

i) If f ∈ (E⊗F)+, then ∫
F
f(·,y)dv(y) ∈ E+,

∫
E
f(x, ·)dµ(x) ∈ F+,

and ∫
E×F

fd(µ×v) =
∫
E

∫
F
f(x,y)dv(y)dµ(x) =

∫
F

∫
E
f(x,y)dµ(x)dv(y).

ii) If f is complex valued and ∫
E

∫
F
|f(x,y)|dv(y)dµ(x)<+∞,

then f is µ×v-integrable.

iii) If f is complex valued and µ×v-integrable, then fx is v-integrable for µ-a.e. x ∈ E, fy is
µ-integrable for v-a.e. y ∈ F ,∫

E
f(x,y)dv(y) and

∫
F
f(x,y)dµ(x)

are well-defined for that same x ∈ E, y ∈ F , and∫
E×F

fd(µ×v) =
∫
E

∫
F
f(x,y)dv(y)dµ(x) =

∫
F

∫
E
f(x,y)dµ(x)dv(y) ∈ C.

In this sense, Fubini’s theorem tells us that we can interchange the order of integration of an
integrable function defined on a product space.
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7.4 Transition Kernels and Product Spaces

Transition kernels provide us with a convenient way to construct probability measures on prod-
uct spaces. In this section we study how to construct a probability measure on a product spcae
given a transition probability kernel and a probability measure, and the reverse problem of de-
riving transition probability kernels and probability measures that constitute a given probability
measure. The material in this section lays the groundwork for the study of conditional proba-
bilities and densities in probability theory.

7.4.1 Construction of Probability Measures

Let (E,E) and (F,F) be measurable spaces, and K a transition kernel from (E,E) into (F,F).
We saw in section 3.6 that, for any f ∈ F+, the non-negative function TKf on E defined as

(TKf)(x) =
∫
F
f(y)K(x,dy)

for any x ∈E is non-negative E-measurable, and that the operation TK on F+ possess linearity
and continuity properties.
Now let f ∈ (E⊗F)+. Then, for any x ∈E, the section fx is F-measurable, so that the integral

(TKf)(x) =
∫
F
fx(y)K(x,dy)

of fx with respect to the measure K(x, ·) is well-defined for any x ∈ E. We saw above that, if
K(x, ·) is σ-finite and does not depend on x, that is, if the integral above is with respect to a
σ-finite measure, then the function TKf is E-measurable.
We now show that Tkf is E-measurable, and that the operation Tk on (E⊗F)+ possess the
same linearity and continuity properties as the corresponding operation defined on F+, if K is
a transition probability kernel.
The proof makes extensive use of the monotone class theorem for functions.
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Lemma 7.6 Let (E,E) and (F,F) be measurable spaces, and K a transition probability kernel
from (E,E) into (F,F). Then, for any f ∈ (E⊗F)+, defining the function TKf :E→ [0,+∞] as

(TKf)(x) =
∫
F
fx(y)K(x,dy)

for any x ∈ E, TKf ∈ E+.
Furthermore, the operation TK : (E⊗F)+→E+ satisfies the following properties:

• Linearity:
For any a ∈ [0,+∞) and f,g ∈ (E⊗F)+,

TK(af +g) = a ·TKf +TKg

• Continuity under Increasing Limits:
For any increasing sequence {fn}n∈N+ ⊂ (E⊗F)+ with pointwise limit f ,

TKfn↗ TKf.

Proof) We start in a more general setting in order to facilitate the proof.
For any bounded and real-valued or non-negative E⊗F-measurable function f , we
define

(TKf)(x) =
∫
F
fx(y)K(x,dy)

for any x ∈ E; since K is a transition probability kernel, K(x,F ) = 1 for any x ∈ E,
meaning that for any bounded real-valued E⊗F-measurable function f , the above in-
tegral is well-defined.

Now let M be the collection of E⊗F-measurable functions such that:

i) f is non-negative valued or bounded real-valued, so that TKf is well-defined

ii) TKf is E-measurable.

Clearly,M contains the indicator functions of every measurable rectangle. To see this,
let A×B be a measurable rectangle on E×F , and note that

(TKf)(x) =
∫
F

(IA×B)x(y)K(x,dy) = IA(x) ·
∫
F
IB(y)K(x,dy) = IA(x) ·K(x,B)

for any x ∈ E. Since IA and K(·,B) are non-negative measurable functions on E, it
follows that TKf ∈ E+ as well.

M is also a monotone class of functions on E×F :
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– IE×F ∈M because E×F is a measurable rectangle.

– For any a,b ∈ R and bounded f,g ∈M, af + bg is a E⊗F-measurable bounded
real-valued function.
It also follows that

(TK(af + bg))(x) =
∫
F

(af + bg)x(y)K(x,dy)

=
∫
F

(a ·fx(y) + b ·gx(y))K(x,dy) = a ·
∫
F
fx(y)K(x,dy) + b

∫̇
F
gx(y)K(x,dy)

= a · (TKf)(x) + b · (TKg)(x)

for any x ∈ E by the linearity of integration, since fx,gx are bounded and thus
K(x, ·)-integrable for any x∈E. Since TKf,TKg are E-measurable by assumption,
and measurability is preserved across linear combinations, TK(af + bg) is also E-
measurable, so that af + bg ∈M.

– For any increasing sequence {fn}n∈N+ of non-negative functions inM with point-
wise limit f , f ∈ (E⊗F)+ because measurability is preserved across limits.
Furthermore, for any x ∈ E, because {(fn)x}n∈N+ is an increasing sequence of
non-negative F-measurable functions with pointwise limit fx for any x ∈ E, by
the MCT we have

(TKf)(x) =
∫
F
fx(y)K(x,dy) = lim

n→∞

∫
F

(fn)x(y)K(x,dy)

= lim
n→∞

(TKfn)(x).

By the monotonicity of integration and the fact that (fn)x ≤ (fn+1)x for any
n ∈N+, we also have (TKfn)(x)≤ (TKfn+1)(x) for any n ∈N+.
Therefore, TKf is the pointwise limit of an increasing sequence {TKfn}n∈N+ of
non-negative E-measurable functions, so that TKf ∈ E+ and therefore f ∈M.

M is thus a monotone class of functions on E×F containing every measurable rectan-
gle on E×F . Since the collection of all measurable rectangles on E×F is a π-system
generating the product σ-algebra E⊗F , by the monotone class theorem for functions,
it follows that every bounded or non-negative E⊗F-measurable function is contained
in M. By implication, TKf ∈ E+ for any f ∈ (E⊗F)+.

To show that TK possess the linearity and continuity properties stated above, we rely
on the fact that M is a montone class of functions. We already proved, in the process
of showing that M is a monotone class, that for any increasing sequence {fn}n∈N+ of
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non-negative functions in M with pointwise limit f ,

TKfn↗ TKf.

Thus, it remains to show that TK is linear. To this end, choose any a∈ [0,+∞) and f,g ∈
(E⊗F)+. Letting {fn}n∈N+ , {gn}n∈N+ be sequences of measurable simple functions
increasing to f and g, because fn,gn are bounded for any n∈N+, from the result shown
above while proving that M satisfies the second property of monotone classes,

TK(afn+gn) = a ·TKfn+TKgn.

Since {afn + gn}n∈N+ is an increasing sequence of measurable functions with limit
af +g, it now follows from the continuity of TK under increasing limits that

TK(af +g) = lim
n→∞

TK(afn+gn)

= a ·
(

lim
n→∞

TKfn
)

+ lim
n→∞

TKgn = a ·TKf +TKg.

Q.E.D.

Let µ be a measure on (E,E). In light of the above result, it makes sense to define a function
π : E⊗F → [0,+∞] as

π(A) =
∫
E

(TKIA)dµ :=
∫
E

∫
F
IA(x,y)K(x,dy)dµ(x)

for any A∈ E⊗F , like we did when constructing product measures. The next result shows that,
when µ is taken to be a probability measure, the π defined above becomes a probability measure
on the product space.
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Theorem 7.7 (Construction of Probability Measures)
Let (E,E) and (F,F) be measurable spaces, and K a transition probability kernel from (E,E)
into (F,F). For any probability measure µ on (E,E), defining the function π : E⊗F → [0,+∞]
as

π(A) =
∫
E

(TKIA)dµ

for any A ∈ E⊗F , π is a probability measure on (E×F,E⊗F), and for any f ∈ (E⊗F)+,∫
E×F

fdπ =
∫
E

(TKf)dµ.

Furthermore, π is the unqiue probability measure on (E×F,E⊗F) such that

π(A×B) =
∫
A
K(x,B)dµ(x)

for any measurable rectangle A×B on E×F .

Proof) We again rely on the characterization of integration introduced in theorem 3.16. Define
the function Λ : (E⊗F)+→ [0,+∞] as

Λf =
∫
E

(TKf)dµ

for any f ∈ (E⊗F)+. For any measurable rectangle A×B on E×F , because

TKIA×B =K(·,B) · IA,

we have

ΛIA×B =
∫
A
K(·,B)dµ.

We will now show that Λ satisfies the conditions of theorem 3.16:

– ΛI∅ = 0 is clear.

– For any a ∈ [0,+∞) and f,g ∈ (E⊗F)+, we have

TK(af +g) = a ·TKf +TKg

by the linearity of TK . It then follows from the linearity of integration that

Λ(af +g) =
∫
E

(a ·TKf +TKg)dµ= a ·
∫
E

(TKf)dµ+
∫
E

(TKg)dµ= a ·Λf + Λg.

– For any increasing sequence of non-negative E⊗F-measurable functions {fn}n∈N+
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with pointwise limit f , by the continuity of TK under increasing limits,

TKfn↗ TKf.

{TKfn}n∈N+ is thus a sequence of E-measurable non-negative functions increasing
to TKf , so by the MCT,

Λf =
∫
E

(TKf)dµ= lim
n→∞

∫
E

(TKfn)dµ

= lim
n→∞

Λfn.

Furthermore, by the monotonicity of integration, Λfn ≤ Λfn+1 for any n ∈N+, so
that Λfn↗ Λf .

Therefore, by theorem 3.16, there exists a unique measure π′ on (E×F,E⊗F) such
that

Λf =
∫
E×F

fdπ′

for any f ∈ (E⊗F)+. For any A ∈ E⊗F ,

π(A) =
∫
E

(TKIA)dµ= ΛIA

=
∫
E×F

IAdπ
′ = π′(A),

so that π = π′ on E⊗F and π is a measure on the product space (E×F,E⊗F). Since

π(E×F ) = ΛIE×F =
∫
E
K(x,F )dµ(x) = µ(E) = 1

by the fact that K is a transition probability kernel and µ a probability measure, π is
also a probability measure.

Finally, suppose that π is another probability measure on (E×F,E⊗F) such that

π(A×B) =
∫
A
K(x,B)dµ(x)

for any measurable rectangle A×B on E ×F . Then, for any measurable rectangle
A×B,

π(A×B) = ΛIA×B =
∫
A
K(x,B)dµ(x) = π(A×B),

so that π = π on the set R of all measurable rectangles on E×F . Since R is a π-system
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generating the product σ-algebra E⊗F , and π,π are finite measures such that

π(E×F ) = π(E×F ) = 1<+∞,

by lemma 2.15 π = π on E⊗F , which proves uniqueness.
Q.E.D.

We denote the value
∫
E(TKf)dµ by∫

E

∫
F
f(x,y)K(x,dy)dµ(x)

for any E⊗F-measurable non-negative function f , so that the content of the above theorem is
that ∫

E×F
fdπ =

∫
E

∫
F
f(x,y)K(x,dy)dµ(x)

for any f ∈ (E⊗F)+. This relationship is succinctly referred to as

π = µ×K.

