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Chapter 1

Basic Elements of Probability
Theory

In this chapter we define the basic elements of probability theory, namely random variables,
their distribution functions, expected values and the independence of random variables. Other
concepts that are of secondary importance but which will be employed extensively later on, such
as uniform integrability, are also discussed.

1.1 Pushforward Measures

Let (E,E ,µ) be a measure space, (F,F) a measurable space, and f :E→F a function measurable
relative to E and F . Define the function v : F → [0,+∞] as

v(A) = µ(f−1(A))

for any A ∈ F , which is well defined because f−1(A) ∈ E by measurability, and takes values in
[0,+∞] because µ does. We can show that v defines a measure on (F,F):

• v(∅) = µ(f−1(∅)) = 0, and

• For any disjoint {An}n∈N+ ⊂ F , {f−1(An)}n∈N+ ⊂ E is disjoint (for any n,m ∈ N+ such
that n 6=m, f−1(An)∩f−1(Am) = f−1(An∩Am) = ∅), and as such, denoting A=⋃

nAn,

v(A) = µ(f−1(A)) = µ(
⋃
n

f−1(An)) =
∞∑
n=1

µ(f−1(An)) =
∞∑
n=1

v(An)

by the countable additivity of µ.

We call v the pushforward of µ with respect to f , and denote it by v = µ◦f−1. The following
theorem relates the integral of a measurable function under v with that under µ:
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Theorem 1.1 Let (E,E ,µ) be a measure space, (F,F) a measurable space, and h :∈ E/F .
Defining v = µ◦h−1, for any f ∈ F+, we have∫

F
fdv =

∫
E

(f ◦h)dµ.

If f is a F-measurable complex function that is v-integrable, then f ◦h is E-measurable and
µ-integrable with integral given by ∫

F
fdv =

∫
E

(f ◦h)dµ.

Proof) Suppose initially f is a F-measurable simple function with canonical form f =∑n
i=1αi ·

IAi for α1, · · · ,αn ∈ [0,+∞) and A1, · · · ,An ∈ F . Then,

∫
F
fdv =

n∑
i=1

αi ·v(Ai) =
n∑
i=1

αi ·µ(h−1(Ai))

=
n∑
i=1

αi ·
∫
E

(IAi ◦h)dµ

=
∫
E

(f ◦h)dµ. (Linearity of Integration)

Now let f ∈ F+ in general. Then, there exists a sequence {fn}n∈N+ of F-measurable
simple functions increasing to f ; for any n ∈N+,∫

F
fndv =

∫
E

(fn ◦h)dµ

by our above result, and becasue {fn◦h}n∈N+ is a sequence of non-negative E-measurable
functions increasing to f ◦h, which is E-measurable because measurability is preserved
across compositions, by the MCT we have∫

F
fdv = lim

n→∞

∫
F
fndv = lim

n→∞

∫
E

(fn ◦h)dµ=
∫
E

(f ◦h)dµ.

Finally, suppose that f is a E-measurable complex function that is v-integrable. This
indicates that ∫

F
Re(f)±dv,

∫
F
Im(f)±dv <+∞,

and as such that ∫
E

(Re(f)± ◦h)dµ,
∫
E

(Im(f)± ◦h)dµ <+∞

as well by the preceding result. Since

Re(f)± ◦h=Re(f ◦h)±
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and a similar result holds for Im(f ◦h), it follows that f ◦h is E-measurable and µ-
integrable. By the linearity of integration for integrable complex functions, we also
have ∫

E
(f ◦h)dµ=

∫
F
fdv.

Q.E.D.

The pushforward measure and its integral is integral (pun intended) to the study of the distri-
bution of random variables, as well as ergodicity.
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1.2 The Lebesgue-Stieltjes Integral on the Real Line

Here we construct the Lebesgue-Stieltjes measure in the same manner as we did the Lebesgue
measure, namely through the Riesz representation theorem and the Riemann-Stieltjes integral
as our positive linear functional.

Since we will at present mainly focus on euclidean space, we reintroduce some notations per-
taining to euclidean spaces. Let the standard euclidean topology on the euclidean k-space Rk

be denoted τRk ; recall that τRk , the metric topology induced by the euclidean metric on Rk,
is equivalent to the product topology τR×·· ·× τR︸ ︷︷ ︸

k

on Rk, where τR is the standard euclidean

topology n R, which is exactly the order topology on R. It follows that the Borel σ-algebra B(Rk)
generated by τRk is the product σ-algebra B(R)×·· ·×B(R)︸ ︷︷ ︸

k

, where B(R) is the Borel σ-algebra

generated by τR.
The Lebesgue measure on Rk will be denoted λk and the collection of all Lebesgue measurable
sets by Lk; the space (Rk,Lk,λk) is the completion of the corresponding Borel space on Rk. λk is
also a regular Borel measure that is translation-invariant. If we write λ without a subscript, then
it denotes the Lebesgue measure on the real line or some Borel-measurable subset of the real line.

Due to the complexity of constructing the Lebesgue-Stieltjes measure on an arbitrary k-dimensional
space, we only construct the version of the measure on the real line. As in the case of the Lebesgue
measure, we start by constructing the Riemann-Stieltjes Integral.

1.2.1 Properties of Increasing Right Continuous Functions

Let F : R→ R be an increasing and right-continuous function; it then follows that F has the
following properties:

• F has left limits
For any x ∈ R, the set A = {F (y) | y < x} is bounded above by F (x) < +∞ due to the
monotonicity of F , so by the least upper bound property of the real line, there exists an
α ∈ R such that

α= supA= sup
y<x

F (y).

We claim that α is precisely the left limit of F at x: to see this, let {xn}n∈N+ be any
sequence in R that increases to x but does not include x. Since {F (xn)}n∈N+ ⊂A increasing
sequence (xn↗ x, it has α as an upper bound and thus converges to supn∈N+ F (xn)≤ α.
Suppose that supn∈N+ F (xn) < α; then, by the definition of the supremum, there exists
an y < x such that supn∈N+ F (xn) < F (y) ≤ α, but letting ε = x− y > 0, there exists an
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N ∈N+ such that

x−xn < ε for any n≥N.

It follows that y <xN and thus F (y)<F (xN ), a contradiction. Therefore, supn∈N+ F (xn) =
α. This holds for any sequence in R that increases to x but does not include x, so

α= lim
y↑x

F (y) = F (x−),

the left limit of F at x.
This makes F a cádlág function (or rcll, right continuous with left limits).

• F has countably many discontinuities
To see this, let D⊂R be the set of all discontinuities of F , and define the function r :D→Q
so that, for any x ∈ D, r(x) is some rational number in the interval (F (x−),F (x)). For
any x,y ∈D such that x 6= y, assuming without loss of generality that x < y, we have

F (x−)< r(x)< F (x)≤ F (y−)< r(y)< F (y),

where we used the fact that F (y−) = supt<yF (t) ≥ F (x). Therefore, x 6= y implies that
r(x) 6= r(y), or that r is a one-to-one function. Since Q is countable, this means that D
must also be countable.

1.2.2 The Riemann-Stieltjes Integral

We now construct the Riemann-Stieltjes Integral with respect to F : we proceed in steps.

Step 1: Integral for Step Functions
Let f : [a,b]→ C be any complex function defined on the interval [a,b]; then, for any
n ∈N+, we define the functional ΛFn of f as

ΛFn f =
n∑
i=1

f(xi) · (F (xi)−F (xi−1)) ,

where {x0, · · · ,xn} ⊂ [a,b] is a partition of [a,b] defined as xi = a+ b−a
n i for 0≤ i≤ n. For

notational brevity, we put ∆F (xi) = F (xi)−F (xi−1).
Note how Λn is a positive linear functional; for any f,g : [a,b]→ R and z ∈ C,

ΛFn (zf +g) = z ·
n∑
i=1

f(xi) ·∆F (xi) +
n∑
i=1

g(xi) ·∆F (xi) = z ·ΛFn f + ΛFn g,
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while if f is non-negative, then

ΛFn f =
n∑
i=1

f(xi) ·∆F (xi)≥ 0

because each f(xi) and F (xi) are non-negative (F is an increasing function). Consequently,
ΛFn is also montonic, that is,

ΛFn f ≤ ΛFn g

if f ≤ g.

Step 2: Integral for Continuous Compactly Supported Functions
Now choose any real valued f ∈Cc(R), that is, let f be a continuous compactly supported
real-valued function on R. Letting the (compact) support of f be K = {f 6= 0} ⊂ R, there
exists a closed interval [a,b] containing K (due to the Heine-Borel theorem, K is bounded).
f is uniformly continuous on the real line (for a proof, refer to the construction of the
Lebesgue measure in the measure theory text), so for any ε > 0 there exists a δ > 0 such
that

|f(x)−f(y)|< ε for any |x−y|< δ.

Choose N ∈ N+ such that b−a
N < δ, and let n ≥ N . Letting {x0, · · · ,xn} ⊂ [a,b] be the

corresponding partition of [a,b], define gn,hn : [a,b]→ C as

gn(x) = min
y∈[xi−1,xi]

f(x), hn(x) = max
y∈[xi−1,xi]

f(x)

for any x ∈ [a,b], assuming that if x ∈ [xi−1,xi] for some 0≤ i≤ n. gn,hn take values in R
because each [xi−1,xi] is compact and f is continuous (by an application of the extreme
value theorem). Because |xi−xi−1|= b−a

n < δ, it follows from the uniform continuity result
that

|gn(x)−hn(x)|= max
x,y∈[xi−1,xi]

|f(x)−f(y)|< ε

for any x ∈ [a,b].
By another application of the extreme value theorem, we can see that there exist x∗,x∗ ∈R
such that

f(x∗) = max
x∈R

f(x) and f(x∗) = min
x∈R

f(x).

Since gn(x)≤ f(x)≤ hn(x) for any x ∈ [a,b], we have

f(x∗) · (F (b)−F (a))≤ ΛFn gn =
n∑
i=0

gn(x) ·∆F (xi)≤
n∑
i=0

f(x) ·∆F (xi) = ΛFn f
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≤
n∑
i=0

hn(x) ·∆F (xi) = ΛFn hn ≤ f(x∗) · (F (b)−F (a))

and

ΛFn hn−ΛFn gn =
n∑
i=0

(hn(x)−gn(x)) ·∆F (xi)< ε ·
n∑
i=0

∆F (xi) = ε · (F (b)−F (a)) .

This holds for any n≥N , so

liminf
n→∞

ΛFn gn ≤ liminf
n→∞

ΛFn f,

limsup
n→∞

ΛFn f ≤ limsup
n→∞

ΛFn hn,

where all limits are in R becauase the sequences {ΛFn gn}n∈N+ and {ΛFn hn}n∈N+ take values
in [f(x∗) · (F (b)−F (a)) ,f(x∗) · (F (b)−F (a))].
We can also see that

limsup
n→∞

ΛFn hn− liminf
n→∞

ΛFn gn ≤ limsup
n→∞

(
ΛFn hn−ΛFn gn

)
≤ ε · (F (b)−F (a)) .

By implication,

0≤ limsup
n→∞

ΛFn f − liminf
n→∞

ΛFn f ≤ ε · (F (b)−F (a)) .

Finally, this holds for any ε > 0, so

limsup
n→∞

ΛFn f = liminf
n→∞

ΛFn f = lim
n→∞

ΛFn f.

The Riemann-Stieltjes integral of f with respect to F is defined as

ΛF f = lim
n→∞

ΛFn f ∈ R.

For an arbitrary complex valued f ∈Cc(R), since Re(f), Im(f) are real-valued continuous
compactly supported functions on R, by the linearity of each ΛFn we can define

ΛF f := ΛFRe(f) + i ·ΛF Im(f)

= lim
n→∞

ΛFnRe(f) + i ·
(

lim
n→∞

ΛFn Im(f)
)

= lim
n→∞

ΛFn f ∈ C.

That ΛF : Cc(R)→ C is a positive linear functional follows from the fact that each ΛFn is: for
any f,g ∈ Cc(R) and z ∈ C, zf +g ∈ Cc(R), so we have

ΛF (zf +g) = lim
n→∞

ΛFn (zf +g)
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= z ·
(

lim
n→∞

ΛFn f
)

+ lim
n→∞

ΛFn g

= z ·ΛF f + ΛF g,

and if f takes values in [0,+∞), then because each ΛFn f ≥ 0, we have

ΛF f = lim
n→∞

ΛFn f ≥ 0

as well.

1.2.3 Application of the Riesz Representation Theorem

We can now finally construct the Lebesgue-Stieltjes measure using the positive linear functional
that is the Riemann-Stieltjes integral with respect to F .

Theorem 1.2 (Construction of the Lebesgue-Stieltjes Measure on R1)
Let F : R→ R be an increasing, right continuous function. Then, there exists a σ-algebra LF
and a measure λF on R such that:

i) LF contains every Borel set on R, that is, B(R)⊂ LF .

ii) (Completeness) (R,LF ,λF ) is a complete measure space.

iii) (Regularity of the Measure) λF is a regular Borel measure, that is, for any A ∈ LF ,

λF (A) = inf{λF (V ) |A⊂ V,V ∈ τR}

= sup{λF (K) |K ⊂A,K is compact}

iv) (The Approximation Property) For any A∈LF and ε > 0, there exist open and closed
sets V and K such tat K ⊂A⊂ V and

λF (V \K)< ε.

v) For any half-open interval (a,b] on R such that a < b,

λF ((a,b]) = F (b)−F (a).

Proof) The topological space (R, τR) is a locally compact Hausdorff space. We saw earlier that
the Riemann-Stieltjes integral ΛF : Cc(R)→ C is a positive linear functional; by the
Riesz representation theorem, it follows that there exists a σ-algebra LF on R and a
measure λF on (R,LF ) such that:

– B(R)⊂ LF ,

11



– (R,LF ,λF ) is complete,

– λF (K)<+∞ for any compact K ⊂ R,

– For any A ∈ LF ,

λF (A) = inf{λF (V ) |A⊂ V,V ∈ τR},

– For any A ∈ LF such that λF (A)<+∞ or A ∈ τR,

λF (A) = sup{λF (K) |K ⊂A,K is compact},

and

– For any f ∈ Cc(R),

ΛF f =
∫
R
fdλF .

Becauase R is also σ-compact (it is the union of the sequence {[−n,n]}n∈N+ of compact
sets in R), by theorem 4.3 of the measure theory text it also follows that λF is a regular
measure that possesses the approximation property.

It remains to be seen that λF is the Lebesgue-Stieltjes measure representing F , that is,

λF ((a,b]) = F (b)−F (a).

To this end, choose a half open interval (a,b] ⊂ R such that a < b. For any n ∈ N+,
define

An =
[
a+ b−a

2n ,b− b−a2n

]
⊂ (a,b).

Because each An is a compact set contained in the open set (a,b), and (R, τR) is a
locally compact Hausdorff space, by Urysohn’s lemma there exists a fn ∈ Cc(R) such
that An ≺ fn ≺ (a,b), that is, fn takes values in [0,1], fn(x) = 1 for any x ∈An, and the
support of fn is contained in (a,b). For any m ∈ N+, by the monotonicity of ΛFm and
the fact that IAn ≤ fn ≤ I(a,b), we have

ΛFmIAn ≤ ΛFmfn ≤ ΛFmI(a,b).

By definition,

ΛFmIAn = F

(
b− b−a2n

)
−F

(
a+ b−a

2n

)
and, because I(a,b) is 0 except on the closed interval [a,b],

ΛFmI(a,b) = F

(
a+ b−a

m
(m−1)

)
−F (a).

12



Therefore, taking m→∞ on both sides of the above inequality, by the existence of left
limits for F we obtain

F

(
b− b−a2n

)
−F

(
a+ b−a

2n

)
≤ ΛF fn ≤ F (b−)−F (a).

Taking n→∞ again, the right continuity and the existence of left limits for F once
again tell us that

lim
n→∞

ΛF fn = F (b−)−F (a).

From the Riesz representation theorem we concluded that

ΛF fn =
∫
R
fndλF

for any n∈N+. Clearly, {fn}n∈N+ is a sequence of non-negative functions that increases
to I(a,b). In addition, because each fn is continuous, it is Borel-measurable. It follows
from the MCT that

lim
n→∞

ΛF fn = lim
n→∞

∫
R
fndλF =

∫
R
I(a,b)dλF = λF ((a,b)).

Therefore,

λF ((a,b)) = F (b−)−F (a) = sup
x<b

F (x)−F (a).

To extend this result to half-open intervals, note that

(a,b] =
⋂
n

(
a,b+ 1

n

)
,

where {
(
a,b+ 1

n

)
}n∈N+ is a decreasing sequence of sets in LF with λF ((a,b+ 1)) =

supx<b+1F (x)−F (a)<+∞. By sequential continuity, we now have

λF ((a,b]) = lim
n→∞

λF

((
a,b+ 1

n

))
= lim
n→∞

(
sup

x<b+1/n
F (x)−F (a)

)
= inf
n∈N+

sup
x<b+1/n

F (x)−F (a).

Note that F (b)≤ supx<b+1/nF (x) for any n∈N+, so that F (b)≤ infn∈N+ supx<b+1/nF (x) =
β. Suppose this holds as a strict inequality. Then, letting ε = β−F (b) > 0, because
{b+ 1

n}n∈N+ is a sequence in R strictly decreasing to b, by the right continuity of F
there exists an N ∈N+ such that

F

(
b+ 1

n

)
−F (b)< ε

13



for any n≥N . This implies that

sup
x<b+1/N

F (x)≤ F (b+ 1/N)< β,

which contradicts the fact that β is the infimum of supx<b+1/nF (x) over n ∈ N+. It
must therefore be the case that

F (b) = inf
n∈N+

sup
x<b+1/n

F (x),

and as such,

λF ((a,b]) = F (b)−F (a).

Q.E.D.

We have constructed a measure λF defined on all Borel setsB(R) that assigns the mass

λF ((a,b]) = F (b)−F (a) and λF ((a,b)) = F (b−)−F (a)

to half-open intervals (a,b] and open intervals (a,b) on the real line. If F were continuous on R,
then F (b−) = F (b) and λF ((a,b]) = λ((a,b)), meaning that λF ({b}) = 0 for any b ∈ R. In fact,
the Lebesgue measure on R is precisely the Lebesgue-Stieltjes measure on R with F (x) = x for
any x ∈ R.
For the integral of some Borel measurable complex or non-negative function f with respect to
λF , we often write ∫

R
fdλF =

∫ ∞
−∞

f(x)dF (x),

given that the integral is well-defined.
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1.3 Random Variables and their Distributions

Let (Ω,H,P) be a probability space and (E,E) an arbitrary measurable space. A random variable
taking values in (E,E) is a function X : Ω→E that is measurable with respect to H and E , that
is, X−1(A) ∈H for any A ∈ E . This indicates that the quantity

P(X ∈A) = P
(
X−1(A)

)
,

or the probability that X takes values in A, is well-defined in [0,1] for any A ∈ E .
Below we define the distribution, density and distribution function of this arbitrary random
variable X.

1.3.1 Distribution

The distribution µ of X is defined as the pushfoward of P with respect to X, that is, as the
measure µ= P◦X−1 on (E,E). As such, the value µ assigns to some measurable set A ∈ E is

µ(A) = P(X−1(A)),

or precisely the probability that X takes values in A. Since µ(E) = P(X−1(E)) = 1, µ is a prob-
ability measure.

1.3.2 Density

Suppose that v is a σ-finite measure on (E,E) such that the distribution µ of X is absolutely
continuous with respect to v, that is, µ << v. By the Radon-Nikodym Theorem, because v is
σ-finite and µ is finite, there exists a Radon-Nikodym derivative f of µ with respect to v that is
unique a.e. [v], that is, f is a non-negative E-measurable function such that

µ(A) =
∫
A
fdv

for any A ∈ E , and if the above relationship holds for any other E-measurable function g, then
f = g a.e. [v]. We call the equivalence class [f ]v the density of X with respect to v; for notational
simplicity, we refer to the equivalence class [f ]v by its representative f .

1.3.3 Distribution Function

In the case (E,E) = (R,B(R)), a related concept is the distribution function of X, which is the
function F : R→ [0,1] defined as

F (x) = P(X ≤ x) = µ((−∞,x])
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for any x ∈R and the distribution µ of X. Distribution functions are useful because they deter-
mine the distribution of a random variable. To see this, note that {(−∞,x] | x∈R} is a π-system
that generates B(R); if two real random variables X, Y have the same distribution function,
then their distributions agree on this π-system, and because they are finite, this also implies
that they agree on the Borel σ-algebra B(R).

The following are some properties of distribution functions that are easily recovered:

• F takes values in [0,1]
This trivially follows from the fact that P takes values in [0,1].

• F is increasing on R
This too is trivial; for any x,y ∈R such that x≤ y, we have the inclusion (−∞,x]⊂ (−∞,y],
so that, by the monotonicity of measures,

F (x) = µ((−∞,x])≤ µ((−∞,y]) = F (y).

• F is right continuous on R
For any x ∈R and a sequence {xn}n∈N+ that decreases to x, we can see that the sequence
{(−∞,xn]}n∈N+ of sets is decreasing with intersection (−∞,x]. Since µ, being a probability
measure, satisfies µ((−∞,x1])<+∞, by sequential continuity

F (x) = µ((−∞,x]) = lim
n→∞

µ((−∞,xn]) = lim
n→∞

F (xn),

which shows that F is right continuous.
Combined with the monotonoicity of F , we obtain the more precise result

F (xn)↘ F (x).

• F (x)→ 0 as x→−∞ and F (x)→ 1 as x→+∞
Let {xn}n∈N+ be a sequence decreasing to −∞. Then, the sequence {(−∞,xn]}n∈N+ is a
decreasing sequence of Borel measurable sets with intersection ∅. By sequential continuity
again,

lim
n→∞

F (xn) = lim
n→∞

µ((−∞,xn]) = µ(∅) = 0.

This holds for any sequence decreasing to −∞, so

lim
x↘−∞

F (x) = 0.
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On the other hand, let {xn}n∈N+ be a sequence increasing to +∞. Then, the sequence
{(−∞,xn]}n∈N+ is an increasing sequence of Borel measurable sets with union R. By
sequential continuity again,

lim
n→∞

F (xn) = lim
n→∞

µ((−∞,xn]) = µ(R) = 1.

This holds for any sequence increasing to +∞, so

lim
x↗+∞

F (x) = 1.

In general any function F : R→R that satisfies the four properties above is called a distribution
function. The following is a neat corollary of theorem 1.2:

Corollary to Theorem 1.2 Let F : R→ R be a distribution function. Then, there exists
a random variable X taking values in (R,B(R)) such that F is the distribution function of X.
Another way to put it is that there exists a unique probability measure µ on (R,B(R)) such that

F (x) = µ((−∞,x])

for any x ∈ R.

Proof) Because F is increasing and right continuous, by theorem 1.2 there exists a measure µ
on (R,B(R)) such that

µ((a,b]) = F (b)−F (a)

for any half-open interval (a,b] ⊂ R such that a < b. For any x ∈ R, because {(−n+
x,x]}n∈N+ is an increasing sequence of Borel sets with union (−∞,x], by sequential
continuity

µ((−∞,x]) = lim
n→∞

µ((−n+x,x]) = F (x)− lim
n→∞

F (−n+x) = F (x),

where the fourth property of distribution functions justifies the last equality. Finally,
by sequential continuity and the fourth property again,

µ(R) = lim
n→∞

F (n) = 1,

so µ is a probability measure on (R,B(R)). The uniqueness of µ follows from the fact
that F determines µ, as stated earlier.
The existence of a random variable X with F as its distribution function is then trivial;
we need only put the probability space (Ω,H,P) as Ω =R, H=B(R) and P= µ, and the
random variable defined as X(ω) = ω for any ω ∈ Ω has F as its distribution function.
Q.E.D.
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Returning to our original setting, in which F is the distribution function of some real valued
random variable X with distribution µ, note that, for any x ∈ R,

µ((−∞,x)) = lim
n→∞

µ

((
−∞,x− 1

n

])
= sup
n→∞

F

(
x− 1

n

)
= F (x−)

by the sequential continuity of µ. This tells us that

µ({x}) = µ((−∞,x])−µ((−∞,x)) = F (x)−F (x−).

We say that X is a continuous random variable if its distribution function F is continuous; by
implication, µ({x}) = P(X = x) = 0, that is, the probability that X equals a single value is 0. If,
in addition, µ is absolutely continuous with respect to the Lebesgue measure λ, then the density
f of X with respect to λ is called the probability density function (PDF) of X.

It is worth touching on the (infamous) relationship between the density of a random variable and
its distribution function. Let X be a real-valued random variable with distribution µ, density f
with respect to the Lebesgue measure, and distribution function F . If f is continuous at some
x ∈ R, then because

F (x) = µ((−∞,x]) =
∫ x

−∞
f(t)dt,

the fundamental theorem of calculus tells us that F is differentiable at x with derivative
F ′(x) = f(x).

1.3.4 Quantile Function

A mathematical object that is closely related to the distribution function is the quantile function,
which can be seen as a generalized inverse of the distribution function. Let X be a random
variable taking values in (R,B(R)) with distribution µ = P◦X−1 and distribution function F :
R→ [0,1] defined as

F (x) = µ((−∞,x])

for any x ∈ R. The corresponding quantile function q : (0,1)→ R is defined as

q(t) = inf{x ∈ R | F (x)≥ t}

for any t∈ (0,1). Note that q(t) is well-defined for any t∈ (0,1) because the set {x∈R |F (x)≥ t}
is non-empty (since F (x)↗ 1 as x↗∞, for any t < 1 there exists a large enough x such that
F (x) > t) and bounded below (since F (x)↘ 0 as x↘−∞, for any t > 0 there exists a small
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enough x such that F (x)< t, meaning x is a lower bound of our set). q is a generalized inverse
of F in the following sense:

Lemma 1.3 (Relationship between Distribution and Quantile Functions)
Let X be a real-valued random variable and F : R→ [0,1] and q : (0,1)→R its distribution and
quantile functions. Then, the following hold true:

i) q is increasing on (0,1).

ii) For any t ∈ (0,1) and x ∈ R such that F (x) ∈ (0,1),

F (q(t))≥ t, and q(F (x))≤ x.

iii) For any t ∈ (0,1) and x ∈ R such that F (x) ∈ (0,1),

q(t)≤ x if and only if t≤ F (x).

Proof) For any t,u ∈ (0,1) such that t < u, since

{x ∈ R | F (x)≥ u} ⊂ {x ∈ R | F (x)≥ t},

we have

q(t) = inf{x ∈ R | F (x)≥ t} ≤ inf{x ∈ R | F (x)≥ u}= q(u).

This shows us that q is increasing.

Choose t∈ (0,1). If q(t)< z for some z ∈R, then by the definition of the infimum, there
exists a z1 < z such that F (z1)≥ t. Since F is increasing,

t≤ F (z1)≤ F (z).

On the other hand, if F (z)≥ t for some z ∈ R, then q(t)≤ z because q(t) is the lower
bound of the set {x ∈ R | F (x) ≥ t}; the contrapositive tells us that, if q(t) > z, then
F (z)< t. Therefore, for any ε > 0 small enough,

F (q(t)− ε)< t≤ F (q(t) + ε).

In particular, taking ε ↓ 0 shows us, by right continuity, that

F (q(t))≥ t.
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Now choose some x∈R such that F (x)∈ (0,1). Since F (x)≥ F (x) and q(t) is the lower
bound of the set {z ∈ R | F (z)≥ t}, we have

q(F (x))≤ x.

To show the third property, choose some t ∈ (0,1) and x ∈ R, and suppose t ≤ F (x).
By definition of q(t) as the infimum, we have q(t) ≤ x. Conversely, suppose q(t) ≤ x.
If q(t) = x, then F (x) = F (q(t))≥ t. If q(t) < x, then by the definition of the infimum
there exists some z < x such that F (z) ≥ t, and since F is increasing, we must have
F (x)≥ F (z)≥ t.

Q.E.D.

Corollary to Lemma 1.3 Let X be a real-valued random variable and F : R→ [0,1] and
q : (0,1)→ R its distribution and quantile functions. Suppose that F (R) = (0,1), so that X is
supported on the entire real line, and that there exists a uniform random variable U on (0,1).
Then,

q(F (X)) =X

almost surely.

Proof) Since q is increasing on (0,1), it has at most countably many discontinuities and is there-
fore Borel measurable. Measurability is preserved across compositions, so Y = q(F (X))
is also a real random variable.

Define X̄ = q(U). Then, for any x ∈ R,

P
(
X̄ ≤ x

)
= P(q(U)≤ x) = P(U ≤ F (x)) = F (x).

where we used property iii) above and the fact that U is uniformly distributed on (0,1).
It follows that X̄ and X have the same distribution function, and is thus identically
distributed.

Now note that, by property ii) above,

q(F (X̄))≤ X̄.

In addition,

F (X̄) = F (q(U))≥ U,
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also by property ii). Finally, since q is increasing,

q(F (X̄))≥ q(U) = X̄.

Putting together the two inequalities, it follows that

q(F (X̄)) = X̄.

Therefore,

1 = P
(
q(F (X̄)) = X̄

)
= P(q(F (X)) =X) ,

where the last equality follows because X̄ ∼ X. As such, q(F (X)) equals X almost
surely.

Q.E.D.

This result shows us that the quantile function can indeed be treated as a sort of inverse
to the distribution function when it comes to real valued random variables. In the process of
the proof of the preceding result, we have shown that, given any real random variable X with
quantile function f , and any uniformly distributed random variable U on (0,1), the composition
q ◦U is identically distributed to X. This fact is referred to as the Inverse Probability Integral
Transform (PIT), and is widely used to sample the values of some random variable X with a
given distribution. Specifically, we sample from the uniform distribution over (0,1) and then
take the q-value of that sampled value as the sampled value from the distribution of X.
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1.4 The Information Contained in a Random Variable

Here we introduce the idea of σ-algebras as representing the information contained in a certain
random variable. Let (E,E) be a measurable space and X a random variable taking values in
(E,E). Define the collection

σX = {X−1(A) |A ∈ E}

of H-measurable subsets of Ω (they are H-measurable becauase X is a random variable). It is
easily shown that σX is a σ-algebra on Ω:

• Ω =X−1(E), so Ω ∈ σX.

• For any H ∈ σX, there exists an A ∈ E such that H =X−1(A); then, Hc =X−1(Ac) ∈ σX
as well.

• For any countable collection {Hn}n∈N+ ⊂ σX, letting Hn =X−1(An) for some An ∈ E for
all n ∈N+, define A=⋃

nAn ∈ E . It follows that

⋃
n

Hn =
⋃
n

X−1(An) =X−1(A) ∈ σX.

Since every set in σX is contained in H, σX is a sub σ-algebra of H. In fact, σX is the smallest
(coarsest) σ-algebra on Ω relative to which X is measurable. For this reason, we call σX the
σ-algebra generated by X.
We can furnish an intuitive generating set for the σ-algebra generated by a random variable
taking values in (E,E), given that we know of a generating set for E .

Lemma 1.4 Let X be a random variable taking values in the measurable space (E,E), and
E0 a subset of E that generates E . Then, the collection

H0 = {X−1(A) |A ∈ E0}

of subsets of Ω generates σX. In addition, if E0 is a π-system, so is H0.

Proof) Clearly, because H0 ⊂ σX, the σ-algebra generated by H0 is contained in σX.
To show the reverse inclusion, define

D = {A⊂ E |X−1(A) ∈ σH0}.

We can show that D is a σ-algebra on E:

i) E ∈ D because X−1(E) = Ω is contained in any σ-algebra on Ω.
ii) For any A ∈ D, by definition we have X−1(A) ∈ σH0, and because σ-algebras are

closed under complements, X−1(Ac) =
(
X−1(A)

)c ∈ σH0. This means that Ac ∈D
as well.
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iii) For any {An}n∈N+ with union A=⋃nAn, because X−1(An)∈ σH0 for any n∈N+

and σH0 is closed under countable unions,

X−1(A) =
⋃
n

X−1(An) ∈ σH0,

which tells us that A ∈ D.

Since X−1(A)∈H0 ⊂ σH0 for any A∈ E0, D contains the generating set E0 of E . There-
fore, D also contains E , which implies that X−1(A) ∈ σH0 for any A ∈ E and thus that
σX ⊂ σH0. Putting the results together, we have σH0 = σX, so that H0 is a generating
set for σX.

Finally, suppose that E0 is a π-system. Then, choosing any H1,H2 ∈ H0 and letting
Ai ∈ E0 satisfy Hi =X−1(Ai) for i= 1,2, we have

H1∩H2 =X−1(A1∩A2) ∈H0

because A1∩A2 ∈ E0. Therefore, H0 is also a π-system.
Q.E.D.

Heuristically, σX represents the amount of information contained in X, since σX is exactly the
collection of all the events whose probabilities we would know if X were known. If σX ⊂ σY
for some other random variable Y , then knowledge of Y allows us to find the probabilities of a
greater number of events compared to knowledge of X; it is in this sense that Y contains more
information than X. In fact, if σX ⊂ σY , then knowledge of Y essentially implies knowledge of
X. This means that X is included in the information set of Y , an idea that is mathematically
articulated through the fact that X is σY -measurable in this case.
We can actually go one step further if X is non-negative or complex. An important related
result states that, the claim that a non-negative or complex random variable X is included in
the information set of a random variable Y taking values in an arbitrary space is equivalent to
stating that X is actually a function of Y .

Theorem 1.5 (The Doob-Dynkin Lemma)
Let Y be a random variable taking values in the measurable space (E,E). X is a σY -measurable
non-negative or complex random variable if and only if there exists a non-negative or complex
E-measurable function f such that X = f ◦Y .

Proof) The sufficiency part is very easy to show. Let f be some non-negative or complex E-
measurable function; then, because Y ∈ H/E by definition of a random variable and
measurability is preserved across compositions, the composition f ◦Y is H-measurable
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and thus a random variable. In addition, for any Borel-measurable A,

X−1(A) = Y −1(f−1(A)) ∈ σY

because f−1(A) ∈ E . This shows us that X is σY -measurable as well.

To show necessity, we follow the usual construction.
Suppose initially that X is a σY -measurable simple function with canonical form X =∑n
i=1αi · IHi for α1, · · · ,αn ∈ [0,+∞) and H1, · · · ,Hn ∈ σY . By definition, for any 1 ≤

i≤ n, there exists an Ai ∈ E such that Hi = Y −1(Ai); as such,

X =
n∑
i=1

αi · IY −1(Ai) =
(

n∑
i=1

αi · IAi

)
◦Y.

Defining

f =
n∑
i=1

αi · IAi ,

because α1, · · · ,αn ∈ [0,+∞) and A1, · · · ,An ∈ E , f is a E-measurable simple function;
we have thus shown that X = f ◦Y for some f ∈ E+.

Now let X be an arbitrary non-negative σY -measurable function. Letting {Xn}n∈N+

be a sequence of σY -measurable simple functions increasing to X, for each n ∈N+ the
preceding result tells us that there exists a E-measurable simple function fn such that
Xn = fn ◦Y . Defining f = supn∈N+ fn, f is a E-measurable non-negative function. Fur-
thermore, for any ω ∈ Ω, because {Xn(ω) = fn(Y (ω))}n∈N+ is an increasing sequence,
it converges to supn∈N+ fn(Y (ω)) = f(Y (ω)). Since Xn(ω)↗X(ω), by the uniqueness
of the limit, we have X(ω) = f(Y (ω)). This holds for any ω ∈Ω, so ultimately we have

X = f ◦Y

for some f ∈ E+.

Finally, let X be a complex-valued σY -measurable function. Re(X)± and Im(X)±

are non-negative σY -measurable functions, so by the preceding result, there exist non-
negative E-measurable functions f+,f−,g+,g− such that

Re(X)± = f± ◦Y and Im(X)± = g± ◦Y.

Now define the E-measurable function

f̄+ = f+ · I{f+<+∞},
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and likewise for f̄−, ḡ+ and ḡ−. Since Re(X)± and Im(X)± are real-valued (X is com-
plex valued),

Re(X)+ = f+ ◦Y = f̄+ ◦Y,

where the second equality follows because f+ and f̄+ agree on the points at which f+

is finite. Therefore, defining

f = f̄+− f̄−+ i(ḡ+− ḡ−) ,

which is well-defined because each function comprising the term on the right is real-
valued, f is a E-measurable complex function and

X = f ◦Y.

Q.E.D.
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1.5 Expected Values

Let X once again be a random variable taking values in an arbitrary measurable space (E,E),
and f :E→C a complex E-measurable function. Then, f ◦X is a complex random variable, and
the expected value of f ◦X is defined as the integral of f ◦X with respect to P, if it exists:

E [f ◦X] :=
∫

Ω
(f ◦X)dP.

Suppose µ is the distribution of X, g is its density with respect to some σ-finite measure v, and,
in the case that (E,E) = (R,B(R)), F is its distribution function. The following are equivalent
representations of the expected value of f ◦X:

In Terms of the Distribution
Since µ=P◦X−1, by theorem 1.1, if f is µ-integrable or non-negative, then the expectation
of f ◦X is well-defined and given by

E [f ◦X] =
∫

Ω
(f ◦X)dP =

∫
E
fdµ.

In Terms of the Density
Since g ∈ E+ is the Radon-Nikodym derivative of µ with respect to v, if fg is v-integrable
or non-negative, then the expectation of f ◦X is well-defined and given by

E [f ◦X] =
∫
E
fdµ=

∫
E
f(x)g(x)dv(x).

In the special case that (E,E) = (Rk,B(Rk)) and v = λk, we can write

E [f ◦X] =
∫
Rk
f(x)g(x)dx

if fg is Lebesgue-integrable or non-negative.

In Terms of the Distribution Function
Suppose (E,E) = (R,B(R)). From theorem 1.2 and the determining property of the distri-
bution function, we can see that

µ= λF

on B(R), where λF is the Lebesgue-Stieltjes measure with respect to F . It follows that, if
f is λF -integrable or non-negative, then the expectation of f ◦X is well-defined and given
by

E [f ◦X] =
∫
R
fdλF =

∫ ∞
−∞

f(x)dF (x).
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1.5.1 Moments of a Random Variable

Let X be a random variable taking values in (E,E). For any non-negative or real-valued E-
measurable function f and k ∈ [1,+∞), the expected value E

[
(f ◦X)k

]
is called the kth moment

of the random variable f ◦X, should the integral exist. For any real or complex valued random
variable X, E

[
Xk
]

is the kth moment of X, and E
[
|X|k

]
the kth absolute moment of X.

It is clear that X has finite kth absolute moments if and only if X ∈ Lk(H,P). X ∈ Lk(H,P)
implies X ∈Lm(H,P) for any m<k: if 1≤m<k <+∞, then because m

k + k−m
k = 1, by Hölder’s

inequality

‖X‖m =
(∫

Ω
|X|mdP

) 1
m

≤
(∫

Ω
|X|kdP

) 1
k

P(Ω)
k−m
km

=
(∫

Ω
|X|kdP

) 1
k

= ‖X‖k.

Therefore, for any 1≤m<k <+∞, if X has finite kth absolute moments, then it has finite mth
absolute moments as well.

Some moments are encountered more often than others, and so have special designations:

• Mean
Let X be a real or complex random variable with finite first absolute moment. Then, the
mean of X is defined as E [X], which is well-defined (X is P-integrable).

• Variance
Let X be a real random variable with finite second absolute moment. Then, X also has a
finite first absolute moment, so that its mean µ= E [X] is well-defined. Then, the variance
of X is defined as

Var[X] = E
[
(X−E [X])2

]
= E

[
X2
]
−E [X]2 ,

where the second inequality follows from the P-integrability of X−E [X] and the linearity
of integration.
We saw above that Hölder’s inequality implies

E [|X|] = ‖X‖1 ≤ ‖X‖2 =
(
E
[
X2
]) 1

2 .

it follows that

E [X]2 ≤ E [|X|]2 ≤ E
[
X2
]
<+∞,

so Var[X]≥ 0. That is, the variance of a random variable is always non-negative.
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Finally, it is worth noting the implication of Var[X] = 0. In this case,

E
[
(X−E [X])2

]
=
∫

Ω
(X(ω)−E [X])2dP(ω) = 0,

and because (X−E [X])2 is a non-negative H-measurable function, by the vanishing prop-
erty for non-negative functions

(X(ω)−E [X])2 = 0

for P-almost every ω ∈ Ω, that is, X = E [X] almost surely.