We have thus constructed a probability measure on the product space by use of a probability
measure on (E,E) and a transition probability kernel relating (E,E) with (F,F). A product
probability measure is a special case of the above construction in which K(x, ·) does not depend
on x. This means that (E,E) and (F,F) are not linked together and, in a sense, independent
of one another. It is precisely this mathematical intuition that informs the measure-theoretic
definition of the independence of random variables.
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7.4.2 The Density of a Transition Kernel

Fubini’s theorem and the product space operations we have studied so far can be used to define
something akin to the Radon-Nikodym derivative for transition kernels.

Let (E,E ,µ) and (F,F ,v) be σ-finite measure spaces, and k ∈ (E⊗F)+. Define the function
K : E×F → [0,+∞] as

K(x,A) =
∫
A
k(x,y)dv(y) =

∫
F

(kx · IA)dv

for any (x,A) ∈ E×F ; K is well-defined because the section kx is non-negative F-measurable,
as is the indicator IA.
We can now show that K is a transition kernel:

• For any A ∈ F , define the function kA : E×F → [0,+∞] as

kA(x,y) = k(x,y) · IA(y)

for any (x,y) ∈ E×F . Since kA is the product of k and IE×A, which are both E⊗F-
measurable non-negative functions, kA ∈ (E⊗F)+ as well. By implication,

K(·,A) =
∫
A
k(·,y)dv(y) =

∫
F
kA(·,y)dv(y)

is a E-measurable non-negative function by Fubini’s theorem.

• For any x ∈ E,

K(x,A) =
∫
A
k(x,y)dv(y) =

∫
A
kxdv.

for any A ∈ F . Since kx ∈ F+, this simply means that K(x, ·) is the indefinite integral of
kx with respect to the measure v; therefore, K(x, ·) is a measure on (F,F), and kx is its
Radon-Nikodym derivative with respect to the σ-finite measure v.

Note that, if
∫
F k(x,y)dv(y) = 1, then K(x,F ) = 1 and K is a transition probability kernel.

Due to the fact that

kx ∈
∂K(x, ·)
∂v

for any x ∈ E in the above setting, we call k the density of the transition kernel K.
As with the usual Radon-Nikodym derivatives, K(x, ·) is absolutely continuous with respect to
v. That is, if v(A) = 0 for some A ∈ F , then K(x,A) = 0 for any x ∈ E.
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7.4.3 Disintegration of Probability Measures and Bayes’ Rule

Let (E,E ,µ) and (F,F ,v) be σ-finite measure spaces. Recall that the product measure µ×v is
also a σ-finite measure.
Suppose we have a probability measure π on the product space (E×F,E⊗F), and suppose
that π is absolutely continuous with respect to the product measure µ×v, so that there exists
a density function f ∈ (E⊗F)+ such that

π(A) =
∫
A
fd(µ×v) =

∫
E

∫
F
f(x,y)IA(x,y)dv(y)dµ(x)

for any A ∈ E⊗F .
This section deals with how to construct a probability measure P on (E,E) and a transition
probability kernel K from (E,E) to (F,F) such that π = P ×K given that π has a density f

with respect to the product measure µ×v. This process is referred to as the disintegration of π.

Some preliminary results are in order.
Let (G,G) be a measurable space and f : E → G a function measurable relative to E and G.
Defining fe : E×F →G as

fe(x,y) = f(x)

for any (x,y) ∈ E×F , for any A ∈ G we have

f−1
e (A) = f−1(A)×F ∈ E

⊗
F

since f−1(A) ∈ E , so that fe is measurable relative to E⊗F and G. The subscript e will thus
denote the extension of the domain of functions defined only on an individual space to the
product space.
Furthermore, for notational clarity, we will adopt the convention introduced in the previous
sections that

ϕ(x) =
∫
F
fxdv and ψ(y) =

∫
E
fydµ

for any x ∈ E, y ∈ F . Fubini’s theorem showed us that ϕ and ψ are measurable functions.
For any B ∈ F , because ∫

B
fxdv =

∫
F

(f · IE×B)xdv,

where f · IE×B is E⊗F-measurable, the function ϕB : E→ [0,+∞] defined as

ϕB(x) =
∫
B
fxdv

for any x ∈ E is also E-measurable. We adopt this notation in the proof of the next theorem:
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Theorem 7.8 (Disintegration of Probability Measures)
Let (E,E ,µ) and (F,F ,v) be σ-finite measure spaces, and π a probability measure on the product
space (E×F,E⊗F) that has density f ∈ (E⊗F)+ with respect to the product measure µ×v.
Then, the following hold true:

i) Defining P : E → [0,1] as

P (A) = π(A×F )

for any A ∈ E , P is a probability measure on (E,E), and the non-negative function fX on
E defined as

fX(x) =
∫
F
f(x,y)dv(y)

for any x ∈ E is a density of P with respect to the σ-finite measure µ.

ii) Defining k : E×F → [0,+∞] as

k(x,y) =


f(x,y)
fX(x) if fX(x) ∈ (0,+∞)∫
E f(x,y)dµ(x) otherwise

for any (x,y) ∈ E×F , k is a non-negative E⊗F-measurable function such that

f(x,y) = fX(x)k(x,y)

for any y ∈ F and P -a.e. x ∈ E. Moreover,

π(A) =
∫
E

∫
F
fX(x)k(x,y)IA(x,y)dv(y)dµ(x).

for any A ∈ E⊗F .

iii) Defining K : E×F → [0,1] as

K(x,A) =
∫
A
k(x,y)dv(y)

for any (x,A) ∈ E×F , K is a transition probability kernel from (E,E) into (F,F) such
that

π = P ×K.
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Proof) We again proceed in steps:

Step 1: Defining P and fX

Define P : E → [0,1] as

P (A) = π(A×F )

for any A ∈ E . Defining fX : E→ [0,+∞] as

fX(x) =
∫
F
f(x,y)dv(y) =

∫
F
fxdv

for any x ∈E, we know that fX ∈ E+ from Fubini’s theorem, and Fubini’s theorem also
tells us that

P (A) = π(A×F ) =
∫
A
fXdµ

for any A ∈ E . This means that P is a measure on (E,E) with density fX with respect
to µ. Since

P (E) = π(E×F ) = 1

because π is a probability measure, it follows that P is also a probability measure.
This proves the first claim of the theorem.
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Step 2: Defining and Proving the Measurability of k

Now define k : E×F → [0,+∞] as

k(x,y) =


f(x,y)
fX(x) if fX(x) ∈ (0,+∞)∫
E f(x,y)dµ(x) otherwise

for any (x,y) ∈ E×F . Define the sets A∞,A0 ∈ E as

A∞ = {fX = +∞} and A0 = {fX = 0}.

Since ∫
E
fXdµ= P (E) = 1<+∞,

by the finiteness property of non-negative functions µ(A∞) = 0; by the absolute conti-
nuity of P with respect to µ, this implies that P (A∞) = 0.
On the other hand,

P (A0) =
∫
{fX=0}

fXdµ= 0,

so that, denoting N =A0∩A∞ ∈ E , we have

P (N) = P (A0) +P (A∞) = 0.

For any x ∈N c and y ∈ F , fX(x) ∈ (0,+∞) and thus

f(x,y) = k(x,y)fX(x)

by the definition of k. In other words, the above equality holds for any y ∈ F and P -a.e.
x ∈ E.

For any a ∈Q and (x,y) ∈ E×F , if x ∈N c, then

k(x,y)< a if and only if f(x,y)< a ·fX(x) = a ·fX,e(x,y),

where fX,e is fX with its domain extended to E×F .
On the other hand, if x ∈N , then

k(x,y)< a if and only if ψ(y)< a.
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Therefore,

{(x,y) ∈ E×F | k(x,y)< a}= [{(x,y) ∈ E×F | f(x,y)< afX,e(x,y)}∩ (N c×F )]

∪ [N ×{y ∈ F | ψ(y)< a}] .

By the F-measurability of ψ, {y ∈ F | ψ(y) < a} ∈ F , and by the measurability of f
and a ·fX,e on E⊗F , {(x,y) ∈ E×F | f(x,y)< afX,e(x,y)} ∈ E⊗F . It follows that

{(x,y) ∈ E×F | k(x,y)< a} ∈ E
⊗
F .

and because this holds for any a ∈Q, k is E⊗F-measurable.
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Step 3: Expressing π in terms of k and fX

For any measurable rectangle A×B on E×F ,

π(A×B) =
∫
E

∫
F
f(x,y)IA×B(x,y)dv(y)dµ(x)

=
∫
A
ϕBdµ

=
∫
A∩N

ϕBdµ+
∫
A∩Nc

ϕBdµ

= π((A∩N)×B) +
∫
A∩Nc

ϕBdµ.

We inspect each term in turn.

Because fX(x) = 0 for any x ∈A0,

π((A∩A0)×B)≤ π((A∩A0)×F ) = P (A∩A0) =
∫
A∩A0

fX(x)dµ(x) = 0,

where we used the fact that fX is the density of P with respect to µ.
Likewise, since µ(A∞) = 0,

π((A∩A∞)×B)≤ π((A∩A∞)×F ) = P (A∩A∞)

=
∫
A∩A∞

fX(x)dµ(x) = 0.

These inequalities imply that π((A∩A0)×B) = π((A∩A∞)×B) = 0, and as such that

π((A∩N)×B) = π((A∩A0)×B) +π((A∩A∞)×B) = 0.

Now we turn our attention to the second term.
Define g : E×F → [0,+∞] as g = k · fX,e. Because both k and fX,e are measurable,
g ∈ (E⊗F)+.
If x ∈N c, then fX(x) ∈ (0,+∞) and g(x,y) = k(x,y)fX(x) = f(x,y), so that

ϕB(x) =
∫
B
fxdv =

∫
B
gxdv

for any x ∈A∩N c. Defining φB : E→ [0,+∞] as

φB(x) =
∫
B
gxdv

for any x ∈ E, φB is E-measurable by the same reason ϕB is, and it follows that∫
A∩Nc

ϕBdµ=
∫
A∩Nc

φBdµ.
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Finally, note that if x ∈A0, then fX(x) = 0, so that g(x,y) = 0 for any (x,y) ∈A0×F
and ∫

A∩A0
φBdµ= 0,

while ∫
A∩A∞

φBdµ= 0

because µ(A∞) = 0. By implication,∫
A
φBdµ=

∫
A∩Nc

φBdµ+
∫
A∩A0

φBdµ+
∫
A∩A∞

φBdµ=
∫
A∩Nc

φBdµ.

Therefore,

π(A×B) = π((A∩N)×B) +
∫
A∩Nc

ϕBdµ=
∫
A
φBdµ

=
∫
E

∫
F
g(x,y)IA×B(x,y)dv(y)dµ(y).