• Covariance
This moment concerns two random variables. Let X and Y be real random variables with
finite second absolute moments. Then, E [X] and E [Y ] are well-defined, and by Hölder’s
inequality,

E [|XY |]≤ ‖X‖2‖Y ‖2 <+∞,

meaning that E [XY ] is well-defined as well. The covariance of X and Y is defined as

Cov[X,Y ] = E [(X−E [X])(Y −E [Y ])] = E [XY ]−E [X]E [Y ] .

If Var [X] ,Var[Y ]> 0, then the correlation coefficient of X and Y is defined as

corr [X,Y ] = Cov[X,Y ]√
Var[X]

√
Var[Y ]

.

If Cov[X,Y ] = 0, or equivalently, corr [X,Y ] = 0, then we say X and Y are uncorrelated.

• Skewness
Let X be a real random variable with finite third absolute moment and positive variance.
The skewness of X is defined as

E

(X−E [X]√
Var[X]

)3
 ,

which measures how skewed the distribution of X is to either side of its mean. The distri-
bution of X is said to be symmetric around the mean if its skewness is 0.

• Kurtosis
Let X be a real random variable with finite fourth absolute moment and positive variance.
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The kurtosis of X is defined as

E

(X−E [X]√
Var[X]

)4
 ,

and measures the tail thickness of the distribution of X, that is, how fast the distribution
of X peters out as it goes to ±∞.

Let X be a real random variable with distribution µ. Its moment-generating function (MGF)
m : R→ [0,+∞] is defined as

m(t) = E [exp(tX)] =
∫ ∞
−∞

exp(tx)dµ(x)

for any t ∈R; the integral in question always exists in [0,+∞] because the mapping x 7→ exp(tx)
on R is non-negative and measurable for any t ∈ R.
The function m is called the moment-generating function of X because its kth derivative yields
the kth moment of X for any k ∈N+, if the moment exists in R. It is also useful to work with
MGFs because, if they are real valued on the real line, then they determine the distribution of
the associated random variables; that is, if two random variables have the same (real-valued)
MGFs, then they have the same distribution. Proofs for these results are omitted here, but can
be found in most probability theory texts.
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1.5.2 Moments of Random Vectors and Matrices

The discussion so far can be easily extended to random vectors and matrices. Suppose that
X = (X1, · · · ,Xk) is a random vector taking values in Rk. Then, for any k ∈ [1,+∞), the kth
absolute moment of X is defined as E

[
|X|k

]
, whee |·| now denotes the euclidean norm on Rk.

Here, X has finite kth absolute moments if and only if |X| ∈ Lk(H,P), and as such, it still holds
that X has finite absolute mth moments for any m< k if X has finite absolute kth moments.
Note also that X has finite kth moments if and only if X1, · · · ,Xk do: this follows from the
inequality

|Xi| ≤ |X| ≤
k∑
j=1
|Xj |

for any 1≤ i≤ k, which implies that

‖Xi‖k ≤ ‖|X|‖k ≤
k∑
j=1
‖Xj‖k

where the last inequality follows from Minkowski’s inequality.

The special moments are defined analogously to the univariate case: throughout, let X be a
random vector taking values in Rk.

• Mean
If X has finite first absolute moments, then X1, · · · ,Xk do as well. This means that the
mean of X is well-defined as

E [X] = (E [X1] , · · · ,E [Xk]) .

• Variance
If X has finite second absolute moments, then so do X1, · · · ,Xk, and the mean of X is well-
defined as the vector collecting the means of X1, · · · ,Xk. Thus, we can define the variance
of X (also referred to as the variance-covariance matrix of X) as

Var[X] =


Var[X1] · · · Cov[X1,Xk]

... . . . ...
Cov[Xk,X1] · · · Var[Xk]

= E
[
(X−E [X]) (X−E [X])′

]

= E
[
XX ′

]
−E [X]E [X]′ .

Note that, because Cov[Xi,Xj ] = Cov[Xj ,Xi] for any 1 ≤ i, j ≤ k, Var [X] must be a
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symmetric matrix. Furthermore, for any α ∈ Rk,

α′Var[X]α= E
[
α′(X−E [X])(X−E [X])′α

]
= E

[
Y 2
]
≥ 0

for the real random variable Y =α′(X−E [X]). Therefore, Var [X] is a positive semidefinite
matrix.
Positive definiteness in this case plays the same role as positivity in the univariate case:
if Var [X] is positive semidefinite but not positive definite, then there exists a non-zero
α ∈ Rk such that

α′Var[X]α= E
[
α′(X−E [X])(X−E [X])′α

]
= 0.

This means that the variance of the random variable Y =α′(X−E [X]) is 0, which indicates
that Y = E [Y ] = 0 almost surely. In other words, X is contained in the k−1-dimensional
subspace {x ∈ Rk | α′x= α′E [X]} almost surely.

• Covariance
Let Y be another k-dimensional real random vector. Suppose X and Y have finite second
absolute moments. Then, the covariance matrix of X and Y is defined as

Cov[X,Y ] =


Cov[X1,Y1] · · · Cov[X1,Yk]

... . . . ...
Cov[Xk,Y1] · · · Cov[Xk,Yk]

= E
[
(X−E [X])(Y −E [Y ])′

]

= E
[
XY ′

]
−E [X]E [Y ]′ ,

analogously to the univariate case. Note that Cov[X,Y ] is not necessarily symmetric.

As with univariate random variables, we can also define MGFs for random vectors as well. For
any random vector X in Rk with distribution µ, its MGF m : Rk→ [0,+∞] is defined as

m(t) = E
[
exp

(
t′X

)]
=
∫
Rk

exp
(
t′x
)
dµ(x)

for any t ∈ R. It is clear that, for any t ∈ Rk, m(t) is the MGF of the random variable t′X

evaluated at 1.

Random matrices are defined similarly to random vectors. Let ‖·‖ be a matrix norm with the
usual properties of a matrix norm (e.g. the operator norm, the trace norm) and B(Rm×n) the
Borel σ-algebra on Rm×n generated by the metric topology induced by ‖·‖. Then, we can define
a random matrix X taking values in (Rm×n,B(Rm×n)).
As with random vectors, for any k ∈ [1,+∞), the kth absolute moment of X is defined as
E
[
‖X‖k

]
. Again, X has finite kth absolute moments if and only if ‖X‖ ∈Lk(H,P), and as such,
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if X has finite kth absolute moments, then X has finite pth absolute moments for any p < k as
well.
Similarly to random vectors, X has finite kth absolute moments if and only if each entry Xij has
finite kth absolute moments; this follows from the inequality (which holds for both the operator
and trace norms)

|Xlp| ≤ ‖X‖ ≤
m∑
i=1

n∑
j=1
|Xij |

for any 1≤ l ≤m, 1≤ p≤ n.
In the case of random matrices, only the mean of X is well-defined. Specifically, if X has finite
first absolute moments, then the mean of X is defined as

E [X] =


E [X11] · · · E [X1n]

... . . . ...
E [Xm1] · · · E [Xmn]

 .
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1.5.3 Some Important Identities and Inequalities

Here we present some useful identities and inequalities associated with expected values:

Theorem 1.6 The following hold true:

i) (Integral Representation) For any non-negative real random variable X,

E [X] =
∫ ∞

0
P(X > t)dt.

ii) (Markov’s Inequality) Let X be a real valued random variable. For any ε > 0 and
increasing non-negative Borel-measurable function f : R→ R such that f(ε)> 0,

P(X > ε)≤ 1
f(ε)E [f ◦X] .

iii) (Jensen’s Inequality) Let D be a non-empty closed convex subset of Rk and X a k-
dimensional random vector taking values in the interior of D. Suppose X has finite first
moments, and that f : D→ R is a convex function such that f ◦X is integrable. Then,
E [X] is contained in Do, and

f(E [X])≤ E [f ◦X] .

Proof) i) Let X be a real non-negative random variable. For any ω ∈ Ω,

X(ω) =
∫ X(ω)

0
dt=

∫
R
I[0,X(ω))(t)dt

=
∫ ∞

0
I(t,+∞)(X(ω))dt,

so by Fubini’s theorem for non-negative functions,

E [X] =
∫

Ω

∫ ∞
0

I(t,+∞)(X(ω))dtdP

=
∫ ∞

0
E
[
I(t,+∞) ◦X

]
dt

=
∫ ∞

0
P(X > t)dt.

ii) Let f :R→R and ε > 0 be chosen as in the claim above. If X > ε, then f ◦X >f(ε)
because f is increasing, and f is non-negative, so we have the inequality

f(ε) · I{X>ε} ≤ f ◦X.
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Integrating both sides with respect to P yields

f(ε) ·E
[
I{X>ε}

]
≤ E [f ◦X]

by the monotonicity and linearity of the integration of non-negative functions.
Since E

[
I{X>ε}

]
= P(X > ε) and f(ε)> 0, it follows that

P(X > ε)≤ 1
f(ε)E [f ◦X] ,

as was claimed.

iii) We first show that E [X]∈Do. Suppose, for the sake of contradiction, that E [X] /∈
Do. Then, since D is a closed convex set with non-empty interior, by a separation
result (refer to the text on hemicontinuity and convex analysis) there exists a non-
zero v ∈ Rk such that v′E [X]> v′y for any y ∈Do. Since X takes values in Do, it
follows that

v′ (E [X]−X)> 0

on Ω. The linearity of expectations, however, implies that

E
[
v′ (E [X]−X)

]
= 0.

The integrand is a non-negative function, so by the vanishing property we must
have v′ (E [X]−X) = 0 almost surely, which contradicts the inequality above.
Therefore, E [X] ∈Do.

Now we prove the main result. Let Wf be the set of all affine minorants of f ,
that is, the set of affine functions h : Rk→R such that h(x)≤ f(x) for any x ∈D.
Convex functions can be characterized as the supremum of these affine minorants,
that is,

f(x) = sup
h∈Wf

h(x) for any x ∈Do.

Choose any h ∈Wf ; by the definition of affine functions, there exist v ∈ Rk and
c ∈ R such that

h(x) = v′x+ c for any x ∈ Rk.
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By the linearity of integration, h◦X is integrable with integral

E [h◦X] = v′E [X] + c= h(E [X]).

Since h(x)≤ f(x) for any x∈Do, and X takes values in Do, we have h◦X ≤ f ◦X
on Ω and, by the monotonicity of integration,

h(E [X]) = E [h◦X]≤ E [f ◦X] .

This holds for any h ∈Wf , so

E [f ◦X]≥ sup
h∈Wf

h(E [X]).

Finally, E [X] ∈Do implies that

E [f ◦X]≥ sup
h∈Wf

h(E [X]) = f(E [X]).

Q.E.D.
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1.6 Characteristic Functions

Let µ be a finite measure on (Rk,B(Rk)). The Fourier transform of µ is defined as the function
ϕ : Rk→ C such that

ϕ(t) =
∫
Rk

exp
(
it′x

)
dµ(x) =

∫
Rk

 k∏
j=1

exp(itjxj)

dµ(x)

for any t ∈ Rk. Note that the integral always exists because |exp(it′x)|= 1 for any t,x ∈ Rk and
µ is a finite measure.
The following are some basic properties of characteristic functions:

Theorem 1.7 Let µ be a finite measure on (Rk,B(Rk)) with characteristic function ϕ :Rk→C.
Then, the following hold true:

i) (Continuity of the Characteristic Function) ϕ is uniformly continuous on Rk.

ii) (Riemann-Lebesgue Lemma) If µ is absolutely continuous with respect to the Lebesgue
measure, then ϕ vanishes at infinity, that is, ϕ(t)→ 0 as |t| →∞.

Proof) The uniform continuity result is easy to prove. For any t,h ∈ Rk,

|ϕ(t+h)−ϕ(t)|=
∣∣∣∣∫

Rk

(
exp

(
i(t+h)′x

)
− exp

(
it′x

))
dµ(x)

∣∣∣∣
≤
∫
Rk

∣∣exp
(
it′x

)∣∣∣∣exp
(
ih′x

)
−1
∣∣dµ(x) =

∫
Rk

∣∣exp
(
ih′x

)
−1
∣∣dµ(x).

The last term does not depend on t and goes to 0 as h→ 0 by the BCT, so the uniform
continuity of ϕ follows.

We now move onto the Riemann-Lebesgue Lemma.
Suppose µ << λk. Then, by the Radon-Nikodym theorem, there exists a density f of
µ with respect to λk. Then, for any t ∈ Rk,

ϕ(t) =
∫
Rk

exp
(
it′x

)
f(x)dx.

Because
∫
Rk f(x)dx = 1 < +∞, f is in L1(Rk); by the continuity property of L1 func-

tions, for any ε > 0 there exists a continuous compactly supported function g on Rk

such that ∫
Rk
|f(x)−g(x)|dx < ε

2 .

Letting K be the compact support of g, because K is bounded (Heine-Borel theorem),
there exists a k-cell [−T,T ]k such that K ⊂ [−T,T ]k.
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It now follows that

|ϕ(t)|=
∣∣∣∣∫

Rk
exp

(
it′x

)
f(x)dx

∣∣∣∣
≤
∫
Rk
|f(x)−g(x)|dx+

∣∣∣∣∫
Rk

exp
(
it′x

)
g(x)dx

∣∣∣∣
<
ε

2 + |ϕg(t)|,

where we define

ϕg(t) =
∫
Rk

exp
(
it′x

)
g(x)dx

for any t ∈ Rk. For any t 6= 0, by a linear change of variables we have

∫
Rk

exp
(
it′x

)
g(x)dx=

∫
Rk

exp
(
it′
(
x+ t

|t|2
π

))
g

(
x+ t

|t|2
π

)
dx

=−
∫
Rk

exp
(
it′x

)
g

(
x+ t

|t|2
π

)
dx

because exp(iπ) =−1. As such,

|ϕg(t)|=
1
2

∣∣∣∣∣
∫
Rk

exp
(
it′x

)
g(x)dx−

∫
Rk

exp
(
it′x

)
g

(
x+ t

|t|2
π

)
dx

∣∣∣∣∣
≤ 1

2

∫
Rk

∣∣∣∣∣g(x)−g
(
x+ t

|t|2
π

)∣∣∣∣∣dx.
By the uniform continuity of g on Rk, there exists a δ ∈ (0,1) such that

|g(x)−g(y)|< ε

(2T + 2)k

for any x,y ∈ Rk such that |x−y|< δ; because∣∣∣∣∣ t|t|2π
∣∣∣∣∣= π

|t|
→ 0,

as |t| →∞, there exists an M > 0 such that π
|t| < δ for any |t|>M .

Suppose that x /∈ [−T −1,T +1]k. It is immediately evident that g(x) = 0. Furthermore,
for any t ∈ Rk such that |t| >M , because

∣∣∣ tj|t|2π∣∣∣ < δ < 1 for any 1 ≤ j ≤ k and there
exists a 1≤ j ≤ k such that

xj <−T −1 or xj > T + 1,

we can see that

xj + tj

|t|2
π < xj + 1<−T or xj + tj

|t|2
π > xj−1> T.
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This means that x+ t
|t|2π /∈ [−T,T ]k and therefore that g

(
x+ t

|t|2π
)

= 0.
We have thus seen that, for any t ∈ Rk such that |t|>M ,

∫
Rk

∣∣∣∣∣g(x)−g
(
x+ t

|t|2
π

)∣∣∣∣∣dx=
∫

[−T−1,T+1]k

∣∣∣∣∣g(x)−g
(
x+ t

|t|2
π

)∣∣∣∣∣dx
≤ ε

(2T + 2)k ·λk
(
[−T −1,T + 1]k

)
= ε

where the inequality follows from the uniform continuity of g and the fact that π
|t| < δ

if |t|>M .
Therefore, for any t ∈ Rk such that |t|>M ,

|ϕ(t)|< ε

2 + 1
2

∫
Rk

∣∣∣∣∣g(x)−g
(
x+ t

|t|2
π

)∣∣∣∣∣dx < ε.

Such an M > 0 exists for any ε > 0, so by definition

lim
|t|→∞

ϕ(t) = 0.

Q.E.D.

Starting with the Fourier transform for finite measures, we can also define the Fourier transforms
of random variables and measurable functions.
The Fourier transform of a random variable X taking values in Rk with distribution µ is then
defined as the Fourier transform of µ.
The Fourier transform of a Borel-measurable, non-negative and Lebesgue integrable function f

on Rk, meanwhile, is defined as the Fourier transform of the indefinite integral of f with respect
to the Lebesgue measure on Rk. Specifically, let µ be the measure on (Rk,B(Rk)) be defined as

µ(A) =
∫
A
f(x)dx

for any A ∈ B(Rk). Because f is integrable,

µ(Rk) =
∫
Rk
f(x)dx <+∞,

making µ a finite measure; this makes f the Radon-Nikodym derivative of µ with respect to λk.
Then, the Fourier transform ϕ : Rk→ C of f is defined as

ϕ(t) =
∫
Rk

exp
(
it′x

)
dµ(x) =

∫
Rk

exp
(
it′x

)
f(x)dx

for any t ∈ Rk.
Now let f be an arbitrary complex and Lebesgue integrable function on Rk. By the integrability
of f , Re(f)± and Im(f)± are measurable, non-negative and integrable functions on Rk. Denoting
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their Fourier transforms by ϕ±,φ± : Rk→C, the Fourier transform ϕ : Rk→C of f is defined as

ϕ(t) = ϕ+(t)−ϕ−(t) + i(φ+(t)−φ−(t))

=
∫
Rk

exp
(
it′x

)
f(x)dx

for any t ∈ Rk. This is often taken to be the definition of the Fourier transform of arbitrary
complex measurable functions on Rk.
We will later derive the usual inversion results for the Fourier transforms of functions, rather
than finite measures.

The Fourier transform is of great significance in probability theory because it determines the
distribution of a random variable. That is, two random variables taking values in Rk with the
same Fourier transform has the same distribution. This property is used to, later on, determine
whether a set of random variables are independent, and whether a sequence or array of random
variables converges in distribution.

1.6.1 The Dirichlet Integral

We first introduce an important integral that will be used to prove the inversion result.
Define S : [0,+∞)→ R as

S(T ) =


∫ T

0
sin(x)
x dx if T > 0

0 if T = 0
.

The integral is well-defined and finite because the integrand sin(x)
x · I(0,T ](x) is Borel measurable

and bounded above by I(0,T ](x) ( sin(x)
x is bounded above by 1), whose Lebesgue integral is finite

and equal to T .
Unlike in the case where sin(x)

x is integrated over a finite interval [0,T ], its integral over [0,+∞)
does not exist, since the integral of

∣∣∣ sin(x)
x

∣∣∣ over [0,+∞) is infinite. It does not even exist in the
extended sense, since the integrals of both the positive and negative parts of sin(x)

x are infinite.
It is, however, possible to obtain the limit of S(T ) as T →∞; this is a quantity distinct from the
integral of sin(x)

x over [0,+∞) (although in the case of other integrands the two do agree). This
limit is referred to as the Dirichlet integral, and is often denoted

∫∞
0

sin(x)
x dx (which represents

a clear abuse of notation).

Lemma 1.8 Let S : [0,+∞)→ R be defined as above. Then,

lim
T→∞

S(T ) = π

2 .
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Proof) For any x > 0,

1
x

=
∫ ∞

0
exp(−tx)dt,

where the integral is over the interval [0,+∞). Therefore, for any T > 0, S(T ) can be
written as

S(T ) =
∫ T

0

sin(x)
x

dx=
∫ T

0

∫ ∞
0

exp(−tx)sin(x)dtdx

by the linearity of integration (exp(−tx) is integrable with respect to t for any fixed
x > 0). Because the integrand exp(−tx)sin(x) · I(0,T ](x) is integrable with respect to
the Lebesgue measure on R2, by Fubini’s theorem we can interchange the order of
integration to obtain

S(T ) =
∫ ∞

0

∫ T

0
exp(−tx)sin(x)dxdt.

For any t > 0, integration by parts tells us that

t ·
∫ T

0
exp(−tx)cos(x)dx+

∫ T

0
exp(−tx)sin(x)dx= 1− exp(−tT )cos(T )

and

t ·
∫ T

0
exp(−tx)sin(x)dx−

∫ T

0
exp(−tx)cos(x)dx=−exp(−tT )sin(T ),

so we have ∫ T

0
exp(−tx)sin(x)dx= 1− exp(−tT )(tsin(T ) + cos(T ))

t2 + 1 ,

and because {0} has Lebesgue measure 0,

S(T ) =
∫ ∞

0

1− exp(−tT )(tsin(T ) + cos(T ))
t2 + 1 dt

=
∫ ∞

0

1
t2 + 1dt−

∫ ∞
0

exp(−tT )
t2 + 1 (tsin(T ) + cos(T ))dt.

The first term is equal to π
2 .

As for the latter term, define

g(t,T ) = exp(−tT )
t2 + 1 (tsin(T ) + cos(T ))

for any T > 0 and t > 0. It is evident that

|g(t,T )| ≤ t+ 1
t2 + 1 exp(−t)
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for any t > 0 and T ≥ 1, and because

∂

∂t

(
t+ 1
t2 + 1 exp(−t)

)
=− t(t

2 + 2t+ 3)exp(−t)
(t2 + 1)2 < 0

for any t > 0 and t+1
t2+1 exp(−t) = 1 if t= 0, we can see that

t+ 1
t2 + 1 exp(−t)≤ 1

for any t≥ 0. It follows that
∫ ∞

0

t+ 1
t2 + 1 exp(−t)dt≤

∫ 1

0

t+ 1
t2 + 1 exp(−t)dt+ 2

∫ ∞
1

exp(−t)dt

≤ 1 + 2
∫ ∞

1
exp(−t)dt= 1 + 2exp(−1)<+∞.

Finally, we know that

g(·,T )→ 0

pointwise as T →∞.
Therefore, by the DCT, we have

lim
T→∞

∫ ∞
0

g(t,T )dt=
∫ ∞

0

(
lim
T→∞

g(t,T )
)
dt= 0.

We can now conclude that

lim
T→∞

S(T ) = π

2 + lim
T→∞

∫ ∞
0

g(t,T )dt= π

2 .

Q.E.D.

The result above tells us that the function S must be bounded on [0,+∞) (otherwise, there ex-
ists a subsequence {tn}n∈N+ of N+ such that S(tn)→+∞ as n→∞, which is a contradiction).
Thus, there exists an M > 0 such that |S(T )| ≤M for any T ≥ 0.

1.6.2 k-Cells with Vertices of Measure 0

Another important component to the inversion formula is the structure of euclidean k-space,
and how the set of all k-cells is a π-system that generates the Borel σ-algebra on Rk. We now
introduce an additional wrinkle; it is not only the collection of all k-cells that generates the
B(Rk), but also any collection of open k-cells whose boundaries have measure 0 under some fi-
nite measure µ. The inversion formula holds for precisely these k-cells, so the formula, combined
with the fact that these cells generates the Borel σ-algebra on Rk, allows us to make a claim
about the distributions of random variables in Rk.
We state below the salient result concerning k-cells on Rk. The proof is very detailed so as
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to present and draw attention to the most important properties of euclidean spaces and how
powerful they can be.

Lemma 1.9 Let µ,v be finite measures on (Rk,B(Rk)), and define

P =
{

k∏
j=1

(aj , bj)
∣∣∣∣∣∀j,aj < bj , and µ

 k∏
j=1
{aj , bj}

= v

 k∏
j=1
{aj , bj}

= 0
}
∪{∅},

that is, as the collection of all open k-cells on Rk whose endpoint have measure 0 under µ and
v. Then, D is a π-system that generates B(Rk).

Proof) We first show that there are at most countably many points x∈Rk such that µ({x})> 0;
we present the standard argument for this claim. Let m= dµ(Rk)e ∈N+, and A the set
of all points on Rk such that µ({x})> 0. A can then be expressed as the union

A=
⋃
n

{
x ∈ Rk | µ({x})> 1

n

}
︸ ︷︷ ︸

An

.

For any n ∈ N+, suppose |An| > nm. Then, there exists a finite subset J of An with
cardinality exactly nm, so that, by finite additivity,

m≥ µ(An)≥ µ(J) =
∑
x∈J

µ({x})> |J | 1
n

=m,

which is a contradiction. It follows that An contains at most nm elements, and because
this holds for any n ∈N+, A is at most a countably infinite set.
Likewise, there are at most countably many points x ∈ Rk such that v({x}) > 0. This
means that there are at most countably many values a1, · · · ,ak, b1, · · · , bk ∈R such that
ai < bi for 1≤ i≤ k and

µ

 k∏
j=1
{aj , bj}

> 0 or v

 k∏
j=1
{aj , bj}

> 0.

Using this property, we can define a countable set of points on Rk, which we denote
Qk′. Specifically, for any q ∈ Rk and n ∈N+, define

W (q,n) =
k∏
j=1

(qj−2−n, qj + 2−n),

where n ∈ N+ and q ∈ Qk. The collection of all such k-cells is countable because Qk

and N+ are.
For any q ∈Qk and n∈N+, we define W (q,n)′ =W (q,n) if the vertices of W (q,n) have

42



measure 0 under both µ and v. On the other hand, suppose that at least one of the
vertices of W (q,n) has positive measure under µ or v, we choose a δ ∈ (0,2−n−1) so
that the vertices of

W (q,n)′ =
k∏
j=1

(qj−2−n+ δ,qj + 2−n− δ)

have measure 0 under both µ and v. The key idea is that such a δ > 0 exists because
there exists at most countably many points x on Rk such that µ({x})> 0 or v({x})> 0.
Due to our choice of δ, this k-cell has diameter between 2−n+1 and 2−n, thus retaining
its unique position among other similar k-cells.
Ultimately, the collection of all cells W (q,n)′ constructed as such is countably infinite,
and the vertices of each cell have measure 0 under both µ and v. Denote the collection
of all such cells as W ′.

Now we show that P is a π-system that generates B(Rk). To show that P is a π-system,
choose any two cells A=∏k

j=1(aj , bj) and B =∏k
j=1(cj ,dj) in P. By definition,

µ

 k∏
j=1
{aj , bj , cj ,dj}

= v

 k∏
j=1
{aj , bj , cj ,dj}

= 0

If bj ≤ cj or dj ≤ aj for at least one 1≤ j ≤ k, then A∩B = ∅ ∈ P. As such, assume that
(aj , bj)∩ (cj ,dj) 6= ∅ for all 1≤ j ≤ k. Because (aj , bj)∩ (cj ,dj) is also an open interval
in this case, A∩B is an open k-cell. Furthermore, the endpoints of each interval are
chosen from the set {aj , bj , cj ,dj}, and since any point on Rk with these endpoints has
measure 0 under both µ and v, A∩B is contained in P. It follows that P is a π-system.

Moving onto showing that P generates B(Rk), it is initially clear that, because each
k-cell in P is Borel measurable, the σ-algebra generated by P is contained in B(Rk).
To show the reverse inclusion, choose any open subset V of Rk, and a point x ∈ V .
Because V is open, there exists an ε > 0 such that B(x,ε), the ε-ball around x under
the euclidean metric, is contained in V . Choose N ∈N+ so that 2−N < 1√

k
ε
2 . Because

Qk is dense in Rk, there exists a q ∈Qk such that |x− q|< 2−N−1, and by implication
|xj− qj |< 2−N−1 for any 1≤ j ≤ k.
The k-cell

W (q,N) =
k∏
j=1

(qj−2−N , qj + 2−N )

clearly contains x (in fact, it is contained in the smaller k-cell W (q,N + 1)). Further-
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more, W (q,N) is contained in B(x,ε) and by implication V , since, for any z ∈W (q,N),

|z−x| ≤ |q−x|+ |q−z|< 2−N−1 +

 k∑
j=1

(qj−zj)2

 1
2

<
ε

2 +
√
k ·2−N < ε.

The k-cell W (q,N)′ inW ′ corresponding to W (q,N) is contained in W (q,N), so we have
W (q,N)′ ⊂ V . Furthermore, W (q,N)′ contains W (q,N + 1), in which x is contained.
Therefore, we have

x ∈W (q,N)′ ⊂ V.

This holds for any x∈ V , so V is the union of k-cells inW ′;W ′ is a countable collection
of sets, so this means that V is a countable union of sets in W ′. Finally, each set in W ′

is an element of P, which implies that V is an element of the σ-algebra generated by
P.

We have shown that the euclidean topology τRk on Rk is contained in σP. Since B(Rk)
is generated by τRk , we finally have

B(Rk)⊂ σP,

which, combined with our previous observations, means that P is a π-system that gen-
erates the Borel σ-algebra on Rk.
Q.E.D.

1.6.3 The Inversion Formula

We now state the inversion formula and its corollary, which are the main results of this section:

Theorem 1.10 (Lévy’s Inversion Formula)
Let µ be a finite measure on (Rk,B(Rk)) with characteristic function ϕ : Rk→C. Then, for any
open k-cell W =∏k

j=1(a1, b1), it holds that

µ(W ) + 1
2µ

 k∏
j=1
{aj , bj}

= lim
T→∞

1
(2π)k

∫
[−T,T ]k

 k∏
j=1

exp(−iajtj)− exp(−ibjtj)
itj

ϕ(t)dt.

Proof) The characteristic function ϕ is given by

ϕ(t) =
∫
Rk

exp
(
it′x

)
dµ(x) =

∫
Rk

k∏
j=1

exp(itjxj)dµ(x)
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for any t ∈ Rk, so k∏
j=1

exp(−iajtj)− exp(−ibjtj)
itj

ϕ(t) =
∫
Rk

k∏
j=1

exp(itj(xj−aj))− exp(itj(xj− bj))
itj

dµ(x)

for each k-dimensional vector t (if tj = 0 for some j, then the fraction above is taken
to be equal to bj−aj , its limit at 0 by L’Hospital’s Rule). For any 1≤ j ≤ k, note that

|exp(itj(xj−aj))− exp(itj(xj− bj))| ≤ tj(bj−aj)

by the mean value theorem (applied to the function z 7→ exp(iz) on R), so that∣∣∣∣∣exp(itj(xj−aj))− exp(itj(xj− bj))
itj

∣∣∣∣∣≤ bj−aj .
For any T > 0, define

g(t,x) =
k∏
j=1

exp(itj(xj−aj))− exp(itj(xj− bj))
itj

· I[−T,T ]k

for any t,x ∈ Rk. Because g is bounded by ∏k
j=1(bj −aj) < +∞, µ is a finite measure

and the k-dimensional Lebesgue measure λk is bounded on the k-cell [−T,T ]k, g is
integrable with respect to the product measure µ×λk, and Fubini’s theorem tells us
that

∫
[−T,T ]k

 k∏
j=1

exp(−iajtj)− exp(−ibjtj)
itj

ϕ(t)dt=
∫
Rk

∫
Rk
g(t,x)dµ(x)dt

=
∫
Rk

∫
Rk
g(t,x)dtdµ(x).

For any x ∈ Rk,

∫
Rk
g(t,x)dt=

∫
[−T,T ]k

k∏
j=1

exp(itj(xj−aj))− exp(itj(xj− bj))
itj

dt

=
k∏
j=1

(∫ T

−T

exp(itj(xj−aj))− exp(itj(xj− bj))
itj

dtj

)

once again by Fubini’s theorem (the integrand is bounded, and the Lebesgue measure
is finite on a compact set).
Using Euler’s formula to expand the complex exponentials, for each 1≤ j ≤ k we have

∫ T

−T

exp(itj(xj−aj))− exp(itj(xj− bj))
itj

dtj

=
∫ T

−T

1
itj

(cos(tj(xj−aj)) + isin(tj(xj−aj)))dtj−
∫ T

−T

1
itj

(cos(tj(xj− bj)) + isin(tj(xj− bj)))dtj
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= 2
∫ T

0

sin(tj(xj−aj))− sin(tj(xj− bj))
tj

dtj ,

where the last equality follows from the fact that cos(·) is an even function. Since the
first term can be expressed as

∫ T

0

sin(tj(xj−aj))
tj

dtj = sgn(xj−aj) ·
∫ T |xj−aj |

0

sin(z)
z

dz = sgn(xj−aj) ·S(T |xj−aj |)

and likewise for the second term, where sgn(·) is a function that yields the sign of the
argument, the above integral can now be written In terms of the function S(·) as

∫ T

−T

exp(itj(xj−aj))− exp(itj(xj− bj))
itj

dtj

= 2[sgn(xj−aj) ·S(T |xj−aj |)−sgn(xj− bj) ·S(T |xj− bj |)] .

So far, it has been shown that

1
(2π)k

∫
[−T,T ]k

 k∏
j=1

exp(−iajtj)− exp(−ibjtj)
itj

ϕ(t)dt

=
∫
Rk

k∏
j=1

(
sgn(xj−aj) ·

S(T |xj−aj |)
π

−sgn(xj− bj) ·
S(T |xj− bj |)

π

)
︸ ︷︷ ︸

gT,j(xj)

dµ(x).

Because S(·) is bounded above by M ∈ (0,+∞), the integrand in the integral on
the right is bounded above by

(
2M
π

)k
< +∞. Furthermore, in light of the fact that

limT→∞S(T ) = π
2 , as T →∞, each gT,j converges pointwise to the function gj : R→ R

defined as

gj = 1
2 · I{aj ,bj}+ I(aj ,bj).

Finally, µ is a finite measure, so by the BCT,

lim
T→∞

1
(2π)k

∫
[−T,T ]k

 k∏
j=1

exp(−iajtj)− exp(−ibjtj)
itj

ϕ(t)dt=
∫
Rk

 k∏
j=1

gj(xj)

dµ(x)

= 1
2µ

 k∏
j=1
{aj , bj}

+µ

 k∏
j=1

(aj , bj)

= 1
2µ

 k∏
j=1
{aj , bj}

+µ(W ).

Q.E.D.

The inversion formula, together with the π-system for B(Rk) furnished in lemma 1.9, directly
lead to the next result:

Corollary to Theorem 1.10 Let µ,v be two proability measures on (Rk,B(Rk)) with char-
acteristic functions ϕ,φ : Rk→ C. If ϕ(t) = φ(t) for every t ∈ Rk, then µ= v on B(Rk).
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Proof) Let P be defined as in lemma 1.9. Then, for any W =∏k
j=1(aj , bj) ∈ P, because

µ

 k∏
j=1
{aj , bj}

= v

 k∏
j=1
{aj , bj}

= 0,

by the inversion formula we have

µ(W ) = lim
T→∞

1
(2π)k

∫
[−T,T ]k

 k∏
j=1

exp(−iajtj)− exp(−ibjtj)
itj

ϕ(t)dt

v(W ) = lim
T→∞

1
(2π)k

∫
[−T,T ]k

 k∏
j=1

exp(−iajtj)− exp(−ibjtj)
itj

φ(t)dt.

Since ϕ= φ on Rk, it follows that

µ(W ) = v(W ).

Thus, µ and v are measures that agree on the π-system P generating B(Rk), and
µ(Rk) = v(Rk) = 1<+∞. It follows that µ= v on B(Rk).
Q.E.D.

1.6.4 The Cramer-Wold Device

The most useful and frequently utilized result that stems from the inversion formula is the
Cramer-Wold device, which comes in two forms; we state here its first form, which tells us that
the distribution of a random vector is determined by the linear combination of its components.

Theorem 1.11 (Cramer-Wold Device I)
Let X,Y be two random vectors taking values in Rk with distributions µ and v.
X ∼ Y if and only if r′X ∼ r′Y for any non-zero r ∈ Rk.

Proof) We first show necessity. Suppose that X ∼ Y , that is, µ = v on B(Rk). Choose some
non-zero r ∈Rk, and define f : Rk→R as f(x) = r′x for any x∈Rk. Then, r′X = f ◦X,
r′Y = f ◦Y , so that the distributions of r′X and r′Y are given as µ◦f−1 and v ◦f−1.
Since µ= v, this means that r′X and r′Y both have distributions µ◦f−1, and as such,
that they are identically distributed.

To show sufficiency, let ϕ,φ : Rk → C be the characteristic functions of X and Y ; by
definition,

ϕ(t) =
∫
Rk

exp
(
−it′x

)
dµ(x) and φ(t) =

∫
Rk

exp
(
−it′x

)
dv(x)

for any t ∈ Rk.
Suppose that r′X ∼ r′Y for any non-zero r ∈Rk. Choosing some non-zero r ∈Rk, define
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f as above. Then, f ◦X ∼ f ◦Y , which tells us that the characteristic functions of f ◦X
and f ◦Y are the same. Denoting these functions by ϕr and φr, and using the fact that
the distributions of f ◦X and f ◦Y are the pushforward measures µ◦f−1 and v ◦f−1,
by theorem 1.1 we have

ϕr(t) =
∫
R

exp(itz)d(µ◦f−1)(z) =
∫
Rk

exp(itf(x))dµ(x)

=
∫
Rk

exp
(
itr′x

)
dµ(x) = ϕ(tr)

for any t ∈ R. Likewise, φr(t) = φ(tr) for any t ∈ R. Putting t = 1 and making use of
the fact that ϕr = φr on R yields

ϕ(r) = ϕr(1) = φr(1) = φ(r).

This holds for any non-zero r ∈ Rk, and ϕ(0) = 1 = φ(0), so by the inversion formula
and its corollary, µ= v on B(Rk), that is, X and Y are identically distributed.
Q.E.D.

The Cramer-Wold device thus allows us to make claims about the distribution of a random
vector using only its projections onto a one-dimensional subspace. This property often comes in
handy, as will be illustrated in the section on the multivariate normal distribution.

1.6.5 The Fourier Transform of Functions

As stated at the beginning of this section, we can opt to start from the Fourier transform of
integrable functions rather than finite measures. We derive here the inversion formula for the
Fourier transform of functions, which expresses them as functions of their characteristic func-
tions.

Theorem 1.12 (Inverse Fourier Transform)
Let µ be a finite measure on (Rk,B(Rk)) with characteristic function ϕ : Rk→ C.
If ϕ is Lebesgue-integrable, then the unique continuous density f of µ with respect to the
Lebesgue measure is defined as

f(x) = 1
(2π)k

∫
Rk

exp
(
−it′x

)
ϕ(t)dt

for any x ∈ Rk.

Proof) Suppose that ϕ is Lebesgue-integrable, that is,∫
Rk
|ϕ(t)|dt <+∞.
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Choose any open k-cell ∏k
j=1(aj , bj) on Rk, and define g : R→ C as

g(t) =

 k∏
j=1

exp(−iajtj)− exp(−ibjtj)
itj

ϕ(t)

for any t ∈Rk. The sequence {g ·I[−T,T ]k}T>0 is bounded above by
(∏k

j=1(bj−aj)
)
|ϕ|,

which is Lebesgue integrable. Since g · I[−T,T ]k converges pointwise to g, by the DCT g

is Lebesgue integrable and

lim
T→∞

∫
[−T,T ]k

g(t)dt=
∫
Rk
g(t)dt.

By the inversion formula, we now have

µ

 k∏
j=1

(aj , bj)

+ 1
2µ

 k∏
j=1
{aj , bj}

= 1
(2π)k

∫
Rk
g(t)dt.

Since |g| ≤
(∏k

j=1(bj−aj)
)
|ϕ|, by the monotonicity of integration,

1
2µ

 k∏
j=1
{aj , bj}

≤ µ
 k∏
j=1

(aj , bj)

+ 1
2µ

 k∏
j=1
{aj , bj}


=
∣∣∣∣ 1
(2π)k

∫
Rk
g(t)dt

∣∣∣∣≤ 1
(2π)k

∫
Rk
|g(t)|dt

≤ 1
(2π)k

 k∏
j=1

(bj−aj)

∫
Rk
|ϕ(t)|dt.

Sending b↘ a on both sides, by sequential continuity µ
(∏k

j=1{aj , bj}
)
→ µ({a}), while

the right hand side converges to 0. This implies that µ({a}) = 0; because a ∈ R was
chosen arbitrarily, every singleton has measure 0 under µ.

Let F : Rk→ [0,1] be defined as

F (x) = µ

 k∏
j=1

(−∞,xj)


for any x ∈ Rk. For purposes of illustration, here we assume that k = 2. In this case,
for any x ∈ Rk and non-zero h ∈ Rk, we have

µ((x1,x1 +h1)× (x2,x2 +h2)) = F (x1 +h1,x2 +h2)−F (x1,x2 +h2)−F (x1 +h1,x2) +F (x1,x2)

in the case that h1,h2 > 0. By the inversion formula, we have

F (x1 +h1,x2 +h2)−F (x1,x2 +h2)−F (x1 +h1,x2) +F (x1,x2)
h1h2
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= 1
(2π)k

∫
Rk

 k∏
j=1

exp(−itjxj)− exp(−itj(xj +hj))
itjhj

ϕ(t)dt,

and it can be shown that the above equation holds even when h1 < 0 or h2 < 0.
The integrand in the integral on the right is bounded above as∣∣∣∣∣∣

 k∏
j=1

exp(−itjxj)− exp(−itj(xj +hj))
itjhj

ϕ(t)

∣∣∣∣∣∣≤ |ϕ(t)|,

and

lim
h1→0

lim
h2→0

 k∏
j=1

exp(−itjxj)− exp(−itj(xj +hj))
itjhj

ϕ(t)

=−
k∏
j=1

[
1
itj

(
∂

∂xj
exp(−itjxj)

)]
ϕ(t) = exp

(
−it′x

)
ϕ(t)

for any t ∈ Rk, so by repeated applications of the DCT,

∂2F (x)
∂x1∂x2

= lim
h1→0

lim
h2→0

F (x1 +h1,x2 +h2)−F (x1,x2 +h2)−F (x1 +h1,x2) +F (x1,x2)
h1h2

= 1
(2π)k

∫
Rk

exp
(
−it′x

)
ϕ(t)dt.

This result is easily generalized to the case of k > 2.

Define f : Rk→ R as

f(x) = ∂kF (x)
∂x1 · · ·∂xk

for any x ∈Rk. Because F is increasing in each coordinate of x (by the monotonicity of
measures), f is a non-negative function. It is also continuous on Rk: to see this, choose
any x ∈ Rk and a sequence {xn}n∈N+ ⊂ Rk converging to x. For any n ∈N+,

f(xn) = 1
(2π)k

∫
Rk

exp
(
−it′xn

)
ϕ(t)dt.

Since |exp(−it′xn)ϕ(t)| ≤ |ϕ(t)| for any t ∈ R and n ∈ N+, and exp(−it′xn)ϕ(t) →
exp(−it′x)ϕ(t) as n→∞, by the DCT we have

lim
n→∞

f(xn) = 1
(2π)k

∫
Rk

exp
(
−it′x

)
ϕ(t)dt= f(x);

it follows that f is continuous at x, and, indeed, on Rk.
Define µ0 as the indefinite integral of f with respect to the Lebesgue measure (which
exists because f is a non-negative Borel measurable function). Then, for any open k-cell
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W =∏k
j=1(aj , bj), we have

µ(W ) = F (b1, b2)−F (b1,a2)−F (a1, b2) +F (a1,a2)

=
∫ b2

a2

∂F (b1,x2)
∂x2

dx2−
∫ b2

a2

∂F (a1,x2)
∂x2

dx2

=
∫ b2

a2

(
∂F (b1x2)
∂x2

− ∂F (a1,x2)
∂x2

)
dx2

=
∫ b2

a2

∫ b1

a1

∂2F (x1,x2)
∂x1∂x2

dx1dx2

=
∫
W
f(x)dx= µ0(W )

by the fundamental theorem of calculus (we put k = 2 for the purposes of illustration)
and Fubini’s theorem, which can be applied here thanks to the non-negativity of f .
Choosing Wn = [−n,n]k for any n ∈ N+, this result tells us that µ(Wn) = µ0(Wn) for
any n ∈N+, and because Wn↗ Rk as n→∞, by sequential continuity

µ(Rk) = µ0(Rk) =
∫
Rk
f(x)dx <+∞

by the finiteness of µ. Since the collection of open k-cells forms a π-system generating
B(Rk), we have µ = µ0 on B(Rk), that is, f is the Radon-Nikodym derivative of µ
with respect to the Lebesgue measure, and in fact the only continuous version of the
Radon-Nikodym derivative.
Q.E.D.
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The above construction yields an alternative approach to the Fourier transform and its inverse
on Rk. Instead of starting with a finite measure on (Rk,B(Rk)), we can start from a non-negative
continuous Lebesgue integrable function f on Rk. To illustrate how the two approaches are in
fact equivalent, we first state the properties of the Fourier transform we have derived so far when
starting from finite measures.
Throughout, let µ be a finite measure on (Rk,B(Rk)) and ϕ : Rk→ C its Fourier transform.

• Definition
For any t ∈ Rk,

ϕ(t) =
∫
Rk

exp
(
it′x

)
dµ(x).

• Continuity
ϕ is uniformly continuous on Rk.

• The Riemann-Lebesgue Lemma
If µ is absolutely continuous with respect to the Lebesgue measure on Rk, then ϕ vanishes
at infinity:

ϕ(t)→ 0 as |t| →∞.

• The Inversion Formula
For any open k-cell W =∏k

j=1(aj , bj),

µ(W ) + 1
2µ

 k∏
j=1
{aj , bj}

= lim
T→∞

1
(2π)k

∫
[−T,T ]k

 k∏
j=1

exp(−iajtj)− exp(−ibjtj)
itj

ϕ(t)dt.

If ϕ is Lebesgue integrable, then the formula reduces to

µ(W ) = 1
(2π)k

∫
Rk

 k∏
j=1

exp(−iajtj)− exp(−ibjtj)
itj

ϕ(t)dt.
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We now state the properties of the Fourier transform of continuous and integrable functions,
and how they can be deduced from that of the transform for finite measures.
Throughout, let f : Rk → R be a continuous non-negative Lebesgue integrable function on Rk

with Fourier transform ϕ : Rk→ C.

• Definition
For any t ∈ Rk,

ϕ(t) =
∫
Rk

exp
(
it′x

)
f(x)dx.

Letting µ be the indefinite integral of f with respect to the Lebesgue measure, ϕ is the
Fourier transform of µ, and can be written as ϕ(T ) =

∫
Rk exp(it′x)dµ(x) for any t ∈ Rk.

• Continuity
Because ϕ is the Fourier transform of the finite measure µ, it is uniformly continuous on Rk.

• Riemann-Lebesgue Lemma
Because µ has Radon-Nikodym derivative f with respect to the Lebesgue measure, µ is
absolutely continuous with respect to the Lebesgue measure. By implication, its Fourier
transform ϕ vanishes at infinity:

ϕ(t)→ 0 as |t| →∞.

• Inverse Fourier Transform
If
∫
Rk |ϕ(t)|dt < +∞, then by theorem 1.12, the unique continuous density f of µ with

respect to the Lebesgue measure can be expressed as

f(x) = 1
(2π)k

∫
Rk

exp
(
−it′x

)
ϕ(t)dt

for any x ∈ Rk.

The case for general complex-valued f can be easily deduced by making use of the construction
of the Fourier transform of f from those of Re(f)± and Im(f)±.
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1.7 Multidimensional Distributions and Independence

We now generalize some of the concepts introduced in the previous section to random variables
taking values in product spaces (these are often called random vectors, processes, or functions,
depending on the cardinality of the product spaces in question).

Let T be an arbitrary index set and {(Et,Et) | t ∈ T} a collection of measurable spaces. Denote
the product of these spaces by (E,E) =⊗

t∈T (Et,Et), where E is the σ-algebra generated by the
π-system of measurable rectangles

{∏
t∈T

At | ∀t ∈ T,At ∈ Et, and only finitely many At are not Et
}

on E =∏
t∈T Ei. Let X be a random variable taking values in (E,E). Letting Xt be the coor-

dinate of X corresponding to (Et,Et), we can also write X = (Xt)t∈T , that is, as a (possibly
uncountable) sequence of random variables. It is clear that X is a random variable taking values
in (E,E) if and only if each Xt is a random variable in (Et,Et).

1.7.1 Joint and Marginal Distributions

Letting µ be the distribution of X, for any t ∈ T the distribution µt of Xt satisfies

µt(At) = P(Xt ∈At) = P(X ∈At×E−t) = µ(At×E−t) ,

where At×E−t =∏
s∈T As for As = Es for any s ∈ T such that s 6= t.

µ is referred to as the joint distribution of X, and each µt as the marginal distribution of Xt.

1.7.2 Joint and Marginal Densities

Suppose T = {1, · · · ,n} for some n ∈ N+ and that µ is absolutely continuous with respect to
the product measure v = v1×·· ·×vn on (E,E), where each vi is a σ-finite measure on (Ei,Ei).
Letting f be the density of X = (X1, · · · ,Xn)′ with respect to v, we can see that, for any Ai ∈ Ei,

µi(Ai) =
∫
Ai

(∫
E−i

f(xi,x−i)dv−i(x−i)
)
dvi(xi)

by Fubini’s theorem (f is a non-negative function). Since the mapping xi 7→
∫
E−i

f(xi,x−i)dv−i(x−i)
defines a Ei-measurable non-negative function, by definition

fi =
∫
E−i

f(·,x−i)dv−i(x−i)

is the density of Xi with respect to vi.
f is referred to as the joint density of X with respect to v, and each fi as the marginal density
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of Xi with respect to vi.

1.7.3 The Information Contained in a Multidimensional Random Variable

Returning to the general case, the information contained in X is once again represented by
the σ-algebra σX generated by X = (Xt)t∈T . Once again, we can view σX as the amount of
information contained in X. Due to the unique property of measurable rectangles, namely that
they are essentially finite rectangles trivially extended to an infinite product space if need be,
we have the following generating set for σX:

Lemma 1.13 Let T be an arbitrary index set, {(Et,Et) | t ∈ T} a collection of measurable
spaces with product (E,E), and X = (Xt)t∈T a random variable taking values in (E,E). Define

H0 =
{ ⋂
t∈J

X−1
t (At) | J ⊂ T is finite, ∀t ∈ J,At ∈ Et

}
.

Then, H0 is a π-system on Ω that generates σX.

Proof) For any finite subset J ⊂ T and At ∈ Et for any t ∈ J , defining A =∏
t∈T At, in which

At = Et for any t ∈ T such that t /∈ J ,

X−1(A) =
⋂
t∈J

X−1
t (At) ∈ σX,

so that H0 ⊂ σX.

To show that the reverse inclusion holds, define E0 as the set of all measurable rectangles
on E, that is, as

E0 =
{∏
t∈T

At | ∃J ⊂ T s.t. J is finite, At ∈ Et if t ∈ J,At = Et if t /∈ J
}
.

Since E0 is a π-system generating E , by lemma 1.5 the set

D = {X−1(A) |A ∈ E0}

is a π-system on Ω generating σX.
Note that, for any measurable rectangle A=∏

t∈T At ∈ E0 such that At 6=Et only for t
in a finite set J ⊂ T ,

X−1(A) =
⋂
t∈J

X−1
t (At) ∈H0.

Conversely, for any ⋂t∈JX−1
t (At)∈H0, where each At ∈ Et and J ⊂ T is finite, defining
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At = Et for any t ∈ T \J and A=∏
t∈T At, we have A ∈ E0 and thus

⋂
t∈J

X−1
t (At) =X−1(A) ∈ D.

It follows that D =H0, and as such that H0 is a π-system on Ω that generates σX.
Q.E.D.

The above lemma allows us to obtain a very intuitive characterization of the information con-
tained in X = (Xt)t∈T as the totality of the information contained in each Xt. Recall that, given
a collection of σ-algebras {Ft | t∈ T} on Ω, the σ-algebra generated by their union ⋃tmathcalFt
is denoted ∨tFt.
A generating π-system for ∨tFt is given by

G0 =
{ ⋂
t∈J

At |At ∈ Ft,J ⊂ T is finite }.

For any finite intersection ⋂
t∈J At, each At ∈ Ft ⊂

∨
sFs, and because σ-algebras are closed

under intersections, ⋂t∈J At ∈∨tFt; this implies that G0 ⊂
∨
tFt and thus that σG0 ⊂

∨
tFt.

On the other hand, any At ∈ Ft for some t ∈ T is contained in G0 and thus σG0 (put J = {t}),
which implies that ⋃tFt ⊂ σG0. Since ∨tFt is the σ-algebra generated by ⋃tFt, this means that∨
tFt ⊂ σG0, and as such that G0 generates ∨tFt.

In light of this operation, the information contained in X = (Xt)t∈T is the totality of the informa-
tion contained in each Xt in the sense that σX is precisely ∨tσXt. This is formally shown below:

Theorem 1.14 Let T be an arbitrary index set, {(Et,Et) | t ∈ T} a collection of measurable
spaces with product (E,E), and X = (Xt)t∈T a random variable taking values in (E,E). Then,

σX =
∨
t∈T

σXt.

Proof) From lemma 1.13, we can see that the set

H0 =
{ ⋂
t∈J

X−1
t (At) |At ∈ Et,J ⊂ T is finite

}

is a π-system generating σX, and we just showed above that

G0 =
{ ⋂
t∈J

Ht |Ht ∈ σXt,J ⊂ T is finite }

is a π-system generating ∨t∈T σXt. It is apparent, however, that H0 = G0, since any
Ht ∈ σXt can be written as X−1

t (At) for some At ∈ Et, and conversely, any X−1
t (At)

is contained in σXt if At ∈ Et. Therefore, H0 generates both σX and ∨t∈T σXt, which
means that they are the same σ-algebra on Ω.
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Q.E.D.

The σ-algebra ∨tσXt is also sometimes denoted by σ{Xt | t∈T}. The claim of the above theorem
can then be succinctly written as

σX = σ{Xt | t ∈ T} for X = (Xt)t∈T .

Intuitively, if S ⊂ T , then the information contained in X̄ = (Xt)t∈S must also be contained in
X = (Xt)t∈T . This intuition is confirmed in the following result:

Lemma 1.15 Let T be an arbitrary index set, {(Et,Et) | t ∈ T} a collection of measurable
spaces with product (E,E), and X = (Xt)t∈T a random variable taking values in (E,E).
Let S ⊂ T be an index set nested in T and X̄ = (Xt)t∈S . Then, X contains the information on
X̄, that is, σX̄ ⊂ σX.

Proof) Define (F,F) = ⊗
t∈S(Et,Et), and F0 the set of all measurable rectangles on F . By

lemma 1.5, the set

H0 = {X̄−1(A) |A ∈ F0}

generates σX̄. Choose any measurable rectangle A=∏
t∈SAt ∈ F0, where there exists

a finite set J ⊂ S such that At 6= Et only for t ∈ J . It follows that

X̄−1(A) =
⋂
t∈J

X−1
t (At) ∈ σX,

from the previous lemma, and as such, H0 ⊂ σX. σX is a σ-algebra on H, so σH0 =
σX̄ ⊂ σX.
Q.E.D.

The fact that E is generated by the collection of finite measurable rectangles allows for an intu-
itive and simple extension of the Doob-Dynkin lemma for multidimensional random variables:

Theorem 1.16 (The Multidimensional Doob-Dynkin Lemma)
Let T be an arbitrary index set, {(Et,Et) | t ∈ T} a collection of measurable spaces with product
(E,E), and Y = (Yt)t∈T a random variable taking values in (E,E).
X is a σY -measurable non-negative or complex random variable if and only if there exists a
sequence {tn}n∈K ⊂ T , where K = {1, · · · ,N} for N possibly infinity, and a non-negative or
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complex function f defined on ∏nEtn and measurable relative to ⊗nEtn such that

X = f ◦ (Yt1 ,Yt2 , · · ·).

Proof) Again, sufficiency is easily shown. Suppose that there exists a sequence {tn}n∈K ⊂ T ,
where K = {1, · · · ,N} for N possibly infinity, and a non-negative or complex function
f defined on ∏nEtn and measurable relative to ⊗nEtn such that

X = f ◦ (Yt1 ,Yt2 , · · ·).

Defining Ȳ = (Ytn)n∈K , which is a random variable taking values in (F,F) =∏n(Etn ,Etn)
because each Ytn is a random variable in (Etn ,Etn), we can write X = f ◦ Ȳ . By the
Doob-Dynkin lemma X is σȲ -measurable. Because {tn}n∈K ⊂ T , it follows from the
previous result that σȲ ⊂ σY and thus that X is σY -measurable as well.

For necessity, we make use of the monotone class theorem for functions. DefineM as the
colleciton of all numerical functions defined on Ω such that there exists a {tn}n∈K ⊂ T ,
where K = {1, · · · ,N} with N possibly infinity, such that X = f ◦ (Yt1 ,Yt2 , · · ·) for a⊗

nEtn-measurable function f . We will show that M is a monotone class of functions
on Ω:

i) IΩ ∈ M because IΩ = IEt ◦ Yt for any t ∈ T ; in this case, we take N = 1 and
{tn}n∈K = {t}.

ii) For any a,b ∈R and X1,X2 ∈M+, there exists a sequence {tn}n∈K ⊂ T such that

Xi = fi ◦ (Yt1 ,Yt2 , · · ·)

for some measurable bounded real function fi and i = 1,2 (in the case that the
sequences corresponding to each random variable is different, we need only define
{tn}n∈K as their union and trivially extend f1,f2 to functions on∏nEtn). Defining
f = af1 + bf2, f is also a measurable bounded real function, and we have

aX1 + bX2 = f ◦ (Yt1 ,Yt2 , · · ·).

By definition, aX1 + bX2 ∈Mb.

iii) Let {Xn}n∈N+ be a sequence in M+ that increases to X. As before, there exists
a sequence {tk}k∈K ⊂ T such that, for each n ∈N+,

Xn = fn ◦ (Yt1 ,Yt2 , · · ·)
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for some non-negative measurable function fn (again, if the sequences correspond-
ing to each Xn is different, we let {tk}k∈K be the union of those sequences and fn
the trivial extension to ∏kEtk). Defining

f = sup
n∈N+

fn,

f is a ⊗k Etk -measurable non-negative function such that

Xn↗ f ◦ (Yt1 ,Yt2 , · · ·)

pointwise as n→∞. By the uniqueness of limits, it follows that

X = f ◦ (Yt1 ,Yt2 , · · ·)

and thus that X ∈M+.

Choose any H ∈ σY ; by definition, there exists a measurable rectangle A=∏
t∈T At on

E such that H = Y −1(A). Because of the way measurable rectangles are defined, there
exists a finite J ⊂ T such that At = Et if t /∈ J . Denoting J = {t1, · · · , tN} for N ∈N+,
we have

IH = IY −1(A) = IAt1×···×AtN ◦ (Yt1 , · · · ,YtN ).

Since IAt1×···×AtN is a non-negative⊗nEtn-measurable function, it follows that IH ∈M.
Therefore,M contains all indicator functions IH whereH ∈σY , and becauase σY is a π-
system generating itself, by the monotone class theorem for functions,M contains every
bounded or non-negative real-valued σY -measurable function. In particular, for any σY -
measurable non-negative random variable X, there exists a sequence {tn}n∈K , where
K = {1, · · · ,N} for N possibly infinity, and a non-negative and ⊗

nEtn-measurable
function f such that

X = f ◦ (Yt1 ,Yt2 , · · ·).

We can now extend this result to arbitrary complex valued functions as in lemma 1.5.
Q.E.D.

Of note is that, even though the indicator of each set in σY is the function of a finite number of
coordinates of Y , because we take limits when extending this result to arbitrary non-negative
σY -measurable random variables, such random variables are possibly functions of a countable
many coordinates of Y . The important part is that none of them are functions of uncountably
many coordinates of Y , even when the underlying index set T is uncountable.
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1.8 Independence

Let T be an arbitrary index set, and {Ft | t ∈ T} a collection of sub σ-algebras of H. Then, we
say that {Ft | t ∈ T} is an independency, or that its elements are mutually independent, if

P
(⋂
t∈J

At

)
=
∏
t∈J

P(At)

for any finite J ⊂ T and At ∈ Ft for each t ∈ J . Clearly, any subcollection of {Ft | t ∈ T} is also
an independency.
The following elementary result shows us that the partition of an independency is also an inde-
pendency.

Theorem 1.17 Let T be an arbitrary index set, and {Ft | t ∈ T} a collection of sub σ-
algebras of H. Let {T1, · · · ,Tk} be a partition of T , and define Gi =∨

t∈TiFi for 1≤ i≤ k. Then,
the collection {G1, · · · ,Gk} is also an independency.

Proof) We proceed by induction on k, the number of partitions of T . Suppose first that k = 2,
so that {T1,T2} is a partition of T . Defining G1 and G2 as above, recally that, for each
i= 1,2, the set

Πi =
{ ⋂
t∈J

At |At ∈ Ft,J ⊂ Ti is finite
}

is a π-system generating Gi. Choose any B =⋂
t∈J2 Bt ∈Π2 for some finite J2 ⊂ T2, and

define

D1 = {A ∈H | P(A∩B) = P(A)P(B)}.

We can show that D1 is a λ-system on Ω:

i) Ω ∈ D1 because P(Ω∩B) = P(B) = P(B)P(Ω).

ii) For any A1,A2 ∈ D1 such that A1 ⊂A2, A2 \A1 ∈H and

P((A2 \A1)∩B) = P((A2∩B)\ (A1∩B))

= P(A2∩B)−P(A1∩B) (Finite additivity)

= (P(A2)−P(A1)) ·P(B)

= P(A)P(B) . (Finite additivity)

By definition, A2 \A1 ∈ D1.
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iii) For any {An}n∈N+ ⊂D1 with A=⋃
nAn, A ∈H and, by sequential continuity,

P(A∩B) = lim
n→∞

P(An∩B) =
(

lim
n→∞

P(An)
)
P(B) = P(A)P(B) .

By definition, A ∈ D1.

We can also see that Π1⊂D1, since for any A=⋂t∈J1 At ∈Π1 for some finite set J1⊂ T1,

P(A∩B) = P

 ⋂
t∈J1

At

∩
 ⋂
t∈J2

Bt

=

∏
t∈J1

P(At)

∏
t∈J2

Bt

= P(A)P(B)

because the collection of σ-algebras {Ft | t ∈ J1∪J2} is an independency. By the π−λ
theorem, it now follows that G1 ⊂D1, that is,

P(A∪B) = P(A)P(B)

for any A ∈ G1. This holds for any B ∈ Π2, so we can see that P(A∪B) = P(A)P(B)
for any A ∈ G1 and B ∈Π2.

Now choose any A ∈ G1 and define

D2 = {B ∈ D2 | P(A∩B) = P(A)P(B)}.

By almost the same process as above, we can show that D2 is a λ-system on Ω. In
addition, Π2 ⊂D2 by the result shown above. By the π−λ theorem, it now follows that
G2 ⊂D2, that is,

P(A∪B) = P(A)P(B)

for any B ∈ G2. This holds for any A ∈ G1, so we can see that P(A∪B) = P(A)P(B)
for any A ∈ G1 and B ∈ G2. By definition, G1 and G2 are independent.

Suppose now that the claim of the theorem holds for some k≥ 2. Let {T1, · · · ,Tk+1} be a
partition of T , and let Gi =∨t∈TiFt for 1≤ i≤ k+1. Defining T0 = {T1, · · · ,Tk}, because
the collection {Ft | t ∈ T0}, being a subcollection of {Ft | t ∈ T}, is an independency. As
such, by the inductive hypothesis G1, · · · ,Gk are independent, that is,

P
(

k⋂
i=1

Ai

)
=

k∏
i=1

P(Ai)

for any Ai ∈ Gi for 1≤ i≤ k.
Since {T0,Tk+1} is a partition of T , by the result for k = 2 we can see that ∨ki=1Gi
and Gk+1 are independent. Therefore, for any A1, · · · ,Ak+1 such that Ai ∈ Gi for any
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1≤ i≤ k+ 1, since ⋂ki=1Ai ∈
∨k
i=1Gi,

P
(
k+1⋂
i=1

Ai

)
= P

(
k⋂
i=1

Ai

)
P(Ak+1) =

k+1∏
i=1

P(Ai) .

By definition, G1, · · · ,Gk+1 is an independency, and the claim of the theorem follows by
induction.
Q.E.D.

1.8.1 Characterizations of Independence

An equivalent formulation of independence in terms of integrals can now be easily given:

Theorem 1.18 (Characterization of Independence with Expected Values)
Let T be an arbitrary index set, and {Ft | t ∈ T} a collection of sub σ-algebras of H. Then,
{Ft | t ∈ T} is an independency if and only if, for any finite subset {t1, · · · , tk} ⊂ T and non-
negative random variables V1, · · · ,Vk measurable relative to Ft1 , · · · ,Ftk respectively,

E
[
k∏
i=1

Vi

]
=

k∏
i=1

E [Vi] .

Proof) Sufficiency follows immediately, since for any finite set {t1, · · · , tk} ⊂ T , we can take
Vi = IAi for some Ai ∈ Fti for 1≤ i≤ k and independence follows from the definition.

To show necessity, we proceed by induction on k. First choose any {t1, t2} ⊂ T and
denote G1 = Ft1 , G2 = Ft2 . Then, for any simple functions V = ∑n

i=1αi · IAi and U =∑k
i=1βi · IBi that are G1 and G2 measurable, respectively, we have

E [V U ] =
n∑
i=1

k∑
j=1

αiβj ·P(Ai∩Bj) =
n∑
i=1

k∑
j=1

αiβj ·P(Ai)P(Bj)

=
(

n∑
i=1

αi ·P(Ai)
)(

k∑
i=1

βi ·P(Bi)
)

= E [V ]E [U ] ,

where the second equality follows from the independence of G1 and G2.
Now let V ∈ G1,+ and U ∈ G2,+. Letting {Vn}n∈N+ and {Un}n∈N+ be sequences of G1

and G2-measurable simple functions increasing to V and U , by the MCT

E [V U ] = lim
n→∞

lim
m→∞

E [VnUm]

=
(

lim
n→∞

E [Vn]
)(

lim
m→∞

E [Um]
)

= E [V ]E [U ] .
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Now suppose that necessity holds for some k≥ 2. Choose a subset T0 = {t1, · · · , tk+1}⊂T
and Vi ∈Fti for 1≤ i≤ k. Defining G1 =∨ki=1Fti and G2 =Ftk+1 , because {{t1, · · · , tk},{tk+1}}
is a partition of T0, by the previous theorem G1 and G2 are independent. Because∏k

i=1Vi

is a G1-measurable non-negative function, by the result for k = 2 we have

E
[
k+1∏
i=1

Vi

]
= E

[
k∏
i=1

Vi

]
E [Vk+1] .

Finally, by the inductive hypothesis,

E
[
k+1∏
i=1

Vi

]
=

k∏
i=1

E [Vi] .

Therefore, we have

E
[
k+1∏
i=1

Vi

]
=
k+1∏
i=1

E [Vi] ,

and necessity holds by induction.
Q.E.D.

Now we move on from the independence of σ-algebras to that of random variables. Let T be an
arbitrary index set, and {(Et,Et) | t ∈ T} a collection of measurable spaces with product (E,E).
For any collection of random variables {Xt | t ∈ T} such that Xt takes values in (Et,Et) for all
t ∈ T , we say {Xt | t ∈ T} is an independency, or that its elements are mutually independent, if
the corresponding collection of σ-algebras {σXt | t ∈ T} is an independency.
By the definition of independence stated above, we can equivalently say that {Xt | t ∈ T} is an
independency if

P
(⋂
t∈J
{Xt ∈At}

)
=
∏
t∈J

P(Xt ∈At)

for any At ∈ Et and a finite subset J ⊂ T .
Furthermore, theorem 1.18, together with the Doob-Dynkin lemma, shows us that {Xt | t∈ T} is
an independency if and only if, for any finite subset J ⊂ T and non-negative functions {ft | t∈ J}
such that each ft ∈ Et,+, we have

E
[∏
t∈J

ft ◦Xt

]
=
∏
t∈J

E [ft ◦Xt] .

Below we formulate, in terms of the distributions, a necessary and sufficient condition for a finite
set of random variables to be independent:
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Theorem 1.19 (Characterization of Independence with Distributions)
Let {X1, · · · ,Xk} be a collection of random variables such that each Xi takes values in the
measurable space (Ei,Ei) and has distribution µi. X1, · · · ,Xk are independent if and only if their
joint distribution π is the product of their individual distributions, that is,

π = µ1×·· ·×µk.

Proof) Throughout, let X = (X1, · · · ,Xk), so that X is a random variable taking values in
(E,E) =⊗k

i=1(Ei,Ei). We can then interpret π as the distribution P◦X−1 of X.
Suppose that X1, · · · ,Xk are independent. Then, for any measurable rectangle A1×
·· ·×Ak on E, we have

π(A1×·· ·×Ak) = P(X ∈A1×·· ·×Ak) = P
(

k⋂
i=1

X−1
i (Ai)

)

=
k∏
i=1

P
(
X−1
i (Ai)

)
=

k∏
i=1

µi(Ai).

Thus, π = µ1×·· ·×µk on the set of all measurable rectangles, and because these sets
form a π-system generating E , and

π(E) =
k∏
i=1

µi(Ei) = 1<+∞,

it follows that π = µ1×·· ·×µk on E .

Conversely, suppose that π = µ1× ·· · ×µk on E . Then, for any A1, · · · ,Ak such that
Ai ∈ Ei for 1≤ i≤ k,

P
(

k⋂
i=1
{Xi ∈Ai}

)
= P(X ∈A1×·· ·×Ak)

= π(A1×·· ·×Ak) =
k∏
i=1

µi(Ai) =
k∏
i=1

P(Xi ∈Ai) .

By definition, X1, · · · ,Xk are independent.
Q.E.D.

If each random variable has a density with respect to some σ-finite measure, then we can obtain
a sharper characterization for independence:

64



Theorem 1.20 (Characterization of Independence with Densities)
Let {X1, · · · ,Xk} be a collection of random variables such that each Xi takes values in the
measurable space (Ei,Ei) and has distribution µi, and let π be the joint distribution ofX1, · · · ,Xk.
Suppose that, for each 1 ≤ i ≤ k, there exists a σ-finite measure vi on (Ei,Ei) with respect to
which µi has a density fi.
In this case, X1, · · · ,Xk are independent if and only if the product of their densities is a density
of π with respect to the product measure v1×·· ·×vk, that is, f : E→ [0,+∞] defined as

f(x) =
k∏
i=1

fi(xi)

for any x ∈ E is a member of ∂π
∂v1×···×vk .

Proof) Throughout, let X = (X1, · · · ,Xk), so that X is a random variable taking values in
(E,E) =⊗k

i=1(Ei,Ei). We can then interpret π as the distribution P◦X−1 of X.
Suppose that X1, · · · ,Xk are independent. Then, by the previous theorem, π is the
product of the individual distributions µ1, · · · ,µk. Define f : E→ [0,+∞] as above;
then, f is E-measurable and therefore the indefinite integral π0 of f with respect to the
product measure v1×·· ·×vk is well-defined.
For any measurable rectangle A1×·· ·×Ak,

π(A1×·· ·×Ak) =
k∏
i=1

µi(Ai) =
k∏
i=1

∫
Ai

fi(xi)dvi(xi) =
∫
A1
· · ·
∫
Ak

f(x)dvk(xk) · · ·dv1(x1)

=
∫
A1×···×Ak

f(x)d(v1×·· ·×vk)(x) = π0(A1×·· ·×Ak),

where the second to last equality follows from Fubini’s theorem. π and π0 are thus prob-
ability measures that agree on the π-system of measurable rectangles, so that π = π0

on E . By implication, f is the density of π with respect to v1×·· ·×vk.

Conversely, suppose that the f : E→ [0,+∞] defined above is the density of π with
respect to v1×·· ·×vk. Then, for any measurable rectangle A1×·· ·×Ak,

π(A1×·· ·×Ak) =
∫
A1×···×Ak

f(x)d(v1×·· ·×vk)(x)

=
k∏
i=1

∫
Ai

fi(xi)dvi(xi) =
k∏
i=1

µi(Ai)

by Fubini’s theorem. Thus, π and µ1×·· ·×µk are probability measures that agree on
the set of all measurable rectangles, so π = µ1×·· ·×µk on E . By the previous theorem,
this implies that X1, · · · ,Xk are independent.
Q.E.D.
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Finally, we can also characterize independence by exploiting the fact that characteristic func-
tions determine the distribution of a random vector. Below we illustrate this approach:

Theorem 1.21 (Characterization of Independence with Charcteristic Functions)
Let X and Y be k-and m-dimensional real random vectors with characteristic functions ϕx and
ϕy. Defining the k+m-dimensional real random vector Z = (X ′,Y ′)′ and letting its characteristic
function be ϕ, X and Y are independent if and only if

ϕ((t′, r′)′) = ϕx(t)ϕy(r)

for any t ∈ Rk and r ∈ Rm.

Proof) Let X and Y have distributions µx and µy, and let the joint distribution of X and Y

be π.
Suppose X and Y are independent. Then, π = µx×µy, so that for any t ∈ Rk, r ∈ Rm

and s= (t′, r′)′ ∈ Rk+m, we have

ϕ(s) =
∫
Rk+m

exp
(
is′z

)
dπ(z)

=
∫
Rk+m

exp
(
it′x

)
exp

(
ir′y

)
d(µx×µy)(x,y)

=
(∫

Rk
exp

(
it′x

)
dµx(x)

)(∫
Rm

exp
(
ir′y

)
dµy(y)

)
(Fubini’s Theorem)

= ϕx(t)ϕy(r).

Conversely, suppose that

ϕ((t′, r′)′) = ϕx(t)ϕy(r)

for any t ∈ Rk and r ∈ Rm. Letting π0 = µx×µy, the characteristic function φ of π0 is
defined as

φ(s) = ϕx(t)ϕy(r)

for any t∈Rk, r ∈Rm and s= (t′, r′)′ ∈Rk+m, as showed above. This means that ϕ= φ

on Rk+m, and because the characteristic function of a distribution determines the dis-
tribution itself, π = π0 on B(Rk+m). As such, X and Y are independent.
Q.E.D.
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1.8.2 Construction of Sequences of Independent Random Variables

Having defined the independence of random variables, the next question is naturally whether
there actually exists a probability space on which independent random variables with specific
distributions exist. This is a simple matter for a finite collection of random variables.
To illustrate this, let (E1,E1), · · · ,(En,En) be measurable spaces and µ1, · · · ,µn probability mea-
sures on those spaces. Define (Ω,H) =⊗n

i=1(Ei,Ei), P = µ1×·· ·×µn and Xi : Ω→ Ei as

Xi(ω1, · · · ,ωn) = ωi

for any (ω1, · · · ,ωn) ∈ Ω and 1 ≤ i ≤ n. Then, X1, · · · ,Xn are independent random variables
taking values in (E1,E1), · · · ,(En,En) with distributions µ1, · · · ,µn and underlying probability
space (Ω,H,P). We verify the claims one by one:

• (Ω,H,P) is a probability space
This is trivial, since µ1×·· ·×µn is a product measure on (Ω,H) with total mass 1 because
each µi is a probability measure.

• X1, · · · ,Xn are random variables
For any 1≤ i≤ n and Ai ∈ Ei,

X−1
i (Ai) =Ai×E−i ∈

n⊗
i=1
Ei =H,

so Xi is a random variable taking values in (Ei,Ei).

• For any 1≤ i≤ n, Xi has distribution µi

Choosing any Ai ∈ Ei,

P(Xi ∈Ai) = (µ1×·· ·×µn)(Ai×E−i) = µi(Ai).

• X1, · · · ,Xn are independent
For any A1, · · · ,An such that Ai ∈ Ei for 1≤ i≤ n,

P
(

n⋂
i=1
{Xi ∈Ai}

)
= P(A1×·· ·×An) =

n∏
i=1

µi(Ai) =
n∏
i=1

P(Xi ∈Ai) ,

so by definition, X1, · · · ,Xn are independent.

However, the issue is more complicated when it comes to constructing a sequence of independent
random variables with specific distributions because we cannot define the product of an infinte
number of measures. Fortunately, there is a way to preserve the intuition of the construction
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above when constructing a probability space underlying a sequence of independent random vari-
ables. Namely, we extend a pre-measure that yields the desired finite dimensional distribution,
constructed exactly as above, to a probability measure using Caratheodory’s extension theorem.

Cylinder Sets and Finite Dimensional Distributions

Formally, let {(Ei,Ei,µi) | i ∈ N+} be a collection of probability spaces, define for any n ∈ N+

the probability space

(En,En,πn) =
n⊗
i=1

(Ei,Ei,µi),

and let (E,E) be the product of {(Ei,Ei) | i ∈N+}.
A set A ∈ E is said to be a cylinder set with base B if B ∈ En for some n ∈N+ and

A=B×

 ∞∏
i=n+1

Ei

 .
n is then said to be the dimension of A, and we denote A = [B]. Fn denotes the set of all n-
dimensional cylinder sets, and F =⋃

nFn is the set of all cylinder sets.
We can immediately tell that, for any n,m ∈ N+ such that n < m, Fn ⊂ Fm. To see this, let
A ∈ Fn; by definition, there exists a B ∈ En such that A=B×En+1×·· · . Then, for any m>n,
we can write

A= [B] = [(B×En+1×·· ·×Em)],

where B×En+1× ·· ·×Em ∈ Em by the associativity of the product of σ-algebras. Therefore,
A ∈ Fm as well.

Now we can define a function on F that yields all the desired finite dimensional distributions.
Define P0 : F → [0,1] as

P0([B]) = πn(B)

for any [B]∈Fn. For any n∈N+, the value of P0 for any n-dimensional cylinder set is equivalent
to the value of its base under the product measure µ1×·· ·×µn. This is meant, in analogy with
the finite case, to represent the fact that the first n random variables in the sequence have
distributions µ1, · · · ,µn and are mutually independent.
Any cylinder set A can be a member of multiple Fn, as seen above. Fortunately, it is easily seen
that P0 assigns the same value to A regardless of which Fn it belongs to, so that the definition
above is consistent: this is shown below.
Let A ∈ Fn for some n ∈ N+, and choose any m > n. Then, letting the base of A be B ∈ En
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under Fn, its base is B×En+1×·· ·×Em under Fm. We now have

P0([B]) = πn(B) = πm(B×En+1×·· ·×Em) = P0([B×En+1×·· ·×Em]),

so that P0(A) is consistently defined.

Construction of the Probability Space

It remains to see that the F and P0 defined above can be extended to an actual probability
space (Ω,H,P), where H contains F and P agrees with P0 on F . Then, letting X1,X2, · · · be
defined as in the finite case, it can be easily seen that {Xn}n∈N+ is a sequence of independent
random variables having the distributions {µn}n∈N+ .

Before diving into the proof of the desired result, we define some mathematical objects that assist
with the proof. Retaining the setup established in the previous section, for any n-dimensional
cylinder set [B] ∈ Fn, define the sequence {Qm(·; [B])}m∈N+ of functions as follows: for any
m ∈N+,

Qm(x1, · · · ,xm; [B]) =


∫
Em+1×···×En IB(x1, · · · ,xm,y)d(µm+1×·· ·×µn)(y) if m< n

IB(x1, · · · ,xn) if m≥ n

for any (x1, · · · ,xm) ∈ Em. Clearly, each Qm(·; [B]) is a Em-measurable function.
For any m ∈N+, if m+ 1< n, then

Qm(x1, · · · ,xm; [B]) =
∫
Em+1

IB(x1, · · · ,xm,y)d(µm+1×·· ·×µn)(y)

=
∫
Em+1

[∫
Em+2

IB(x1, · · · ,xm,xm+1,y)d(µm+2×·· ·×µn)(y)
]
dµm+1(xm+1)

=
∫
Em+1

Qm+1(x1, · · · ,xm+1; [B])dµm+1(xm+1)

by Fubini’s theoerem, while if m+ 1≥ n, then

Qm(x1, · · · ,xm; [B]) =
∫
Em+1

Qm+1(x1, · · · ,xm+1; [B])dµm+1(xm+1)

trivially. Therefore, the above relationship holds for any m ∈N+ and (x1, · · · ,xm) ∈ Em.
Finally, we can see that, for any n-dimensional cylinder set [B] ∈ Fn,

P0([B]) = πn(B) =
∫
E1×En

IB(x)d(µ1×·· ·×µn)(x)

=
∫
E1

[∫
E2×···×En

IB(x1,y)d(µ2×·· ·µn)(y)
]
dµ1(x1)

=
∫
E1
Q1(x1; [B])dµ1(x1).
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The formal construction of the desired probability space is given below; it is a special case of
Ionescu-Tulcea’s theorem for the construction of sequences of random variables, and the proof
remains virtually the same.