Defining π : E⊗F → [0,∞] as

π(A) =
∫
A
gd(µ×v) =

∫
E

∫
F
g(x,y)IA(x,y)dv(y)dµ(x)

for any A ∈ E
⊗
F , π is a measure on the product space because g is measurable and

non-negative.
We have shown above that

π(A×B) =
∫
E

∫
F
g(x,y)IA×B(x,y)dv(y)dµ(y) = π(A×B)

for any measurable rectangle A×B on E×F . Since E⊗F is generated by the π-sysetm
of measurable rectangles on E×F and

π(E×F ) = π(E×F ) = 1<+∞,

by lemma 2.15 π = π on E⊗F . In other words, for any A ∈ E⊗F ,

π(A) =
∫
A
gd(µ×v) =

∫
E

∫
F
fX(x)k(x,y)IA(x,y)dv(y)dµ(x).
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Step 4: Showing that π = P ×K

Lastly, define the function K : E×F → [0,+∞] as

K(x,A) =
∫
A
k(x,y)dv(y)

for any (x,A) ∈ E×F . We now know that K is a transition kernel from (E,E) into
(F,F) with k as its density with respect to v.
In addition, if x ∈N c, then we have

K(x,F ) =
∫
F
k(x,y)dv(y) =

∫
F f(x,y)dv(y)

fX(x) = 1

by the definition of fX(x), and if x ∈N , then

K(x,F ) =
∫
F
k(x,y)dv(y) =

∫
F

∫
E
f(x,y)dµ(x)dv(y)

=
∫
E×F

fd(µ×v) = π(E×F ) = 1.

Therefore, K is a transition probability kernel from (E,E) into (F,F).

From the result we showed above, for any measurable rectangle A×B on E×F ,

π(A×B) =
∫
E

∫
F
fX(x)k(x,y)IA×B(x,y)dv(y)dµ(x)

=
∫
E
fX(x)K(x,B)IA(x)dµ(x).

Because fX is the density of P with respect to µ and K(·,B)IA is in E+,∫
E
fX(x)K(x,B)IA(x)dµ(x) =

∫
E
K(x,B)IA(x)dP (x) =

∫
A
K(x,B)dP (x)

and therefore

π(A×B) =
∫
A
K(x,B)dP (x).

From theorem 7.7, we know that P ×K is the unique probability measure on the
product space such that

(P ×K)(A×B) =
∫
A
K(x,B)dP (x)

for any measurable rectangle A×B; therefore,

π = P ×K

on the product space.
Q.E.D.

483



In probabilistic terms, if π is the joint distribution of two random variables X and Y , the proba-
bility measure P defined above as P (A) = π(A×F ) for any A∈ E is the marginal distribution of
X. This would make the transition probability kernel K the conditional distribution of Y given
X.
The density fX is then the marginal density of X with respect to the measure µ, and k(x, ·) is
the conditional density of Y given X = x for any x ∈ E with respect to the measure v.
We also showed that

f(x,y) = k(x,y)fX(x), fX(x) ∈ (0,+∞)

for any y ∈ F and P -a.e. x ∈ E, which also implies that this holds for π-a.e. (x,y) ∈ E×F .

While the decomposition above was performed from the perspective of the first variable X, it can
also be done for the second variable Y . In this case, we can define the function fY : F → [0,+∞]
as

fY (y) =
∫
E
f(x,y)dµ(y)

for any y ∈ F and the function q : E×F → [0,+∞] as

q(y,x) =


f(x,y)
fY (y) if fY (y) ∈ (0,+∞)∫
F f(x,y)dv(y) othewise

for any (x,y) ∈ E×F .
As in the decomposition from the perspective of X, fY is the marginal density of Y with respect
to v, and q(y, ·) the conditional density of X given Y = y for any y ∈ F with respect to µ. It also
follows that

f(x,y) = q(y,x)fY (y), fY (y) ∈ (0,+∞)

for π-a.e. (x,y) ∈ E×F .

Bringing the two results together, we can see that

k(x,y)fX(x) = f(x,y) = q(y,x)fY (y) and fX(x),fY (y) ∈ (0,+∞)

for µ×v-a.e. (x,y) ∈ E×F . By implication,

k(x,y) = q(y,x)fY (y)
fX(x)

for π-a.e. (x,y) ∈ E×F , which is precisely the content of Bayes’ rule.
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Chapter 8

Differentiation

Our study of the Lebesgue integral naturally leads one to the consideration of the relationship
between differentiation and integration. Starting with the fundamental theorem of calculus, we
will derive the integration by parts formula, using which we derive the Taylor approximation
of differentiable functions. We work immediately with arbitrary euclidean spaces; the added
generality actually facilitates our analysis and simplifies the proofs of some important results,
as we will see below.

8.1 The Trace Norm on Rm×n

Because we define the derivative of an arbitrary function as an m×n matrix, it will be useful to
furnish a norm on the real vector space of all real m×n matrices. Specifically, we will be using
the trace norm ‖·‖ : Rm×n→ R+ defined as

‖A‖= tr(A′A)
1
2

for any A ∈ Rm×n. It is very easy to see that ‖A‖2 is simply the sum of the squares of all the
entries of A, and it follows that

‖A‖=

 m∑
i=1

n∑
j=1

A2
ij

 1
2

≤
m∑
i=1

n∑
j=1
|Aij |.

We will now show that ‖·‖ possesses the properties that a matrix norm such as the operator
norm should possess.

Recall that, for any n ∈N+, defining Sn×n as the set of all symmetric n×n matrices, Sn×n is
a linear subspace of the real vector space Rn×n: this can be seen easily, since the zero n×n
matrix is symmetric and, for any a ∈ R and A,B ∈ Sn×n, (aA+B)′ = aA′+B′ = aA+B and
thus aA+B ∈ Sn×n.
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In addition, the operation 〈·, ·〉 : Sn×n×Sn×n→ R defined as

〈A,B〉= tr(A′B)

for any A,B ∈ Sn×n is an inner product defined on Sn×n:

1) Linearity in First Argument
For any a ∈ R and A,B,C ∈ Sn×n,

〈aA+B,C〉= tr((aA+B)′C) = tr(a ·A′C+B′C) = a · tr(A′C) + tr(B′C) = a · 〈A,C〉+ 〈B,C〉,

so that 〈·, ·〉 is linear in its first argument.

2) Conjugate Symmetry
For any A,B ∈ Sn×n,

〈A,B〉= tr(A′B) = tr(BA′) = tr(B′A) = 〈B,A〉,

where we used both the commutativity property of the trace operation and the symmetry
of A and B.

3) Positive Definiteness
For any A ∈ Sn×n,

〈A,A〉= tr(A′A) = tr(A2).

Letting A = PDP ′ be the eigendecomposition of A (which exists because A is real and
symmetric), A= O if and only if all the diagonal entries of D are 0. Lettng µ1, · · · ,µn be
the diagonal entries of D, since A2 = PD2P ′ and tr(A2) = tr(D2), we can see that

〈A,A〉= tr(D2) =
n∑
i=1

µ2
i ≥ 0,

where the inequality holds as an equality if and only if µ1 = · · ·= µn = 0, or D=O. There-
fore, 〈A,A〉> 0 if A 6=O.

We have just shown that (Sn×n,〈·, ·〉) is a real inner product space; denote by ‖·‖tr the norm
induced by 〈·, ·〉. Since

‖A‖tr = (〈A,A〉)
1
2 = tr(A′A)

1
2

for any A ∈ Sn×n, we can see that ‖·‖tr equals the trace norm ‖·‖ on Sn×n.
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By the Cauchy-Schwarz inequality,

∣∣tr(A′B)
∣∣= |〈A,B〉| ≤ ‖A‖tr‖B‖tr

for any A,B ∈ Sn×n.
In particular, for any positive semidefinite A∈Sn×n, letting A=PDP ′ be its eigendecomposition
and µ1, · · · ,µn be the diagonal entries of D (the eigenvalues of A), µ1, · · · ,µn ≥ 0. Therefore,

‖A‖tr = tr(A2)
1
2 =

(
n∑
i=1

µ2
i

) 1
2

≤
n∑
i=1

µi = tr(A),

which tells us that the trace norm of a positive semidefinite matrix is majorized by its trace.

Returning to the general setting of the space of all real m×n matrices Rm×n, we can now see
that the trace norm ‖·‖ on Rm×n has the following properties:

1) Positive Definiteness
Let A ∈ Rm×n. Suppose that ‖A‖= 0. Then,

0 = tr(A′A) =
m∑
i=1

n∑
j=1

A2
ij ,

so that Aij = 0 for any 1 ≤ i ≤ m, 1 ≤ j ≤ n. It follows that A = O. It is obvious that
‖A‖= 0 if A=O.

2) Absolute Homogeneity
Let a ∈ R and A ∈ Rm×n. Then,

‖aA‖= tr(a2A′A)
1
2 = |a| · tr(A′A)

1
2 = |a| · ‖A‖.

3) Triangle Inequality
Let A,B ∈ Rm×n;

‖A+B‖2 = tr((A+B)′(A+B)) = tr(A′A) + tr(B′B) + tr(B′A) + tr(A′B).

Letting the (i, j)th entry of A,B be denoted Aij ,Bij for any 1 ≤ i ≤m, 1 ≤ j ≤ n, note
that

tr(B′A) = tr(A′B) =
n∑
j=1

m∑
i=1

AijBij ,
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and by the Cauchy-Schwarz inequality,

m∑
i=1

AijBij ≤
m∑
i=1
|AijBij | ≤

(
m∑
i=1

A2
ij

) 1
2
(

m∑
i=1

B2
ij

) 1
2

for any 1≤ j ≤ n, so that another application of the Cauchy-Schwarz inequality yields

n∑
j=1

m∑
i=1

AijBij ≤
n∑
j=1

(
m∑
i=1

A2
ij

) 1
2
(

m∑
i=1

B2
ij

) 1
2

≤

 n∑
j=1

m∑
i=1

A2
ij

 1
2
 n∑
j=1

m∑
i=1

B2
ij

 1
2

= ‖A‖‖B‖.

Therefore,

‖A+B‖2 = tr(A′A) + tr(B′B) + tr(B′A) + tr(A′B)

≤ ‖A‖2 +‖B‖2 + 2 · ‖A‖‖B‖= (‖A‖+‖B‖)2 .

We have now shown that ‖·‖ is a norm on Rm×n. Therefore, we can induce a metric d on
Rm×n by defining

d(A,B) = ‖A−B‖

for any A,B ∈ Rm×n.
The following are more useful properties of the trace norm:

Theorem 8.1 (Properties of the Trace Norm)
Let ‖·‖ be the trace norm. Then, the following hold true:

i) For any A ∈ Rm×n and B ∈ Rn×p, ‖AB‖ ≤ ‖A‖‖B‖.

ii) For any x ∈ Rn, |x|= ‖x‖.

iii) The set Ωo of all invertible matrices on Rn×n is an open subset of Rn×n with respect to
the metric induced by ‖·‖.

iv) The function f : Ωo→Ωo defined as f(A) =A−1 for any A ∈Ωo is continuous with respect
to the metric induced by ‖·‖.
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Proof) i) For any A ∈ Rm×n and B ∈ Rn×p,

‖AB‖2 = tr(B′A′AB) = tr((A′A)(BB′))

= 〈A′A,BB′〉 (A′A,BB′ are n×n symmetric matrices)

≤
∥∥A′A∥∥tr ·∥∥BB′∥∥tr (The Cauchy-Schwarz Inequality)

≤ tr(A′A) · tr(BB′) (A′A,BB′ are positive semidefinite)

= ‖A‖2 · ‖B‖2.

ii) Let x be an n-dimensional real valued vector whose euclidean norm is |x|. Then,
‖x‖ is well-defined as the norm of the n×1 matrix x. It is easy to see that

‖x‖2 = tr(x′x) = |x|2.