Theorem 1.22 (Ionescu-Tulcea’s Theorem for Independent Random Variables)
Let {(Ei,Ei,µi) | i ∈N+} be a collection of probability spaces. Then, there exists a probability
space (Ω,H,P) and a sequence {Xn}n∈N+ of random variables with underlying probability space
(Ω,H,P) such that:

i) {Xn}n∈N+ is an independency.

ii) Each Xi takes values in (Ei,Ei) and has distribution µi.

Proof) Let the notations and definitions follow the setup given in the earlier sections. Our first
goal is to show that F , the set of all cylinder sets, is an algebra on E, and that P0 is
a σ-additive pre-measure on F . The probability space (Ω,H,P) will then be defined as
the extension of F and P0 obtained via Caratheodory’s extension theorem.

Step 1: F is an algebra on E

Clearly, E = [E1] ∈ F1.
For any A ∈ F , letting A= [B] ∈ Fn for some n ∈N+ and B ∈ En,

Ac =Bc×En+1×·· ·= [Bc] ∈ Fn,

so that F is closed under complements.
Finally, for any {A1, · · · ,An} ⊂ F with union A, let m ∈N+ be the highest dimension
among A1, · · · ,An. It follows that A1, · · · ,An ∈ Fm, so that there exist B1, · · · ,Bn ∈ Em

such that Ai = [Bi] for 1≤ i≤ n. Therefore,

A=
n⋃
i=1

Ai =
(

n⋃
i=1

Bi

)
×Em+1×·· ·=

[
n⋃
i=1

Bi

]
∈ Fm,

so that A ∈ F and F is closed under finite unions.
By definition, F is an algebra on E.

Step 2: P0 is a pre-measure on F
Initially, we have

P0(∅) = P0(∅×E2×·· ·) = µ1(∅) = 0.
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For any disjiont {A1, · · · ,An} ⊂ F with union A, letting m be the maximum dimension
among A1, · · · ,An as before, there exist B1, · · · ,Bn ∈Em such that Ai = [Bi] for 1≤ i≤n.
Furthermore, for any 1≤ i 6= j ≤ n,

Ai∩Aj = [Bi∩Bj ] = ∅,

which means that Bi ∩Bj = ∅; {B1, · · · ,Bn} is a disjiont collection of sets in Em. As
such, by the finite additivity of πm,

P0(A) = πm

(
n⋃
i=1

Bi

)
=

n∑
i=1

πm(Bi) =
n∑
i=1

P0(Ai).

It follows that P0 is finitely additive on F , making it a pre-measure on that algebra.

Step 3: P0 is σ-additive
We first show that P0 is continuous sequences of sets in F that decrease to the empty
set.
Let {An}n∈N+ be a sequence of cylinder sets such that An+1 ⊂An for any n ∈N+ and
A = ⋂

nAn = ∅. By the monotonicity of pre-measures, the sequence {P0(An)}n∈N+ in
[0,1] is decreasing; therefore, its limit is well-defined as its infimum. We want to show
that the limit is equal to 0, so assume otherwise, that is, suppose that

lim
n→∞

P0(An)> 0.

We now show that this leads to a contradiction via induction.
For any n ∈N+, we have

P0(An) =
∫
E1
Q1(x1;An)dµ1(x1).

Since Q1(x1;An) is an integral of the x1-section of the base of An, the sequence
{Q1(x1;An)}n∈N+ takes values in [0,1] and decreases for any x1 ∈ E1. This means
that the pointwise limit of Q1(·;An) as n→∞ is well-defined as its infimum, and by
the bounded convergence theorem,

lim
n→∞

P0(An) =
∫
E1

(
inf
n∈N+

Q1(x1;An)
)
dµ1(x1).

Because this integral is positive, there must exist an x∗1 ∈ E1 such that

inf
n∈N+

Q1(x∗1;An)> 0.
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Now suppose, for some k ≥ 1, that there exist x∗1 ∈ E1, · · · ,x∗k ∈ Ek such that

inf
n∈N+

Qk(x∗1, · · · ,x∗k;An)> 0.

For any n ∈N+, we have

Qk(x∗1, · · · ,x∗k;An) =
∫
Ek+1

Qk+1(x∗1, · · · ,x∗k,y;An)dµk+1(y),

and the sequence {Qk+1(x∗1, · · · ,x∗k, ·;An)}n∈N+ of functions on Ek+1 takes values in
[0,1] and is decreasing pointwise by the same line of reasoning as above. Therefore, by
the BCT,

inf
n∈N+

Qk(x∗1, · · · ,x∗k;An) = lim
n→∞

Qk(x∗1, · · · ,x∗k;An)

=
∫
Ek+1

(
inf
n∈N+

Qk+1(x∗1, · · · ,x∗k,y;An)
)
dµk+1(y),

and because this integral must be positive by the inductive hypothesis, there exists an
x∗k+1 ∈ Ek+1 such that

inf
n∈N+

Qk+1(x∗1, · · · ,x∗k,x∗k+1;An)> 0.

Therefore, by induction, there exists a sequence x∗ = {x∗i }i∈N+ ∈ E such that

Qk(x∗1, · · · ,x∗k;An)> 0

for any k ∈N+ and n ∈N+. This means that, for any n ∈N+, letting An = [B] ∈ Fm
for some m ∈N+,

Qm(x∗1, · · · ,x∗m; [B]) = IB(x∗1, · · · ,x∗m) = 1,

or that (x∗1, · · · ,x∗m) ∈B. As such,

x∗ ∈B×Em+1×·· ·=An,

and because this holds for any n ∈N+, x∗ is contained in A=⋂
nAn. This contradicts

the assumption that A= ∅, so it must be the case that

lim
n→∞

P0(An) = 0.

It is easy now to show that this implies σ-additivity. For any disjiont sequence {An}n∈N+ ⊂
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F such that A=⋃
nAn ∈ F . Define {Hn}n∈N+ as

Hn =A\
(

n⋃
i=1

Ai

)

for any n ∈ N+. Becuase algebras are closed under finite unions and set differences,
{Hn}n∈N+ is a sequence of sets in F that decrease to ∅. By the finite additivity of P0

on F ,

P0(A) = P0

(
A\

(
n⋃
i=1

Ai

))
+P0

(
n⋃
i=1

Ai

)

= P0(Hn) +
n∑
i=1

P0(Ai).

By the preceding result, the first term goes to 0 as n→∞, so it follows that

P0(A) =
∞∑
n=1

P0(An),

which proves σ-additivity.

Step 4: Construction of the Probability Space and Random Variables
Because F is an algebra on E and P0 a σ-additive pre-measure on F , by Caratheodory’s
extension theorem there exists a complete measure space (E,M,µ) such that F ⊂M
and µ(A) = P0(A) for any A ∈ F . In particular, because E ∈ F , µ(E) = P0(E) = 1;
defining Ω = E, H=M and P = µ, the triple (Ω,H,P) is a probability space.

Now define the sequence {Xn}n∈N+ of functions on Ω as follows: for any n ∈N+,

Xn(ω) = ωn

for any ω= {ωi}i∈N+ ∈Ω. Then, Xn is a function taking values in (En,En), and because

X−1
n (An) = [E1×·· ·×En−1×An] ∈ Fn ⊂H

for any An ∈ En, Xn is a random variable.
Furthermore, for any An ∈ En, because X−1

n (An) is a cylinder set,

P
(
X−1
n (An)

)
= P0(X−1

n (An))

= P0([E1×·· ·×En−1×An]) = πn(E1×·· ·×En−1×An) = µn(An).

Therefore, Xn has distribution µn.
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Finally, choose any finite set J = {t1, · · · , tn} ⊂N+ and A1 ∈ Et1 , · · · ,An ∈ Etn . Letting
t1 < · · ·< tn =m without loss of generality,

n⋂
i=1

X−1
ti (Ai) =

 m∏
j=1

Bj

 ,
where Bti =Ati for any 1≤ i‘k and Bj = Ej if j /∈ J . Therefore,

P
(

n⋂
i=1

X−1
ti (Ai)

)
= P0

([
m∏
n=1

Bi

])

= πm

(
m∏
n=1

Bi

)
=

n∏
i=1

µi(Ati) =
n∏
i=1

P(Xti ∈Ai) .

By definition, {Xn}n∈N+ is an independency.
Q.E.D.
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1.9 Normal Distributions

Normal distributions, also called Gaussian distributions, form the crux of many theorems in
probability theory. They also have a rich structure of their own, so we take a moment to study
the normal distribution and its multivariate generalizations.

1.9.1 The Standard Univariate Normal Distribution

A real random variable X is said to have the standard normal distribution if its density f : R→
[0,+∞] with respect to the Lebesgue measure is defined as

f(x) = 1√
2π

exp
(
−1

2x
2
)

for any x ∈ R; this relationship is succinctly stated as X ∼N [0,1].
f is continuous on R, so by lemma 1.3, the distribution function F of X is differentiable on R
with derivative f . This implies that F is continuous, and as such that X is a continuous random
variable.

If X ∼N [0,1], X has finite kth moments for every k ∈N+:

E
[
|X|k

]
=
∫ ∞
−∞
|x|kf(x)dx

= 2
( 1

2π

) 1
2
∫ ∞

0
xk exp

(
−1

2x
2
)
dx

= 2
k
2 +1

( 1
2π

) 1
2
∫ ∞

0
z
k
2 exp(−z)(2z)−

1
2dz (Substitution with

√
2z = x)

= 2
k
2

1√
π

∫ ∞
0

z
k+1

2 −1 exp(−z)dz

= 2
k
2

1√
π

Γ
(
k+ 1

2

)
,

where Γ : R→ R denotes the gamma function. We are thus able to obtain some elementary
absolute moments:

E [|X|] =
√

2
π

Γ(1) =
√

2
π

E
[
X2
]

= 2√
π

Γ
(3

2

)
= 2√

π

1
2 ·Γ

(1
2

)
= 1

E
[
|X|3

]
= 2

3
2

1√
π

Γ(2) = 2
√

2
π

E
[
X4
]

= 4√
π

Γ
(5

2

)
= 4√

π

3
2Γ
(3

2

)
= 3.

In addition, because x 7→ xk exp
(
−1

2x
2
)

is an odd function on R for any odd k ∈ N+, the odd
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moments of X are all 0, that is,

E
[
Xk
]

= 0 if k is odd.

These yield the familiar results concerning the standard normal distribution; if X ∼ N [0,1],
then:

• The mean of X is µ= E [X] = 0

• The variance of X is σ2 = E
[
X2]−µ2 = 1

• The skewness of X is E
[(

X−µ
σ

)3
]

= E
[
X3]= 0

• The kurtosis of X is E
[(

X−µ
σ

)4
]

= E
[
X4]= 3.

For X ∼ N [0,1] with density φ : R→ [0,+∞), the distribution function Φ : R→ [0,1] of X is
defined as

Φ(x) =
∫ x

−∞
φ(z)dz =

∫ x

−∞

1√
2π

exp
(
−1

2z
2
)
dz

for any x ∈ R. As stated above, Φ′(x) = φ(x) for any x ∈ R.

X ∼N [0,1] also has simple and tractable moment generating and characteristic functions.

Lemma 1.22 (MGF and Characteristic Function of Normal Distribution)
Let X ∼N [0,1] have moment generating function and characteristic function m : R→ [0,+∞]
and ϕ : R→ C, respectively. Then,

m(t) = exp
(1

2 t
2
)

and ϕ(t) = exp
(
−1

2 t
2
)

for any t ∈ R.

Proof) We start with the moment generating function. For any t ∈ R,

m(t) = E [exp(tX)] =
∫ ∞
−∞

exp(tx)φ(x)dx

= 1√
2π
·
∫ ∞
−∞

exp
(
−1

2(x2 + 2tx)
)
dx

= 1√
2π

exp
(1

2 t
2
)
·
∫ ∞
−∞

exp
(
−1

2 (x+ t)2
)
dx

= 1√
2π

exp
(1

2 t
2
)
·
∫ ∞
−∞

exp
(
−1

2z
2
)
dz

(Linear change of variables)

= exp
(1

2 t
2
)
·
∫ ∞
−∞

φ(z)dz

= exp
(1

2 t
2
)
.
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Moving onto the characteristic function, note that, for any non-zero t ∈ R,

ϕ(t) =
∫ ∞
−∞

exp(itx)φ(x)dx

=
∫ ∞
−∞

cos(tx)φ(x)dx+ i ·
∫ ∞
−∞

sin(tx)φ(x)dx (Euler’s formula)

= 2
∫ ∞

0
cos(tx)φ(x)dx (cos(tx)φ(x) is even, while sin(tx)φ(x) is odd)

=
√

2
π
·
∫ ∞

0
cos(tx)exp

(
−1

2x
2
)
dx.

This immediately tells us that ϕ(t) is real valued.
Integration by parts similar to that used in the derivation of the Dirichlet integral
reveals that∫ ∞

0
cos(tx)exp

(
−1

2x
2
)
dx− 1

t

∫ ∞
0

xsin(tx)exp
(
−1

2x
2
)
dx= 0,

so that

ϕ(t) = 1
t
·
[√

2
π

∫ ∞
0

xsin(tx)exp
(
−1

2x
2
)
dx

]
.

Now we turn away from ϕ for a moment to obtain the derivative of ϕ at t. For any
non-zero h ∈ R,

ϕ(t+h)−ϕ(t)
h

=
√

2
π
·
∫ ∞

0

cos((t+h)x)− cos(tx)
h

exp
(
−1

2x
2
)
dx.

Since ∣∣∣∣cos((t+h)x)− cos(tx)
h

exp
(
−1

2x
2
)∣∣∣∣≤ xexp

(
−1

2x
2
)

for any h 6= 0 and x≥ 0, where∫ ∞
0

xexp
(
−1

2x
2
)
dx= 1<+∞,

and

lim
h→0

cos((t+h)x)− cos(tx)
h

= ∂ cos(tx)
∂t

=−xsin(tx)

for any x≥ 0, so by the DCT,

ϕ′(t) = lim
h→0

ϕ(t+h)−ϕ(t)
h

=−
√

2
π
·
∫ ∞

0
xsin(tx)exp

(
−1

2x
2
)
dx.
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From the result derived earlier from integration by parts, we can now see that

ϕ′(t) =−t ·ϕ(t).

Suppose that ϕ(t)> 0, so that

−t= ϕ′(t)
ϕ(t) = d

dt
log(ϕ(t))

(the derivative on the right is well-defined because the continuity of ϕ ensures that ϕ
is positive on a neighborhood of 0). It follows that

log(ϕ(t)) =−1
2 t

2 + c,

or equivalently,

ϕ(t) = C · exp
(
−1

2 t
2
)

for some c ∈ R and C > 0 (C = exp(c) in this case). Since ϕ is continuous on R and
ϕ(0) = 1, we must have

1 = lim
t→0

ϕ(t) = C,

and therefore,

ϕ(t) = exp
(
−1

2 t
2
)

for any t ∈ R.
Q.E.D.

1.9.2 General Univariate Normal Distributions

Normal distributions are easy to work with because all normally distributed real random vari-
ables can be expressed as an affine function of a standard normally distributed random variable.
Let Z ∼N [0,1]. For any µ ∈ R and σ2 ≥ 0, the random variable defined as

X = σ ·Z+µ

would have mean µ and variance σ2. We say that X has the normal distribution with mean µ

and variance σ2, and denote this by X ∼N
[
µ,σ2].

Suppose σ2 > 0. Letting φ be the standard normal density and v the distribution of X, note
that, for any Borel set A⊂ R,

v(A) = E [IA ◦X] = E [IA ◦ (σZ+µ)]
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=
∫ ∞
−∞

IA (σ ·z+µ)φ(z)dz

= 1
σ
·
∫ ∞
−∞

IA(x)φ
(
x−µ
σ

)
dx (Substitution with x−µ

σ = z)

=
∫
A

1√
2πσ2

exp
(
− 1

2σ2 (x−µ)2
)
dx.

As such,

1√
2πσ2

exp
(
− 1

2σ2 (x−µ)2
)

is precisely the density of X ∼N
[
µ,σ2] if σ2 > 0.

If σ2 = 0, then because X = µ almost surely, the distribution of X is not absolutely continuous
with respect to the Lebesgue measure and thus X does not admit a density.
GivenX ∼N

[
µ,σ2] for some σ2 > 0, we can conversely define Z = X−µ

σ and find that Z ∼N [0,1].
The operation x 7→ x−µ

σ is referred to as the normalization of the random variable X.

The moment generating and characteristic functions of X ∼ N
[
µ,σ2] are now easily found.

Letting Z = X−µ
σ , Z ∼ N [0,1] and X = σZ +µ, so the moment generating function m : R→

[0,+∞] and the characteristic function ϕ : R→ C of X are defined as

m(t) = E [exp(tX)] = exp(µt) ·E [exp(tσZ)]

= exp
(
µt+ 1

2σ
2t2
)

ϕ(t) = E [exp(itX)] = exp(iµt) ·E [exp(itσZ)]

= exp
(
iµt− 1

2σ
2t2
)

for any t∈R, where we used the formulas for the mgf and characteristic function of the standard
normal distribution.

An important characteristic of the normal distribution is that the linear combination of any
independent normally distributed random variables is also normally distributed.

Theorem 1.23 (Preservation of Normality under Linear Combinations)
Let X,Y be two independent real random variables such that X ∼N

[
µx,σ

2
x

]
and Y ∼N

[
µy,σ

2
y

]
.

Then,

αX+Y ∼N
[
αµx+µy,α

2σ2
x+σ2

y

]
.

Proof) If α= 0, then αX+Y = Y , and the result follows trivially.
Suppose that α 6= 0. Then, letting ϕ be the characteristic function of the real random
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variable αX+Y and ϕx,ϕy the characteristic functions of X and Y , we have

ϕ(t) = E
[
exp

(
it′Z

)]
= E [exp(itαX)exp(itY )]

= E [exp(itαX)]E [exp(itY )] = ϕx(tα)ϕy(t)

for any t ∈R, where the third equality follows because X and Y are independent. Since
X and Y are normally distributed, their characteristic functions are given by

ϕx(t) = exp
(
iµx−

1
2σ

2
xt

2
)

ϕy(t) = exp
(
iµy−

1
2σ

2
yt

2
)

for any t ∈ R. It follows that

ϕ(t) = exp
(
i(αµx+µy)t−

1
2(α2σ2

x+σ2
y)t2

)
for any t ∈ R, which is exactly the characteristic function of a normal distrubtion with
mean αµx+µy and variance α2σ2

x+σ2
y . Therefore,

αX+Y ∼N
[
αµx+µy,α

2σ2
x+σ2

y

]
.

Q.E.D.

This easily generalizes to finite linear combinations, so that, for any collection of normally
distributed random variables X1, · · · ,Xn such that Xi∼N

[
µi,σ

2
i

]
for 1≤ i≤ n and real numbers

α1, · · · ,αn, we have

n∑
i=1

αiXi ∼N
[
n∑
i=1

αiµi,
n∑
i=1

αi ·σ2
i

]
.

In algebraic terms, we can say that the collection

N = {X ∈H/B(R) |X ∼N
[
µ,σ2

]
for some µ ∈ R,σ2 ≥ 0}

forms a linear subspace of the set of all real random variables.
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1.9.3 The Multivariate Normal Distribution

We now study the multivariate generalization of the normal distribution. A k-dimensional real
random vector X is said to be normally distributed if, for any t ∈ Rk, t′X is a (possibly degen-
erate) normally distributed random variable. Taking t to be equal to each standard basis vector
on Rk, it follows that each coordinate of X is normally distributed. Thus, each coordinate of X
and by extension X itself has finite absolute moments of all integer orders, so that we can define
the mean and variance of X; denote them by µ ∈Rk and V ∈Rk×k (in particular, recall that V
is positive definite). We can then denote X ∼N [µ,V ], in analogy with the univariate case.
If X is a normally distributed k-dimensional random vector with mean 0 and variance Ik, then
we say that X has the standard normal distribution. The coordiantes of X are all standard
normally distributed real random variables, and they are pairwise uncorrelated.

We can easily obtain the MGF and characteristic function of X. For any t∈Rk, t′X is a normally
distributed random variable such that

E
[
t′X

]
= t′µ and Var

[
t′X

]
= t′Var[X] t= t′V t,

so letting m : Rk→ [0,+∞] and ϕ : Rk→ C be the MGF and characteristic functions of X, we
have

m(t) = E
[
exp

(
t′X

)]
= exp

(
t′µ+ 1

2 t
′V t

)
ϕ(t) = E

[
exp

(
it′X

)]
= exp

(
it′µ− 1

2 t
′V t

)
.

for any t ∈Rk. These expressions are easily seen as multivariate generalizations of the MGF and
characteristic function of a univariate normally distributed random variable.
The formula for the characteristic function of normally distributed random vectors derived above
yield the following independence result, which is of great importance:

Theorem 1.24 (Independence and Uncorrelatedness for Normal Vectors)
Suppose X and Y are k-and m-dimensional random vectors, and that the k+m-dimensional
random vector Z = (X ′,Y ′)′ is normally distributed. Then, X and Y are independent if and
only if they are uncorrelated.

Proof) Necessity follows immediately. To see sufficiency, suppose that X and Y are uncorre-
lated. For any t ∈ Rk and r ∈ Rm,

t′X =
(
t′ 0′

)X
Y

 and r′Y =
(
0′ r′

)X
Y

 ,
and because Z = (X ′,Y ′)′ is normally distributed, t′X and r′Y are normally distributed
real random variables. By definition, X and Y are normally distributed, and let µx,µy
be the means of X,Y and Vx,Vy their variances, so that Z has mean (µ′x,µ′y)′ and
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variance V =

Vx O

O Vy

. Let ϕx and ϕy be the characteristic functions of X and Y ,

and ϕ the characteristic function of the k+m-dimensional random vector Z = (X,Y ).
Then, for any t ∈ Rk and r ∈ Rm, we have

ϕ

t
r

= exp

i(t′ r′
)µx

µy

− 1
2
(
t′ r′

)Vx O

O Vy

t
r


= exp

(
it′µx−

1
2 t
′Vxt

)
exp

(
ir′µy−

1
2r
′Vyr

)
= ϕx(t)ϕy(r).

Therefore, X and Y are independent.
Q.E.D.

The above theorem implies that, if Z ∼ N [0, Ik], then the coordinates Z1, · · · ,Zk of Z are in-
dependent standard normally distributed normal random variables. Letting φ be the density of
a standard normally distributed real random variable, the independence of Z1, · · · ,Zk implies
that Z is absolutely continuous with respect to the Lebesgue measure with unique continuous
density f : Rk→ [0,+∞) defined as

f(x) =
k∏
i=1

φ(xi) =
( 1

2π

) k
2

exp
(
−1

2x
′x

)

for any x ∈ Rk.

As in the univariate case, affine functions of normally distributed random vectors is also a
random vector. To see this, let X be a k-dimensional normally distributed random vector, and
A ∈ Rm and C ∈ Rm×k for some m ∈N+. Define Y =A+CX; then, for any t ∈ Rm,

t′Y = t′A+ (t′C)X,

and because (t′C)X is a normally distributed real random variable, so is t′Y . By definition, Y
is a normally distributed m-dimensional random vector.
This invariance under affine transformations leads to the following characterization for normally
distributed random vectors:

Theorem 1.25 (Characterization of Multivariate Normality)
Let X be a k-dimensional real random vector. Then, X is normally distributed if and only if
there exists an A ∈ Rk, a matrix C ∈ Rk×m of full rank m, where m≤ k, and an m-dimensional
standard normally distributed random vector Z such that X = A+CZ. In particular, if the
variance of X is positive definite, then we can take m= k.

Proof) Suppose that there exists an A ∈ Rk, a matrix C ∈ Rk×m, where m ≤ k, and an m-
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dimensional standard normally distributed random vector Z such that X = A+CZ.
It immediately follows that X is normally distributed because normality is preserved
under affine transformations.

Conversely, suppose that X is normally distributed with mean µ ∈ Rk and variance
V ∈Rk×k. Since V is positive semidefinite, it admits an eigendecomposition V = PDP ′

for orthogonal matrix P ∈Rk×k and diagonal matrix D whose diagonal elements equal
the eigenvalues of V . Letting m≤ k be the rank of V , D consists of exactly m diagonal
elements and k−m diagonal entries equal to 0. Assume that the non-zero elements of
D are ordered first; letting these entries be λ1 ≥ ·· · ≥ λm > 0, define the k×m matrix

D̃ =


√
λ1 · · · 0
... . . . ...
0 · · ·

√
λm

 ,

and let P̃ ∈ Rk×m collect the first m eigenvectors comprising P . Then, D̃ and P̃ have
full rank m, and it follows that

V = PDP ′ = P̃ D̃2P̃ ′ = CC ′,

where C = P̃ D̃ ∈ Rk×m also has full rank m. Now define

Z = D̃−1P̃ ′(X−µ).

It follows that Z is a normally distributed random vector with mean 0 and variance

Var[Z] = D̃−1P̃ ′Var[X] P̃ D̃−1 = D̃−1P̃ ′P̃ D̃2P̃ ′P̃ D̃−1 = Im,

where we used the fact that P̃ ′P̃ = Im by the orthonormality of the eigenvectors com-
prising P̃ . It follows that Z is an m-dimensional standard normally distributed random
vector, and

µ+CZ = µ+ P̃ P̃ ′(X−µ) =X.

If V is positive definite, then because all the eigenvalues of V are positive, we can take
m = k above. In fact, in the construction above C ends up being the Cholesky factor
of V .
Q.E.D.

This characterization is actually our definition of normally distributed real random variables,
and thus reveals that our definition for multivariate normally distributed random vectors is rea-
sonable.
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As in the univariate case, the density of a normally distributed random vector exists if and only
if its variance is non-singular; in light of the positive semidefiniteness of the variance of a random
vector, this is equivalent to the positive definiteness of the variance.

Theorem 1.26 (Density of the Multivariate Normal Distribution)
Let X be a k-dimensional normally distributed real random vector with mean µ ∈ Rk and
variance V ∈ Rk×k. Then, X has a density with respect to the Lebesgue measure if and only if
V is positive definite, and in this case, the density f : Rk→ [0,+∞) of X is given by

f(x) =
( 1

2π

) k
2
|det(V )|−

1
2 exp

(
−1

2(x−µ)′V −1(x−µ)
)

for any x ∈ Rk.

Proof) Suppose that X has a density f with respect to the Lebesgue measure, which implies
that the distribution v of X is absolutely continuous with respect to the Lebesgue
measure. Assume that V is not positive definite, or that it is singular. Then, there exists
a non-zero α ∈ Rk such that α′V α = 0. Defining α′X = Z, Z is normally distributed
with mean α′µ and variance α′V α = 0, which tells us that Z = α′µ almost surely. In
other words, X takes values in the hyperspace H = {x ∈Rk | α′x= α′µ} almost surely;

v(H) = P(X−1(H)) = 1.

H is a k− 1-dimensional subspace of Rk, so letting {u1, · · · ,uk−1} ⊂ Rk be a basis
generating H and defining the k×k matrix P as

P =
(
u1 · · · uk−1 0

)
,

we can express H = PRk. It follows that

λk(H) = |det(P )|λk(Rk) = 0.

By the absolute continuity of v with respect to λk, we must have v(H) = 0, a contra-
diction. Therefore, V must be positive definite.

Conversely, suppose that V is positive definite. Then, there exists a k-dimensional
standard normally distributed random vector Z such that

X = µ+CZ,

where C is the Cholesky factor of V . Letting v be the distribution of X and A∈ B(Rk),
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by a linear change of variables we have

v(A) = E [IA ◦X] = E [IA ◦ (µ+CZ)]

=
∫
Rk
IA(µ+ cz)

( 1
2π

) k
2

exp
(
−1

2z
′z

)
dz

=
∫
Rk
IA(x)

( 1
2π

) k
2

exp
(
−1

2(x−µ)′C−1′C−1(x−µ)
)∣∣∣det

(
C−1

)∣∣∣dx
=
∫
A

( 1
2π

) k
2 ∣∣∣det

(
C−1

)∣∣∣exp
(
−1

2(x−µ)′V −1(x−µ)
)
dx.

This implies that v is absolutely continuous with respect to the Lebesgue measure, and
that

( 1
2π

) k
2 ∣∣∣det

(
C−1

)∣∣∣exp
(
−1

2(x−µ)′V −1(x−µ)
)

is precisely the density of v with respect to the Lebesgue measure.
Finally, we can see that

det(V ) = det
(
CC ′

)
= det(C)2 =

(
det
(
C−1

))−2
,

so the density f can be written as

f(x) =
( 1

2π

) k
2
|det(V )|−

1
2 exp

(
−1

2(x−µ)′V −1(x−µ)
)

for any x ∈ Rk.
Q.E.D.
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1.10 Uniform Integrability

Here we introduce a concept crucial to the theory of martingales and convergence in Lp. First,
we present a characterization of integrability.

Lemma 1.27 (Characterization of Integrability)
Let X be a non-negative random variable. X is integrable if and only if

lim
n→∞

E
[
X · I{X>n}

]
= 0.

Proof) Suppose that X is integrable, that is, E [X]<+∞. Defining the sequence {Xn}n∈N+ of
non-negative random variables defined as

Xn =X · I{X>n}

for any n ∈ N+, note that |Xn| ≤ X for any n ∈ N+ and Xn → 0 pointwise. By the
DCT, it now follows that

lim
n→∞

E
[
X · I{X>n}

]
= E

[
lim
n→∞

Xn

]
= 0.

Conversely, suppose that

lim
n→∞

E
[
X · I{X>n}

]
= 0.

There then exists an N ∈N+ such that

E
[
X · I{X>n}

]
< 1

for any n≥N . Since

X =X · I{X>N}+X · I{X≤N} ≤X · I{X>N}+N,

taking expectations on both sides yields

E [X] = E
[
X · I{X>N}

]
+N <N + 1<+∞.

Q.E.D.

Since any real or complex random variable X is integrable if and only if |X| is integrable,

86



the above characterization suggests that X is integrable if and only if

lim
n→∞

E
[
|X| · I{|X|>n}

]
= 0.

The same goes for real random vectors with |·| now standing for the euclidean norm.

A collection K of complex random variables or real random vectors is said to be uniformly
integrable if

sup
X∈K

E
[
|X| · I{|X|>n}

]
→ 0

as n→∞. In other words, every element of K is integrable ”at approximately the same rate”.
There are many convenient properties of uniformly integrable collections of random variables:

Theorem 1.28 (Properties of Uniform Integrability)
Let K be a collection of complex random variables and real random vectors. Then, the following
hold true:

i) If K is uniformly integrable, then it is L1-bounded, that is,

sup
X∈K

E|X|<+∞.

ii) If there exists an integrable non-negative random variable Z such that |X| ≤ Z for any
X ∈ K, then K is uniformly integrable.

iii) If there exists a non-negative function f : R→ R+ such that

lim
x→∞

f(x)
x

= +∞ and sup
X∈K

E [f ◦ |X|]<+∞,

then K is uniformly integrable.

iv) If, for some p > 1, K is Lp-bounded, that is,

sup
X∈K

E|X|p <+∞,

then K is uniformly integrable.

Proof) i) Suppose K is uniformly integrable. Then, there exists an N ∈N+ such that

E
[
|X| · I{|X|>n}

]
< 1

for any n≥N and X ∈ K. For any X ∈ K, since

|X|= |X| · I{|X|>N}+ |X| · I{|X|≤N} ≤ |X| · I{|X|>N}+N,
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it follows that

E|X| ≤ E
[
|X| · I{|X|>n}

]
+N < 1 +N.

This holds for any X ∈ K, so

sup
X∈K

E|X| ≤ 1 +N <+∞,

and K is L1-bounded.

ii) Suppose that the elements of K are dominated by an integrable non-negative
random variable Z. Then, for any n ∈N+ and X ∈ K,

|X| · I{|X|>n} ≤ Z · I{|X|>n} ≤ Z · I{Z>n},

where the last inequality follows from the fact that |X| ≤ Z. Thus,

E
[
|X| · I{|X|>n}

]
≤ E

[
Z · I{Z>n}

]
for any n ∈N+ and X ∈ K, implying that

sup
X∈K

E
[
|X| · I{|X|>n}

]
≤ E

[
Z · I{Z>n}

]
for any n ∈N+. Since Z is integrable, by the characterization of integrability the
right hand side goes to 0 as n→∞; it follows that K is uniformly integrable.

iii) Suppose that there exists a non-negative function f : R+→ R+ such that

lim
x→∞

f(x)
x

= +∞ and sup
X∈K

E [f ◦ |X|]<+∞.

Then, for any M > 0 there exists a b ∈ R such that

f(x)
x

>M for any x > b.

By implication, for any n ∈N+ such that n > b and X ∈ K, we have

|X| · I{|X|>n} ≤
1
M

(f ◦ |X|)

since 1
M f(|X(ω)|) > |X(ω)| for any ω ∈ Ω such that |X(ω)| > n > b, and f is
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non-negative valued. Taking expectations on both sides yields

E
[
|X| · I{|X|>n}

]
≤ 1
M

E [f ◦ |X|] ,

and because holds for any X ∈ K,

sup
X∈K

E
[
|X| · I{|X|>n}

]
≤ 1
M

(
sup
X∈K

E [f ◦ |X|]
)
.

Finally, this holds for any n > b, so

limsup
n→∞

sup
X∈K

E
[
|X| · I{|X|>n}

]
≤ 1
M

(
sup
X∈K

E [f ◦ |X|]
)
.

This in turn holds for any M > 0, so that the finiteness of supX∈KE [f ◦ |X|] implies
that

lim
n→∞

sup
X∈K

E
[
|X| · I{|X|>n}

]
= 0.

By definition, K is uniformly integrable.

iv) Suppose that K is Lp-bounded. Defining f : R+→ R+ as

f(x) =

x
p if x≥ 0

0 if x < 0

for any x ∈ R, f is a non-negative and increasing function such that

lim
x→∞

f(x)
x

= lim
x→∞

xp−1 = +∞,

since p > 1. By assumption,

sup
X∈K

E [f ◦ |X|]<+∞,

so that, by the preceding result, K is uniformly integrable.

Q.E.D.
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We can offer the following characterizations of uniform integrability; the third criterion, at-
tributed to De la Valleé Poussin, proves particularly useful in the theory of martingales.

Theorem 1.29 (Characterizations of Uniform Integrability)
Let K be a collection of complex random variables and real random vectors. Then, the following
are equivalent:

i) K is uniformly integrable.

ii) (Epsilon-Delta Characterization) K is L1-bounded and, for any ε > 0 there exists a
δ > 0 such that, for any H ∈H satisfying P(H)< δ, we have

sup
X∈K

E [|X| · IH ]< ε.

iii) (De la Valleé Poussin Characterization) There exists an increasing, non-negative and
convex function f : R→ R+ such that

lim
x→∞

f(x)
x

= +∞ and sup
X∈K

E [f ◦ |X|]<+∞.

Proof) We prove the equivalencies one by one.

Epsilon-Delta Characterization
Suppose K is uniformly integrable. The preceding theorem already shows us that K is
L1-bounded, so it remains to prove the ε− δ part of the claim.

Choose any ε > 0; by the definition of uniform integrability, there exists an N ∈ N+

such that

sup
X∈K

E
[
|X| · I{|X|>n}

]
<
ε

2

for any n≥N . Defining δ = ε
2N , choose any H ∈H such that P(H)< δ. Then, for any

X ∈ K,

E [|X| · IH ] = E
[
|X| · I{|X|>N}∩H

]
+E

[
|X| · I{|X|≤N}∩H

]
≤ E

[
|X| · I{|X|>N}

]
+N ·P({|X| ≤N}∩H)

≤ ε

2 +N ·P(H)≤ ε

2 + ε

2 = ε.

This holds for any X ∈ K, so

sup
X∈K

E [|X| · IH ]≤ ε

2 +N ·P(H)< ε.
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This in turn holds for any ε > 0, so the proof of necessity is complete.

As for sufficiency, suppose that K is L1-bounded and that, for any ε > 0, there exists a
δ > 0 such that P(H)< δ implies

sup
X∈K

E [|X| · IH ]< ε.

Choose any ε > 0 and X ∈ K. Since K is L1-bounded, it is bounded in probability, so
that there exists an N ∈N+ such that

sup
X∈K

P(|X|> n)< δ

for any n≥N . For any n≥N and X ∈K, since P(|X|> n)> δ, letting H = {|X|>n},

E
[
|X| · I|X|>n

]
≤ sup
Y ∈K

E [|Y | · IH ]< ε.

This holds for any X ∈ K, so

sup
X∈K

E
[
|X| · I|X|>n

]
≤ ε

for any n≥N . This in turn holds for any ε > 0, so by definition

lim
n→∞

sup
X∈K

E
[
|X| · I|X|>n

]
= 0

and K is uniformly integrable.

De La Valleé Poussin Characterization
We proved sufficiency in the previous theorem. To show necessity, we assume that K is
uniformly integrable and construct a function f : R+→R+ with the desired properties.

By uniform integrability, we can choose a sequence {xm}m∈N+ of strictly increasing
natural numbers such that

sup
X∈K

E
[
|X| · I{|X|>xm}

]
< 2−m

for any m ∈N+.

Now define the function f : R→ R+ as

f(x) =
∞∑
n=1

(x−xn)+
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for any x ∈ R, where (x−xn)+ is defined as

(x−xn)+ = max(x−xn,0)

for any n ∈N+. For any x ∈R+, since there exists an N ∈N+ such that xn > x for any
n≥N , f(x) is non-negative valued.

f is also clearly increasing, and we can show that it is convex. For any x,y ∈ R and
t ∈ [0,1],

((tx+ (1− t)y)−xn)+ = max(t(x−xn) + (1− t)(y−xn),0)

≤ t ·max(x−xn,0) + (1− t)max(y−xn,0)

= t · (x−xn)+ + (1− t) · (y−xn)+

for any n ∈N+ by the convexity of the mapping z 7→max(z,0) on R, so that

f(tx+ (1− t)y) =
∞∑
n=1

((tx+ (1− t)y)−xn)+

≤ t ·
∞∑
n=1

(x−xn)+ + (1− t) ·
∞∑
n=1

(y−xn)+ = tf(x) + (1− t)f(y).

It remains to show that f satisfies the conditions laid out in the theorem. Note that

f(x)
x

=
∞∑
n=1

(
1− xn

x

)
+

for any x ∈ R+. For any m ∈N+, define the function φn :N+→ R+ as

φn(m) =
(

1− xm
n

)
+

= max
(

1− xm
n
,0
)

for any m ∈N+. For any m,n ∈N+,

φn(m) = max
(

1− xm
n
,0
)
≤max

(
1− xm

n+ 1 ,0
)

= φn+1(m),

so that {φn}n∈N+ is an increasing sequence of functions whose limit is 1. Letting c be
the counting measure on N+, by the MCT we now have

lim
n→∞

f(n)
n

= lim
n→∞

∞∑
m=1

(
1− xm

n

)
+

= lim
n→∞

∫
N+

φndc

=
∫
N+

(
lim
n→∞

φn
)
dc=

∫
N+

1dc=
∞∑
m=1

1 = +∞.
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It follows that

lim
x→∞

f(x)
x

= +∞.

For any X ∈ K and ω ∈ Ω, suppose that |X(ω)| ≤ xn for any n ≥ N , where N ∈ N+.
Then,

(f ◦ |X|)(ω) =
∞∑
n=1

(|X(ω)|−xn)+

=
N∑
n=1

(|X(ω)|−xn)

≤
N∑
n=1
|X(ω)|=

∞∑
n=1
|X(ω)| · I{|X|>xn}(ω).

This holds for any ω ∈ Ω, so the inequality

f ◦ |X| ≤
∞∑
n=1
|X| · I{|X|>xn}

holds. Taking expectations on both sides yields

E [f ◦ |X|] = E
[ ∞∑
n=1
|X| · I{|X|>xn}

]

=
∞∑
n=1

E
[
|X| · I{|X|>xn}

]
,

where the second inequality follows from Fubini’s theorem for non-negative functions.
By design,

E
[
|X| · I{|X|>xn}

]
≤ 2−n

for any n ∈N+, so we can conclude that

E [f ◦ |X|]≤
∞∑
n=1

2−n = 1<+∞.

This holds for any X ∈ K, so

sup
X∈K

E [f ◦ |X|]≤ 1<+∞.

Q.E.D.
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Chapter 2

Conditioning and Information

Here we delve deeper into the idea of σ-algebras as information and expectations formed condi-
tioned on such information. Our investigation culminates in Ionescu-Tulcea’s theorem, a discrete
version of Kolmogorov’s extension theorem, which reveals that there exist probability spaces sup-
porting very general kinds of stochastic processes.

2.1 Conditional Expectations

2.1.1 Conditional Expectations of Non-negative Random Variables

Let (Ω,H,P) be the underlying probability space, and F a sub σ-algebra of H. Let X be a non-
negative random variable. A version of the conditional expectation of X given F is a numerical
random variable X such that

• Measurability
X is F-measurable

• Defining Property
For any H ∈ F ,

E [X · IH ] = E
[
X · IH

]
.

We often denote the collection of all versions of the conditional expectation of X given F by
E [X | F ].
The following result shows that E [X | F ] is actually an equivalence class of almost surely equal
functions:

Lemma 2.1 Let F be a sub σ-algebra of H, and X,Y F-measurable numerical random
variables. Then, X ≤ Y almost surely if

E [X · IH ]≤ E [Y · IH ]
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for any H ∈ F , granted that the expectations exist.

Proof) Suppose that

E [X · IH ]≤ E [Y · IH ]

for any H ∈ F . For any q,r ∈Q such that q < r, define

Hqr = {Y < q}∩{X > r},

where Hqr ∈ F because Y,X are F-measurable. Note that

H = {Y <X}=
⋃

q,r∈Q, q<r
({Y < q}∩{X > r}) =

⋃
q,r∈Q, q<r

Hqr,

where the union on the right is over a countable index. Suppose that P(H)> 0. Then,
by countable subadditivity,

0< P(H)≤
∑

q,r∈Q, q<r
P(Hqr) ,

indicating that there exists some q,r ∈Q such that q < r and P(Hqr)> 0. We now have

r ·P(Hqr) = E
[
r · IHqr

]
≤ E

[
X · IHqr

]
≤ E

[
Y · IHqr

]
≤ E

[
q · IHqr

]
= q ·P(Hqr) .

Dividing both sides by P(Hqr) > 0 yields r ≤ q, a contradiction. Therefore, we must
have P(H) = 0, and by implication X ≤ Y almost surely.

Q.E.D.

Corollary to Lemma 2.1 Let F be a sub σ-algebra of H, and X,Y F-measurable numerical
random variables. Then, X = Y almost surely if

E [X · IH ] = E [Y · IH ]

for any H ∈ F , granted that the expectations exist.

Proof) X = Y almost surely if and only if X ≤ Y and X ≥ Y almost surely. The above lemma
then implies that X ≤ Y and X ≥ Y almost surely if and only if E [X · IH ]≤ E [Y · IH ]
and E [X · IH ]≥E [Y · IH ] for any H ∈F . Putting this all together, X = Y almost surely
if and only if

E [X · IH ] = E [Y · IH ]

95



for any H ∈ F .

Q.E.D.

For any non-negative random variable X, let X and X̃ belong to E [X | F ]. Then, for any H ∈F ,

E
[
X · IH

]
= E [X · IH ] = E

[
X̃ · IH

]
,

and because X and X̃ are both F-measurable, we have X = X̃ almost surely by the above lemma.
Therefore, versions of conditional expectations are unique up to almost sure equivalence, and we
can let E [X | F ] also denote a representative of the equivalence class of versions of conditional
expectations of X given F . For this reason, equalities and inequalities usually only hold with
probability 1 when dealing with conditional expectations. In what comes below, every equality
and inequality is required to hold only almost surely, unless it is important to specify otherwise.

One of the first questions we can ask is whether E [X | F ] is non-empty. The fact that E [X | F ]
is non-empty for any non-negative random variable X can be shown using the Radon-Nikodym
theorem:

Theorem 2.2 (Existence of Conditional Expectations)
Let F be a sub σ-algebra of H, and X a non-negative random variable. Then, E [X | F ] 6= ∅.

Proof) Suppose initially that X is integrable. Since X is non-negative, we can define the
measure µ on (Ω,F) as

µ(H) =
∫
H
XdP

for any H ∈ F . Letting P′ be the restriction of P to (Ω,F), µ is absolutely continuous
with respect to P′, and both are finite measures (µ(Ω) = E [X] < +∞). Therefore, by
the Radon-Nikodym theorem there exists a F-measurable function X such that

µ(H) =
∫
H
XdP′

for any H ∈ F . It follows that

E [X · IH ] = µ(H) =
∫
H
XdP′

for any H ∈ F .

It remains to verify that the integral on the right is the P-expectation of X ·IH . To this
end, we approximate X with an increasing sequence of non-negative and measurable
simple functions, as usual. Fix H ∈ F , and let {fn}n∈N+ be a sequence of non-negative
F-measurable simple functions increasing to X. For any n∈N+, suppose the canonical
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form of fn is given as

fn =
m∑
i=1

ai · IAi ,

where A1, · · · ,Am ∈ F . Then,

∫
H
fndP′ =

∫
Ω

[
m∑
i=1

ai · IAi∩H

]
dP′

=
m∑
i=1

ai ·P′(Ai∩H) =
m∑
i=1

ai ·P(Ai∩H) =
∫
H
fndP,

since each Ai∩H ∈ F and P = P′ on F . This holds for any n ∈N+, so by the MCT,∫
H
XdP′ = lim

n→∞

∫
H
fnP′ = lim

n→∞

∫
H
fndP =

∫
H
XdP.

The last term on the right is just E
[
X · IH

]
, so we can see that

E [X · IH ] = E
[
X · IH

]
for any H ∈ F .

Now let E [X] = +∞. In this case, define for any n ∈N+

Xn = max(X,n).

{Xn}n∈N+ is a sequence of bounded and thus integrable non-negative random variables
that increases to X. By the preceding result, for any n∈N+ there exists a non-negative
F-measurable function Xn such that

E [Xn · IH ] = E
[
Xn · IH

]
for any H ∈ F . Note that, for any n ∈N+,

E
[
Xn · IH

]
= E [Xn · IH ]≤ E [Xn+1 · IH ] = E

[
Xn+1 · IH

]
for any H ∈ F . Since Xn and Xn+1 are both F-measurable, this implies by lemma 2.1
that Xn ≤Xn+1. In other words, {Xn}n∈N+ is a sequence that increases almost surely
to some limit X. By the almost everywhere version of the MCT, for any H ∈F we now
have

E [X · IH ] = lim
n→∞

E [Xn · IH ] = lim
n→∞

E
[
Xn · IH

]
= E

[
X · IH

]
.

Being the limit of F-measurable functions, X is itself F-measurable. Thus, by defini-
tion, X = E [X | F ].
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Q.E.D.

What the above theorem actually does is furnish us with a version of the conditional expec-
tation of X given F that is non-negative everywhere on Ω. Henceforth, we take E [X | F ] to be
the representative of the equivalence class E [X | F ] that is non-negative everywhere. It follows
that every version of E [X | F ] is almost surely non-negative.

Conditional expectations retain many properties of expectations, including linearity; these
are presented below:

Theorem 2.3 (Expectation Properties of Conditional Expectations)
Let F be a sub σ-algebra of H. Let X,Y be non-negative random variables. Then, the following
hold true:

i) (Projection Property) A non-negative F-measurable random variable X is a version of
the conditional expectation of X given F if and only if, for any V ∈ F+,

E [X ·V ] = E
[
X ·V

]
.

ii) (Monotonicity) If X ≤ Y , then E [X | F ]≤ E [Y | F ].

iii) (Linearity) Let a ∈ R+. Then,

a ·E [X | F ] +E [Y | F ] = E [aX+Y | F ] .

iv) (Monotone Convergence Theorem) Let {Xn}n∈N+ be a sequence of (almost surely)
increasing non-negative random variables. Letting X be the pointwise limit of {Xn}n∈N+ ,

E [X | F ] = lim
n→∞

E [Xn | F ] .

v) (Fatou’s Lemma) Let {Xn}n∈N+ be a sequence of (almost surely) non-negative random
variables and X = liminfn→∞Xn. Then,

E [X | F ]≤ liminf
n→∞

E [Xn | F ] .

Proof) i) Sufficiency is clear, since IH is a F-measurable non-negative random variable for
any H ∈ F .
Suppose that X = E [X | F ]. Then, for any simple non-negative and F-measurable
random variable V with canonical form

V =
n∑
i=1

ai · IAi
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for some A1, · · · ,An ∈ F , we have

E [X ·V ] =
n∑
i=1

ai ·E [X · IAi ]

=
n∑
i=1

ai ·E
[
X · IAi

]
= E

[
X ·V

]

by the linearity of integration of non-negative functions.
Now let V be a F-measurable non-negative random variable in general. Then,
there exists a sequence {Vn}n∈N+ of F-measurable simple functions that increases
to V ; this indicates that {X ·Vn}n∈N+ and {X ·Vn}n∈N+ are sequences of non-
negative measurable functions that increase to X ·V and X ·V , respectively. By
the MCT, we now have

E [X ·V ] = lim
n→∞

E [X ·Vn] = lim
n→∞

E
[
X ·Vn

]
= E

[
X ·V

]
.

ii) Suppose X ≤ Y (as usual, the inequality is almost sure). Then, for any H ∈ F ,

E [X · IH ]≤ E [Y · IH ]

by the monotonicity of integration, which in turn implies by the defining property
that

E [E [X | F ] · IH ]≤ E [E [Y | F ] · IH ]

for any H ∈F . Since E [X | F ] and E [Y | F ] are both F-measurable, by lemma 2.1
we have E [X | F ]≤ E [Y | F ] (also almost surely).

iii) Choose any a∈R+. The sum aE [X | F ]+E [Y | F ] is a non-negative F-measurable
function, and for any H ∈ F ,

E [(aX+Y ) · IH ] = a ·E [X · IH ] +E [Y · IH ]

= a ·E [E [X | F ] · IH ] +E [E [Y | F ] · IH ]

= E [(aE [X | F ] +E [Y | F ]) · IH ] ,

where we used the linearity of the integration of non-negative functions and the
defining property of conditional expectations. By definition, aE [X | F ]+E [Y | F ]
is a version of the conditional expectation E [aX+Y | F ].

iv) By the monotonicity of conditional expectations, {E [Xn | F ]}n∈N+ is an almost
surely increasing sequence of non-negative random variables. This means that the
(almost sure) pointwise limit of {E [Xn | F ]}n∈N+ is well-defined. We must show
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that this limit is a version of the conditional expectation of X given F . Denote
this limit by X.
Being the limit of F-measurable functions, X is also F-measurable. It remains to
show the defining property holds. For any H ∈ F , {Xn ·IH}n∈N+ and {E [Xn | F ] ·
IH}n∈N+ are sequences that increase (almost surely) to X · IH and X · IH ; thus,
by the almost everywhere version of the MCT,

E [X · IH ] = lim
n→∞

E [Xn · IH ] = lim
n→∞

E
[
Xn · IH

]
= E

[
X · IH

]
.

By definition,

E [X | F ] =X = lim
n→∞

E [Xn | F ] .

v) Define the sequence {Yn}n∈N+ as

Yn = inf
k≥n

Xn

for any n∈N+. Then, {Yn}n∈N+ is an increasing sequence of non-negative random
variables with pointwise limit X = liminfn→∞Xn.
For any n ∈N+ and H ∈ F , since Yn ≤Xk for any k ≥ n, we have

E [Yn · IH ]≤ E [Xk · IH ] ,

and by the defining property of conditional expectations,

E [E [Yn | F ] · IH ]≤ E [E [Xk | F ] · IH ] .

This holds for any H ∈ F , so by lemma 2.1,

E [Yn | F ]≤ E [Xk | F ]

for any k ≥ n, and as such

E [Yn | F ]≤ inf
k≥n

E [Xk | F ] .

By the conditional version of the MCT,

lim
n→∞

E [Yn | F ] = E [X | F ] .

Therefore,

E [X | F ] = lim
n→∞

E [Yn | F ]≤ lim
n→∞

inf
k≥n

E [Xk | F ] = liminf
n→∞

E [Xn | F ] .
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Q.E.D.

Conditional expectations also possess the following unique properties:

Theorem 2.4 (Unique Properties of Conditional Expectations)
Let F ,G be sub σ-algebras of H, and X,Y non-negative random variables. Then, the following
hold true:

i) (Conditional Determinism) If X is F-measurable, then

E [XY | F ] =X ·E [Y | F ] .

ii) (Tower Property) If F ⊂ G, then

E [X | F ] = E [E [X | F ] | G] = E [E [X | G] | F ] .

Proof) i) If X ∈F , then for any H ∈F , since X ·IH is a F-measurable non-negative random
variable, by the projection property

E [XY · IH ] = E [E [Y | F ] ·XIH ] .

This holds for any H ∈F , and E [Y | F ] ·X is a F-measurable non-negative random
variable, so by definition E [Y | F ] ·X is a version of XY | F , or in other words,

X ·E [Y | F ] = E [XY | F ] .

ii) The first equality follows easily from conditional determinism, since E [X | F ] is
F-measurable and thus G-measurable.
To show that the second equality holds, note that, for any H ∈ F , H ∈ G as well,
so that

E [E [X | G] · IH ] = E [X · IH ] .

However, by definition, we also have the equality

E [E [X | G] · IH ] = E [E [E [X | G] | F ] · IH ] .

Putting the two together,

E [E [E [X | G] | F ] · IH ] = E [X · IH ]
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for any H ∈ F , and since E [E [X | G] | F ] is F-measurable, by definition

E [E [X | G] | F ] = E [X | F ] .

Q.E.D.

The tower property, in particular, implies the infamous law of iterated expectations:

E [E [X | F ]] = E [X] ,

since unconditional expectations can be thought of as conditional expectations with respect to
the trivial σ-algebra. In other words, if X is integrable, then so is E [X | F ].
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2.1.2 Conditional Expectations of Real Random Variables

Now we extend the above framework to arbitrary real random variables. Let X be a real-
valued random variable, with positive and negative parts X+ and X−. Since X+ and X− are
non-negative random variables, by the results we showed above the conditional expectations
E
[
X+ | F

]
and E [X− | F ] exist. We define the conditional expectation of X given F as the

collection

E [X | F ] = {X+−X− |X± ∈ E
[
X± | F

]
, and the difference is almost surely well-defined}.

We also write this as

E [X | F ] = E
[
X+ | F

]
−E

[
X− | F

]
.

As in the case of non-negative random variables, we can see that E [X | F ] is an equivalence
class of almost surely equal random variables. To see this, let X,Y ∈ E [X | F ]; then, there exist
X
±
,Y
± ∈ E [X± | F ] such that

X =X
+−X− and Y = Y

+−Y −.

Since X+ = Y
+ and X− = Y

− almost surely, it follows that X = Y almost surely as well. Thus,
as in the non-negative case, we let E [X | F ] also denote a representative of the equivalence class,
and assume that all equalities and inequalities hold almost surely, unless specified otherwise.

For E [X | F ] to be non-empty, it suffices for E [X± | F ] to be finite almost surely (since E [X± | F ]
is an equivalence class, this means that every conditional expectation is also finite almost surely).
In this case, we say that X is conditionally integrable given F ; note that every random variable
in E [X | F ] is almost surely real-valued in this case. Note that this does not imply that X is
integrable.

The following show that conditional expectations of real random variables retains much of the
properties associated with unconditional expectations, and that they also possess the same
unique properties as conditional expectations of non-negative random variables.
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Theorem 2.5 (Properties of Conditional Expectations of Real Variables)
Let F ,G be sub σ-algebras of H. Let X,Y be real valued random variables that are conditionally
integrable given F . Then, the following hold true:

i) (Defining Property) Suppose X is integrable. Then, it is conditionally integrable given
F . Additionally, X = E [X | F ] is a F-measurable and integrable real random variable such
that

E [X ·V ] = E
[
X ·V

]
for any integrable V .

ii) (Monotonicity) If X ≤ Y , then E [X | F ]≤ E [Y | F ].

iii) (Linearity) For any a ∈ R,

a ·E [X | F ] +E [Y | F ] = E [aX+Y | F ] .

iv) (Dominated Convergence Theorem) Let {Xn}n∈N+ be a sequence of real random
variables that converges pointwise to some real random variable X. Suppose there exists
a real random variable Y conditionally integrable given F such that |Xn| ≤ Y for any
n ∈N+. Then, X is conditionally integrable given F and

lim
n→∞

E [Xn | F ] = E [X | F ] .

v) (Conditional Determinism) Let X be a F-measurable random variable. Then, XY is
conditionally integrable given F and

E [XY | F ] =X ·E [Y | F ] .

vi) (Tower Property) Let F ⊂ G, and assume that X is also conditionally integrable given
G. Then,

E [X | F ] = E [E [X | F ] | G] = E [E [X | G] | F ] .

Proof) i) Suppose X is integrable. Then, by the law of iterated expectations,

E
[
E
[
X± | F

]]
= E

[
X±

]
<+∞,

so that, by the finiteness property, E [X± | F ]<+∞ almost surely. It follows that
X is conditionally integrable given F .

Let X = E [X | F ]. By definition, there exist X+
,X
− such that X± = E [X± | F ]
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and

X =X
+−X−;

since X+ and X
− are both integrable, so is X, and by the finiteness property

we can choose versions of them that are finite everywhere. This ensures that the
operations below are all well-defined.
For any real integrable F-measurable random variable V , we can see that

X ·V = (X+−X−)(V +−V −) =X+V +−X−V +−X+V −+X−V −.

Since V +,V − are non-negative F-measurable random variables, by the projection
property for non-negative variables we have

E
[
X+V ±

]
= E

[
X

+
V ±

]
E
[
X−V ±

]
= E

[
X
−
V ±

]
.

Since these expectations are all finite (they are products of integrable variables),
it follows that

E [X ·V ] = E
[
X+V +

]
−E

[
X−V +

]
−E

[
X+V −

]
+E

[
X−V −

]
= E

[
X

+
V +

]
−E

[
X
−
V +

]
−E

[
X

+
V −

]
+E

[
X
−
V −

]
= E

[
X ·V

]
.

ii) Suppose X = E [X | F ] and Y = E [Y | F ], and let X ≤ Y . Then,

X+ +Y − ≤ Y + +X−,

and by the monotonicity and linearity of conditional expectations of non-negative
random variables,

E
[
X+ | F

]
+E

[
Y − | F

]
≤ E

[
X− | F

]
+E

[
Y + | F

]
.

By conditional integrability, E [X± | F ] < +∞ and E [Y ± |mathcalF ] < +∞ al-
most surely; as such, the above inequality tells us that

E [X | F ] = E
[
X+ | F

]
−E

[
X− | F

]
≤ E

[
Y + | F

]
−E

[
Y − | F

]
= E [Y | F ] .
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iii) Choose any a ∈ R. Suppose that a≥ 0. In this case,

(aX)+ = aX+ and (aX)− = aX−,

so that

E
[
(aX)± | F

]
= a ·E

[
X± | F

]
by the linearity of conditional expectations of non-negative functions. By condi-
tional integrability, E [(aX)± | F ] < +∞ almost surely, so that aX is also condi-
tionally integrable given F , and we have

E [aX | F ] = a ·E [X | F ] .

If a < 0, we can repeat the process above using the observation that

(aX)+ =−aX− and (aX)− =−aX+.

By monotonicity, since (aX+Y )+ ≤ (aX)+ +Y +,

E
[
(aX+Y )+ | F

]
≤ E

[
(aX)+ | F

]
+E

[
Y + | F

]
<+∞.

The same holds for (aX +Y )−, so aX +Y is conditionally integrable given F .
Now note that

aX+Y = (aX)+− (aX)−+Y +−Y − = (aX+Y )+− (aX+Y )−,

so that

(aX+Y )+ + (aX)−+Y − = (aX)+ +Y + + (aX+Y )−.

By the linearity of conditional expectations of non-negative functions, we have

E
[
(aX+Y )+ | F

]
+E

[
(aX)− | F

]
+E

[
Y − | F

]
= E

[
(aX+Y )− | F

]
+E

[
(aX)+ | F

]
+E

[
Y + | F

]
,

and because all the conditional expectations involved are almost surely finite,
rearranging terms yields

E [aX+Y | F ] = E [aX | F ] +E [Y | F ] = a ·E [X | F ] +E [Y | F ] .

iv) We first show that X is conditionally integrable. For any n ∈ N+, |Xn| ≤ Y and
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Y is conditionally integrable, so that, by monotonicity,

E [|Xn| | F ]≤ E [Y | F ]<+∞

for any n ∈N+. By the conditional version of Fatou’s lemma, it now follows that

E [|X| | F ]≤ liminf
n→∞

E [|Xn| | F ]≤ E [Y | F ]<+∞.

Since |X|=X+ +X−, the linearity of the conditional expectations of non-negative
functions implies that

E
[
X± | F

]
<+∞,

and as such that X is conditionally integrable.

Define the sequences {Yn}n∈N+ and {Zn}n∈N+ as

Yn = Y −Xn and Zn =Xn+Y

for any n ∈ N+. Since |Xn| ≤ Y for any n ∈ N+ by assumption, {Yn}n∈N+ and
{Zn}n∈N+ are sequences of non-negative random variables, so that, by the condi-
tional version of Fatou’s lemma,

E [Y −X | F ]≤ liminf
n→∞

E [Yn | F ]

E [Y +X | F ]≤ liminf
n→∞

E [Zn | F ] .

Here, Y is conditionally integrable given F , so that, by linearity,

limsup
n→∞

E [Xn | F ]≤ E [X | F ]≤ liminf
n→∞

E [Xn | F ] .

It follows that

lim
n→∞

E [Xn | F ] = E [X | F ] .

v) Suppose X is F-measurable. Then, so are X+ and X−. We first show that XY is
conditionally integrable given F .

XY =X+Y +−X+Y −−X−Y + +X−Y −,

and XY < 0 if only one of X or Y is negative, while XY ≥ 0 if both are non-
negative or negative, we can see that

(XY )+ =X+Y + +X−Y − and (XY )− =X+Y −+X−Y +.
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By conditional determinism applied to the positive and negative parts of X and
Y , we have

E
[
X+Y ± | F

]
=X+ ·E

[
Y ± | F

]
E
[
X−Y ± | F

]
=X− ·E

[
Y ± | F

]
.

Then, the linearity of the conditional expectations of non-negative functions im-
plies that

E
[
(XY )+ | F

]
=X+ ·E

[
Y + | F

]
+X− ·E

[
Y − | F

]
<+∞

E
[
(XY )− | F

]
=X+ ·E

[
Y − | F

]
+X− ·E

[
Y + | F

]
<+∞

almost surely. By definition, XY is conditionally integrable given F . It is now
immediately evident that

E [XY | F ] = E
[
(XY )+ | F

]
−E

[
(XY )− | F

]
=X ·E [Y | F ] .

vi) By the tower property for non-negative random variables,

E
[
X± | F

]
= E

[
E
[
X± | F

]
| G
]

= E
[
E
[
X± | G

]
| F
]
.

Since X is conditionally integrable given F and G, we can see that

E [X | F ] = E
[
X+ | F

]
−E

[
X− | F

]
= E

[
E
[
X+ | F

]
| G
]
−E

[
E
[
X− | F

]
| G
]

= E
[
E
[
X+ | F

]
−E

[
X− | F

]
| G
]

= E [E [X | F ] | G]

by linearity, and the same holds for the second equality as well.

Q.E.D.
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2.1.3 Conditional Expectations of Real Random Vectors

The conditional expectations of real random vectors are defined analogously to their uncon-
ditional expectations. Let F be a sub σ-algebra of H, and X = (X1, · · · ,Xk) a k-dimensional
random vector. We say that X is conditionally integrable given F if X1, · · · ,Xk are all condi-
tionally integrable given F , and in this case we define

E [X | F ] =


E [X1 | F ]

...
E [Xk | F ] .


If X takes values in Rk+, so that its coordinates are all non-negative random variables, then
E [X | F ] always exists and is defined as above. Again, E [X | F ] stands for the representative of
an equivalence class.

We first state Jensen’s inequality for conditional expectations; we did not state this as part
of the preceding theorem because it is mostly used in a multivariate context.

Theorem 2.6 (Conditional Version of Jensen’s Inequality)
Let F be a sub σ-algebra of H, and X a k-dimensional real random vector. For any convex
function f : Rk→ R, if f ◦X and X are conditionally integrable given F , then

E [f ◦X | F ]≥ f(E [X | F ]).

Proof) The proof proceeds almost identically to the proof of the unconditional version of the
inequality.

Let Wf be the set of all affine minorants of f , that is, the collection of all affine
functions h : Rk → R such that h(x) ≤ f(x) for any x ∈ Rk. The characterization of
convex functions (refer to the text on correspondences and convex analysis) tells us
that

f(x) = sup
h∈Wf

h(x)

for any x ∈ Rk. We use this to establish our claim.

For any h ∈Wf , there exist v ∈ Rk and c ∈ R such that

h(x) = v′x+ c

for any x ∈ Rk, since h is an affine function. Since X is conditionally integrable given
F , and constants are trivially conditionally integrable, the linearity of conditional ex-
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pectations tells us that h◦X is also conditionally integrable given F with

E [h◦X] = v′ ·E [X | F ] + c= h(E [X | F ]).

Since h(x) ≤ f(x) for any x ∈ Rk, we can see that h ◦X ≤ f ◦X and thus, by the
monotonicity of conditional expectations,

E [f ◦X]≥ E [h◦X] = h(E [X | F ]).

This holds for any h ∈Wf , so

E [f ◦X]≥ sup
h∈Wf

h(E [X | F ]).

On the other hand, the characterization of f reveals that

f(E [X | F ]) = sup
h∈Wf

h(E [X | F ]).

Therefore,

E [f ◦X]≥ sup
h∈Wf

h(E [X | F ]) = f(E [X | F ]),

which is our desired result.

Q.E.D.

The result above allows us to draw the following connection between conditional expecta-
tions and uniform integrability:

Theorem 2.7 Let X an integrable k-dimensional real random vector, and define the collection

K = {E [X | F ] | F is a sub σ-algbra of H }.

K is a uniformly integrable collection of real random vectors.

Proof) X is an integrable random vector, so that the singleton {X} is trivially uniformly
integrable. By the De La Valleé Poussin characteriztion of uniform integrability, there
exists a non-negative increasing and convex function f : R→R+ such that f(0) = 0 and

lim
x→∞

f(x)
x

= +∞ and E [f ◦ |X|]<+∞.
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Choose any Z ∈ K; by definition, there exists a sub σ-algebra F of H such that

Z = E [X | F ] .

By the conditional version of Jensen’s inequality, the convexity of the mapping x 7→ |x|,
and the conditional integrability of |X| and X, we can see that

|Z| ≤ E [|X| | F ] .

Since f ◦ |X| is integrable, it is also conditionally integrable; by the conditional version
of Jensen’s inequality once more, we have

f(E [|X| | F ])≤ E [f ◦ |X| | F ] .

Finally, f is an increasing function, so

f ◦ |Z| ≤ f(E [|X| | F ])≤ E [f ◦ |X| | F ] .

The monotonicity of integration now shows us that

E [f ◦ |Z|]≤ E [f ◦ |X|] .

This holds for any Z ∈ K, so

sup
Z∈K

E [f ◦ |Z|]≤ E [f ◦ |X|]<+∞.

By the De La Valleé Poussin characteriztion of uniform integrability once again, we can
conclude that K is uniformly integrable.

Q.E.D.
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2.2 Conditional Probabilities

So far, we have dealt with the conditional expectation of random variables given some sub σ-
algebra F of H. We can instead think of the more general concept of conditional probabilities,
that is, an expression that summarizes the information in P(H | F) for any H ∈ H, where we
define

P(H | F) := E [IH | F ] .

2.2.1 Regular Versions of Conditional Probabilities and Distributions

Transition probability kernels play a central role in the theory of conditional probabilities and
distributions. Let (E,E) and (F,F) be measurable spaces. Recall that the function K :E×F →
[0,+∞] is called a transition probability kernel from (E,E) to (F,F) if:

• K(·,A) is a E-measurable non-negative function for any A ∈ F , and

• K(x, ·) is a probability measure on (F,F) for any x ∈ E.

Recall that, for any x ∈ E, we denote the integral of some function F-measurable function
f with respect to the probability measure K(x, ·) as∫

F
f(y)K(x,dy),

granted that the integral exists.

Consider a function Q : Ω×H→ [0,1], where Q(·,H) is taken to be a version of P(H | F)
that takes values in [0,1] for any H ∈H, with Q(·,∅) = 0 and Q(·,Ω) = 1. Then, each Q(·,H) is
an F-measurable non-negative function, and for a disjoint collection {Hn}n∈N+ of H-measurable
sets with union H =⋃

nHn,

Q(·,H) = E [IH | F ] = E
[ ∞∑
n=1

IHn | F
]

=
∞∑
n=1

E [IHn | F ] =
∞∑
n=1

Q(·,Hn)

by the conditional version of the MCT for series, where the equality holds almost surely.
If we can choose Q so that this equality holds everywhere on Ω for any disjoint collection

{Hn}n∈N+ ⊂ H, then Q becomes a transition probability kernel from (Ω,F) into (Ω,H) such
that

Q(·,H) = P(H | F)

for any H ∈ H. In a sense, Q summarizes the information present in all conditional probabili-
ties given F ; we call Q a regular version of the conditional probability P(· | F). Heuristically,
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we may view Q as representing the conditional analogue of the underlying probability measure P.

Let X be a random variable taking values in the measurable space (E,E), and let F be a
sub σ-algebra of H. Recall that the distribution of X as the pushforward measure of P with
respect to X, that is, as µ= P◦X−1. The value of µ given a measurable setA ∈ E represents the
probability of X taking values in the set A.

We can define the conditional distribution of X given F in a similar manner. Suppose that
Q : Ω×H → [0,1] is a regular version of the conditional probability given F . Then, letting
L : Ω×E → [0,1] be defined as

L(ω,A) =Q(ω,X−1(A))

for any (ω,A) ∈ Ω×E , L is referred to as a regular version of the conditional distribution of X
given F . Note that L is a transition probability kernel from (Ω,F) into (E,E):

• For any A ∈ E , L(·,A) =Q(·,X−1(A)) is a F-measurable non-negative function

• For any ω ∈Ω, L(ω, ·) is the pushforward measure of Q(ω, ·) with respect to X and thus a
probability measure on (E,E).

For any A ∈ E ,

L(·,A) =Q(·,X−1(A)) = P(X ∈A | F)

so that L(·,A) can be interpreted as the conditional probability of X taking values in A given
F . Like the regular version Q represents the conditional analogue of the underlying probability
measure P, L represents the conditional analogue of the distribution µ= P◦X−1 of X.

Given the parallels beteween the unconditional probability measure/distribution and the
conditional versions, we might expect conditional expectations to be formulated in terms of
integrals with respect to Q or L, like how expectations can be written as integrals with respect
to P or µ. We confirm below that this is indeed the case:

Theorem 2.8 Let X be a random variable taking values in (E,E), and F a sub σ-algebra of
H. Suppose there exists a regular version Q of the conditional probability given F , using which
we can define a regular version L of the conditional distribution of X given F as above. Then,
for any f ∈ E+, the mappings

ω 7→
∫

Ω
(f ◦X)(t)Q(ω,dt)

and

ω 7→
∫
E
f(x)L(ω,dx)
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are both versions of the conditional expectation E [f ◦X | F ].

Proof) Define ΛQ,ΛL : Ω→ [0,+∞] as

ΛQ(ω) =
∫

Ω
(f ◦X)(t)Q(ω,dt)

ΛL(ω) =
∫
E
f(x)L(ω,dx)

for any ω ∈ Ω. Since L(ω, ·) = Q(ω, ·) ◦X−1, by theorem 1.1, we can immediately see
that

ΛL(ω) =
∫
E
f(x)L(ω,dx) =

∫
Ω

(f ◦X)(t)Q(ω,dt) = ΛQ(ω)

for any ω ∈ Ω, so that

Λ(f) := ΛL = ΛQ

on Ω. It remains to show that Λ(f) is a version of the conditional expectation of f ◦X
given F .

Suppose f is a non-negative E-measurable simple function with canonical form

f =
n∑
i=1

ai · IAi ,

where a1, · · · ,an ∈ [0,+∞) and A1, · · · ,An ∈ E form a measurable partition of E. Then,
for any ω ∈ Ω,

∫
E
f(x)L(ω,dx) =

n∑
i=1

ai ·L(ω,Ai),

by the linearity of integration of non-negative functions, so that

Λ(f) =
n∑
i=1

ai ·L(·,Ai).

Each L(·,Ai) is F-measurable and non-negative by definition, so it follows that Λ(f) is
a non-negative F-measurable function. Furthermore, for any H ∈ F ,

E [Λ(f) · IH ] = E
[
n∑
i=1

ai ·L(·,Ai)IH
]

=
n∑
i=1

ai ·E [L(·,Ai) · IH ]

by the linearity of expectations of non-negative functions. Since each L(·,Ai) is a version
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of E
[
X−1(Ai) | F

]
, by the defining property of conditional expectations

E [L(·,Ai) · IH ] = E
[
X−1(Ai) · IH

]
;

it follows that

E [Λ(f) · IH ] =
n∑
i=1

ai ·E
[
X−1(Ai) · IH

]
= E

[[(
n∑
i=1

ai · IAi

)
◦X

]
· IH

]
= E [(f ◦X) · IH ] .

Therefore, if f is a non-negative simple F-measurable function, Λ(f) is a version of
E [f ◦X | F ].

Now let f be an arbitrary non-negative E-measurable function. Then, there exists a
sequence {fn}n∈N+ of non-negative E-measurable simple functions increasing to f . By
the MCT, we can see that, for any ω ∈ Ω,∫

E
f(x)L(ω,dx) = lim

n→∞

∫
E
fn(x)L(ω,dx),

so that

Λ(f) = lim
n→∞

Λ(fn).

We showed above that {Λ(fn)}n∈N+ is a sequence of non-negative F-measurable func-
tions, so it follows that their pointwise limit Λ(f) should also be a non-negative F-
measurable function. Note also that {Λ(fn)}n∈N+ is itself an increasing sequence of
functions by the monotonicity of integration.

Similarly, by repeatedly using the MCT, we can see that, for any H ∈ F ,

E [Λ(f) · IH ] = lim
n→∞

E [Λ(fn) · IH ]

= lim
n→∞

E [(fn ◦X) · IH ] = E [(f ◦X) · IH ] .

By definition, Λ(f) is a version of E [f ◦X | F ].

Q.E.D.

We have thus seen that, in almost every sense, the transition probability kernels Q and L play
the role of the conditional analogue of the underlying probability measure P and distribution
µ of a random variable X. However, unlike the underlying probability measure P, we do not
know whether the regular version Q of the conditional probability F even exists. Are there any
sufficient conditions under which Q exists?
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Instead of directly addressing the question of the existence of Q, we can address a related, but
distinct, question. Suppose X,Y are two random variables taking values in the measurable spaces
(E,E) and (F,F) with joint distribution π = P◦ (X,Y )−1. Letting µ and v be the distributions
of X and Y , recall that we say that X and Y are independent if the joint distribution π can be
expressed as the product π = µ× v. However, what if X and Y are not independent? Can we
still decompose π into the product of µ and some other mathematical object in this case?

Fortunately, the answer to both questions is yes. The decomposition π = µ×v turns out to
be a special case of the general case where π is decomposed into the “product” of µ and some
transition probability kernel from (E,E) into (F,F). In the next section we study the general
method of constructing a probability measure on a product space from a measure and a tran-
sition probability kernel, and then furnish sufficient conditions for a probability measure on a
product space into the product of a measure and a transition probability kernel. We then show
that the transition probability kernel in question can be used to construct a regular verison of
conditional distribution of Y given X1, as well as a regular version of the conditional probability
given X.

2.2.2 Construction of Probability Measures

One of the main uses of transition probability kernels is in the construction of measures on the
product space (E×F,E⊗F). To this end, we first show that, for any transition probability
kernel K from (E,E) to (F,F) and non-negative E⊗F)-measurable function f , the mapping

x 7→
∫
F
fx(y)K(x,dy)

is a non-negative E-measurable function, where fx : F → [0,+∞] is the section of f defined as
fx(y) = f(x,y) for any y ∈ F . Below, we let (E⊗F)+,b denote the collection of all non-negative
or bounded E⊗F-measurable functions.

Lemma 2.9 Let (E,E) and (F,F) be measurable spaces. For any transition probability kernel
K : E ×F → [0,1] from (E,E) to (F,F). For any non-negative (bounded) E⊗F-measurable
function f ,

(TKf)(x) =
∫
F
fx(y)K(x,dy)

is well-defined for any x ∈ E and the function TKf : E → [−∞,+∞] is a E-measurable non-
negative (bounded) function.

Furthermore, the transformation TK : (E⊗F)+,b→E+,b possesses the following properties:

i) (Linearity) For any non-negative (real-valued) scalar a and non-negative (bounded)
1When we say given X, we mean given the sub σ-algebra σX of H.
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E
⊗
F-measurable functions f,g,

TK(af +g) = a · (TKf) + (TKg).

ii) (Sequential Continuity) For any increasing sequence {fn}n∈N+ of non-negative E⊗F-
measurable functions with pointwise limit f , {TKfn}n∈N+ is an increasing sequence of
non-negative E-measurable functions such that

TKf = sup
n∈N+

TKfn.

Proof) We first show that, for any f ∈ (E⊗F)+,b, (TKf)(x) is well-defined for any x ∈ E.
First note that the section fx : F → [−∞,+∞] is a F-measurable function2. If f is
non-negative, then so is fx, and therefore the integral

(TKf)(x) =
∫
F
fx(y)K(x,dy)

is well-defined and takes values in [0,+∞]. Meanwhile, if f is bounded, then there exists
an M > 0 such that |f | ≤M , and by the monotonicity of integration and the fact that
K(x, ·) is a probability measure, we have∫

F
|fx(y)|K(x,dy)≤M <+∞.

This shows us that fx is K(x, ·)-integrable, and as such that

(TKf)(x) =
∫
F
fx(y)K(x,dy)

is again well-defined and takes values in R.

Now we show that the mapping TK from the set of all non-negative or bounded E⊗F-
measurable functions to numerical functions on E possess linearity and sequential con-
tinuity properties. Choose any E⊗F-measurable functions f,g that are both bounded
(and thus real-valued), and let a ∈ R. af + g is again a bounded E⊗F-measurable
function, so TK(af +g) is a well-defined real valued function on E. For any x ∈ E, by

2This can easily be seen as follows. Define g :F →E×F as g(y) = (x,y) for any y ∈F . Then, for any measurable
rectangle A×B on (E×F,E

⊗
F), we have

g−1(A×B) =
{
∅ if x /∈A
B if x ∈A

∈ F ,

which implies that g is measurable relative to F and E
⊗
F , since the set of all measurable rectangles generates

the product σ-algebra E
⊗
F . Since fx = f ◦ g, the preservation of measurability across compositions and the

E
⊗
F-measurability of f ensures that fx is F-measurable.
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the linearity of integration for real integrable functions,

(TK(af +g))(x) =
∫
F

(af +g)x(y)K(x,dy) =
∫
F

(a ·fx(y) +gx(y))K(x,dy)

= a ·
∫
F
fx(y)K(x,dy) +

∫
F
gx(y)K(x,dy) = a · (TKf)(x) + (TKg)(x).

This shows us that TK(af + g) = a · (TKf) + (TKg). On the other hand, if f,g are
non-negative instead of bounded, and a ∈ [0,+∞], then af +g is again a non-negative
E
⊗
F-measurable function, so that TK(af +g) is a well-defined non-negative function

on E. The linearity result then follows from the linearity of integration for non-negative
functions.