By implication, for some A ∈ Rm×n and x ∈ Rn,

|Ax|= ‖Ax‖ ≤ ‖A‖ · ‖x‖= ‖A‖ · |x|.

iii) Choose any A ∈ Ωo. Because A−1 6= O,
∥∥A−1∥∥ > 0. Let B ∈ Rn×n be an element

in the open ball B(A,1/
∥∥A−1∥∥) around A, that is,

‖A−B‖< 1
‖A−1‖

.

Choose any x ∈ Rn, and suppose that x 6= 0. Then,

|x|=
∣∣∣A−1Ax

∣∣∣≤ ∥∥∥A−1
∥∥∥ · |Ax−Bx+Bx|

≤
∥∥∥A−1

∥∥∥ · (‖A−B‖|x|+ |Bx|) .
Because |x|> 0, we have

∥∥∥A−1
∥∥∥ · ‖A−B‖|x|< |x|,

so that

|x|< |x|+ |Bx|,

which implies |Bx|> 0, or Bx 6= 0. By contraposition, if Bx= 0, then x= 0. This
tells us that the null space of B consists only of the zero vector 0, and as such
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that B is an invertible matrix.
This holds for any B ∈B(A,1/‖A‖), so B(A,1/‖A‖)⊂ Ωo. This in turn holds for
any A ∈ Ωo, so Ωo is open with respect to the metric induced by the trace norm.

iv) Define f : Ωo→ Ωo as

f(A) =A−1 for any A ∈ Rn×n.

Choose any A ∈ Ωo, and B ∈ Rn×n such that ‖A−B‖ < δ. Then, B ∈ Ωo by the
above result, and because

∥∥A−1∥∥ · ‖A−B‖< 1,
∥∥∥B−1

∥∥∥=
∥∥∥A−1AB−1

∥∥∥≤ ∥∥∥A−1
∥∥∥ ·∥∥∥(A−B)B−1 + In

∥∥∥
≤
∥∥∥A−1

∥∥∥ · ‖A−B‖ ·∥∥∥B−1
∥∥∥+
√
n ·
∥∥∥A−1

∥∥∥
implies

∥∥∥B−1
∥∥∥≤ √

n ·
∥∥A−1∥∥

1−‖A−1‖ · ‖A−B‖
.

It then follows that

‖f(A)−f(B)‖=
∥∥∥A−1 (A−B)B−1

∥∥∥≤ ‖A−B‖ ·∥∥∥A−1
∥∥∥ ·∥∥∥B−1

∥∥∥
≤
√
n ·
∥∥A−1∥∥ · ‖A−B‖

1−‖A−1‖ · ‖A−B‖
.

The right hand side goes to 0 as ‖A−B‖ → 0, so it follows that ‖f(A)−f(B)‖
also goes to 0 as ‖A−B‖→ 0. This shows us that f is a continuous function on Ωo.

Q.E.D.
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8.2 Differentiation on Euclidean Space

Let E be an open subset of Rn, and f : E→ Rm. The derivative of f at x ∈ E is defined as the
m×n matrix A such that

lim
h→0

|f(x+h)−f(x)−Ah|
|h|

= 0.

Note that the fraction above is well-defined for h close to 0 because E is an open subset containing
x, so that we can find a neighborhood around x contained in E. If such an A exists, we say
that f is differentiable at x. If f is differentiable at every point in E, then we say that it is
differentiable on E.

We first show that the derivative A of f at some point x is unique:

Lemma 8.2 (Uniqueness of the Derivative)
Let E be an open subset of Rn, and suppose A1,A2 ∈ Rm×n are derivatives of f : E → Rm at
some x ∈ E. Then, A1 =A2.

Proof) By definition, A1,A2 ∈ Rm×n are two matrices satisfying

lim
h→0

|f(x+h)−f(x)−Aih|
|h|

= 0

for i= 1,2, then for any non-zero h ∈ Rn that is small enough so that x+h ∈ E,

|(A1−A2)h|= |f(x+h)−f(x)−A2h− (f(x+h)−f(x)0A1h)|

≤ |f(x+h)−f(x)−A2h|+ |f(x+h)−f(x)0A1h|,

so that

|(A1−A2)h|
|h|

≤ |f(x+h)−f(x)−A1h|
|h|

+ |f(x+h)−f(x)−A2h|
|h|

.

Taking h→ 0 on both sides shows us that

lim
h→0

|(A1−A2)h|
|h|

= 0.

By definition, for any ε > 0 there exists a δ > 0 such that

|(A1−A2)h| ≤ ε · |h|

for any h ∈ Rn such that |h|< δ. Fixing some non-zero x ∈ Rn, this shows us that, for
any t > 0 such that t < δ

|x| , since |t ·x|< δ, we have

|(A1−A2)(tx)|= |t||(A1−A2)x| ≤ ε · |tx|= |t| · ε|x|.
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Dividing both sides by |t| yields

|(A1−A2)x| ≤ ε · |x|;

this holds for any ε > 0, so |(A1−A2)x|= 0, that is, A1 =A2.

Q.E.D.

The unique derivative A ∈ Rm×n of f at x is denoted by f ′(x) ∈ Rm×n. One of the most
convenient implications of differentiability is that f is continuous at any point at which it is
differentiable:

Lemma 8.3 (Differentiability implies Continuity)
Let E be an open subset of Rn, and suppose f : E→ Rm is differentiable at some x ∈ E. Then,
f is continuous at x.

Proof) Suppose f is differentiable at x ∈ E. Let A ∈ Rm×n be the derivative of f , and choose
some ε > 0. Let η > 0 be chosen small enough so that η2 +‖A‖ ·η < ε.

By definition, there exists a δ > 0 satisfying

|f(x+h)−f(x)−Ah| ≤ η · |h|

for any h ∈ Rn such that |h|< δ. Note that, for any h ∈ Rn such that |h|< δ,

|f(x+h)−f(x)|− |Ah| ≤ |f(x+h)−f(x)−Ah| ≤ η · |h|,

and by implication,

|f(x+h)−f(x)| ≤ ε · |h|+ |Ah| ≤ η · |h|+‖A‖ · |h|.

Therefore, for any y ∈ Rn such that |x−y|<min(δ,η), we can now see that

|f(y)−f(x)|= |f(x+ (y−x))−f(x)| ≤ (η+‖A‖) |x−y|< η2 +η · ‖A‖< ε.

This holds for any ε > 0, so by definition f is continuous at x.

Q.E.D.

Consider a differentiable function f : E→ Rm. While this ensures the continuity of f on E,
it does not ensure the continuity of the mapping f ′ :E→ Rm×n with respect to the trace norm
on Rm×n. If this is also the case, that is, if f ′ is a continuous function as well, then we say that
f is continuously differentiable on E, and we denote f ∈ C1(E).
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The simplest case we can study is the differentiation of T ∈ L(Rn,Rm), that is, linear trans-
formations from Rn into Rm. In this case, we can write

T (x) =Ax

for any x ∈Rn, where A ∈Rm×n is the matrix representation of T with respect to the standard
basis. Since

|T (x+h)−T (x)−Ah|
|h|

= 0

for any x,h ∈ Rn by the linearity of T , we can see that the derivative of T at any x is exactly
equal to the matrix representation A. In this case, the derivative is continuous everywhere on
Rn, so we can see that any linear transformation is also continuously differentiable on Rn.

We can prove that the chain rule holds in this more general situation:

Theorem 8.4 (Chain Rule)
Let E be an open subset of Rn, and f :E→Rm a function that is differentiable at some x0 ∈E.
In addition, let V be some open subset of Rm containing the image f(E), and g : V → Rp a
function differentiable at f(x0) ∈ V . Then, defining F = g ◦f :E→ Rp, F is differentiable at x0

with derivative equal to

F ′(x0) = g′(f(x0))f ′(x0) ∈ Rp×n.

Proof) Denote y0 = f(x0) ∈ V , A= f ′(x0) and B = g′(y0). Then, defining

u(h) = f(x0 +h)−f(x0)−Ah

v(k) = g(y0 +k)−g(y0)−Bk

for any h ∈ Rn and k ∈ Rm for which the above functions are well-defined. Since E is
open, there exists a neighborhood U of 0 such that x0 +U ∈ E. Define the function
K : U → Rm as

K(h) = f(x0 +h)−f(x0)
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for any h ∈ U . Note that, for any h ∈ U ,

F (x0 +h)−F (x0)− (BA)h= g(f(x0 +h))−g(y0)− (BA)h

= g (y0 + (f(x0 +h)−f(x0))−g(y0)

−B((f(x0 +h)−f(x0)) +B (f(x0 +h)−f(x0)−Ah)

= (g(y0 +K(h))−g(y0)−B ·K(h)) +B (f(x0 +h)−f(x0)−Ah)

= v(K(h)) +B ·u(h),

so that

|F (x0 +h)−F (x0)− (BA)h| ≤ |v(K(h))|+‖B‖ · |u(h)|.

We want to bound the right hand side above by |h| times a small positive number ε > 0.
To this end, choose some ε > 0, and let α > 0 be chosen small enough so that

α2 + (‖A‖+‖B‖)α < ε.

By the differentiability of g at y0, for any ε > 0, there exists a δ > 0 such that

|v(k)| ≤ α · |k|

for any k ∈ Rm such that |k|< δ.

Furthermore, by the differentiability of f at x0, there exists an η > 0 such that

|u(h)| ≤ α · |h|

for any h ∈ Rn such that |h|< η.

Finally, since the differentiability of f at x0 implies continuity of f at x0,

lim
h→0

K(h) = 0

and we can take η > 0 small enough so that

|K(h)|< δ

also holds for any h ∈ Rn such that |h|< η.
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Putting these results together, for any h ∈ Rn such that |h|< η,

|u(h)| ≤ α · |h|,

and since we have |K(h)|< δ, we also can conclude that

|v(K(h))| ≤ α · |K(h)|.

Using the fact that

|K(h)|= |u(h) +Ah| ≤ |u(h)|+‖A‖ · |h|

for any h ∈ U , we can see that

|v(K(h))| ≤ ε · |K(h)| ≤ α(|u(h)|+‖A‖ · |h|)

≤ α2 · |h|+α‖A‖ · |h|.

In other words, |h|< η for any h ∈ U implies

|F (x0 +h)−F (x0)− (BA)h| ≤ |v(K(h))|+‖B‖ · |u(h)|

≤
(
α2 +α · ‖A‖

)
· |h|+α‖B‖ · |h|

=
[
α2 + (‖A‖+‖B‖)α

]
· |h| ≤ ε · |h|.

This holds for any ε > 0, so

lim
h→0

|F (x0 +h)−F (x0)− (BA)h|
|h|

= 0,

and by definition F ′(x0) =BA.

Q.E.D.

8.2.1 Partial Differentiation

We now introduce a way to very easily characterize the derivative of a multivariate function
using derivatives with respect to each coordinate. Let E = {e1, · · · ,en} be the standard bases of
Rn. Let E be an open subset of Rn and f = (f1, · · · ,fm) a function from E into Rm. We say
that the ith coordinate function fi :E→ R of f is partially differentiable at x ∈E with respect
to the jth coordinate if the limit

∂fi
∂xj

(x) = lim
t→0

fi(x+ t ·ej)−f(x)
t
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exists; we call the limit the partial derivative of fi with respect to the jth coordinate at x.
Note that (Djfi)(x) := ∂fi

∂xj
(x) is essentially the (univariate) derivative of the mapping t 7→

fi(x1, · · · ,xj−1, t,xj+1, · · · ,xn) at xj . If all mn partial derivatives of f at x exist, then we can
collect them into the Jacobian

J(x) =


(D1f1)(x) · · · (Dnf1)(x)

... . . . ...
(D1fm)(x) · · · (Dnfm)(x)

 ∈ Rm×n.