Now suppose that {fn}n∈N+ is an increasing seqeunce of non-negative E⊗F-measurable
functions. Then, defining f = supn∈N+ fn, f is also in (E⊗F)+ because measurability
is preserved across pointwise supremums, so that TKf is a non-negative function on E.
Furthermore, for any x ∈E, since {fn,x}n∈N+ is an increasing sequence of non-negative
F-measurable functions increasing to fx, the MCT shows us that

(TKf)(x) =
∫
F
fx(y)K(x,dy) = lim

n→∞

∫
F
fn,x(y)K(x,dy) = lim

n→∞
(TKfn)(x).

The monotonicity of integration also shows us that TKfn ≤ TKfn+1 for any n ∈N+, so
{TKfn}n∈N+ is a sequence of non-negative functions on E that increase to TKf .

It remains to show that TKf is E-measurable for any bounded or non-negative E⊗F-
measurable function. To this end, we make use of the monotone class theorem for
functions: define the collection M as

M= {f ∈
(
E
⊗
F
)

+
| TKf is E-measurable.}

Note that, for any measurable rectangle A×B on (E×F,E⊗F),

(TKIA×B)(x) =
∫
F
IA(x)IB(y)K(x,dy) = IA(x) ·K(x,B)

for any x ∈ E, so that TKIA×B = IA ·K(·,B). Since IA and K(·,B) are both E-
measurable non-negative functions, so is TKIA×B; this shows us that IA×B ∈M. We
now show that M is a monotone class of functions:

i) IE×F ∈M because E×F is a measurable rectangle.

ii) For any a,b ∈R and f,g ∈Mb, since f,g ∈ (E⊗F)b, by the linearity result shown
above,

TK(af + bg) = a · (TKf) + b · (TKg).
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Since TKf,TKg are both bounded E-measurable functions because f,g ∈M, the
preservation of measurability across linear combinations shows us that TK(af+bg)
is also a bounded E-measurable function, and as such that af + bg ∈Mb.

iii) For any increasing sequence {fn}n∈N+ ⊂M+, since {fn}n∈N+ is an increasing
sequence of non-negative E⊗F-measurable functions, the sequential continuity
result shown above shows us that

TKf = sup
n∈N+

TKfn.

By assumption, {TKfn}n∈N+ is a sequence of E-measurable non-negative func-
tions, so it follows that TKf ∈ E+ as well. Therefore, f ∈M+.

Thus, M is a monotone class of functions that contains all indicator functions of the
form IA×B. Since the collection of all measurable rectangles on E×F forms a π-system
that generates the product σ-algebra E⊗F , the monotone class theorem for functions
tells us that any non-negative or bounded E⊗F-measurable function is contained in
M. In other words, for any f ∈ (E⊗F)+,b, the function TKf : E → [−∞,+∞] is E-
measurable.

Q.E.D.

The next result shows us how to construct a probability measure on (E×F,E⊗F) given a
probability measure on (E,E) and a transition probability kernel from (E,E) into (F,F).

Theorem 2.10 (Construction of Probability Measures on Product Spaces)
Let (E,E) and (F,F) be measurable spaces. Let µ be a probability measure on (E,E) and K a
transition probability kernel from (E,E) into (F,F). Then, there exists a probability measure π
on (E×F,E⊗F) such that ∫

E×F
fdπ =

∫
E

(TKf)dµ

for any f ∈ (E⊗F)+. Furthermore, π is the unique measure on (E×F,E⊗F) such that

π(A×B) =
∫
A
K(·,B)dµ

for any measurable rectangle A×B on E×F .
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Proof) Define the functional Λ : (E⊗F)+→ [0,+∞] as

Λ(f) =
∫
E

(TKf)dµ

for any f ∈ (E⊗F)+. We verify that Λ satisfies the following three properties:

– Λ assigns 0 to the empty set
Λ(I∅) =

∫
E(TKI∅)dµ= 0 because TKI∅ = 0 by the definition of the mapping TK .

– Λ is a linear functional
For any a ∈ [0,+∞] and f,g ∈ (E⊗F)+, by the linearity of the mapping TK :
(E⊗F)+→E+ and the linearity of the integration of non-negative functions, we
have

Λ(af +g) =
∫
E
TK (af +g)dµ=

∫
E

(a · (TKf) +TKg)dµ

= a ·
∫
E

(TKf)dµ+
∫
E

(TKg)dµ= a ·Λ(f) + Λ(g).

– Λ is sequentially continuous
For any increasing sequence {fn}n∈N+ of non-negative E⊗F-measurable functions
with pointwise limit f ∈ (E⊗F)+, the preceding result tells us that {TKfn}n∈N+

is an increasing sequence of non-negative E-measurable functions with pointwise
limit TKf . By the MCT, this implies that

Λ(f) =
∫
E

(TKf)dµ= lim
n→∞

∫
E

(TKfn)dµ= lim
n→∞

Λ(fn).

Furthermore, by the monotonicity of integration, {Λ(fn)}n∈N+ is an increasing
sequence of functions, so that

Λ(fn)↗ Λ(f).

The elementary representation theorem for linear sequentially continuous functionals
stated in the measure theory text now implies that there exists a measure π on (E×
F,E

⊗
F) such that ∫

E×F
fdπ = Λ(f)

for any f ∈ (E⊗F)+. Since

π(E×F ) = Λ(IE×F ) =
∫
E
K(·,F )dµ= 1,
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π is a probability measure, and since the collection of all measurable rectangles on
E×F is a π-system generating E⊗F , π is equivalent to any probability measure v
such that π and v agree on all measurable rectangles A×B on E×F . Since

π(A×B) =
∫
A
K(·,B)dµ,

this proves the uniqueness claim.

Q.E.D.

We denote the probability measure π constructed above as π = µ×K, and we often write∫
E×F

fdπ =
∫
E

(TKf)dµ=
∫
E

∫
F
f(x,y)K(x,dy)dµ(x)

for any f ∈ (E⊗F)+. The measure π is then called the product of the probability measure µ
and the transition probability kernel K.

2.2.3 Decomposition of Joint Distributions

What we are actually interested in is the opposite of the above case: specifically, we want to
furnish sufficient conditions under which a probability measure π on the product space can be
expressed as the product of some probability measure µ on (E,E) and a transition probability
kernel K from (E,E) to (F,F). The following result shows how the decomposition problem is
intimately related to the existence of regular versions of conditional distributions of random
variables:

Theorem 2.11 Let X and Y be random variables taking values in the measurable spaces
(E,E) and (F,F). Denote the joint distribution of X and Y by π, and suppose that it has the
decomposition π = µ×K for some probability measure µ on (E,E) and transition probability
kernel K from (E,E) into (F,F). Then, µ is the marginal distribution of X, and defining L :
Ω×F → [0,1] as

L(ω,A) =K(X(ω),A)

for any (ω,A) ∈ Ω×F , L is a regular version of the conditional distribution of Y given X.
Furthermore, for any f ∈ (E⊗F)+,

E [f(X,Y ) |X] = (TKf)◦X =
∫
F
f(X,y)K(X,dy).

Proof) We first show that µ is the marginal distribution of X. For any A ∈ E , since π = µ×K,
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we have

π(A×F ) =
∫
A
K(·,F )dµ= µ(A)

since K is a transition probability kernel. By definition, µ is the marginal distribution
of X.

Now we show that L is a regular version of the conditional distribution of Y given X.
It is easy to see that L is a transition probability kernel from (Ω,σX) into (F,F); for
any A ∈ F ,

L(·,A) =K(·,A)◦X,

so that L(·,A) is σX-measurable by the Doob-Dynkin lemma, while for any ω ∈ Ω,

L(ω, ·) =K(X(ω), ·)

is a probability measure on (F,F). Now choose any A ∈ F . We can see that, for any
H ∈ σX, there exists a B ∈ E such that H =X−1(B) and thus

E [L(·,A) · IH ] = E [(K(·,A) · IB)◦X]

=
∫
E

(K(·,A) · IB)dµ

=
∫
B
K(·,A)dµ= π(B×A)

= E [(IB ◦X)(IA ◦Y )] = E [(IA ◦Y ) · IH ] ,

where the second and fifth equalities are justified by the definitions of the distribution
of random variables/vectors. Since L(·,A) is σX-measurable, the above result tells us
that L(·,A) is a version of the conditional expectation E

[
IY −1(A) |X

]
= P(Y ∈A |X).

By definition, L is a version of the conditional distribution of Y given X.

Finally, let f be a non-negative E⊗F-measurable function. Then, for any H ∈ σX,
letting A ∈ E be chosen so that H =X−1(A), note that

E [f(X,Y ) · IH ] = E [(f · IA×F )◦ (X,Y )]

=
∫
E×F

(f · IA×F )dπ

=
∫
A

∫
F
f(x,y)K(x,dy)dµ(x) =

∫
A

(TKf)dµ

= E [((TKf) · IA)◦X] = E [((TKf)◦X) · IH ] .

Since (TKf)◦X is trivially σX-measurable by the Doob-Dynkin lemma, this shows us
that (TKf)◦X is a version of the conditional expectation E [f(X,Y ) |X].
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Q.E.D.

The quantity K allows us to give a mathematically rigorous definition of the conditional
probability of Y ∈ A given X = x; since L(·,A) = K(·,A) ◦X is a version of P(Y ∈A |X), it
stands to reason that we may define

P(Y ∈A |X = x) =K(x,A)

for any (x,A) ∈ E×F . This also allows us to rigorously define the conditional density of Y
given X = x; suppose that there exists some σ-finite measure v on (F,F) such that K(x, ·) is
absolutely continuous with respect to v for any x ∈E. By the Radon-Nikodym theorem, for any
x ∈ E there should exist a function kx ∈ F+ such that

K(x,A) =
∫
A
kx(y)dv(y)

for any (x,A) ∈ E×F . If the function fY |X : E×F → [0,+∞] defined as

fY |X(y | x) = kx(y)

for any (x,y) ∈E×F is E⊗F-measurable, then it is referred to as the conditional density of Y
given X = x with respect to v. Note that, in this case,∫

A
fY |X(y |X)dv(y)

is a version of the conditional probability of Y ∈A given X, for any A ∈ F .

Now that we showed how the decomposition π = µ×K allows us to rigorously define various
useful concepts, we again turn back to the problem of the existence of this decomposition. The
next theorem shows that a common assumption made in probability theory is actually sufficient
for the above decomposition. Specifically, if we interpret π as the joint distribution of two random
variables X and Y , then it is sufficient for π to have a joint density with respect to a product
of σ-finite measures for π to be decomposed into the product of a probability measure and a
transition probability kernel. The most common way in which this setting occurs in probability
theory is through the assumption of the existence of a joint pdf with respect to the Lebesgue
measure on a multidimensional euclidean space, where this Lebesgue measure can be seen as
the product of Lebesgue measures of lower dimensional euclidean spaces.
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Theorem 2.12 (Decomposition of Probability Measures on Product Spaces)
Let (E,E) and (F,F) be measurable spaces, and π a probability measure on the product space
(E×F,E⊗F). Let µ and v be σ-finite measures on (E,E) and (F,F), respectively, and suppose
that there exists a density f ∈ (E⊗F)+ of π with respect to the product measure µ×v, which is
σ-finite3. Let P be the probability measure on (E,E) defined as P (A) = π(A×F ) for any A ∈ E .
Then, the following hold true:

i) Defining g : E→ [0,+∞] as

g(x) =
∫
F
f(x,y)dv(y)

for any x ∈ E, g is a non-negative E-measurable function such that

P (A) =
∫
A
g(x)dµ(x)

for any A ∈ E . By implication, P << µ.

ii) Defining k : E×F → [0,+∞] as

k(x,y) =


f(x,y)
g(x) if 0< g(x)<+∞∫
E f(x,y)dµ(x) if g(x) = 0 or +∞

for any (x,y) ∈ E×F , k is a non-negative E⊗F-measurable function that satisfies

f(x,y) = g(x)k(x,y)

for any y ∈ F and P -a.e. x ∈ E.

iii) Defining K : E×F → [0,1] as

K(x,A) =
∫
A
k(x,y)dv(y)

for any (x,A) ∈ E×F , K is a transition probability kernel from (E,E) into (F,F) such
that

π = P ×K.

Proof) The function g defined as above is E-measurable due to Fubini’s theorem for non-
negative functions. To see that P is the indefinite integral of g with respect to µ, note

3In light of the Radon-Nikodym theorem, condition is equivalent to the assumption that π is absolutely
continuous with respect to µ×v
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that, for any A ∈ E ,

P (A) = π(A×F ) =
∫
E×F

(f · IA×F )d(µ×v)

=
∫
A

∫
F
f(x,y)dv(y)dµ(x) (Fubini’s theorem)

=
∫
A
g(x)dµ(x).

It follows immediately that P << µ, that is, P is absolutely continuous with resepct to
µ.

Now define the function k as above. Letting G= {0<g <+∞}∈ E , define the functions
gf : E→ [0,+∞] and ψ : F → [0,+∞] as

gf (x) = g(x) · IG(x) + IGc(x)

and

ψ(y) =
∫
E
f(t,y)dµ(t)

for any (x,y) ∈ E×F . ψ is F-measurable by Fubini’s theorem, and gf is also trivially
E-measurable; note that gf is non-zero and finite everywhere on E while agreeing with
g on the points at which g is non-zero and finite. Furthermore, the extensions gef :
E×F → [0,+∞] and ψe :E×F → [0,+∞] are E⊗F-measurable; this follows because,
for any a ∈ R,

{gef < a}= {gf < a}×F ∈ E
⊗
F ,

and similarly for ψe. Since k can be written as

k = f

gef
· IG×F +ψe · IGc×F ,

and measurability is preserved across arithmetic operations, it follows that k is a non-
negative E⊗F-measurable function.

For any (x,y) ∈ E×F , if 0< g(x)<+∞, then

f(x,y) = g(x)k(x,y)

by definition. Define G0 = {g = 0} and G∞ = {g = +∞}. Since

P (E) = π(E×F ) = 1 =
∫
E
g(x)dµ(x),
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by the finiteness property of non-negative functions we have µ(G∞) = 0. The absolute
continuity of P with respect to µ implies that P (G∞) = 0 as well. In addition,

P (G0) =
∫
G0
g(x)dµ(x) = 0

because g(x) = 0 on G0; therefore, P (Gc) = P (G0∪G∞) = 0. It follows that f(x,y) =
g(x)k(x,y) holds for any y ∈ F and P -a.e. x ∈ E.

Finally, let K : E ×F → [0,1] be defined as above; it is well-defined because k is a
non-negative E⊗F-measurable function. For any A ∈ F ,

K(·,A) =
∫
F

(k · IE×A)(x,y)dv(y),

where k ·IE×A ∈ (E⊗F)+, so by Fubini’s theorem K(·,A) ∈ E+. For any x ∈E, K(x, ·)
is the indefinite integral of the section k(x, ·), which is a non-negative F-measurable
function, with respect to v, and therefore is a measure on (F,F). If 0 < g(x) < +∞,
then

K(x,F ) =
∫
F
k(x,y)dv(y) = 1

g(x)

∫
F
f(x,y)dv(y) = 1,

while if g(x) = 0 or g(x) = +∞, then

K(x,F ) =
∫
F

∫
E
f(x,y)dµ(x)dv(y) = π(E×F ) = 1,

so that K(x, ·) is a probability measure in any case. This proves that K is a transition
probability kernel from (E,E) into (F,F).

It remains to show that π is equivalent to the measure P ×K. Since both are probability
measures, this reduces to checking that they agree on all measurable rectangles A×B
on E×F . Choose any A ∈ E and B ∈ F . Note first that, if g(x) = 0, then∫

B
f(x,y)dv(y)≤

∫
F
f(x,y)dv(y) = g(x) = 0,

so that
∫
B f(x,y)dv(y) = 0 and thus

∫
A∩G0

(∫
B
f(x,y)dv(y)

)
dµ(x) = 0.

Meanwhile, since µ(G∞) = 0, we trivially have∫
A∩G∞

(∫
B
f(x,y)dv(y)

)
dµ(x) = 0.
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Now we can see that

π(A×B) =
∫
A

∫
B
f(x,y)dv(y)dµ(x)

=
∫
A∩G

(∫
B
f(x,y)dv(y)

)
dµ(x) +

∫
A∩Gc

(∫
B
f(x,y)dv(y)

)
dµ(x)

=
∫
A∩G

(∫
B
k(x,y)dv(y)

)
g(x)dµ(x)

+
∫
A∩G0

(∫
B
f(x,y)dv(y)

)
dµ(x) +

∫
A∩G∞

(∫
B
f(x,y)dv(y)

)
dµ(x)

=
∫
A∩G

(K(·,B)g)dµ (By definition of K)

=
∫
A∩G

K(·,B)dP (By the property of indefinite integrals)

=
∫
A
K(·,B)dP. (Since P (Gc) = P (G0∪G∞) = 0)

This proves that π = P ×K on the entire product space.

Q.E.D.

The quantities g, k, P and K that appear during the proof have very clear probabilistic
interpretations. To make the connections clearer, we re-state the results of the previous theorem
in terms of probabilistic concepts:
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Corollary to Theorem 2.12 (Probabilistic Interpretation of Theorem 5.12)
Let X and Y be random variables taking values in, and µ and v σ-finite measures on, the
measurable spaces (E,E) and (F,F). Denote the joint distribution of X and Y by π and the
marginal distribution of X by PX . Suppose that π is absolutely continuous with respect to the
product measure µ× v, and that fX,Y is the joint density of X,Y with respect to µ× v. Then,
the following hold true:

i) (Marginal Density of X)
Defining fX : E→ [0,+∞] as

fX(x) =
∫
F
fX,Y (x,y)dv(y)

for any x ∈ E, fX is the marginal density of X with respect to µ.

ii) (Conditional Density of Y given X = x)
Defining fY |X : E×F → [0,+∞] as

fY |X(y | x) =


fX,Y (x,y)
fX(x) if 0< fX(x)<+∞∫
E fX,Y (x,y)dµ(x) if fX(x) = 0 or +∞

for any (x,y) ∈E×F , fY |X is the conditional density of Y given X with respect to v and
satisfies

fX,Y (x,y) = fY |X(y | x)fX(x)

for any y ∈ F and PX -a.e. x ∈ E.

iii) (Conditional Distribution of Y given X = x)
Defining KY |X : E×F → [0,1] as

KY |X(x,A) =
∫
F
fY |X(y | x)dv(y)

for any (x,A) ∈ E×F , KY |X(x,A) is the conditional probability of Y ∈A given X = x.

In light of theorem 5.11, the last point shows us that there exists a regular version of the con-
ditional distribution of Y given X.

Proof) This is just a re-statement of the results of theorem 2.12.

Q.E.D.
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2.2.4 Bayes’ Rule

One of the most useful applications of the results of theorem 2.12 in probability theory is Bayes’
rule. Note the symmetry of the preceding statement; given the distribution π of X and Y , we
chose to first obtain the marginal density of X, and then use it to construct the conditional den-
sity of Y given X. However, we could have instead first obtained the marignal density of Y , and
used that to construct the conditional density of X given Y . In either case, the joint density of
X and Y can be represented as the product of the conditional density and the marginal density
for almost every point on E and F . The ensuing equality is precisely the content of Bayes’ rule;
the formal statement is given below:

Theorem 2.13 (Bayes’ Rule)
Let X and Y be random variables taking values in, and µ and v σ-finite measures on, the
measurable spaces (E,E) and (F,F). Denote the joint distribution of X and Y by π, and the
marginal distributions of X and Y by PX and PY . Suppose that π is absolutely continuous with
respect to the product measure µ×v, and that fX,Y is the joint density of X,Y with respect to
µ×v.

Then, there exist marginal densities fX and fY of X and Y with respect to µ and v, as well
as conditional densities fX|Y of X given Y with respect to µ and fY |X of Y given X with respect
to v, such that

fY |X(y | x) =
fX|Y (x | y) ·fY (y)

fX(x)

for PX -a.e. x ∈ E and PY -a.e. y ∈ F .

Proof) As in theorem 2.12, define fX : E→ [0,+∞] and fY : F → [0,+∞] as

fX(x) =
∫
F
fX,Y (x,y)dv(y) and fY (y) =

∫
E
fX,Y (x,y)dµ(x)

for any (x,y) ∈ E×F . We saw above that fX and fY are marginal densities of X and
Y with respect to µ and v.

Similarly, we can define fY |X : E×F → [0,+∞] and fX|Y : E×F → [0,+∞] as

fY |X(y | x) =


fX,Y (x,y)
fX(x) if 0< fX(x)<+∞∫
E fX,Y (x,y)dµ(x) if fX(x) = 0 or +∞

and

fX|Y (x | y) =


fX,Y (x,y)
fY (y) if 0< fY (y)<+∞∫
F fX,Y (x,y)dv(y) if fY (y) = 0 or +∞
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for any (x,y)∈E×F . Theorem 2.12 tells us that fY |X and fX|Y are conditional densities
of Y given X and X given Y with respect to v and µ, that is,

P(Y ∈B |X) =
∫
B
fY |X(· |X)dv

P(X ∈A | Y ) =
∫
A
fX|Y (· | Y )dµ

for any A ∈ E and B ∈ F .

In theorem 2.12, we also saw that

fX,Y (x,y) = fY |X(y | x)fX(x)

for any y ∈ F and PX -a.e. x ∈ E. By symmetry,

fX,Y (x,y) = fX|Y (x | y)fY (y)

for any x ∈ E and PY -a.e. y ∈ F . Therefore, for PX -a.e. x ∈ E and PY -a.e. y ∈ F , we
have the equality

fX,Y (x,y) = fY |X(y | x)fX(x) = fX|Y (x | y)fY (y).

Furthermore, {fX = 0}∪{fX = +∞} is a set of measure zero under PX , so that

fY |X(y | x) =
fX|Y (x | y) ·fY (y)

fX(x)

also holds and is well-defined for PX -a.e. x ∈ E and PY -a.e. y ∈ F .

Q.E.D.
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2.3 Construction of Sequences of Random Variables

In this section we consider the generalized version of the problem addressed in section 1.8.2.
There, we wondered whether there existed a probability space (Ω,H,P) on which a sequence
{Xn}n∈N+ of independent random variables with the desired distributions could be supported.
The proof that such a probability space existed relied on the decomposition of the joint distri-
bution of independent random variables into the product of their respective distributions.

What we studied above is how to decompose joint distribution of arbitrary, not necessarily
independent, random variables can be decomposed into the product of a probabiliy measure and
a transition probability kernel. Thus, we can now apply this new machinery to show that there
exists a probability space (Ω,H,P) that can support a sequence {Xn}n∈N+ of random variables
with any dependence structure.

We work with the following setting. Consider a sequence of measurable spaces {(Et,Et)}t∈N,
and let µ be a probability measure on (E,E). For any n ∈ N, define

(F 0
n ,F0

n) =
n⊗
t=0

(Et,Et),

and let Kn+1 be a transition probability kernel from (F 0
n ,F0

n) into (En+1,En+1). In the context
of repeated trials, we can think of µ as the distribution of the initial trial, and each Kn+1 as the
conditional distribution of the n+1th trial given the results of all the trials that precede it. Our
objective is to find a probability space (Ω,H,P) and a sequence {Xt}t∈N of random variables
such that each Xt takes values in (Et,Et), X0 has distribution µ, and Kn+1 is the conditional
distribution of Xn+1 given X0 = x0, · · · ,Xn = xn. This can be formally stated as the following
theorem:

Theorem 2.14 (Ionescu-Tulcea’s Theorem)
Let {(Et,Et)}t∈N be a sequence of measurable spaces, µ a probability measure on (E,E), and
Kn+1 a transition probability kernel from ⊗n

t=0(Et,Et) into (En+1,En+1) for any n ∈ N.
Then, there exists a probability space (Ω,H,P) and a sequence {Xt}t∈N of random variables

where each Xt takes values in (Et,Et) such that

i) The distribution of X0 is µ, and

ii) The conditional probability of Xt+1 ∈A given Xt, · · · ,X0 is

Kt+1(·,A)◦ (X0, · · · ,Xt)

for any A ∈ Et+1 and t ∈ N.

Below we prove the theorem in steps, starting from the definition of the measurable space (Ω,H)
and concluding with the construction of the desired P from a pre-measure.
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2.3.1 Constructing (Ω,H) and the Sequence {Xn}n∈N

To prove the theorem above, we can think of the same construction as in the case of independent
sequences of random variables. Namely, we define

(Ω,H) =
⊗
t∈N

(Et,Et),

and for any t ∈ N, we define

Xt(ω) = ωt

for any ω = (ωt)t∈N ∈ Ω. This makes {Xt}t∈N a sequence of random variables such that each Xt

takes values in (Et,Et). To see this, choose any A ∈ Et and note that

X−1
t (A) =

∏
s∈N

As, As =

Es if s 6= t

A if s= t
∀s ∈ N.

In other words, X−1
t (A) is a measurable rectangle on Ω, making it an element of H; this tells us

that Xt is measurable relative to H and Et.
We also define the sequence {Yt}t∈N as

Yt = (X0, · · · ,Xt)

for any t ∈ N; clearly, each Yt is a random variable taking values in (F 0
t ,F0

t ). Let Ft = σYt be
the σ-algebra generated by Yt. Sets in Ft are called cylinders, since, for any H ∈Ft, there exists
an A ∈ F0

t such that

H = Y −1
t (A) =A×Et+1×Et+2×·· · .

We denote A=Bt(H), and call it the base of the set H ∈ Ft. Define

H0 =
⋃
n

Fn.

H0 is useful because it is an algebra on Ω that generates H. We can directly verify the first of
these statements:

• ∅ is obviously contained in H0 (take the inverse image of the empty set for any Yt).

• For any H ∈H0, letting H ∈ Fn for some n ∈ N,

Hc =

Bn(H)×

 ∏
t≥n+1

Et

c =Bn(H)c×

 ∏
t≥n+1

Et

 ,
where Bn(H) ∈ F0

n and thus Bn(H)c ∈ F0
n as well. This shows us that Hc ∈ Fn ⊂H0.

• For any finite collection {H1, · · · ,Hk}⊂H0, there must exist some n∈N such that {H1, · · · ,Hk}⊂
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Fn. For each 1≤ i≤ k, we can write Hi as

Hi =Bn(Hi)×

 ∏
t≥n+1

Et

 ,
so we can see that

k⋃
i=1

Hi =
(

k⋃
i=1

Bn(Hi)
)
×

 ∏
t≥n+1

Et

 ,
where ⋃ki=1Bn(Hi) ∈ F0

n. Therefore, ⋃ki=1Hi ∈ Fn ⊂H0.

It is also easy to see that the algebra H0 generates H. Clearly, the σ-algebra generated by H0

is contained in H because H0 is itself contained in H. To see the reverse inclusion, consider a
measurable rectangle ∏t∈NAt on Ω. Since at most finitely many At are not equal to Et, let

n= max{t ∈ N |At 6= Et} ∈ N.

It follows that

∏
t∈N

At ∈ Fn ⊂H0 ⊂ σH0,

and because the collection of all measurable rectangles generates H, it follows that H ⊂ σH0,
which shows that H0 generates H.

2.3.2 Applying the Hahn-Kolmogorov Extension Theorem

Now define the sequence {πt}t∈N of probability measures, where each πt is defined on (F 0
t ,F0

t ),
iteratively as π0 = µ and

πt = πt−1×Kt

for any t ∈ N+. Suppose that πt is the distribution of Yt for any t ∈ N. In this case, for any
t ∈ N, because Yt+1 = (Yt,Xt+1), the joint distribution of Yt and Xt+1 is equal to πt+1, which
can be decomposed into the product πt×Kt+1. In light of theorem 2.11, Kt+1 then becomes the
conditional distribution of Xt+1 given Yt = y, which is exactly the desired result. Therefore, our
problem reduces to finding a probability measure P on (Ω,H) such that the distribution of each
Yt is equal to πt. Specifying the distribution of each Yt in this manner is referred to as specifying
the probability law of the sequence {Xt}t∈N.

To this end, define the function P′ :H0→ [0,1] as

P′(H) = πt(Bt(H))

for any H ∈ Ft for some t ∈N. We must first verify that this function is well-defined by showing
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that it assigns the same value to a cylinder set H ∈ H0 regardless of how we specify its base.
Suppose that H ∈ Fn∩Fm for n,m ∈ N, and that n <m without loss of generality. Then,

Bm(H) =Bn(H)×En+1×·· ·×Em;

because πt = πt−1×Kt for any t ∈N+, we have

πm(Bm(H)) = πm(Bn(H)×En+1×·· ·×Em)

=
∫
Bn(H)×En+1×···×Em−1

K(x,Em)dπm−1(x)

= πm−1(Bn(H)×En+1×·· ·×Em−1)

= · · ·= πn(Bn(H))

by repeated applications of the definition of the product measure πt−1×Kt.
P′ clearly assigns value 0 to the empty set, since the empty set in H is the inverse image of

the empty set with respect to any Yt, and is thus a cylinder set with an empty base. In addition,
for any finite collection {H1, · · · ,Hk}⊂H0 of disjoint sets, their union is contained in the algebra
H0, and letting {H1, · · · ,Hk} ⊂ Fn for some n ∈ N,

P′
(

k⋃
i=1

Hi

)
= πn

(
k⋃
i=1

Bn(Hi)
)
.

Since Bn(H1), · · · ,Bn(Hk) are disjoint sets contained in Fn (they are disjont because H1, · · · ,Hk

are not disjoint otherwise), by the finite additivity of πn we can now see that

P′
(

k⋃
i=1

Hi

)
=

k∑
i=1

πn (Bn(Hi)) =
k∑
i=1

P′(Hi).

In other words, P′ is a pre-measure on the algebra H0.
Our construction is now almost complete. Suppose we show that P′ is also σ-additive, that

is,

P′
(⋃
n

Hn

)
=
∞∑
n=1

P′(Hn)

for any disjoint collection {Hn}n∈N+ ⊂H0 whose union is also contained in H0. Then, since P′

is a σ-additive pre-measure on H0, by the Hahn-Kolmogorov extension theorem there exists a
σ-algebra M on Ω and a measure P′′ on (Ω,M) such that H0 ⊂M and

P′′(H) = P′(H)

for any H ∈H0. Since

P′(Ω) = π0(E0) = 1 = P′′(Ω),
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P′′ is a probability measure on (Ω,M). Finally, since H0 generates H, H⊂M, and we define P
as the restriction of P′′ to H. Now it follows that

(
P◦Y −1

t

)
(A) = P(Y −1

t (A)) = P′(A) = πt(A)

for any t∈N and A∈F0
t , so that the distribution of each Yt under P is exactly πt. This shows us

that (Ω,H,P) and {Xt}t∈N are exactly the probability space and sequence of random variables
with the desired (conditional) distributions.

2.3.3 The σ-additivity of the Pre-Measure

The fact that P′ is a σ-additive pre-measure on H0 can be seen as follows. First, for any H ∈Fn,
we define the sequence {Qm(·,H)}m∈N of measurable functions Qm(·,H) :F 0

m→ [0,1] inductively
as follows. For any m≥ n, we define

Qm((x0, · · · ,xm),H) = IBn(H)(x0, · · · ,xn)

for any (x0, · · · ,xm) ∈ F 0
m. Qm(·,H) is an indicator function for the F0

m-measurable set Bn(H)×
En+1×·· ·×Em, so it follows that it is F0

m-measurable. Now, suppose that for some 0<m≤ n,
we have shown that Qm(·,H) is an F0

m-measurable function taking values in [0,1]. Then, we
define Qm−1(·,H) : F 0

m−1→ [0,1] as

Qm−1((x0, · · · ,xm−1),H) =
∫
Em

Qm((x0, · · · ,xm),H)Km((x0, · · · ,xm−1),dxm)

for any (x0, · · · ,xm−1) ∈ F 0
m−1. Then, integral on the right hand side is well-defined because

Qm(·,H) : F 0
m−1×Em→ [0,1] is F0

m = F0
m−1

⊗
Em-measurable. Furthermore, in light of lemma

2.9, we can write

Qm−1(·,H) = TKmQm(·,H),

since Km is a transition probability kernel from (F 0
m−1,F0

m−1) into (Em,Em), and as such
Qm−1(·,H) is a non-negative F0

m−1-measurable function. In addition, since Qm(·,H) is bounded
above by 1 and Km is a transition probability kernel, Qm−1(·,H) is also bounded above by 1.

Having constructed this sequence {Qm(·,H)}m∈N of measurable functions mapping into [0,1],
we can now express P′(H) in terms of the function Q0(·,H). This follows by noting that

P′(H) = πn(Bn(H))

=
∫
E0

∫
E1
· · ·
∫
En
IBn(H)(x0, · · · ,xn)︸ ︷︷ ︸
Qn((x0,··· ,xn),H)

Kn((x0, · · · ,xn−1),dxn)

︸ ︷︷ ︸
Qn−1((x0,··· ,xn−1,H)

· · ·K1((x0,x1),dx1)dµ(x0)
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=
∫
E0

∫
E1
· · ·
∫
En−1

Qn−1((x0, · · · ,xn−1),H)Kn−1((x0, · · · ,xn−2),dxn−1)︸ ︷︷ ︸
Qn−2((x0,··· ,xn−2),H)

· · ·K1((x0,x1),dx1)dµ(x0)

= · · ·=
∫
E0

∫
E1
Q1((x0,x1),H)K1((x0,x1),dx1)︸ ︷︷ ︸

Q0(x0,H)

dµ(x0)

=
∫
E0
Q0(·,H)dµ.

We can also see that, for any H1,H2 ∈H0 such that H1 ⊂H2, we have Qm(·,H1)≤Qm(·,H2)
for any m ∈ N. This can again be seen inductively. Letting H1,H2 ∈ Fn for some n ∈ N, since
Bn(H1)⊂Bn(H2), for any m≥ n we have

Qm((x0, · · · ,xm),H1) = IBn(H1)(x0, · · · ,xn)≤ IBn(H2)(x0, · · · ,xn) =Qm((x0, · · · ,xm),H2).

for any (x0, · · · ,xm) ∈ F 0
m. Now suppose that Qm(·,H1)≤Qm(·,H2) for some 0<m≤ n. Then,

Qm−1(·,H1) = TKmQm(·,H1)≤ TKmQm(·,H2) =Qm−1(·,H2)

by the monotonicity of the operator TKm :
(
F0
m−1

⊗
Em
)
+,b→

(
F0
m−1

)
+,b.

We now return to the original problem of showing the σ-additivity of P′. Choose any sequence
{Hk}k∈N such that Hk ↘ ∅. Let us show that {P′(Hk)}k∈N decreases to 0. For the sake of
contradiction, suppose

lim
k→∞

P′(Hk) = inf
k∈N

P′(Hk)> 0.

Then, because {Q0(·,Hk)}k∈N is a decreasing sequence of bounded E0-measurable functions (and
thus has a pointwise limit equal to its infimum) and µ is a finite measure, by the BCT we have

0< lim
k→∞

P′(Hk) = lim
k→∞

∫
E0
Q0(·,Hk)dµ=

∫
E0

(
inf
k∈N

Q0(·,Hk)
)
dµ.

If infk∈NQ0(x0,Hk) = 0 for every x0 ∈ E0, then the integral on the right will be equal to 0, a
contradiction. It follows that there must exist some x∗0 ∈ E0 such that

inf
k∈N

Q0(x∗0,Hk)> 0.

Suppose that we have found (x∗0, · · · ,x∗m) ∈ F 0
m such that

inf
k∈N

Qm((x∗0, · · · ,x∗m),Hk)> 0

for some m≥ 0. Then, since the sequence of mappings xm+1 7→Qm+1((x∗0, · · · ,x∗m,xm+1),Hk) is
a bounded and decreasing sequence, and the measure Km+1((x∗0, · · · ,x∗m), ·) is finite, by the BCT
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again we have

0< inf
k∈N

Qm((x∗0, · · · ,x∗m),Hk) = lim
k→∞

Qm((x∗0, · · · ,x∗m),Hk)

= lim
k→∞

∫
Em+1

Qm+1((x∗0, · · · ,x∗m,xm+1),Hk)Km+1((x∗0, · · · ,x∗m),dxm+1)

=
∫
Em+1

(
inf
k∈N

Qm+1((x∗0, · · · ,x∗m,xm+1),Hk)
)
Km+1((x∗0, · · · ,x∗m),dxm+1).

Thus, by the same reasoning as above, there must exist an x∗m+1 ∈ Em+1 such that

inf
k∈N

Qm+1((x∗0, · · · ,x∗m,x∗m+1),Hk)> 0.

We have inductively constructed a point x∗ = (x∗t )t∈N ∈ Ω =∏
t∈NEt such that

inf
k∈N

Qm((x∗0, · · · ,x∗m),Hk)> 0

for any m ∈ N. For any k ∈N+, let Hk ∈ Fn; then,

Qn((x∗0, · · · ,x∗n),Hk) = IBn(Hk)(x∗0, · · · ,x∗n) = IHk(x∗)> 0,

so it follows that

x∗ ∈Hk.

This holds for any k ∈N+, so

x∗ ∈
⋂
k

Hk.

However, this is a contradiction because {Hk}k∈N+ decreases to the empty set; therefore, it must
be the case that limk→∞P′(Hk) = 0.

Let {Ak}k∈N+ be a collection of disjoint sets in H0 such that A=⋃
kAk ∈H0. Define

Hk =A\
(

k⋃
i=1

Ai

)

for any k ∈N+. Then, each Hk is in H0, since H0, being an algebra of sets, is closed under finite
unions, intersections and complements, and {Hk}k∈N+ decreases to the empty set. By what we
showed above,

lim
k→∞

P′(Hk) = 0.

By the finite additivity of P′, we can see that

P′(A) = P′
((

k⋃
i=1

Ai

)
∪Hk

)
= P′

(
k⋃
i=1

Ai

)
+P′(Hk)
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=
k∑
i=1

P′(Ai) +P′(Hk).

Then, taking k→∞ on both sides yields

P′(A) =
∞∑
k=1

P′(Ak),

which shows us that P′ is σ-additive. This completes the proof of Ionescu-Tulcea’s theorem.
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Chapter 3

Convergence of Random Variables

In this chapter we will be discusisng three main ways in which random variables taking values
in some metric space can converge. The first, almost sure convergence, is essentially an almost
everywhere version of the pointwise convergence of measurable functions, and is the strongest
form of convergence we will study. Convergence in probability and in Lp, which will be discussed
next, are slightly weaker versions of convergence, but are often used due to their tractability and
ubiquity (for instance, compare the difficulty of proving the WLLN against that of the SLLN).

3.1 Random Variables in Metric Spaces

From now on, we will mostly concern ourselves with random variables taking values in a metric
space, instead of an abstract measurable space. This is because the introduction of a metric
allows us to explicitly measure the distance between random variables and thus formulate limit
theorems in much more easily than, say, if we assume the random variables of interest take
values in a Hausdorff space, in which convergence is defined in an abstract manner.
Our formal framework for analysis is given as follows. Let (Ω,H,P) be the underlying probability
space, (E,d) a metric space, τ the metric topology on E induced by the metric d, and E the
Borel σ-algebra on E generated by τ . The following are the two most important properties of
metric spaces:

• Completeness
(E,d) is said to be complete if any Cauchy sequence {xn}n∈N+ in E is also convergent,
that is,

lim
m,n→∞

d(xn,xm) = 0 implies lim
n→∞

d(xn,x) = 0

for some x ∈ E.

• Separability
(E,d) is said to be a separable metric space if the induced topological space (E,τ) is sepa-
rable; recall that (E,τ) is separable if there exists a countable subset E0 of E that is dense
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in E, that is, E0 = E.
Recall also that (E,τ) is said to be second countable if there exists a countable base B⊂ τ
on E that generates the topology τ . We proved in the measure theory text that an arbi-
trary topological space is separable if it is second countable, while the converse also holds
if it is also metrizable (as in the case of (E,τ)). Since we are dealing exclusively with
metric spaces, for our purposes the properties of second countability and separability are
equivalent.
Note that any euclidean space is separable. Specifically, the euclidean k-space Rk is the
closure of the countable subset Qk, which is the collection of all points in Rk with rational
coordinates.