Partial differentiability does not ensure differentiability; it does not even ensure continuity. How-
ever, the converse does hold true, that is, differentiability implies partial differentiability.

Theorem 8.5 (Differentiability implies Partial Differentiability)
Let E be an open subset of Rn, and f :E→Rm a function on E. If f is differentiable at x ∈E,
then it is partially differentiable at x ∈ E and the derivative f ′(x) is exactly the Jacobian of f
at x, that is,

f ′(x) =


(D1f1)(x) · · · (Dnf1)(x)

... . . . ...
(D1fm)(x) · · · (Dnfm)(x)

 .

Proof) Let {e1, · · · ,en} and {u1, · · · ,um} be the standard bases of Rn and Rm. Suppose that f
is differentiable at x, and denote A = f ′(x). Choose any 1 ≤ i ≤m and 1 ≤ j ≤ n. By
definition, for any ε > 0 there exists a δ > 0 such that

|f(x+h)−f(x)−Ah| ≤ ε · |h|

for any h ∈Rn such that |h|< δ. Chooseing t > 0 such that |t|< δ, since |t ·ej |= |t|< δ,
it follows that

|f(x+ t ·ej)−f(x)− t ·Aej | ≤ ε · |t|.

The ith element of the vector Aej , which is equal to the jth column of A, is exactly
the (i, j)th element of A. The definition of the euclidean norm on Rm now tells us that

|fi(x+ t ·ej)−fi(x)− t ·A(i, j)| ≤ |f(x+ t ·ej)−f(x)− t ·Aej | ≤ ε · |t|,

or equivalently,∣∣∣∣fi(x+ t ·ej)−fi(x)
t

−A(i, j)
∣∣∣∣= ∣∣∣∣fi(x+ t ·ej)−fi(x)− t ·A(i, j)

t

∣∣∣∣≤ ε
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for any t > 0 such that |t|< δ. This holds for any ε > 0, so we have

A(i, j) = lim
t→0

fi(x+ t ·ej)−fi(x)
t

.

This holds for any 1 ≤ i ≤ m and 1 ≤ j ≤ n, so by definition each A(i, j) is the jth
partial derivative of fi at x, that is,

A(i, j) = (Djfi)(x).

Q.E.D.

Of interest is the case where f is a real-valued function. If E is an open subset of Rn and
f :E→R is differentiable at x, the theorem above tells us that the partial derivatives of f exist
and satisfy

f ′(x) =
(
∂f
∂x1

(x) · · · ∂f
∂xn

(x)
)
.

The transpose of this 1× n row vector is called the gradient of f at x, and is denoted by
∇f(x) ∈ Rn.

8.2.2 Directional Derivatives

Let (a,b) be an open interval on the real line, E an open subset of Rn, f : E→ R a real-valued
function, and γ : (a,b)→ E a function representing a parametric curve on the set E. Suppose
γ and f are both differentiable on their domains, and define the function g = f ◦γ : (a,b)→ R.
The chain rule tells us that

g′(t) = f ′(γ(t))γ′(t)

for any t ∈ (a,b), where g′(t) is real because f ′(γ(t)) ∈R1×n and γ′(t) ∈Rn×1. Furthermore, the
preceding theorem implies

f ′(x) =
(
∂f
∂x1

(x) · · · ∂f
∂xn

(x)
)

= ∇f(x)′

for any x ∈ E, so the derivative of g at t can be written as

g′(t) = ∇f(γ(t))′γ′(t) = 〈∇f(γ(t)),γ′(t)〉,

where 〈·, ·〉 is the standard inner product on Rn.
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We are especially interested in the case where γ : (−δ,δ)→ E is defined as

γ(t) = x+ t ·u

for some x ∈ E and a unit vector u ∈ Rn, where δ > 0 is chosen so that γ(t) takes values in E

for any t ∈ (−δ,δ). Defining g as above, note that

g(t)−g(0)
t

= f(x+ t ·u)−f(x)
t

for any 0< |t|< δ, while the derivative of g at 0 is given by

g′(0) = ∇f(γ(0))′γ′(0) = ∇f(x)′u.

It follows that

∇f(x)′u= lim
t→0

f(x+ t ·u)−f(x)
t

by the definition of the derivative; we call this quantity the directional derivative of f at x in the
direction of u, and is denoted by (Duf)(x). Heuristically, (Duf)(x) represents the infinitesimal
amount by which f increases from x in the direction of u.

Using the fact that the directional derivative is an inner product on Rn,

(Duf)(x) = 〈∇f(x),u〉= |∇f(x)| · |u| · cos(θ) = |∇f(x)| · cos(θ),

where θ is the angle between the vectors ∇f(x) and u. Since the cosine function achieves its
maximum when θ = 0, that (Duf)(x) equals |∇f(x)| · cos(θ) implies that f grows the fastest
from x in the direction of ∇f(x). In other words, the gradient of f at x is proportional to the
direction in which f grows the fastest.

8.2.3 The Mean Value Theorem

We now introduce a class of theorems that have widespread applicability, especially when it
comes to the approximation of functions by polynomials. We first focus on univariate functions,
and then extend it to multivariate functions via the process above.

Let (E,τ) be a topological space. A real-valued function f :E→ R is said to achieve a local
maximum (minimum) at x ∈E if there exists a neighborhood U around x such that f(x)≥ f(y)
(f(x)≤ f(y)) for any y ∈ U . f achieves a strict local maximum (minimum) at x if the preceding
inequalities are strict.

Returning to the specific setting of euclidean spaces, let (a,b) be an open interval on the real
line and f : (a,b)→R a real valued function. The first theorem, Rolle’s theorem, shows us that,
if f is differentiable, then its derivative should equal 0 at any local extremum.
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Lemma 8.6 (Rolle’s Theorem)
Let f : [a,b]→ R achieve a local maximum (minimum) at x ∈ (a,b). If f is differentiable at x,
then f ′(x) = 0.

Proof) Suppose that x∈ (a,b) is local maximum of f (the case for local minima follow similarly)
and that f is differentiable at x. Then, there exists a δ > 0 such that f(x) ≥ f(y) for
any y ∈ (x− δ,x+ δ). For any h ∈ R such that 0< h < δ, this tells us that

f(x+h)−f(x)
h

≥ 0,

while if −δ < h < 0, then

f(x+h)−f(x)
h

≤ 0,

where the inequality is flipped because h is negative in this case. Let {hn}n∈N+ be a
sequence of positive numbers in (0, δ) converging to 0. Then,

f ′(x) = lim
n→∞

f(x+hn)−f(x)
hn

≥ 0.

Similarly, if {hn}n∈N+ be a sequence of negative numbers in (−δ,0) converging to 0,
then

f ′(x) = lim
n→∞

f(x+hn)−f(x)
hn

≤ 0.

This shows us that f ′(x) = 0.

Q.E.D.

The mean value theorem now follows easily from Rolle’s theorem.
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Theorem 8.7 (Mean Value Theorem)
Let f : [a,b]→ R be a continuous function that is differentiable on (a,b). Then, there is a point
x ∈ (a,b) such that

f(b)−f(a) = f ′(x)(b−a).

Proof) Define the function g : [a,b]→ R as

g(x) = (f(b)−f(a))x−f(x)(b−a)

for any x∈ [a,b]. Then, g is continuous on [a,b] and differentiable on (a,b) with derivative
equal to

g′(x) = f(b)−f(a)−f ′(x)(b−a)

for any x ∈ (a,b). In addition,

g(b) = (f(b)−f(a))b−f(b)(b−a) = f(b)a−f(a)b= (f(b)−f(a))a−f(a)(b−a) = g(a).

We want to find an x ∈ (a,b) such that g′(x) = 0; this can be done by finiding a local
maximum/minimum of g on (a,b), and then applying Rolle’s theorem.

If g is a constant function on [a,b], then g′(x) = 0 for any x ∈ (a,b), so the claim holds
trivially. Suppose now that there exists an x∈ (a,b) such that g(x)> g(a) = g(b).. Since
g is a continuous function on the compact interval [a,b], by the extreme value theorem
there exists an x∗ ∈ [a,b] such that g(x∗) = maxx∈[a,b] g(x). By assumption, x∗ ∈ (a,b),
and thus by Rolle’s theorem, we have g′(x∗) = 0. On the ther hand, if there exists an
x∈ (a,b) such that g(x)< g(a) = g(b), we repeat the same argument with the minimum
instead of the maximum.

Q.E.D.

The mean value theorem can be seen as an approximation of a differentiable function using
a linear function, since for a differentiable function f : R→ R, it states that

f(x)≈ f(x0) +f ′(x0)x

for any two points x,x0 ∈ R if x0 and x are close to one another. In this context, the Tay-
lor expansion of a univariate function can be seen as the approximation of a function with a
polynomial of an aribtrary degree.

We can formulate multivariate versions of Rolle’s theorem and the mean value theorem by
making use of the chain rule and gradients. These are stated below:
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Theorem 8.8 (Multivariate Mean Value Theorem)
Let E be an open set in Rn and f :E→R a real-valued function on E. The following hold true:

i) If x ∈ E is a local extremum of f and f is differentiable at x, then ∇f(x) = 0.

ii) Suppose E is convex and that f is differentiable on E. For any x,y ∈ E, there exists a
t0 ∈ (0,1) such that

f(x)−f(y) = ∇f(t0 ·x+ (1− t0) ·y)′(x−y).

Proof) i) Let d denote the euclidean metric on Rn. Let x ∈ E be a local maximum of f ,
and assume that f is differentiable at x. It follows that there exists a δ > 0 such
that, for any point y ∈E in Bd(x,δ), we have f(y)≤ f(x). Choose any unit vector
u ∈ Rn and define γ : (−δ,δ)→ E as

γ(t) = x+ t ·u

for any t∈ (−δ,δ). Let g= f ◦γ : (−δ,δ)→R. Note that g achieves a local maximum
at 0 since for any t ∈ (−δ,δ), γ(t) is contained in Bd(x,δ) and therefore

g(t) = f(γ(t))≤ f(x) = g(0).

By Rolle’s theorem,

0 = g′(0) = ∇f(x)′u.

This holds for any unit vector u and therefore any standard basis vector in Rn, so
we can see that ∇f(x) = 0.

ii) Let f be differentiable on E, and choose distinct x,y ∈ E. Define γ : [0,1]→ E as

γ(t) = t ·x+ (1− t) ·y

for any t ∈ [0,1], and define g = f ◦ γ : [0,1]→ R. Note that γ takes values in E

because E is assumed to be convex. Since f is continuous on E by differentiability
and γ is continuous on [0,1], g is continuous on [0,1], and for any t ∈ (0,1),

g′(t) = ∇f(t ·x+ (1− t) ·y)′(x−y),

so that g is differentiable on (0,1). By the mean value theorem, there exists a
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t∗ ∈ (0,1) such that

g(1)−g(0) = g′(t∗).

Using the definition of g, we can see that

f(x)−f(y) = f(γ(1))−f(γ(0)) = ∇f(γ(t∗))′(x−y) = ∇f(t∗ ·x+ (1− t∗) ·y)′(x−y).

Q.E.D.

Although the mean value theorem does not hold for vector-valued functions, a weaker version
of the theorem in which the equality is given as an inequality remains true:

Theorem 8.9 (Mean Value Inequality for Vector-valued Functions)
Let E be a convex open set in Rn and f :E→Rm a differentiable function on E such that there
exists an M > 0 such that

∥∥f ′(x)
∥∥≤M

for any x ∈ E. Then

|f(x)−f(y)| ≤M |x−y|

for any x,y ∈ E.

Proof) Choose any x,y ∈E. If f(x) = f(y), then the result is trivial, so we assume f(x) 6= f(y).
Define γ : [0,1]→ E as

γ(t) = t ·x+ (1− t) ·y

for any t ∈ [0,1], where γ once again takes values in E thanks to the convexity of E.
Defining g = f ◦γ : [0,1]→Rm, note that g is continuous on [0,1] due to the continuity
of f and γ, and that

g′(t) = f ′(γ(t)) ·γ′(t) = f ′(y+ t(x−y)) · (x−y)

for any t ∈ (0,1). It follows that

∣∣g′(t)∣∣≤ ∥∥f ′(y+ t(x−y))
∥∥ · |x−y| ≤M · |x−y|

for any t ∈ (0,1).
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Now define ϕ : [0,1]→ R as

ϕ(t) = (g(1)−g(0))′ g(t)

for any t ∈ [0,1]. Then, ϕ is continuous on [0,1] and differentiable on (0,1) with deriva-
tive

ϕ′(t) = (g(1)−g(0))′ g′(t)

for any t ∈ (0,1). Thus, by the mean value theorem, there exists some t∗ ∈ (0,1) such
that

ϕ(1)−ϕ(0) = |g(1)−g(0)|2

= ϕ′(t∗) = (g(1)−g(0))′ g′(t∗).

It follows that

|g(1)−g(0)|2 =
∣∣∣(g(1)−g(0))′ g′(t∗)

∣∣∣≤ |g(1)−g(0)| ·
∣∣g′(t∗)∣∣.

g(1)−g(0) = f(x)−f(y) 6= 0, so dividing both sides by |g(1)−g(0)| yields

|f(x)−f(y)| ≤
∣∣g′(t∗)∣∣≤M |x−y|.

Q.E.D.

The mean value theorem also proves crucial to show that a close relationship holds between
differentiability and partial differentiability. Specifically, if all partial derivatives exist and are
continuous, then a function is continuously differentiable.

Theorem 8.10 (Characterization of Continuous Differentiability)
Let E be an open set in Rn and f :E→ Rm a function on E. The partial derivatives (Djfi)(x)
exist for any x ∈E, 1≤ i≤m and 1≤ j ≤ n, and the mappings x 7→Djfi are continuous, if and
only if f is continuously differentiable on E.

Proof) Suppose that f is continuously differentiable. Then, by theorem 8.5, for any x ∈E the
partial derivative (Djfi)(x) exists and equals the (i, j)th element of the matrix f ′(x).
Therefore,

∥∥f ′(x)−f ′(y)
∥∥=

 m∑
i=1

n∑
j=1
|(Djfi)(x)− (Djfi)(y)|2

 1
2

for any x,y ∈E. The continuity of f now implies the continuity of each partial deriva-
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tives. Djfi on E.

Conversely, suppose that the partial derivatives Djfi exist and are continuous on E.
Fix any x ∈ E and denote

A=


(D1f1)(x) · · · (Dnf1)(x)

... . . . ...
(D1fm)(x) · · · (Dnfm)(x)

 .

By the openness of E and the continuity of the functions Djfi : E→ R, for any ε > 0
there exists a δ > 0 such that Bd(x,δ)⊂ E and

|(Djfi)(x)− (Djfi)(x)|< ε

nm

for any y ∈ Bd(x,δ) and 1 ≤ i ≤m, 1 ≤ j ≤ n. Choose any h ∈ Rn such that |h| < δ;
then, letting {e1, · · · ,en} be the standard basis of Rn, define

vk = (h1, · · · ,hk,0, · · · ,0)

for 0 ≤ k ≤ n; |vk| ≤ |h| < δ, so each x+ vk is contained in the open ball Bd(x,δ).
Furthermore, the ball Bd(x,δ) is convex, so for any 1≤ k ≤ n, the convex combination
of x+vk and x+vk−1 lie inside Bd(x,δ)⊂ E.

Fix 1≤ i≤m. For any 1≤ k ≤ n, suppose hk > 0 and define the mapping g : [0,hk]→R
as

g(t) = fi(x+vk−1 + t ·ek)

for any t ∈ [0,1]. By definition,

g′(t) = lim
s→0

fi((x+vk−1 + t ·ek) +s ·ek)−fi(x+vk−1 + t ·ek)
s

= (Dkfi)(x+vk−1 + t ·ek)

for any t ∈ [0,1], so g is differentiable on [0,1] and thus continuous on [0,1]. By the
mean value theorem, there then exists some θk ∈ (0,hk) such that

fi(x+vk)−fi(x+vk−1) = g(hk)−g(0) = (Dkfi)(x+vk−1 +θk ·ek) ·hk.

If hk < 0, we can construct g : [hk,0]→ R and find θk ∈ (hk,0) satisfying the above
equation in the same manner. Finally, if hk = 0, then we can put θk = 0 and the above
equation will still be satisfied. Since

x+vk−1 +θk ·ek ∈Bd(x,δ),
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from what we derived earlier

|(Dkfi)(x+vk−1 +θk ·ek)− (Dkfi)(x)|< ε

nm
.

This holds for any 1≤ k ≤ n, so based on the telescoping sum

fi(x+h)−fi(x) =
n∑
k=1

(fi(x+vk)−fi(x+vk−1)) ,

we have∣∣∣∣∣fi(x+h)−fi(x)−
n∑
k=1

(Dkfi)(x) ·hk

∣∣∣∣∣≤
n∑
k=1
|fi(x+vk)−fi(x+vk−1)− (Dkfi)(x) ·hk|

≤
n∑
i=1
|(Dkfi)(x+vk−1 +θk ·ek)− (Dkfi(x)| · |hk|

≤ ε

m
· |h|.

This in turn holds for any 1≤ i≤m, so we have

|f(x+h)−f(x)−Ah| ≤
m∑
i=1

∣∣∣∣∣fi(x+h)−fi(x)−
n∑
k=1

(Dkfi)(x) ·hk

∣∣∣∣∣
≤ ε · |h|.

In other words, for any non-zero h ∈ Rn with |h|< δ,

|f(x+h)−f(x)−Ah|
|h|

≤ ε.

Such a δ > 0 exists for any ε > 0, so by definition f is differentiable at x with derivative
equal to A, the Jacobian of f at x. Since each entry of the mapping f ′ : E → Rm×n,
being a partial derivative, is continuous on E, f ′ is itself continuous with respect to the
trace norm. Therefore, f ∈ C1(E).

Q.E.D.
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8.2.4 Higher Order Derivatives

Let E be an open subset of Rn, and f : E → R a real valued function on E. In what came
before we introduced the concepts of the partial derivatives of f , denoted D1f, · · · ,Dnf :E→R.
The preceding theorem showed, using the mean value theorem, that the function f is continu-
ously differentiable if and only if these partial derivatives exist and are continuous. Using this
characterization of continuous differentiability, we can define a new class of twice continuously
differentiable functions as functions f : E→ R such that each partial derivative Djf : E→ R is
partially differentiable with continuous partial derivatives. These class of functions is denoted
C2(E), and the partial derivatives of Djf are denoted

Dijf = ∂

∂xi
(Djf) = ∂2f

∂xi∂xj

for any 1 ≤ i, j ≤ n. We usually collect these second order partial derivatives into the Hessian
H : E→ Rn×n defined as

H(x) =


(D11f)(x) · · · (D1nf)(x)

... . . . ...
(Dn1f)(x) · · · (Dnnf)(x)


for any x ∈ E.

Of course, there is no reason to stop at twice continuous differentiability. In general, for any
k ≥ 2, we say that f : E → R is continuously differentiable k times, or in Ck(E), if its partial
derivatives D1f, · · · ,Dkf : E→ R are continuously differentiable k−1 times, or D1f, · · · ,Dkf ∈
Ck−1(E). In this case, there exist continuous functions Di1,··· ,ikf : E→ R defined as

(Di1,··· ,ikf)(x) = ∂

∂xi1
· · · ∂

∂xik
f(x) = ∂kf(x)

∂xi1 · · ·∂xik

for any x ∈ E and 1≤ i1, · · · , ik ≤ n.
Usually, we cannot interchange the order of partial differentiation. That is, it is generally

not the case that

Dijf =Djif

for any 1≤ i 6= j ≤ n, given that the partial derivatives exist for some f : E→ R. However, this
does hold given that the function f is continuously differentiable, or that the partial derivatives
above are continuous. We prove this result below:

Theorem 8.11 (Young’s Theorem)
Let E be an open set in Rn and f :E→Rm a function on E. Suppose that f is twice continuously
differentiable, that is, f ∈ C2(E). Then, for any 1≤ i, j ≤ n and x ∈ E,

(Dijf)(x) = (Djif)(x).
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Proof) Choose any 1≤ i 6= j ≤ n and x ∈ E. By assumption, Djif is continuous at x, so that,
for any ε > 0, there exists a δ > 0 such that

|(Djif)(x)− (Djif)(y)|< ε

for any y ∈ Rn such that |x−y|< δ. Let {e1, · · · ,en} be the standard basis of Rn, and
choose some h,k 6= 0 such that |h|, |k|< δ

2 , and define

∆(h,k) = f(x+h ·ej +k ·ei)−f(x+h ·ej)−f(x+k ·ei) +f(x).

Then, by applying the mean value theorem in a similar manner to what we did in
theorem 8.10, there exists a θ between 0 and k such that

[f(x+h ·ej +k ·ei)−f(x+h ·ej)]− [f(x+k ·ei) +f(x)]

= k · [(Dif)(x+h ·ej +θ ·ei)− (Dif)(x+θ ·ei)] ,

where we first see the expression on the left hand side as a univariate function with
respect to the coefficient of ei. Subsequently, the mean value theorem tells us once again
that there exists some t between 0 and h such that

(Dif)(x+h ·ej +θ ·ei)− (Dif)(x+θ ·ei) = h · (Djif)(x+ t ·ej +θ ·ei),

this time viewing the expression on the left as a univariate function with respect to the
coefficient of ej . Putting these results together, we can see that

∆(h,k) = hk · (Djif)(x+ t ·ej +θ ·ei)

for some t between 0 and h and θ between 0 and k. Since

|(x+ t ·ej +θ ·ei)−x| ≤ |t|+ |θ| ≤ |h|+ |k|< δ,

by our initial continuity result we have∣∣∣∣∆(h,k)
hk

− (Djif)(x)
∣∣∣∣= |(Djif)(x)− (Djif)(x+ t ·ej +θ ·ei)|< ε.

Since this holds for any non-zero h such that |h|< δ
2 , and

lim
h→0

∆(h,k)
hk

= 1
k

[
lim
h→0

f(x+h ·ej +k ·ei)−f(x+k ·ei)
h

− lim
h→0

f(x+h ·ej)−f(x)
h

]

= (Djf)(x+k ·ei)− (Djf)(x)
k

,

507



taking h→ 0 on both sides of the above inequality shows us that∣∣∣∣(Djf)(x+k ·ei)− (Djf)(x)
k

− (Djif)(x)
∣∣∣∣≤ ε.

This in turn holds for any k 6= 0 such that |k|< δ
2 , so taking k→ 0 on both sides shows

us that

|(Dijf)(x)− (Djif)(x)| ≤ ε.

Finally, our choice of ε > 0 was arbitrary, so it must be the case that (Dijf)(x) =
(Djif)(x).

Q.E.D.