Below we study in detail some important implications of separability for metric spaces. First,
we define and study the product of metrics and how they relate to product topologies.

3.1.1 Product Metrics

It is also sometimes necessary to talk of the product of two metrics. Let (E,d) and (F,ρ) be two
metric spaces, and let their metric topologies be τ and s, respectively. The product metric d×ρ
on E×F is defined as

(d×ρ)(x,y) = max(d(x1,y1),ρ(x2,y2))

for any x,y ∈E×F . In our measure theory text, we saw that the product of k metrics on R gen-
erates the same topology as the euclidean metric on Rk, which is exactly the product topology
on Rk. That d×ρ defines an actual metric on E×F is evident from the individual properties of
d and ρ:

• d×ρ takes values in [0,+∞) because d and ρ do.

• For any x,y ∈ E×F , because of the symmetry of d and ρ, we have

(d×ρ)(x,y) = max(d(x1,y1),ρ(x2,y2))

= max(d(y1,x1),ρ(y2,x2)) = (d×ρ)(y,x).

• For any x,y ∈ E×F , (d×ρ)(x,y) = 0 implies that d(x1,y1) = ρ(x2,y2) = 0, so that x= y.
Conversely, if x = y, then clearly (d× ρ)(x,y) = 0. Thus, (d× ρ)(x,y) = 0 if and only if
x= y.

• For any x,y,z ∈ E×F , suppose without loss of generality that (d× ρ)(x,y) = d(x1,y1).
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Then,

(d×ρ)(x,y) = d(x1,y1)≤ d(x1,z1) +d(z1,y1)

≤ (d×ρ)(x,z) + (d×ρ)(z,y)

by the triangle inequality of d; the same applies when the maximum is ρ(x2,y2) rather
than d(x1,y1).

The important part is that the product metric d×ρ metrizes the product topology τ × s. This
means that any function on E×F that is continuous with respect to the product metric d×ρ
can also be considered a continuous function on the topological space (E×F,τ×s). This greatly
simplifies proofs that require us to show that some function on E×F is continuous; indeed, this
property is used to show the measurability result for separable metric spaces stated above.

Lemma 3.1 Let (E,d) and (F,ρ) be metric spaces with metric topologies τ and s. Then, the
product metric d×ρ metrizes the product topology τ ×s.

Proof) Let B be the collection of all open rectangles on E×F ; by definition, B is a base on
E ×F that generates the product topology τ × s. On the other hand, let D be the
collection of all sets on E×F of the form

Bd×ρ(x,ε) = {y ∈ E×F | (d×ρ)(x,y)< ε}

for any x∈E×F and ε > 0. Our goal is to show that D generates the product topology
τ ×s. We proceed in steps:

Step 1: D is a collection of open sets in τ ×s
Choose any x ∈ E×F , ε > 0, and a point y in Bd×ρ(x,ε). Then,

d(x1,y1),ρ(x2,y2)≤ (d×ρ)(x,y)< ε,

so that, defining δ1 = ε−d(x1,y1)> 0 and δ2 = ε−ρ(x2,y2)> 0,

y ∈Bd(y1, δ1)×Bρ(y2, δ2)⊂Bd×ρ(x,ε).

The first inclusion is clear, while the second inclusion follows from the observation
that, if z ∈Bd(y1, δ1)×Bρ(y2, δ2), then d(z1,y1)< δ1 and ρ(z2,y2)< δ2, so that

d(x1,z1)≤ d(x1,y1) +d(y1,z1)< d(x1,y1) + δ1 = ε

and likewise, ρ(x2,z2)< ε, which together imply that

(d×ρ)(x,z) = max(d(x1,z1),ρ(x2,z2))< ε,
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or that z ∈Bd×ρ(x,ε).
This holds for any y ∈Bd×ρ(x,ε), so labeling Ay =Bd(y1, δ1)×Bρ(y2, δ2) ∈ B,

Bd×ρ(x,ε) =
⋃

y∈Bd×ρ(x,ε)
Ay.

Each Ay is open with respect to τ × s, and the arbitrary union of open sets is
open, so Bd×ρ(x,ε) is open with respect to τ ×s.

Step 2: D is a base on E×F that generates τ ×s

D clearly covers E×F : fixing any x∈E×F , for any y ∈E×F , since (d×ρ)(x,y) =
M <+∞, it follows that

y ∈Bd×ρ(x,M + 1)⊂
⋃
A∈D

A.

Choose any A ∈ τ ×s and an x ∈A. Since B generates τ ×s, there exists an open
rectangle B1×B2 ∈ B such that

x ∈B1×B2 ⊂A.

Since B1 and B2 are open sets in the metric spaces (E,d) and (F,ρ), there also
exist ε > 0, δ > 0 such that

x1 ∈Bd(x1, ε)⊂B1 and x2 ∈Bρ(x2, δ)⊂B2.

Letting η = min(ε,δ)> 0, it follows that

x ∈Bd×ρ(x,η)⊂Bd(x1, ε)×Bρ(x2, δ)

⊂B1×B2 ⊂A.

This holds for any open set A ∈ τ × s and an element x ∈ A, so by definition D
is a base on E×F (this can be shown by choosing A as the intersection of two
elements of D) that generates τ ×s.

Q.E.D.
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3.1.2 Separable Metric Spaces

In the context of the convergence of random variables, separability plays an important role be-
cause it ensures that, for any two random variables X,Y taking values in (E,d), the composition
d◦ (X,Y ) is a non-negative real valued random variable, the measurability of which proves in-
tegral to the definition of convergence in probability.

Theorem 3.2 Let (E,d) be a separable metric space with Borel σ-algebra E generated by
the metric topology induced by d, and X,Y random variables that take values in (E,E). Then,
d(X,Y ) is a non-negative real valued random variable.

Proof) Since (E,d) is a separable metric space, the induced topological space (E,τ) is second
countable. It was shown in the measure theory text that, in this case, the Borel σ-
algebra generated by the product topology τ2 is equivalent to the product of two Borel
σ-algebras E ;

B(E2, τ2) = B(E,τ)2 = E2.

We first show that the metric d :E2→ [0,+∞) is continuous on E2 with respect to the
product metric d×d. To see this, note that, for any (x,y),(z,w) ∈ E2, we have

|d(x,y)−d(z,w)| ≤ |d(x,y)−d(z,y)|+ |d(z,y)−d(z,w)|

≤ d(x,z) +d(y,w)≤ 2 ·max(d(x,z),d(y,w)) = 2 · (d×d)((x,y),(z,w)),

where the second inequality follows from the triangle inequality. Therefore, d is uni-
formly continuous on E2 under the metric d× d. Since the product topology τ2 is
metrizable by d×d, it follows that d−1(A) ∈ τ2 for any Borel set A⊂ R, and that d is
thus measurable relative to B(E2, τ2) = E2 and B(R).
Next, we must show that the mapping ω 7→ (X(ω),Y (ω)) is measurable relative to H
and E2. However, this follows immediately, since X and Y are random variables taking
values in E2. Therefore, by the preservation of measurability across compositions,

d(X,Y ) = d◦ (X,Y )

must be measurable relative to H and B(R). By definition, d(X,Y ) is now a real ran-
dom variable.
Q.E.D.

The following theorem is an application of the above result. Specifically, it furnishes sufficient
conditions for pointwise convergence to be uniform.
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Theorem 3.3 (Egorov’s Theorem)
Let (E,d) be a separable metric space, τ the metric topology induced by d and E the Borel
σ-algebra on E generated by τ . Suppose {Xn}n∈N+ is a sequence of random variables on (E,E)
that converges almost surely to the random variable X.
Then, for any ε > 0 there exists a measurable set Ω0 ∈ H such that P(Ω0) < ε and {Xn}n∈N+

converges to X uniformly on Ω\Ω0.

Proof) Let Xn→X pointwise on a set H ∈H such that P(H) = 1. Choose any ε > 0. For any
n,k ∈N+, we define the sets

An,k =
⋃
m≥n

{
d(Xm,X)≥ 1

k

}
.

Each An,k is H-measurable because the separability of the metric space (E,d) implies
that d(Xm,X) is a random variable for any m ∈N+.
Note that An+1,k ⊂ An,k, and that, if ω ∈ H, then ω /∈

⋂
nAn,k because the fact that

Xm(ω)→ X(ω) as m→∞ means that the distance between Xm(ω) and X(ω) will
eventually become smaller than 1

k for large m. Therefore, ⋂nAn,k ⊂Hc, which implies
that

P
(⋂
n

An,k

)
= 0.

Because P is a probability measure and {An,k}n∈N+ is a decreasing sequence of mea-
surable sets, by sequential continuity

lim
n→∞

P(An,k) = P
(⋂
n

An,k

)
= 0,

which implies that there exists an Nk ∈N+ such that

P(An,k)≤
ε

2k+1

for any n≥Nk.

Now define Ω0 =⋃
kANk,k; in effect, Ω0 collects all the outcomes such that the distance

between Xn and X does not decrease below some small positive threshold for any large
n ∈ N+. It stands to reason that the sequence {Xn}n∈N+ converges uniformly to X

outside of Ω0, which is exactly what will be shown below.
For any δ > 0, let k ∈N+ satisfy 1

k < δ. Then, for any n≥ k,

d(Xn(ω),X(ω))< 1
k
< δ

for any ω ∈Ω\Ω0, since ω ∈AcNk,k in this case. This holds for any δ > 0, so by definition
{Xn}n∈N+ converges to X uniformly on Ω\Ω0.
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Finally, note that

P(Ω0)≤
∞∑
k=1

P(ANk,k)≤
ε

2 < ε,

which completes the proof.
Q.E.D.

3.1.3 The Distance Function and Urysohn’s Lemma

We can also think of a generalization of a metric that yields the distance from a point to a set,
which is called the distance function. Let (E,d) be a metric space and A a nonempty subset of
E. Then, the distance from a point x ∈ E to A is defined as

d(x,A) = inf{d(x,y) | y ∈A}.

The infimum on the right exists by the least upper bound property of the real line and the fact
that the set {d(x,y) | y ∈ A} is bounded below at 0. The properties of the distance function,
as well as the strong version of Urysohn’s lemma that makes use of the distance function, were
studied in the measure theory text. Here we present only the important results:

Lemma 3.3 Let (E,d) be a metric space and A a non-empty subset of E. Then, the following
hold true:

i) d(x,A) = 0 if and only if x ∈A.

ii) The distance function d(·,A) is continuous on E.

Theorem 3.4 (Urysohn’s Lemma for Metric Spaces)
Let (E,d) be a metric space. For any closed set F and open set V such that F ⊂ V , therre exists
a continuous function f : E→ R such that

f(x) ∈


{0} if x /∈ V

[0,1] if x ∈ V \F

{1} if x ∈ F

for any x ∈ E.
In addition, if the distance between F and V c is bounded below by a non-zero value, that

is, if there exists a δ > 0 such that d(x,y)≥ δ for any x ∈ F and y ∈ V c, then we can choose f
to be Lipschitz continuous.

145



3.1.4 Compactness

The relationship between various forms of compactness will often prove relevant when dealing
with metric spaces. Let (E,τ) be a topological space and A a subset of E. A is

• Limit Point Compact
If any infinite set in A has a limit point in A

• Countably Compact
If any countable open cover of A has a finite subcover

• Sequentially Compact
If any sequence in A has a convergent subsequence with limit in A

• Relatively Compact
If the closure A of A is compact.

Clearly, a compact subset of a Hausdorff space is relatively compact (because it is closed and
thus is equivalent to its closure) and any compact set is countably compact.

A related concept is that of a Lindelöf Space. A topological space (E,τ) is Lindelöf if any
open cover of E has a countable subcover. Note how any compact space is also Lindelöf. We
state below some relevant results, which are proven in the measure theory text.

Theorem 3.5 The following hold true:

i) Compact sets are limit point compact.

ii) Limit point compact sets in a metric space are sequentially compact.

iii) Metrizable sequentially compact spaces are second countable.

iv) Second countable topological spaces are Lindelöf.

v) Sequentially compact sets are countably compact.

vi) A subset of a metric space is compact if and only if it is sequentially compact.

Corollary to Theorem 3.5 (The Bolzano-Weierstrass Theorem)
Let F = Rn or C. Then, any bounded sequence {xn}n∈N+ in F contains a convergent subse-
quence.

Theorem 3.6 Let (E,d) be a metric space, and A a subset of E. Then, A is relatively compact
if and only if any sequence in A has a convergent subsequence.
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3.2 Almost Sure Convergence

Let (E,d) be a separable metric space, τ the topology induced by the metric d, and E =B(τ) the
Borel σ-algebra on E generated by τ . For any sequence {Xn}n∈N+ of random variables taking
values in E, we say that {Xn}n∈N+ converges almost surely to some random variable X taking
values in E if there exists a set Ω0 ∈H such that P(Ω0) = 1 and

lim
n→∞

d(Xn(ω),X(ω)) = 0

for any ω ∈ Ω0. We denote this mode of convergence succinctly as

Xn
a.s.→ X.

Because almost sure convergence is basically pointwise convergence, it is one of the most powerful
forms of convergence that we deal with in probability theory. Being so strong, however, it only
holds in rare cases. Nevertheless, there are some relevant results converning the almost sure
convergence of random variables.

From the definition, we can obtain the following are useful characterizations of almost sure
convergence:

Theorem 3.7 Let (E,d) be a separable metric space, and define the Borel σ-algebra E as
above. For any sequence {Xn}n∈N+ of random variables and a random variable X taking values
in E, the following are equivalent:

i) {Xn}n∈N+ converges almost surely to X.

ii) limsupn→∞ d(Xn,X) = 0 almost surely.

iii) For any ε > 0,

∞∑
n=1

I{d(Xn,X)>ε} <+∞

almost surely.

Proof) Note that the set

Ω0 = {limsup
n→∞

d(Xn,X) = 0}

is H-measurable because {d(Xn,X)}n∈N+ is a sequence of real valued random variables
(due to the separability of the underlying metric space) and the limit superior of a se-
quence of real H-measurable functions d(Xn,X) is also H-measurable. The equivalence
of i) and ii) follows because {d(Xn,X)}n∈N+ is bounded below by 0 for any outcome.
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To see the equivalence of i) and iii), for any ε > 0 let Ωε be the set of outcomes for
which

∞∑
n=1

I{d(Xn,X)>ε} <+∞;

again, the set Ωε is H-measurable because

∞∑
n=1

I{d(Xn,X)>ε} =
∞∑
n=1

I(ε,+∞) ◦d(Xn,X)

is the limit of the sum of H-measurable non-negative functions.

Suppose that Xn
a.s.→ X. Then, there exists an almost sure set Ω0 ∈H such that Xn(ω)→

X(ω) in the metric d for any ω ∈Ω0. Choose any ω ∈Ω0 and ε > 0. By definition, there
exists an N ∈N+ such that

d(Xn(ω),X(ω))≤ ε

for any n≥N , so that

∞∑
n=1

I{d(Xn(ω),X(ω))>ε} ≤N <+∞.

This holds for any ω ∈ Ω0, so it follows that

Ω0 ⊂ Ωε

and thus P(Ωε) = 1. This in turn holds for any ε > 0, so we have proven that i) -¿ iii).

Conversely, suppose that P(Ωε) = 1 for any ε > 0. Define

Ω0 =
⋂
n

Ω1/n ∈H;

since each Ω1/n is of probability 1,

P(Ωc
0) = P

(⋃
n

Ωc
1/n

)
≤
∞∑
n=1

P
(
Ωc

1/n

)
= 0

and Ω0 is also an almost sure set. For any ω ∈ Ω0 and ε > 0, choose k ∈N+ such that
1
k < ε. Since ω ∈ Ω1/k, we can see that

∞∑
n=1

I{d(Xn(ω),X(ω))>1/k} <+∞.

This tells us that there exists an N ∈N+ such that

d(Xn(ω),X(ω))≤ 1
k
< ε
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for any n≥N , since otherwise, the above series would be the sum of an infinite number
of 1s and thus diverge to +∞. This holds for any ε > 0, so the sequence {Xn(ω)}n∈N+

converges in the metric d to X(ω). This in turn holds for any ω in the almost sure set
Ω0, so Xn

a.s.→ X.

Q.E.D.

Closely related to almost sure convergence is the Borel-Cantelli lemma, which deals with the
probability for events to occur infinitely often. Given a sequence of events {Hn}n∈N+ ⊂H, we
say that an outcome ω ∈ Ω occurs infinitely often in the sequence {Hn} if it is contained in the
set

limsup
n→∞

Hn =
⋂
n

∞⋃
k=n

Hk ∈H.

Heuristically, an outcome in the set limsupn→∞Hn appears in the sequence {Hn} no matter
how many of the events H1,H2, · · · have already come to pass; this is the intuition behind the
term “infinitely often”. We also write {Hn i.o.} for limsupn→∞Hn.

Below is the Borel-Cantelli lemma, which relates the sum of the probabilities of a sequence
of events to the probability of infinitely many of them occuring.

Lemma 3.8 (Borel-Cantelli Lemma)
For any sequence {Hn}n∈N+ ⊂H of events, if

∞∑
n=1

P(Hn)<+∞,

then
∞∑
n=1

IHn <+∞

almost surely and

P
(

limsup
n→∞

Hn

)
= 0.

Proof) Define the non-negative real random variable X as

X =
∞∑
n=1

IHn .
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Then, by the MCT for series,

E [X] =
∞∑
n=1

E [IHn ] =
∞∑
n=1

P(Hn)<+∞.

The finiteness property for non-negative functions now implies that

P(X <+∞) = 1,

that is, X is almost surely finite.

Choose any

ω ∈ limsup
n→∞

Hn =
⋂
n

∞⋃
k=n

Hk.

We can immediately see that there exists an n1 ∈N+ such that ω ∈Hn1 . Suppose that
we have found n1 < · · ·< nk for some k ∈N+. Then, because

ω ∈
∞⋃

m=nk+1
Hm,

there exists an nk+1>nk such that ω ∈Hnk+1 . Constructing the subsequence {Hnk}k∈N+

in this manner, we can see that ω is contained in every single one of the sets in Hnk ;
therefore,

+∞=
∞∑
k=1

IHnk (ω)≤X(ω)

and ω ∈ {X = +∞}. Therefore,

limsup
n→∞

Hn ⊂ {X = +∞}

and the monotonicity of measures now shows us that

P
(

limsup
n→∞

Hn

)
= 0.

Q.E.D.

The Borel-Cantelli lemma can be used to furnish sufficient conditions for almost sure con-
vergence in terms of probabilities:
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Theorem 3.9 Let (E,d) be a separable metric space, and define the Borel σ-algebra E as
above. For any sequence {Xn}n∈N+ of random variables and a random variable X taking values
in E, the following hold true:

i) If, for any ε > 0,

∞∑
n=1

P(d(Xn,X)> ε)<+∞,

then Xn
a.s.→ X.

ii) If there exists a sequence {εn}n∈N+ of positive scalars converging to 0 such that

∞∑
n=1

P(d(Xn,X)> εn)<+∞,

then Xn
a.s.→ X.

iii) If there exists a sequence {εn}n∈N+ of positive scalars such that

∞∑
n=1

εn <+∞ and
∞∑
n=1

P(d(Xn,X)> εn)<+∞,

then Xn
a.s.→ X.

Proof) Suppose that

∞∑
n=1

P(d(Xn,X)> ε)<+∞,

for any ε > 0. The Borel-Cantelli lemma tells us that this implies

∞∑
n=1

I{d(Xn,X)>ε} <+∞

almost surely for any ε > 0. The characterization in theorem 3.7 now allows us to con-
clude that Xn

a.s.→ X.

Now suppose that

∞∑
n=1

P(d(Xn,X)> εn)<+∞,

for some sequence {εn}n∈N+ of positive scalars converging to 0. Again, by the Borel-
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Cantelli lemma,

∞∑
n=1

I{d(Xn,X)>εn} <+∞

almost surely. Letting Ω0 ∈H be this almost sure set, for any ω ∈ Ω0, we have

∞∑
n=1

I{d(Xn(ω),X(ω))>εn} <+∞,

so that there exists an N ∈N+ such that

d(Xn(ω),X(ω))≤ εn

for any n≥N . Taking n→∞ on both sides now implies that d(Xn(ω),X(ω))→ 0, so
that Xn

a.s.→ X.

Finally, suppose that

∞∑
n=1

P(d(Xn,X)> εn)<+∞,

for some sequence {εn}n∈N+ of positive scalars such that ∑∞n=1 εn < +∞. By the nth
term test for the convergence of series, the fact that ∑εn converges indicates that
εn→ 0 as n→∞, and as such Xn

a.s.→ X follows from ii).

Q.E.D.
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3.3 Convergence in Probability

Let (E,d) be a separable metric space, and define the Borel σ-algebra E as in the previous section.
For any sequence {Xn}n∈N+ of random variables taking values in E, we say that {Xn}n∈N+

converges in probability to some random variable X in E if, for any δ > 0,

lim
n→∞

P(d(Xn,X)> δ) = 0.

We denote this mode of convergence succinctly as

Xn
p→X.

This form of convergence is the one that we encounter most often in probability, statistics and
econometrics. Its popularity is due to its relative strength and ubiquity; it is stronger than weak
convergence (as we will see in a later section) but weaker than almost sure convergence.

One fact that is immediately noticable is that the probability limit of a sequence of random
variables is unique up to almost sure equivalence. To see this, let X and X ′ be probability limits
of some sequence {Xn}n∈N+ of random variables taking values in E. Then,

d(X,X ′)≤ d(X,Xn) +d(X ′,Xn)

for any n ∈N+, so that, for any k ∈N+,

P
(
d(X,X ′)> 1

k

)
≤ P

(
d(Xn,X)> 1

2k

)
+P

(
d(Xn,X

′)> 1
2k

)
for any n ∈N+. The terms on the right hand side go to 0 as n→∞, so it follows that

P
(
d(X,X ′)> 1

k

)
= 0.

This holds for any k ∈N+, and denoting Hk = {d(X,X ′)> 1
k}, since

H = {d(X,X ′)> 0}=
⋃
k

Hk,

by countable subadditivity we have P(d(X,X ′)> 0) = 0. Thus, d(X,X ′) = 0 and therefore X =
X ′ almost surely.

From the definition of convergence of probability we can see that there must be a close
connection between almost sure convergence and convergence in probability, since the term
P(d(Xn,X)> δ) also appears in the infinite sums in theorem 3.9. We confirm below that this is
indeed the case:
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Theorem 3.10 Let (E,d) be a separable metric space, and define the Borel σ-algebra E as
above. For any sequence {Xn}n∈N+ of random variables and a random variable X taking values
in E, the following hold true:

i) If Xn
a.s.→ X, then Xn

p→X.

ii) If Xn
p→X, then there exists a subsequence {Xnk}k∈N+ such that Xnk

a.s.→ X as k→∞.

iii) If every subsequence of {Xn}n∈N+ has a further subsequence that converges to X almost
surely, then Xn

p→X.

Proof) Suppose that Xn
a.s.→ X. Then, for any δ > 0, the characterization theorem for almost

sure convergence tells us that

∞∑
n=1

I{d(Xn,X)>δ} <+∞

almost surely. Letting this almost sure set be Ω0 ∈H, this implies by the nth root test
that

lim
n→∞

I{d(Xn(ω),X(ω))>δ} = 0

for any ω ∈ Ω. Therefore, defining Yn = I{d(Xn,X)>δ} for any n ∈ N+, {Yn}n∈N+ is a
sequence of non-negative real valued random variables such that Yn a.s.→ 0. Since |Yn| ≤ 1
for any n∈N+, by the almost sure version of the bounded convergence theorem we can
see that

lim
n→∞

E [Yn] = E
[

lim
n→∞

Yn
]

= 0.

Here, E [Yn] = P(d(Xn,X)> δ) for any n ∈N+, so we have

lim
n→∞

P(d(Xn,X)> δ) = 0.

This holds for any δ > 0, so Xn
p→X by definition.

Now suppose that Xn
p→X. Then, there exists an n1 ∈N+ such that

P(d(Xn1 ,X)> 1)≤ 2−1,

since limn→∞P(d(Xn,X)> 1) = 0 by definition. Assuming that we have chosen n1 <

· · ·< nk for some k ∈N+, we can choose nk+1 > nk so that

P
(
d(Xnk+1 ,X)> 1

k+ 1

)
≤ 2−(k+1),
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since we again have limn→∞P
(
d(Xn,X)> 1

k+1

)
= 0. The subsequence {Xnk}k∈N+ con-

structed in this manner satisfies

P
(
d(Xnk ,X)> 1

k

)
≤ 2−k

for any K ∈N+, so that

∞∑
k=1

P
(
d(Xnk ,X)> 1

k

)
≤
∞∑
k=1

2−k = 1<+∞.

{1/k}k∈N+ is a sequence of positive scalars converging to 0, so by the second Borel-
Cantelli condition for almost sure convergence, we can see that Xnk

a.s.→ X as k→∞.

Finally, suppose that every subsequence of {Xn}n∈N+ has a further subsequence that
converges almost surely toX. For any δ > 0, we want to show that {P(d(Xn,X)> δ)}n∈N+

converges to 0. To this end, we can make use of the selection theorem for subsequences
and try to show that every subsequence of {P(d(Xn,X)> δ)}n∈N+ has a further sub-
sequence converging to 0.

Choose some subsequence {P(d(Xnk ,X)> δ)}k∈N+ of {P(d(Xn,X)> δ)}n∈N+ . By as-
sumption, {Xnk}k∈N+ has a further subsequence {Xnkm

}m∈N+ that converges almost
surely to X. Since almost sure convergence implies convergence in probability, this
means that {Xnkm

}m∈N+ converges in probability to X, so that, by definition,
{P
(
d(Xnkm

,X)> δ
)
}m∈N+ converges to 0. This shows us that {P(d(Xnk ,X)> δ)}k∈N+

has a subsequence that converges to 0. By the selection theorem, we can conclude that
{P(d(Xn,X)> δ)}n∈N+ itself converges to 0 and therefore that Xn

p→X.

Q.E.D.
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3.3.1 The Continuous Mapping Theorem

Convergence in probability proves useful in so many applications because, unlike convergence in
distribution, convergence in probability is preserved under arithmetic operations such as addi-
tion and multiplication. Generally speaking, convergence in probability is preserved under any
continuous transformation. This impressive result is referred to as the continuous mapping the-
orem, and we state it below:

Theorem 3.11 (Continuous Mapping Theorem)
Let (E,d), (F,ρ) and (G,dG) be separable metric spaces, and define the Borel σ-algebra E as
above, and F similarly using ρ. Let {Xn}n∈N+ be a sequence of random variables and X a
random variable taking values in E. Likewise, let {Yn}n∈N+ be a sequence of random variables
and Y a random variable taking values in F . Letting µ= P◦X−1 be the distribution of X, the
following hold true:

i) If Xn
a.s.→ X, then for any function f : E→ F that is continuous µ-a.e., we have f ◦Xn

a.s.→
f ◦X.

ii) If Xn
p→X, then for any function f : E→ F that is continuous µ-a.e., we have f ◦Xn

p→
f ◦X.

iii) If Xn
p→X and Yn

p→ Y , then sequence {(Xn,Yn)}n∈N+ taking values in the product space
(E×F,E⊗F) converges in probability to (X,Y ) in the product metric d×ρ.

iv) If Xn
p→ X and Yn

p→ Y , then for any function f : E ×F → G that is continuous with
respect to the product metric d×ρ and dG, f(Xn,Yn) p→ f(X,Y ).

Proof) i) Suppose that Xn
a.s.→ X and let f : E → F be a function that is continuous µ-

a.e. Denote by D ∈ E the discontinuity points of f ; by assumption, µ(Dc) =
P
(
X−1(Dc)

)
= 1.

Letting Ω0 ∈H be the almost sure set on which pointwise convergence occurs, the
set Ω0∩X−1(Dc) also occurs with probability equal to 1. For any ω ∈Ω0∩X−1(Dc)
and ε > 0, since X(ω) is a continuity point of f by design, there exists a δ > 0 such
that

ρ(f(x),f(X(ω)))< ε

for any x∈E such that d(x,X(ω))< δ. Since Xn(ω)→X(ω) in the metric d, there
exists an N ∈N+ such that

d(Xn(ω),X(ω))< δ,

and in turn

ρ(f(Xn(ω)),f(X(ω)))< ε,
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for any n≥N . This holds for any ε > 0, so f(Xn(ω))→ f(X(ω)) in the metric ρ.
This in turn holds for any outcome ω in the almost sure set Ω0∩X−1(Dc), so we
can see that f ◦Xn

a.s.→ f ◦X.

ii) Suppose that Xn
p→X and let f :E→F be a function that is continuous µ-a.e. We

make use of results ii) and iii) in the preceding theorem. Choose any subsequence
{f ◦Xnk}k∈N+ of {f ◦Xn}n∈N+ . Since {Xnk}k∈N+ converges in probability to X, it
has a subsequence {Xnkm

}m∈N+ that converges almost surely. By the continuous
mapping theorem for almost sure convergence,

f ◦Xnkm

a.s.→ f ◦X.

In other words, {f ◦Xnk}k∈N+ has a further subsequence that converges almost
surely to f ◦X. By implication, every subsequence of {f ◦Xn}n∈N+ has a further
subsequence that converges almost surely to f ◦X, and therefore f ◦Xn

p→ f ◦X.

iii) Let τ and s be the topologies on E and F induced by d and ρ, respectively.
The separability of (E,d) and (F,ρ) implies that the product topology τ × s is
metrized by the product metric d× ρ. Furthermore, the second countability of
(E,d) and (F,ρ), implied by their separability, shows us that the product σ-algebra
E
⊗
F = B(E,τ)⊗B(F,s) is equivalent to the Borel σ-algebra generated by the

product topology, B(E×F,τ ×s)1.

Now consider the sequence of random vectors {(Xn,Yn)}n∈N+ and the random vec-
tor (X,Y ) taking values in the product space (E×F,E⊗F). In light of the connec-
tion between E⊗F and the product metric d×ρ, {(d×ρ)((Xn,Yn),(X,Y ))}n∈N+

is a sequence of measurable real-valued random variables. For any δ > 0 and
n ∈N+, by the definition of the product metric,

(d×ρ)((Xn,Yn),(X,Y )) = max [d(Xn,X),ρ(Yn,Y )] ,

so that

{(d×ρ)((Xn,Yn),(X,Y ))> δ}= {d(Xn,X)> δ}∪{ρ(Yn,Y )> δ}.

Therefore,

P((d×ρ)((Xn,Yn),(X,Y ))> δ)≤ P(d(Xn,X)> δ) +P(ρ(Yn,Y )> δ) .
1This result is one of the first proven in the chapter on product spaces in the measure theory text.
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It follows that, if Xn
p→X and Yn

p→ Y , both quantities on the right converge to
0 as n→∞, so that

P((d×ρ)((Xn,Yn),(X,Y ))> δ)→ 0

as n→∞ as well. This holds for any δ > 0, so (Xn,Yn) p→ (X,Y ) in the product
metric in this case.

iv) Suppose Xn
p→X and Yn

p→ Y , and let f : E×F → G be a function that is con-
tinuous relative to the metrics d×ρ and dG. The preceding result shows us that
(Xn,Yn) p→ (X,Y ) in the product metric d×ρ, so the continuous mapping theorem
for convergence in probability implies that

f(Xn,Yn) p→ f(X,Y )

in the metric dG.

Q.E.D.

The last result, in particular, is of great practical use. Consider the case where {Xn}n∈N+

and {Yn}n∈N+ are sequences of real random variables, and let d denote the euclidean metric
on R. Then, since the box metric and euclidean metric induce the same topology in euclidean
spaces, the mappings (x,y) 7→ x+y and (x,y) 7→ xy are continuous with respect to the product
metric d×d and the metric d. Applying result iii) now shows that, if Xn

p→X and Yn
p→ Y for

some real random variables X and Y , we have

Xn+Yn
p→X+Y and XnYn

p→XY.

Meanwhile, if each Xn and X are non-zero, the operation x 7→ 1
x is continuous µ-a.e. on R, where

µ is the distribution of X. In this case, by the continuous mapping theorem, 1
Xn

p→ 1
X , and the

above result applies so that we may conclude

Yn
Xn

p→ Y

X
.
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3.3.2 Big and Little O Notation in Probability

Convergence in probability is so important that mathematicians have developed a separate
notation to indicate the speed of convergence in probability. We first introduce the big and little
O notations for deterministic functions. Consider a complex-valued function f : R→ C and a
positive-valued function g : R→ (0,+∞). We say that

f(x) =O(g(x)) as x→∞ if limsup
x→∞

|f(x)|
g(x) <+∞.

Heuristically, f(x) is O(g(x)) if f(x) and g(x) grow (decrease) at around the same speed as
x→∞. The little O notation is reserved for a more acute case; for any a ∈ [0,+∞], we say that

f(x) = o(g(x)) as x→ a if lim
x→a
|f(x)|
g(x) = 0,

that is, f(x) is o(g(x)) if f(x) decreases to 0 (grows to ∞) faster (slower) than g(x) as x→ a.
Note that f(x) is O(g(x)) as x→∞ if it is o(g(x)) as x→∞.

Big and little O notations appear in many areas of analysis. For instance, consider a smooth
function f : [a,b]→ C, that is, a function that is infinitely differentiable on the interval (a,b).
Then, for any n ∈N+ and x,x+h ∈ (a,b), the nth-order Taylor expansion of f(x+h) around x
is given as

f(x+h) =
n∑
k=0

f (k)(x)
k! hk + rn(h),

where

lim
h→0

|rn(h)|
|h|n

= 0.

This shows us that

rn(h) = o(|h|n) as h→ 0,

and as such we can rewrite the Taylor expansion as

f(x+h) =
n∑
k=0

f (k)(x)
k! hk +o(|h|n).

We can also use the big and little O notations to discuss the speed of convergence of a
complex valued sequence. Let {an}n∈N+ be a complex-valued sequence that converges to 0; note
that this sequence is simply a complex-valued function with domain equal to the set of all natural
numbers N+. Consider some positive-valued function g : N+→ (0,+∞) such that g(n)→ 0 as
n→∞; usually, we put g(n) = 1

np for some 0< p <+∞. We say that

{an}n∈N+ =O(g(n)) as n→∞ if limsup
n→∞

|an|
g(n) <+∞
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{an}n∈N+ = o(g(n)) as n→∞ if lim
n→∞

|an|
g(n) = 0.

In other words, {an}n∈N+ is O(g(n)) if it converges to 0 at around the same speed as g(n), while
it is o(g(n)) if it converges to 0 faster than g(n).

Big and little O notation in probability is defined in a similar manner to big and little O
notation for deterministic functions and sequences. A sequence {Xn}n∈N+ of complex random
variables is said to be bounded in probability if, for any ε > 0, there exist an M > 0 and N ∈N+

such that

P(|Xn|>M)< ε

for any n≥N . We show below that we can take N = 1 if each Xn is integrable:

Lemma 3.12 Let {Xn}n∈N+ be a sequence of integrable complex random variables. Then,
{Xn}n∈N+ is bounded in probability if and only if, for any ε > 0, there exists an M > 0 such
that

sup
n∈N+

P(|Xn|>M)< ε.

Proof) Sufficiency follows immediately. As such, we turn our attention to necessity. Suppose
that {Xn}n∈N+ is bounded in probability, so that, for any ε > 0, there exist an M > 0
and N ∈N+ such that

P(|Xn|>M)< ε

for any n ≥ N . Since each Xn is integrable, by the characterization of integrability
studied above,

lim
k→∞

E
[
|Xn| · I{|Xn|>k}

]
= 0.

Therefore, for each 1≤ n≤N there exists an Mn ∈N+ such that

E
[
|Xn| · I{|Xn|>Mn}

]
< ε,

and as such

P(|Xn|>Mn)≤Mn ·P(|Xn|>Mn)≤ E
[
|Xn| · I{|Xn|>Mn}

]
< ε.

Define

M∗ = max(M,M1, · · · ,MN )> 0.
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We can now easily see that

P(|Xn|>M∗)< ε

for any n ∈N+.

Q.E.D.

Given a sequence {Xn}n∈N+ of complex or non-negative random variables and a sequence
{an}n∈N+ of positive real numbers, we say that

Xn =Op(an) as n→∞ if {Xn/an}n∈N+ is bounded in probability.

In other words, Xn is Op(an) if {Xn}n∈N+ and {an}n∈N+ converge or diverge at around the
same speed as n→∞.

On the other hand, we say that

Xn = op(an) as n→∞ if Xn

an

p→ 0.

Heuristically, Xn is op(an) if {Xn}n∈N+ converges to 0 faster than {an}n∈N+ .
Below we present some important results concerning big and little O notation in probability:
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Theorem 3.13 (Properties of Big and Little O Notation in Probability)
The following results hold true:

i) An op(1) sequence is also Op(1).

ii) Op(1)Op(1) =Op(1); if Xn =Op(1) and Yn =Op(1), then XnYn =Op(1).

iii) op(1)Op(1) = op(1); if Xn = op(1) and Yn =Op(1), then XnYn = op(1).

iv) Op(1) +Op(1) =Op(1); if Xn =Op(1) and Yn =Op(1), then Xn+Yn =Op(1).

v) Op(1) +op(1) =Op(1); if Xn =Op(1) and Yn = op(1), then Xn+Yn =Op(1).

vi) If {an}n∈N+ and {bn}n∈N+ are positive real-valued sequences such that an
bn
→ 0, then

Op(an) +Op(bn) =Op(bn) and Op(an)Op(bn) =Op(anbn).

vii) If {an}n∈N+ is a positive real-valued sequence such that an ↗ +∞, then any Op(1) se-
quence is also op(an).

viii) Any L1-bounded sequence of complex random variables is Op(1).

ix) Any uniformly integrable sequence of complex random variables is Op(1).

x) Let {Xn}n∈N+ be a sequence of complex random variables and {an}n∈N+ a sequence of
positive real numbers. If {an}n∈N+ is convergent in R and |Xn| ≤ an for any n ∈N+, then
Xn =Op(1).

xi) Let {Xn}n∈N+ be a sequence of complex random variables and {Yn}n∈N+ a sequence of non-
negative random variables. If Yn =Op(1) and |Xn| ≤ Yn for any n ∈N+, then Xn =Op(1).

Proof) i) Suppose that {Xn}n∈N+ is op(1), so that Xn
p→ 0. Since

lim
n→∞

P(|Xn|> 1) = 0
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by definition, it follows that, for any ε > 0, there exists an N ∈N+ such that

P(|Xn|> 1)< ε

for any n≥N . Thus, Xn =Op(1) with M = 1 for any ε > 0.

ii) Let Xn =Op(1) and Yn =Op(1). Then, for any ε > 0 there exist MX ,MY > 0 and
NX ,NY ∈N+ such that

P(|Xn|>MX)< ε

2 , and P(|Yn|>MY )< ε

2

for any n≥N = max(NX ,NY ). Defining M =MXMY > 0, note that

{|Xn| ≤MX}∩{|Yn| ≤MY } ⊂ {|XnYn| ≤M};

therefore, for any n≥N ,

P(|XnYn|>M)≤ P(|Xn|>MX) +P(|Yn|>MY )< ε.

Such an M > 0 and N ∈N+ exist for any ε > 0, so by definition XnYn =Op(1).

iii) Let Xn = op(1) and Yn =Op(1). Choose any δ > 0. For any ε > 0 there exist M >

and N1 ∈N+ such that

P(|Yn|>M)< ε

2

for any n≥N1. By definition of convergence in probability,

lim
n→∞

P
(
|Xn|>

δ

M

)
= 0,

so there exists an N ≥N1 such that

P
(
|Xn|>

δ

M

)
<
ε

2

for any n≥N . Since

{|Xn| ≤
δ

M
}∩{|Yn| ≤M} ⊂ {|XnYn| ≤ δ},
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we can see that, for any n≥N ,

P(|XnYn|> δ)≤ P
(
|Xn|>

δ

M

)
+P(|Yn|>M)< ε.

This holds for any ε > 0, so it follows that

lim
n→∞

P(|XnYn|> δ) = 0.