In light of Young’s theorem, we can see that, given any f ∈ C2(E), the Hessian H :E→Rn×n

is symmetric matrix valued. This means that each H(x) can be orthogonally diagonalized, among
other useful properties. Furthermore, the results above for second order partial derivatives can
be extended to partial derivatives of any order, since they can always be viewed as functions
obtained by repeatedly taking second order partial derivatives.

Continuous differentiation us especially useful in the case of univariate functions. Let E be an
open subset of the real line, and f :E→R a real-valued function. By definition, for any k ≥ 2, f
is kth order continuously differentiable if f ′ :E→R is k−1th order continuously differentiable;
the kth order derivative of f is denoted

f (k) = d

dx
f (k−1),

where we adopt the convention that f (0) = f . Since (total) derivatives and partial derivatives
coincide for univariate functions, f ∈Ck(E) if and only if f (1), · · · ,f (k) all exist and are continuous
on E.

Higher order derivatives of univariate functions appear most often when dealing with Tay-
lor’s theorem, a higher order generalization of the mean value theorem. It states that any kth
order continuously differentiable function on the real line can be approximated by a kth order
polynomial, where the remainder converges to 0 exponentially fast. We prove the theorem once
we introduce the fundamental theorem of calculus, which allows us to move flexibly between
differentiation and integration.
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8.3 Differentiation and Integration

In chapter 4, we introduced and studied some properties of the Lebesgue integral on euclidean
space. However, we did not study how to actually evaluate these integrals aside from the method
of approximation via simple functions, as in the definition of the abstract integral. The funda-
mental theorem of calculus, which relates Lebesgue integration on the real line to differentiation
of functions on the real line, furnishes a simple and straightforward way to evaluate integrals
using derivatives.

8.3.1 The Fundamental Theorem of Calculus

There are two version of the FTC, both of which we present below. They can actually be viewed
as applications of the mean value theorem, which once again testifies to its importance.

Theorem 8.12 (Fundamental Theorem of Calculus)
Let L be the collection of all Lebesgue measurable subsets of R, and λ the Lebesgue measure
on the real line. Then, the following hold true:

i) (First FTC)
Let f : (a,b)→R be a Lebesgue measurable function that is integrable with respect to the
Lebesgue measure, where (a,b) is allowed to be the entire real line. Define the antiderivative
F : (a,b)→ R of f as

F (x) =
∫ x

a
f(t)dt :=

∫
R

(
f · I(a,x)

)
dλ

for any x ∈ (a,b). If f is continuous at some x ∈ (a,b), then F is differentiable at x with
derivative equal to f(x).

In particular, if f is continuous on (a,b), then F is continuous on (a,b).

ii) (Second FTC)
Let F : (a,b)→ R be a function that is continuously differentiable on the interval (a,b),
which is allowed to be the entire real line, with derivative f : (a,b)→ R. Then, for any
distinct x,y ∈ (a,b),

F (y)−F (x) =
∫ y

x
f(t)dt.

Proof) i) Let f and F be defined as in the claim of the theorem. Suppose f is continuous at
x ∈ (a,b). Then, for any ε > 0, there exists a δ > 0 such that (x− δ,x+ δ)⊂ (a,b)
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and

|f(x)−f(y)|< ε

for any y ∈ R such that |x−y| < δ. Now choose any h ∈ R such that |h| < δ. If
h > 0, then

|F (x+h)−F (x)−f(x)h|=
∣∣∣∣∫

R

(
f · I(a,x+h)

)
dλ−

∫
R

(
f · I(a,x)

)
dλ−

∫
R

(
f(x) · I[x,x+h)

)
dλ

∣∣∣∣
=
∣∣∣∣∣
∫ x+h

x
(f(t)−f(x))dt

∣∣∣∣∣
≤
∫ x+h

x
|f(t)−f(x)|dt

≤ λ([x,x+h)) · ε= ε ·h,

where the last inequality follows because

|f(x)−f(t)|< ε

for any t ∈ (x,x+h)⊂ (x,x+ δ).
Likewise, if h < 0, then

|F (x+h)−F (x)−f(x)h|=
∣∣∣∣∫

R

(
f · I(a,x+h)

)
dλ−

∫
R

(
f · I(a,x)

)
dλ+

∫
R

(
f(x) · I[x+h,x)

)
dλ

∣∣∣∣
=
∣∣∣∣∫ x

x+h
(f(x)−f(t))dt

∣∣∣∣
≤
∫ x

x+h
|f(t)−f(x)|dt

≤ λ([x+h,x)) · ε= ε · |h|,

where the last inequality follows for the same reason as above.
Thus, in any case,

|F (x+h)−F (x)−f(x)h|
|h|

≤ ε

for any 0 < |h|< δ. Such a δ > 0 exists for any ε > 0, so by definition F is differ-
entiable at x with derivative equal to f(x).

ii) Let F : (a,b)→R be a continuously differentiable function on (a,b) with derivative
f : (a,b)→ R. f is a continuous function and thus Lebesgue measurable. Choose
some x,y ∈ (a,b), and assume initially that x< y, so that [x,y]⊂ (a,b). f is contin-
uous on the compact interval [x,y], so by the extreme value theorem, it is bounded
on this interval. This, together with the fact that the Lebesgue measure is finite on
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[x,y], implies that f is Lebesgue integrable on [x,y], or equivalently, the function
f · I[x,y] is Lebesgue integrable.
We can therefore define the antiderivative G : [x,y]→ R as

G(z) =
∫ z

x
f(t)dt

for any z ∈ [x,y]. For any z ∈ (x,y), the continuity of f at z and the first FTC imply
that G′(z) = f(z). It follows that F ′(z) =G′(z) for any z ∈ [x,y]. Furthermore, we
can see that G is continuous even at the endpoints x and y because

G(0) = 0 = lim
z↓x

∫ z

x
f(t)dt

by the dominated convergence theorem (each f ·I(x,z) is dominated by the Lebesgue
integrable function f on (a,b)), and similarly for G(1).

Defining H = F −G on [x,y], H is continuous on [x,y] and differentiable on (x,y).
Therefore, by the mean value theorem, there exists a z ∈ (x,y) such that

H(y)−H(x) =H ′(z)(y−x) =
(
F ′(z)−G′(z)

)
(y−x) = 0.

Since H(y) = F (y)−G(y) and H(x) = F (x)−G(x), it follows that

F (y)−F (x) =G(y)−G(x).

By the definition of G as the antiderivative of f , we now have

F (y)−F (x) =G(y)−G(x) =
∫ y

a
f(t)dt−

∫ x

a
f(t)dt=

∫ y

x
f(t)dt.

If, on the other hand, y < x, then the same process with x and y interchanged tells
us that

F (x)−F (y) =
∫ x

y
f(t)dt.

Then, multiplying both sides by -1 yields the desired result.

Q.E.D.

Corollary to Theorem 8.12 (Integration by Parts)
For any continuously differentiable functions f,g : (a,b)→ R on the interval (a,b), which is
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allowed to be the entire real line, for any distinct x,y ∈ (a,b), we have∫ y

x
f ′(t)g(t)dt= f(y)g(y)−f(x)g(x)−

∫ y

x
f(t)g′(t)dt.

Proof) This follows easily from the second FTC. Define F : (a,b)→ R as

F (x) = f(x)g(x)

for any x ∈ (a,b). Then, by the product rule of differentiation,

F ′(x) = f ′(x)g(x) +f(x)g′(x)

for any x ∈ (a,b), where F ′ is a continuous function because of the continuity of f,g
and their derivatives. It follows from the second FTC that, for any distinct x,y ∈ (a,b),

f(y)g(y)−f(x)g(x) = F (y)−F (x) =
∫ y

x
F ′(t)dt=

∫ y

x
f ′(t)g(t)dt+

∫ y

x
f(t)g′(t)dt

by the linearity of integration. Note that each integrand on the right hand side is inte-
grable due to the fact that they are continuous functions on the compact interval [x,y]
(or [y,x]) and thus bounded on this interval by the extreme value theorem, along with
the fact that the Lebesgue measure is finite on compact intervals.

Q.E.D.

The assumptions of the second FTC can be weakened to allow for a non-continuously differ-
entiable F , but we omit it here for the sake of simplicity.

8.3.2 Taylor’s Theorem

The integration of parts formula above is especially important, since it allows us to prove Tay-
lor’s theorem, which we state below:

Theorem 8.13 (Taylor’s Theorem: Lagrange Remainder)
Let f : (a,b)→ R be a function that is k+ 1th order continuously differentiable for some k ∈ N.
Then, for any distinct x,y ∈ (a,b),

f(y) =
k∑
i=0

f (i)(x)
i! (y−x)i+Rk(y,x),
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where

Rk(y,x) =
∫ y

x

f (k+1)(t)
k! (y− t)kdt.

This is called the Lagrange form of the remainder.

Proof) Note first that the integral involved with the formulation of the remainder term Rk(y,x)
is well-defined. This is because the mapping t 7→ f (k+1)(t)(y− t)k is continuous on the
compact interval [x,y] (or [y,x] if y < x), so that it is bounded by the extreme value
theorem. The Lebesgue measure is finite on [x,y], so this mapping is Lebesgue inte-
grable on [x,y].

We can now proceed by induction on the order k of continuous differentiability to show
that the theorem holds. Fix any distinct x,y ∈ (a,b). If k = 0, then f is continuously
differentiable once, and the result follows immediately from the second FTC:

f(y) = f(x) +
∫ y

x
f(t)dt︸ ︷︷ ︸

R0(y,x)

.

Now suppose that the theorem holds for some k ≥ 0, and choose some f ∈ C(k+2)(E).
Since any k+ 2th order continuously differentiable function is also k+ 1th order con-
tinuously differentiable, by the inductive hypothesis we have

f(y) =
k∑
i=0

f (i)(x)
i! (y−x)i+

∫ y

x

f (k+1)(t)
k! (y− t)kdt.

The remainder Rk+1(y,x) is defined as

Rk+1(y,x) = f(y)−
k+1∑
i=0

f (i)(x)
i! (y−x)i

=
∫ y

x

f (k+1)(t)
k! (y− t)kdt− f

(k+1)(x)
(k+ 1)! (y−x)k+1.

Define the functions F : (a,b)→ R and G : (a,b)→ R as

F (t) = f (k+1)(t) and G(t) = (y− t)k+1

(k+ 1)!

for any t∈ (a,b). Then, F and G are both continuously differentiable functions on (a,b),
so that, by the integration by parts formula,

F (y)G(y)−F (x)G(x)−
∫ y

x
F (t)G′(t)dt=

∫ y

x
F ′(t)G(t)dt.
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Using the definitions of F and G, this equation basically tells us that

Rk+1(y,x) =−f
(k+1)(x)
(k+ 1)! (y−x)k+1 +

∫ y

x

f (k+1)(t)
k! (y− t)kdt

=
∫ y

x

f (k+2)(t)
(k+ 1)! (y− t)k+1dt.

Therefore,

f(y) =
k+1∑
i=0

f (i)(x)
i! (y−x)i+

∫ y

x

f (k+2)(t)
(k+ 1)! (y− t)k+1dt︸ ︷︷ ︸

Rk+1(y,x)

,

and the general result follows by induction.

Q.E.D.

Using the basic formula for Taylor’s theorem, we can derive alternate forms of the remainder
Rk(y,x). Particularly useful is the Peano form of the remainder, which can be used to formulate
stochastic version of the theorem, among other applications.

Theorem 8.14 (Taylor’s Theorem: Peano Remainder)
Let f : (a,b)→ R be a function that is k+ 1th order continuously differentiable for some k ∈ N.
Then, for any distinct x,y ∈ (a,b),

f(y) =
k∑
i=0

f (i)(x)
i! (y−x)i+Rk(y,x),

where

Rk(y,x) = f (k+1)(x0)
(k+ 1)! (y−x)k+1

for some convex combination x0 of x and y. This is called the Peano form of the remainder.

Proof) For any k+1th order continuously differentiable function f : (a,b)→R, Taylor’s theorem
with the Lagrange remainder tells us that, for any distinct x,y ∈ (a,b),

f(y) =
k∑
i=0

f (i)(x)
i! (y−x)i+

∫ y

x

f (k+1)(t)
k! (y− t)kdt.

We need only show that there exists a convex combination x0 of x and y such that

∫ y

x

f (k+1)(t)
k! (y− t)kdt= f (k+1)(x0)

(k+ 1)! (y−x)k+1
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to complete the proof. Letting x < y without loss of generality, we start by noting that
f (k+1) is a continuous function on the compact interval [x,y]. As such, by the extreme
value theorem, there exist −∞<m<M <+∞ such that

m≤ f (k+1) ≤M

on the interval [x,y]. It follows that

m
(y− t)k
k! ≤ f (k+1)(t)

k! (y− t)k ≤M (y− t)k
k!

for any t ∈ [x,y], and integrating both sides with respect to the Lebesgue measure over
[x,y] shows us that

m · (y−x)k+1

(k+ 1)! ≤
∫ y

x

f (k+1)(t)
k! (y− t)kdt≤M · (y−x)k+1

(k+ 1)! ,

since
∫ y
x

(y−t)k
k! dt= (y−x)k+1

(k+1)! . Now we consider two cases:

– One of the inequalities holds as an equality
Suppose without loss of generality that

∫ y

x

f (k+1)(t)
k! (y− t)kdt=M · (y−x)k+1

(k+ 1)! .

Then, since there exists an x∗ ∈ [x,y] such that f (k+1)(x∗) = M by the extreme
value theorem, we have

∫ y

x

f (k+1)(t)
k! (y− t)kdt= f (k+1)(x∗) · (y−x)k+1

(k+ 1)! ,

which is our desired result.

– Both inequalities hold strictly
In this case, defining

c=
(∫ y

x

f (k+1)(t)
k! (y− t)kdt

)
(k+ 1)!

(y−x)k+1 ,

we have m< c<M . By the extreme value theorem, there exist x∗,x∗ ∈ [x,y] such
that

f (k+1)(x∗) =M and f (k+1)(x∗) =m.

f (k+1) is continuous on the compact interval with endpoints equal to x∗ and x∗,
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and

f (k+1)(x∗) =m< c <M = f (k+1)(x∗),

so by the intermediate value theorem, there exists an x0 between x∗ and x∗, and
therefore between x and y, such that

f (k+1)(x0) = c=
(∫ y

x

f (k+1)(t)
k! (y− t)kdt

)
(k+ 1)!

(y−x)k+1 ,

which is our desired result.

Q.E.D.

The Peano form of the remainder reveals that the remainder Rk(y,x) converges to 0 expo-
nentially fast, since

|Rk(y,x)| ≤

∣∣∣maxt∈[x,y] f
(k+1)(t)

∣∣∣
(k+ 1)! |y−x|k+1.

In other words, we can denote

Rk(y,x) = o(|y−x|k)

as y−x→ 0, or

Rk(y,x) =O(|y−x|k+1)

in little and big O notation.
Finally, we can make use of the chain rule and easily prove the multivariate analogue of

Taylor’s theorem.

Theorem 8.15 (Multivariate version of Taylor’s Theorem)
Let E be a convex open subset of Rn, and f :E→ R an m+1 times continuously differentiable
function for some m ∈ N. Then,

f(x+h) =
m∑
k=0

1
k!

 n∑
j1=1
· · ·

n∑
jk=1

∂kf(x)
∂xj1 · · ·∂xjk

hj1 · · ·hjk

+Rm(x,h),
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where

Rm(x,h) = 1
(m+ 1)!

n∑
j1=1
· · ·

n∑
jm+1=1

∂m+1f(x+ t0 ·h)
∂xj1 · · ·∂xjk

hj1 · · ·hjm+1 (Peano Form)

= 1
m!

n∑
j1=1
· · ·

n∑
jm+1=1

∫ 1

0

(
∂m+1f(x+ t ·h)
∂xj1 · · ·∂xjk

hj1 · · ·hjm+1

)
dt (Lagrange Form)

for some t0 ∈ [0,1]. In addition, Rm(x,h) = o(|h|m) =O(|h|m+1) as h→ 0.

Proof) Choose any x ∈E, and h ∈ Rn such that x+h ∈E. By the openness of E, there exists
a δ > 0 such that x− δ ·h,x+h+ δ ·h ∈ E. Define γ : (−δ,1 + δ)→ E as

γ(t) = x+ t ·h

for any t ∈ (−δ,1+δ), where γ takes values in E because E is convex. Define g = f ◦γ :
(−δ,1 + δ)→ R, and recall that, by the chain rule,

g′(t) = ∇f(γ(t))′h=
n∑
i=1

(Dif)(γ(t))hi

for any t∈ (−δ,1+δ). Suppose that, for some 1≤ k <m+1, g is kth order continuously
differentiable and

g(k)(t) =
n∑

j1=1
· · ·

n∑
jk=1

(Dj1···jkf)(γ(t))
(

k∏
i=1

hji

)

for any t ∈ (−δ,1 + δ). Then, since f is k+ 1 times continuously differentiable, for any
1≤ j1, · · · , jk ≤ n,

∂

∂xi
(Dj1···jkf) =Dij1···jkf

exists and is continuous for any 1≤ i≤ n. It follows from the chain rule again that

d

dt
(Dj1···jkf)(γ(t)) =

n∑
i=1

(Dij1···jkf)(γ(t)) ·hi,

so

g(k+1)(t) = d

dt
g(k)(t) =

n∑
i=1

n∑
j1=1
· · ·

n∑
jk=1

(Dij1···jkf)(γ(t))(hi×hj1×·· ·×hjk) .

By induction, g is m+1th order continuously differentiable and, for any 1≤ k ≤m+1,

g(k)(t) =
n∑

j1=1
· · ·

n∑
jk=1

(Dj1···jkf)(γ(t))
(

k∏
i=1

hji

)
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for any t ∈ (−δ,1 + δ).

Now, by Taylor’s theorem for univariate functions, since 0,1 ∈ (−δ,1 + δ),

g(1) =
m∑
k=0

g(k)(0)
k! +Rm(1,0),

where

Rm(1,0) = g(m+1)(t0)
(m+ 1)! =

∫ 1

0

g(m+1)(t)
m! dt

for some t0 ∈ [0,1]. Substituting the values of g and its derivatives that we found above,
we can now see that

f(x+h) =
m∑
k=0

1
k!

 n∑
j1=1
· · ·

n∑
jk=1

(Dj1···jkf)(x)
(

k∏
i=1

hji

)+Rm(x,h),

where

Rm(x,h) = 1
(m+ 1)!

n∑
j1=1
· · ·

n∑
jm+1=1

(Dj1···jm+1f)(x+ t0 ·h)
(
m+1∏
i=1

hji

)

= 1
m!

n∑
j1=1
· · ·

n∑
jm+1=1

∫ 1

0
(Dj1···jm+1f)(x+ t ·h)

(
m+1∏
i=1

hji

)
dt.

This completes the proof.

Q.E.D.

A special case of interest is when f is twice continuously differentiable. Then, the multivariate
version of Taylor’s theorem with the Peano remainder can be written as

f(x+h) = f(x) +∇f(x)′h+ 1
2h
′(∇2f)(x+ t0 ·h)h,

for some t0 ∈ [0,1], where ∇2f : E → Rn×n is the Hessian of f . Furthermore, if f is thrice
continuously differentiable, then

f(x+h) = f(x) +∇f(x)′h+ 1
2h
′(∇2f)(x)h+R2(x,h),

where R2(x,h) = o(|h|2) as h→ 0, although we do not have as neat a form for the remainder as
we did above.
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8.3.3 Interchanging the Order of Differentiation and Integration

There is also another closely related result that allows us to interchange the order of integration
and partial differentiation. This result, known as the Leibniz integral rule, can be proven through
the use of the dominated convergence theorem, as we show below.

Theorem 8.16 (Leibniz Integral Rule)
Let L be the collection of all Lebesgue measurable subsets of R, λ the Lebesgue measure on
the real line, and J ∈ L an open subset of the real line. Let (E,E ,µ) be a measure space, and
suppose that f : E×J → R is a function such that:

i) For any t ∈ J , the section ft : E→ R is a µ-integrable function.

ii) For any x ∈E, the section fx : J →R is differentiable with the derivative at t ∈ J denoted
df(x,t)
dt .

iii) There exists a µ-integrable non-negative function θ ∈ E+ such that∣∣∣∣df(x,t)
dt

∣∣∣∣≤ θ(x)

for any t ∈ J and x ∈ E.

Then, the mapping x 7→ df(x,t)
dt is µ-integrable for each t∈ J , while the mapping t 7→

∫
E f(x,t)dµ(x)

is differentiable on J . Furthermore, the derivative at each t ∈ J is given as

d

dt

∫
E
f(x,t)dµ(x) =

∫
E

df(x,t)
dt

dµ(x).

Proof) For any t ∈ J , define the function gt : E→ R as

gt(x) = df(x,t)
dt

for any x ∈E. gt is then a E-measurable function because it is the limit of the sequence
{gn,t}n∈N+ of E-measurable functions defined as

gn,t(x) = f(x,t+ 1/n)−f(x,t)
1/n

for any x ∈ E and n ∈N+. Furthermore, it is µ-integrable because∫
E
|gt|dµ≤

∫
E
θdµ <+∞

by the monotinicty of integration and the fact that gt is dominated by the µ-integrable
non-negative function θ.
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Now define the function G : J → R as

G(t) =
∫
E
f(x,t)dµ(x)

for any t ∈ J . The proof will be completed if we can show that G is differentiable for
any t ∈ J with derivative equal to

∫
E gtdµ. To this end, fix some t ∈ J .

For any non-zero h ∈ R such that t+h ∈ J and any convex combination of t and t+h

is contained in J (such a h exists because J is open),

G(t+h)−G(t)
h

=
∫
E

f(x,t+h)−f(x,t)
h

dµ(x)

by the linearity of integration. Fixing x∈E, because the section fx of f is differentiable
on the closed interval with endpoints t, t+h and thus continuous on that interval, by
the mean value theorem there exists a t0 between t and t+h such that

f(x,t+h)−f(x,t) = df(x,t0)
dt

·h= gt0(x) ·h.

gt0 is dominated by θ, so by implication∣∣∣∣f(x,t+h)−f(x,t)
h

∣∣∣∣≤ |gt0(x)| ≤ θ(x)

This holds for any x ∈ E, and

lim
h→0

f(x,t+h)−f(x,t)
h

= df(x,t)
dt

= gt(x)

for any x ∈ E as well. Therefore, by the dominated convergence theorem,

lim
h→0

G(t+h)−G(t)
h

= lim
h→0

∫
E

f(x,t+h)−f(x,t)
h

dµ(x)

=
∫
E

(
lim
h→0

f(x,t+h)−f(x,t)
h

)
dµ(x) =

∫
E
gtdµ.

This holds for any t ∈ J , so the proof is complete.

Q.E.D.

520