This in turn holds for any δ > 0, so by definition XnYn
p→ 0 and thus XnYn = op(1).

iv) The proof is very similar to that of ii). We state it here for the sake of completeness.
Let Xn =Op(1) and Yn =Op(1). Then, for any ε > 0 there exist MX ,MY > 0 and
NX ,NY ∈N+ such that

P(|Xn|>MX)< ε

2 , and P(|Yn|>MY )< ε

2

for any n≥N = max(NX ,NY ). Defining M =MX +MY > 0, note that

{|Xn| ≤MX}∩{|Yn| ≤MY } ⊂ {|Xn+Yn| ≤M},

since

|Xn(ω) +Yn(ω)| ≤ |Xn(ω)|+ |Yn(ω)| ≤MX +MY =M

if the outcome ω is contained in the intersection on the left hand side. Therefore,
for any n≥N ,

P(|Xn+Yn|>M)≤ P(|Xn|>MX) +P(|Yn|>MY )< ε.

Such an M > 0 and N ∈N+ exist for any ε > 0, so by definition Xn+Yn =Op(1).

v) If Xn =Op(1) and Yn = op(1), then Yn =Op(1) by i). This implies that Xn+Yn =
Op(1) by the preceding result.

vi) Suppose {an}n∈N+ and {bn}n∈N+ are positive real-valued sequences such that
an
bn
→ 0. Let Xn =Op(an) and Yn =Op(bn). Defining

Zn = an
bn
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for any n ∈ N+, {Zn}n∈N+ is a sequence of (degenerate) real random variables
that converges almost surely and thus in probability to 0 as n→∞. Therefore,
Zn = op(1).
Note that, by definition,

Xn

an
=Op(1) and Yn

bn
=Op(1).

It follows that

Xn+Yn
bn

= an
bn
·Xn

an
+ Yn
bn

= op(1)Op(1) +Op(1) = op(1) +Op(1) =Op(1)

by combining the preceding results. By definition, we can see that Xn + Yn =
Op(bn).
Similarly,

XnYn
anbn

= Xn

an
· Yn
bn

=Op(1)Op(1) =Op(1),

so that XnYn =Op(anbn).

vii) Suppose that {an}n∈N+ is a positive real valued sequence such that an ↗ +∞,
and let Xn = Op(1). Choose any δ > 0. For any ε > 0, there exists an M > 0 and
N1 ∈N+ such that

P(|Xn|>M)< ε

for any n ≥ N1. Since {an}n∈N+ increases to +∞, there exists an N ≥ N1 such
that an > M

δ for any n≥N . It then follows that

P
(∣∣∣∣Xn

an

∣∣∣∣> δ

)
= P(|Xn|> δ ·an)≤ P(|Xn|>M)< ε

for any n≥N . This holds for any ε > 0, so it follows that

lim
n→∞

P
(∣∣∣∣Xn

an

∣∣∣∣> δ

)
= 0.

This in turn holds for any δ > 0, so by definition, Xn
an

p→ 0 and thus Xn = op(an).

viii) Let {Xn}n∈N+ be an L1-bounded sequence, that is,

K := sup
n∈N+

E|Xn|<+∞.
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For any ε > 0, by Markov’s inequality

P
(
|Xn|>

K

ε

)
≤ ε

K
E|Xn| ≤ ε

for any n ∈ N+. Therefore, Xn = Op(1), or bounded in probability, with M = K
ε

and N = 1 for each ε > 0.

ix) If {Xn}n∈N+ is uniformly integrable, then it is also L1-bounded, so thatXn =Op(1)
by the preceding result.

x) Let {Xn}n∈N+ be a sequence of complex random variables and {an}n∈N+ a se-
quence of positive real numbers. Suppose that an → a for some a ∈ R in the
euclidean metric on R, and that |Xn| ≤ an for any n ∈ N+. Then, {an}n∈N+ is
a bounded sequence, so that there exists an M > 0 such that 0 < an < M for
any n ∈ N+. By implication, |Xn| ≤ M for any n ∈ N+, so that {Xn}n∈N+ is
L1-bounded:

sup
n∈N+

E|Xn| ≤M <+∞.

Therefore, Xn =Op(1).

xi) Let {Xn}n∈N+ be a sequence of complex random variables and {Yn}n∈N+ a se-
quence of non-negative random variables such that Yn =Op(1) and |Xn| ≤ Yn for
any n ∈N+. For any ε > 0, there exists an M > 0 and N ∈N+ such that

P(Yn >M)< ε

for any n≥N . Since |Xn|>M implies Yn >M , we have

P(|Xn|>M)≤ P(Yn >M)< ε

for any n≥N . This holds for any ε > 0, so by definition Xn =Op(1).

Q.E.D.
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3.3.3 Metric for Convergence in Probability

It is convenient to establish a metric for convergence in probability. In other words, given a
separable metric space (E,d) with corresponding Borel σ-algebra E , we want to find a metric
dprob on the space H/E of random variables taking values in E such that, for any {Xn}n∈N+ and
X in H/E ,

Xn→X in the metric dprob

if and only if Xn
p→ X. dprob is useful because it allows us to apply results that hold for the

convergence of sequences in metric spaces to convergence in probability, although we did not
define the latter in terms of any metric on H/E .

One way to define dprob in terms of the metric d of the underlying space E is

dprob(X,Y ) = E [min(d(X,Y ),1)]

for any random variables X,Y taking values in E. dprob(X,Y ) is well-defined and bounded above
by 1 because the separability of (E,d) implies that min(d(X,Y ),1) is a non-negative random
variable bounded above by 1. We can also see that dprob is a metric on H/E , given that we
identify almost surely equivalent random variables:

• dprob(X,Y ) = 0 if and only if X = Y almost surely
Suppose that dprob(X,Y ) = 0 for some X,Y ∈H/E . Then,

E [min(d(X,Y ),1)] = 0,

and by the vanishing property of non-negative functions, min(d(X,Y ),1) = d(X,Y ) = 0
almost surely. By implication, X = Y almost surely.

Conversely, if X = Y almost surely, then min(d(X,Y ),1) = 0 almost surely and therefore
dprob = E [min(d(X,Y ),1)] = 0.

• Symmetry
For any X,Y ∈H/E , d(X,Y ) = d(Y,X) and as such

dprob(X,Y ) = E [min(d(X,Y ),1)] = E [min(d(Y,X),1)] = dprob(Y,X).

• Triangle Inequality
For any X,Y,Z ∈H/E ,

d(X,Y )≤ d(X,Z) +d(Z,Y )
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because d satisfies the triangle inequality, which tells us that

min(d(X,Y ),1)≤min(d(X,Z) +d(Z,Y ),1)

≤min(d(X,Z),1) + min(d(Z,Y ),1).

By the monotonicity and linearity of the integration of non-negative functions, we now
have

dprob(X,Y ) = E [min(d(X,Y ),1)]

≤ E [min(d(X,Z),1)] +E [min(d(Z,Y ),1)] = dprob(X,Z) +dprob(Z,Y ).

The next result shows us that convergence of probability is equivalent to convergence in the
metric space (H/E ,dprob):

Theorem 3.14 Let (E,d) be a metric space and E the corresponding Borel σ-algebra. A
sequence {Xn}n∈N+ of random variables taking values in E converges to some random variable
X taking values in E if and only if {Xn}n∈N+ converges to X in the metric dprob.

Proof) Suppose that Xn
p→X. Choose any 0< δ ≤ 1. Then, for any n ∈N+,

dprob(Xn,X) = E [min(d(Xn,X),1)]

= E
[
d(Xn,X) · I{d(Xn,X)≤δ}

]
+E

[
min(d(Xn,X),1) · I{d(Xn,X)>δ}

]
≤ δ ·P(d(Xn,X)≤ δ) +P(d(Xn,X)> δ)

≤ δ+P(d(Xn,X)> δ) .

By the definition of convergence in probability,

lim
n→∞

P(d(Xn,X)> δ) = 0,

so taking n→∞ on both sides shows us that

limsup
n→∞

dprob(Xn,X)≤ δ.

This holds for any 0< δ ≤ 1, so it follows that

lim
n→∞

dprob(Xn,X) = 0,

and as such that Xn→X in the metric dprob.

Conversely, suppose that Xn → X in the metric dprob. Choose any 0 < δ < 1. Then,
because d(Xn,X)> δ is equivalent to min(d(Xn,X),1)> δ due to the fact that δ < 1,
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we can see that

P(d(Xn,X)> δ) = P(min(d(Xn,X),1)> δ)

≤ 1
δ
E [min(d(Xn,X),1)] = 1

δ
dprob(Xn,X)

for any n ∈N+ by Markov’s inequality. Taking n→∞ on both sides shows us that

lim
n→∞

P(d(Xn,X)> δ) = 0.

If δ ≥ 1, then

P(d(Xn,X)> δ)≤ P
(
d(Xn,X)> 1

2

)
for any n ∈N+, and since we just showed that the term on the right hand side goes to
0 as n→∞, we again have

lim
n→∞

P(d(Xn,X)> δ) = 0.

This holds for any δ > 0, so by definition Xn
p→X.

Q.E.D.
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3.4 Convergence in Lp

We now focus on a useful form of convergence for complex valued random variables. For 1 ≤
p <+∞, let {Xn}n∈N+ be a sequence of complex variables in the vector space Lp(H,P) over the
complex field, that is,

E|Xn|p =
∫

Ω
|Xn|pdP<+∞

for each n ∈N+. Let ‖·‖p be the Lp norm on Lp(H,P) defined as

‖X‖p = (E|X|p)
1
p

for any X ∈ Lp(H,P). We say that {Xn}n∈N+ converges in Lp to some random variable X ∈
Lp(H,P) if

lim
n→∞

‖Xn−X‖p = 0.

This mode of convergence is denoted Xn
Lp→ X. Denoting dp : Lp(H,P)2 → [0,+∞) the metric

induced by the Lp norm, Xn
Lp→ X is essentially saying that Xn→ X in the metric dp. Recall

that the Riesz-Fischer theorem, one of the most important results in Lp theory, states that the
metric space (Lp(H,P),dp) is a complete metric space.

Convegence in Lp has a useful characterization in terms of convergence in probability and
uniform integrability. Indeed, it is not an understatement to say that this result is the rmain
eason for studying uniform integrability.

Theorem 3.15 (Characterization fo Convergence in Lp)
Let {Xn}n∈N+ be a sequence of complex random variables in Lp(H,P) for 1 ≤ p < +∞. Then,
the following statements are equivalent:

i) There exists an X ∈ Lp(H,P) such that Xn
Lp→X.

ii) {Xn}n∈N+ is Cauchy in dp, that is,

lim
n,m→∞

‖Xn−Xm‖p = 0.

iii) {|Xn|p}n∈N+ is uniformly integrable and Xn
p→X for some complex random variable X.

Proof) The equivalence of i) and ii) follows from the Riesz-Fischer theorem. As such, we focus
on proving that i) and iii) are equivalent.
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Suppose that Xn
Lp→X for some X ∈Lp(H,P). We first show that Xn

p→X. By Markov’s
inequality,

P(|Xn−X|> δ)≤ 1
δp

E|Xn−X|p = 1
δp
‖Xn−X‖pp

for any δ > 0. Since Xn
Lp→X, the expression on the right hand side goes to 0 as n→∞,

so that

lim
n→∞

P(|Xn−X|> δ) = 0.

This holds for any δ > 0, so by definition Xn
p→X.

We now show that {|Xn|p}n∈N+ must be uniformly integrable using the ε− δ charac-
terization of uniform integrability. We will make extensive use of the inequality

|x+y|p ≤ 2p−1 (|x|p+ |y|p)

for any x,y ∈ C. Choose any ε > 0 Then, for any n ∈N+ and H ∈H,

E [|Xn|p · IH ]≤ 2p−1 [E [|Xn−X|p · IH ] +E [|X|p · IH ])

≤ 2p−1‖Xn−X‖pp+E [|X|p · IH ] .

The singleton {|X|p} is uniformly integrable because |X|p is integrable; therefore, there
exists a δ0 > 0 such that

E [|X|p · IH ]< ε

2

for any H ∈ H such that P(H)< δ0. That Xn
Lp→X implies that there exist a N ∈N+

such that

‖Xn−X‖p <
1

2p−1

(
ε

2

) 1
p

for any n≥N . As such, we can see that, for any H ∈H such that P(H)< δ0,

sup
n≥N

E [|Xn|p · IH ]≤ ε.

Since the collection {|X1|p, · · · , |XN |p} is uniformly integrable, there exists a δ1 > 0 such
that

sup
1≤i≤N

E [|Xi|p · IH ]≤ ε

for any H ∈ H such that P(H) < δ1. Defining δ = min(δ0, δ1) > 0, it follows that, for
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any H ∈H such that P(H)< δ, we have

sup
n∈N+

E [|Xn|p · IH ]≤ ε.

This holds for any ε > 0, and thus {|Xn|p}n∈N+ is uniformly integrable.

Conversely, suppose that {|Xn|p}n∈N+ is uniformly integrable and that Xn
p→ X for

some complex random variable X. We must show that Xn
Lp→X. By the characterization

of convergence in probability, there exists a subsequence {Xnk}k∈N+ such that Xnk
a.s.→

X; by the continuous mapping theorem, |Xnk |
p a.s.→ |X|p. It follows from the almost sure

version of Fatou’s lemma that

E|X|p = E
[
liminf
k→∞

|Xnk |
p
]
≤ liminf

n→∞
E|Xnk |

p ≤ sup
n∈N+

E|Xn|p <+∞,

where the last inequality follows because {|Xn|p}n∈N+ , being uniformly integrable, is
L1-bounded. Therefore, X ∈Lp(H,P). It follows that {|Xn|p}n∈N+∪{|X|

p} is uniformly
integrable.

For any ε > 0, by uniform integrability there exists a δ > 0 such that

sup
n∈N+

E [|Xn|p · IH ]< ε, E [|X|p · IH ]< ε

for any H ∈H such that P(H)< δ. The fact that Xn
p→X implies that |Xn−X|p

p→ 0
by the continuous mapping theorem, and as such there exists an N ∈N+ such that

P(|Xn−X|p > ε)< δ

for any n≥N . Then, for any n≥N ,

sup
n∈N+

E
[
|Xn|p · I{|Xn−X|p>ε}

]
< ε, E

[
|X|p · I{|Xn−X|p>ε}

]
< ε,

and we have

E|Xn−X|p ≤ E
[
|Xn−X|p · I{|Xn−X|p>ε}

]
+E

[
|Xn−X|p · I{|Xn−X|p≤ε}

]
≤ E

[
|Xn−X|p · I{|Xn−X|p>ε}

]
+ ε

≤ 2p−1
[
E
[
|Xn|p · I{|Xn−X|p>ε}

]
+E

[
|X|p · I{|Xn−X|p>ε}

]]
+ ε

≤ (2p+ 1)ε.
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This holds for any ε > 0, so

lim
n→∞

E|Xn−X|p = 0

and Xn
Lp→X by definition.

Q.E.D.
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Chapter 4

Convergence of Measures

So far we have introduced various forms in which random variables can converge. Sometimes,
however, we wish to study the convergence, not of the random variables themselves, but of their
distributions. In particular, we focus on a type of convergence referred to as weak convergence,
or convergence in distribution. One particular advantage this approach has over the previous
ones is that we do not necessarily need to define a probability space beforehand, since the con-
vergence is of the distributions instead of the variables. This leads to a variety of interesting
results, including one that demonstrates that suitably choosing the probability space leads to
the equivalence of weak convergence and almost sure convergence.

Let (E,τ) be a topological space and E the Borel σ-algebra generated by τ . We say that a
sequence {µn}n∈N+ of probability measures on (E,E) converges weakly to another probability
meausre µ on (E,E) if, for any bounded and continuous real function f on E,

lim
n→∞

∫
E
fdµn =

∫
E
fdµ,

and we write this relationship µn→ µ weakly. The set of all such functions is often denoted by
Cb(E,R).
Suppose that there exists a sequence {Xn}n∈N+ of random variables in (E,E) such that the dis-
tribution of each Xn is µn, and suppose X is another random variable in (E,E) with distribution
µ. In this case, if µn→ µ weakly, then we say that Xn converges to X in distribution, and write
Xn

d→X. The defining property of weak convergence can then be formulated as

lim
n→∞

E [f ◦Xn] = E [f ◦X]

for any bounded and continuous real valued function f on E.

4.1 The Portmanteau Theorem

The definition of weak convergence is often very difficult to work with, since the space of all
bounded and continuous real valued functions on E is large and abstract. We thus rely on the

174



following characterization:

Theorem 4.1 (The Portmanteau Theorem)
Let (E,d) be a metric space, τ the metric topology induced by d, and E the Borel σ-algebra on
E generated by τ . Let {µn}n∈N+ be a sequence of probability measures on (E,E) and µ another
probability measure on (E,E). Then, the following are equivalent:

i) µn→ µ weakly.

ii) For any Lipschitz continuous and bounded real-valued function f on E,

lim
n→∞

∫
E
fdµn =

∫
E
fdµ.

iii) For any closed subset F of E,

limsup
n→∞

µn(F )≤ µ(F ).

iv) For any open subset V of E,

liminf
n→∞

µn(V )≥ µ(V ).

v) For any Borel subset A of E such that µ(∂A) = 0 (we call these sets µ-continuity sets),

lim
n→∞

µn(A) = µ(A).

vi) (If E = R and τ = τR) Letting Fn be the distribution function corresponding to each µn

and F that of µ, for any x ∈ R at which F is continuous,

lim
n→∞

Fn(x) = F (x).

Proof) i) → ii)
This follows by definition, since any Lipschitz continuous bounded real valued
function on E is also a continuous bounded real valued function on E.

ii) → iii)
Suppose that ii) holds. Choose any closed set F ⊂ E. The distance function x 7→
d(x,F ) is continuous on E, which implies that the sequence {Vn}n∈N+ of subsets
of E defined as

Vn =
{
x ∈ E | d(x,F )< 1

n

}
= (d(·,F ))−1

((
−∞, 1

n

))
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for any n ∈N+ is a sequence of open sets (each (−∞,1/n) is an open set in R).

Furthermore, {Vn}n∈N+ is a sequence of open sets that decreases to F ; clearly,
Vn+1 ⊂ Vn for any n ∈N+, and F ⊂⋂nVn. Conversely, for any x ∈⋂nVn, if x /∈ F
then d(x,F ) > 0, which implies that x /∈ Vn for some n ∈ N+, a contradiction.
Thus, ⋂nVn ⊂ F and thus F =⋂

nVn. By sequential continuity and the finiteness
of µ, we can see that

lim
n→∞

µ(Vn) = µ(F ).

By implication, for any ε > 0, there exists an N ∈N+ such that

µ(VN \F ) = µ(VN )−µ(F )< ε,

where the first equality follows because F ⊂ VN . Denote V = VN .
Finally, we can also see that, for any x ∈ V c and y ∈ F ,

d(x,y)≥ d(x,F )≥ 1
N
,

which tells us that the distance between V c and F is bounded below by a non-
zero value. V is an open set that contains the closed set F , so together with the
boundedness condition above, Urysohn’s lemma for metric spaces tells us that
there exists a Lipschitz continuous function f : E→ R such that

f(x) ∈


0 if x /∈ V

[0,1] if x ∈ V \F

1 if x ∈ F

for any x ∈ E. This function satisfies IF ≤ f ≤ IV on E, so it follows that

µn(F )≤
∫
E
fdµn ≤ µn(V )

for any n∈N+. Because f is a bounded Lipschitz continuous function, by assump-
tion

lim
n→∞

∫
E
fdµn =

∫
E
fdµ,

so we have the inequality

limsup
n→∞

µn(F )≤
∫
E
fdµ.
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Since f ≤ IV on E, by monotonicity we have∫
E
fdµ≤ µ(V )< ε+µ(F );

putting together all these inequalities yields

limsup
n→∞

µn(F )< ε+µ(F ).

This holds for any ε > 0, so it follows that

limsup
n→∞

µn(F )≤ µ(F ),

as desired.

iii) → iv)
Suppose iii) holds. Then, for any open set V ⊂ F ,

1 = µn(E) = µn(V ) +µn(V c)

for any n ∈N+, so that µn(V ) = 1−µn(V c). Since V c is closed, by ii) we have

limsup
n→∞

µn(V c)≤ µ(V c) = 1−µ(V ).

It follows that

1− liminf
n→∞

µn(V )≤ 1−µ(V ),

and as such iv) holds.

iv) → v)
Now suppose iv) holds. Then, by the same process as above, we can show that iii)
holds as well.
Choose any A ∈ E such that µ(∂A) = 0. Since

∂A=A\Ao,

where A and Ao are the closure and interior of A, repsectively, we can see that

µ(A)−µ(Ao) = µ(A\Ao) = µ(∂A) = 0.

Ao ⊂A⊂A, so this result implies that µ(Ao) = µ(A) = µ(A).
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iii) and iv) show us that

limsup
n→∞

µn(A)≤ µ(A)

liminf
n→∞

µn(Ao)≥ µ(Ao),

and because µ(A) = µ(Ao) = µ(A),

limsup
n→∞

µn(A)≤ limsup
n→∞

µn(A) (A⊂A)

≤ µ(A)≤ liminf
n→∞

µn(Ao)

≤ liminf
n→∞

µn(Ao). (Ao ⊂A)

By implication,

limsup
n→∞

µn(A) = liminf
n→∞

µn(A) = µ(A),

and thus v) holds.

v) → i)
Suppose that v) holds. Let f be a bounded non-negative continuous function.
Then, letting f(x)<M for any x ∈ E and some M > 0,∫

E
fdµn =

∫
E

∫
R
I[0,f(x))(t)dtdµn(x)

=
∫
E

∫ ∞
0

I(t,+∞)(f(x))dtdµn(x)

=
∫ ∞

0
µn({f > t})dt (Fubini’s Theorem)

=
∫ M

0
µn({f > t})dt ({f > t}= ∅ for t >M)

for any n ∈N+, and likewise for µ.

We now want to show that the set

D = {t ∈ R | µ(∂{f > t})> 0}

is at most countable. It is here that the continuity of f is critical. To illustrate this,
suppose that E =R, and consider the discontinuous function g= 1

2I[0,1/2] +I(1/2,1].
In this case, ∂{g > t} = {1/2} for any t ∈ (1/2,1); if µ({1/2}) > 0, then µ(∂{g >
t})> 0 for any t∈ (1/2,1), or in other words, for uncountably many t. Fortunately,
the continuity of f precludes such a case.
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By the continuity of f , {f > t}= f−1((t,+∞)) is open for any t ∈R. On the other
hand, since [t,+∞) = R\ (−∞, t), where (−∞, t) is an open set, [t,+∞) is closed,
and therefore f−1([t,+∞)) = {f ≥ t} is closed as well by continuity. Thus, {f ≥ t}
is a closed set containing the open set {f > t}, which implies that the closure of
{f > t} is contained in {f ≥ t}. Together, these imply that

∂{f > t}= {f > t}\{f > t}o

= {f > t}\{f > t} ({f > t} is open)

⊂ {f ≥ t}\{f > t}= {f = t}.

Since µ is a finite measure, there can be at most countably many t ∈ R such that
µ({f = t})> 0 (this follows from a similar reasoning as that in lemma 1.9).
Let D′ be the set of all real numbers t such that µ({f = t}) > 0. Since ∂{f >
t} ⊂ {f = t} for any t ∈ R, we have (D′)c ⊂ Dc, that is, if µ({f = t}) = 0, then
µ(∂{f > t}) = 0 as well. This implies that D ⊂D′, and because D′ is countable,
so is D.

It follows that D has measure 0 under the Lebesgue measure (since it is countable),
and by result v),

lim
n→∞

µn({f > t}) = µ({f > t})

for any t ∈ [0,M ]\D. Therefore,

∫
E
fdµn =

∫ M

0
µn({fn > t})dt

=
∫

[0,M ]\D
µn({fn > t})dt

for any n∈N+ and likewise for µ, and because µn({fn > t})∈ [0,1] for any n∈N+

and [0,M ]\D has finite Lebesgue measure, by the BCT we have

lim
n→∞

∫
E
fdµn = lim

n→∞

∫
[0,M ]\D

µn({f > t})dt

=
∫

[0,M ]\D
µ({f > t})dt=

∫
E
fdµ.

Now let f be an arbitrary bounded and continuous real valued function. By the
above result,

lim
n→∞

∫
E
f±dµn =

∫
E
f±dµ,

so by the linearity of integration,

lim
n→∞

∫
E
fdµn = lim

n→∞

∫
E
f+dµn− lim

n→∞

∫
E
f−dµn

179



=
∫
E
f+dµ−

∫
E
f−dµ=

∫
E
fdµ.

By definition, µn→ µ weakly.

We have thus shown that i) to v) are equivalent.
Now consider the case where (E,E) = (R,B(R)). Suppose that µn→ µ weakly. Then,
v) holds, so that

lim
n→∞

µn(A) = µ(A)

for any A ∈ E such that µ(∂A) = 0.
Choose any x ∈ R such that F is continuous at x. This means that

µ({x}) = F (x)−F (x−) = 0,

and because ∂(−∞,x] = {x}, we have µ(∂(−∞,x]) = 0. By the result above, then,

lim
n→∞

Fn(x) = lim
n→∞

µn((−∞,x])

= µ((−∞,x]) = F (x).

Therefore, Fn converges to F at all continuity points of F .

Conversely, suppose that Fn converges to F at all continuity points of F . As before, note
that, for any bounded and non-negative continuous function f on R bounded above by
M > 0,

∫
E
fdµn =

∫ M

0
µn({f > t})dt=

∫ M

0
(1−Fn(t))dt

for any n ∈N+, and likewise,

∫
E
fdµ=

∫ M

0
(1−F (t))dt.

Since F has at most countably many discontinuities, letting the collection of all discon-
tinuity points of F be D, and noting that Fn(t)→ F (t) for any t /∈D, by the BCT

lim
n→∞

∫
E
fdµn = lim

n→∞

∫
[0,M ]\D

(1−Fn(t))dt

=
∫

[0,M ]\D
(1−F (t))dt=

∫
E
fdµ.

The case for general bounded and continuous real-valued function f on R follows easily,
and by definition µn→ µ weakly.
Q.E.D.
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4.1.1 Application: Uniqueness of Weak Limits

The portmanteau theorem has a variety of implications, including the fact that any sequence of
probability measures on a complete metric space converges to at most one weak limit. This can
be easily derived as a consequence of the following, more fundamental result:

Lemma 4.2 Let (E,d) be a metric space, τ the metric topology induced by d, and E the
Borel σ-algebra on E generated by τ . Let µ and v be two probability measures on (E,E) such
that ∫

E
fdµ=

∫
E
fdv

for any bounded and continuous real-valued function f on E. Then, µ= v on E .

Proof) For any n ∈N+, define µn = µ for any n ∈N+. Then, for any bounded and continuous
real-valued function f on E, because

∫
E fdµn =

∫
E fdµ for any n ∈N+,

lim
n→∞

∫
E
fdµn =

∫
E
fdµ=

∫
E
fdv

and thus µn→ v weakly. By the portmanteau theorem, for any open set A,

liminf
n→∞

µn(A)≥ v(A),

but because µn = µ for any n ∈N+, we have

µ(A) = liminf
n→∞

µn(A)≥ v(A).

This holds when the roles of µ and v are replaced as well, so µ(A) = v(A) for any
open set A ∈ τ . Becauase µ and v are both probability measures and τ is a π-system
generating E , it follows that µ= v on E .
Q.E.D.

The above result tells us that a probability measure µ on a metric space is determined by
its values on the set Cb(E,R) (that is, the integrals of any bounded and continuous real-valued
function with respect to µ). The uniqueness of weak limits following immediately from this result:
letting {µn}n∈N+ be a sequence of probability measures on the metric space (E,d) converging
weakly to both µ and v, since ∫

E
fdµ= lim

n→∞

∫
E
fdµn =

∫
E
fdv

for any f ∈ Cb(E,R), it follows that µ= v.
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4.1.2 Application: Convergence in Probability and in Distribution

The Portmanteau theorem also helps shed light on the relationship between convergence in
probability and distribution. It shows that convergence in probability implies convergence in
distribution, and that the converse holds only when the limit distribution is degenerate.

Theorem 4.3 Let (E,d) be a separable metric space, τ the metric topology induced by d, and
E the Borel σ-algebra on E generated by τ . Let {Xn}n∈N+ be a sequence of random variables
in (E,E), and X a random variable in (E,E). The following hold true:

i) If Xn
p→X, then Xn

d→X.

ii) If Xn
d→X and X is a degenerate random variable, then Xn

p→X.

Proof) Suppose Xn
p→X. Then, for any bounded and continuous real valued function f that

is bounded above by M ∈ (0,+∞), the sequence {|f ◦Xn|2}n∈N+ is bounded above by
M2; as such,

sup
n∈N+

E
[
|f ◦Xn|2

]
≤M2 <+∞.

By implication, {|f ◦Xn|}n∈N+ is L2-bounded and therefore uniformly integrable. The
continuous mapping theorem also tells us that f ◦Xn

p→ f ◦X, so together with uniform
integrability, we have f ◦Xn

L1
→ f ◦X. For any n ∈N+,

|E [f ◦Xn]−E [f ◦X]| ≤ E|f ◦Xn−f ◦X|,

where the right hand side goes to 0 as n→∞, so

lim
n→∞

E [f ◦Xn] = E [f ◦X] .

This holds for any f ∈ Cb(E,R), so by definition Xn
d→X.

Now suppose Xn
d→X, where X is a degenerate random variable, that is, X = k almost

surely on Ω for some k ∈ E. Define h : E→ R as

h(x) = d(x,k)

for any x ∈ E. Then, h is continuous on E, so that h ∈ E/B(R); for any δ > 0 and
n ∈N+,

P(d(Xn,X)> δ) = P(d(Xn,k)> δ) (X = k almost surely)

≤ P(d(Xn,k)≥ δ) = µn
(
h−1([δ,+∞))

)
,
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where µn is the distribution of Xn. Since h−1([δ,+∞)) is a closed set ([δ,+∞) is closed
and h is continuous), taking n→∞ on both sides yields, by the Portmanteau theorem,

limsup
n→∞

P(d(Xn,X)> δ)≤ limsup
n→∞

µn
(
h−1([δ,+∞))

)
≤ µ

(
h−1([δ,+∞))

)
,

where µ is the distribution of X. Taking a look at the quantity on the right hand side,

µ
(
h−1([δ,+∞))

)
= P(d(X,k)≥ δ)≤ P(X 6= k) ,

where the last inequality follows because d(x,k) ≥ δ > 0 implies x 6= k for any x ∈ E.
Since X = k almost surely, P(X 6= k) = 0 and we thus have

0≤ limsup
n→∞

P(d(Xn,X)> δ)≤ 0,

which implies

lim
n→∞

P(d(Xn,X)> δ) = 0.

This holds for any δ > 0, so

Xn
p→X.

Q.E.D.

The above result can be used to show, among other results, that any sequence of complex
random variables that converges in distribution is bounded in probability and thus Op(1):

Theorem 4.4 Let {Xn}n∈N+ be a sequence of complex random variables that converges in
distribution to some complex random variable X. Then, Xn =Op(1).

Proof) Let {µn}n∈N+ and µ be probability measures on (C,B(C)) such that each µn is the
distribution of Xn and µ the distribution of X. It follows by definition from Xn

d→X

that µn→ µ weakly.

Choose any ε > 0. Note first that the sequence {Bk}k∈N+ defined as

Bk = {|X| ≥ k} ∈ H

for any k ∈N+ is decreasing with intersection B =⋂
kBk = {|X|= +∞}= ∅. It follows

from sequential continuity and the finiteness of P that

lim
k→∞

P(|X| ≥ k) = lim
k→∞

P(Bk) = P(B) = 0.
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Therefore, there exists an M ∈N+ such that

P(|X| ≥M)< ε.

Define the set Z ⊂ C as

Z = {z ∈ C | |z| ≥M}.

Z, being the complement of the open set {z ∈C | |z|<M}, is a closed set in Z. By the
definition of µn and µ,

µn(Z) = P(|Xn| ≥M) and µ(Z) = P(|X| ≥M)

for any n ∈N+, so by the portmanteau theorem,

limsup
n→∞

P(|Xn| ≥M)≤ P(|X| ≥M)< ε.

Since

limsup
n→∞

P(|Xn| ≥M) = inf
n∈N+

sup
k≥n

P(|Xk| ≥M) ,

we can see from the definition of the infimum that there exists an N ∈N+ such that

sup
n≥N

P(|Xn| ≥M)< ε,

and as such

P(|Xn| ≥M)< ε

for any n≥N . We can find such an M > 0 and N ∈N+ for any ε > 0, so it follows that
Xn =Op(1), that is, {Xn}n∈N+ is bounded in probability.

Q.E.D.
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4.2 Skorokhod’s Representation Theorem

Note that no mention of an underlying probability space or random variables were made dur-
ing the proof of the Portmanteau theorem. This indicates that we may be able to derive, from
the weak convergence of probability measures, results concerning the convergence of the corre-
sponding random variables. This is precisely the content of the next theorem, which allows us
to construct an underlying probability space such that weak convergence of the distributions
translates into the almost sure convergence of the associated random variables.
We first prove a preliminary result:

Lemma 4.5 Let (E,d) be a separable metric space, τ the metric topology induced by d, and
E the Borel σ-algebra on E generated by τ . Suppose µ is a probability measure on (E,E).
Then, for any η > 0 there exists a countable base B′ of open balls with radius less than η gen-
erating τ such that µ(∂A) = 0 for any A ∈ B′.

Proof) Choose η > 0.
Let B be the collection of all open balls on E, that is, sets of the form Bd(x,ε) for
some x ∈E and ε > 0. We first show that there are only countably many of these balls
around some x ∈ E whose boundary has positive measure under µ.

For any x ∈E, consider two open balls Bd(x,ε) and Bd(x,δ) for ε,δ > 0 such that ε 6= δ.
Assuming without loss of generality that ε > δ, there exists a rational number q ∈ Q
such that δ < q < ε; since the closed ball B̄d(x,q) is a closed set such that

Bd(x,δ)⊂ B̄d(x,q)⊂Bd(x,ε),

we can see that

Bd(x,δ)⊂ B̄d(x,q)⊂Bd(x,ε),

which implies that ∂Bd(x,δ), being a subset of the closure of Bd(x,δ), is also contained
in Bd(x,ε). Finally,

∂Bd(x,ε) =Bd(x,ε)\Bd(x,ε)

tells us that ∂Bd(x,δ) and ∂Bd(x,ε) are disjoint. In other words, the set

{∂Bd(x,ε) | ε > 0}

is a collection of disjoint measurable sets. Therefore, by the finiteness of µ, there can
exist at most countably many elements of the above set that have positive measure
under µ.

This allows us to define the countable collection Dx = {Bx,n}n∈N+ of open balls as

185



follows: for any n ∈N+, if µ(∂Bd(x,η ·2−n)) = 0, then we put Bx,n =Bd(x,η ·2−n). On
the other hand, if µ(∂Bd(x,η · 2−n)) > 0, then choose η · 2−n−1 < εn < η · 2−n so that
µ(∂Bd(x,εn)) = 0; such a choice is possible because the open interval (η ·2−n−1,η ·2−n)
is uncountable and there are at most countably many ε > 0 such that µ(∂Bd(x,ε))> 0.
We then let Bx,n =Bd(x,εn).
The Dx thus constructed is a collection of open balls with measure 0 boundaries and
radii less than η that is strictly decreasing with respect to n.

By the separability of (E,d), there exists a countable set E0 ⊂ E sucht that E0 = E,
and define

B′ =
⋃
x∈E0

Dx.

It can be shown that B′ is a countable base on E that generates the topology τ .

Clearly, B′ is a countable collection of open sets on E, since each Dx is made up of
countably many open balls, and E0 is countable. Furthermore, B′ covers E; to see this,
note that, for any y ∈E, by the denseness of E0 on E, there exists an x ∈E0 such that
d(x,y) < η

4 . By the construction of Dx, there exists a ball B centered around x in Dx

such that Bd(x,η/4)⊂B ⊂Bd(x,η/2); therefore,

y ∈Bd(x,η/4)⊂B.

Since B is an element of B′, B′ covers E.

Now choose any A ∈ τ and y ∈ A. Because τ is the metric topology induced by d,
there exists an ε ∈ (0,η) such that y ∈ Bd(y,ε) ⊂ A. Let N ∈ N+ be chosen so that
η ·2−N < ε

2 . Since E0 is dense in E, there exists an x ∈E0 such that d(x,y)< η ·2−N−1,
and there then exists a η ·2−N−1 ≤ δ ≤ η ·2−N such that Bd(x,δ) ∈Dx. It now follows
that y ∈Bd(x,η ·2−N−1)⊂Bd(x,δ), and for any z ∈Bd(x,δ),

d(y,z)≤ d(x,z) +d(x,y)< δ+η ·2−N−1 <
ε

2 + ε

2 = ε,

so that Bd(x,δ)⊂Bd(y,ε). Therefore,

y ∈Bd(x,δ)⊂Bd(y,ε)⊂A,

and because Bd(x,δ) ∈ B′, we can see that B′ is a base on E (let A be the non-empty
intersection of two elements of B′), and that B′ generates τ .

Q.E.D.

The representation theorem is stated below:
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Theorem 4.6 (Skorokhod’s Reprsentation Theorem)
Let (E,d) be a separable metric space, τ the metric topology induced by d, and E the Borel
σ-algebra on E generated by τ . Let {µn}n∈N+ be a sequence of probability measures on (E,E)
weakly converging to a probability measure µ on (E,E).
There exists a probability space and random variables {Xn}n∈N+ and X taking values in (E,E)
defined on that probability space such that

i) Xn has distribution µn for any n ∈N+ and X has distribution µ.

ii) Xn converges almost surely to X.

Proof) The proof is long and technical, but the main idea is simple. Namely, the idea is to
partition the space E into smaller and smaller sets on which µ is concentrated (which
is possible due to the separability of (E,d)), and define Xn in a manner so that it takes
values on the same small set as X. This ensures that Xn converges to X on each of
these sets, and thus almost surely.
The proof therefore proceeds by first constructing these small sets, and then construct-
ing {Xn}n∈N+ so that each Xn almost surely lies in the same small set as X.

Step 1: Existence and Construction of Small Sets

We first construct, for any ε > 0, a finite measurable partition {B0,B1, · · · ,Bk} of E
such that: 

µ(B0)< ε

µ(Bi)> 0 for 1≤ i≤ k

µ(∂Bi) = 0 for 0≤ i≤ k

diam(Bi)≤ ε for 1≤ i≤ k,

where we define diamA= supx,y∈A d(x,y) for any set A⊂E. Note that the diameter of
an open ball is equal to 2 times its radius. It is in the sense that the diameter of each
Bi is smaller than ε that {B0, · · · ,Bk} is a partition of E of ”small sets”.

By lemma 4.5, the separability of (E,d) implies that, for any ε > 0, there exists a
countable base B′ = {An}n∈N+ of open balls with radii less than ε

2 that generates τ
such that µ(∂An) = 0 for any n ∈N+. Since B′ covers E (by the definition of a base),⋃n
i=1Ai↗ E, and by sequential continuity

lim
n→∞

µ

(
n⋃
i=1

Ai

)
= µ(E) = 1.
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Define B1 =A1 and

Bn =An \
(
n−1⋃
i=1

Ai

)

for any n≥ 2. Then, {Bn}n∈N+ is a disjoint sequence of measurable sets on E such that⋃n
i=1Bi ⊂

⋃n
i=1Ai for any n ∈N+, so we have

lim
n→∞

µ

(
n⋃
i=1

Bi

)
= lim
n→∞

µ

(
n⋃
i=1

Ai

)
= 1.

For any ε > 0, there exists an N ∈N+ such that

1−µ
(
N⋃
i=1

Bi

)
< ε.

Let B′1, · · · ,B′k be the subcollection of {B1, · · · ,BN} of sets of positive µ-measure, and
let B0 be the union of

(⋃N
i=1Bi

)c
and the sets in {B1, · · · ,BN} of measure 0 under µ.

Then, {B0,B
′
1, · · · ,B′k} satisfies the desired properties:

– Because the sets in {B0,B
′
1, · · · ,B′k} are all disjoint and has union E, it is a finite

measurable partition of E.

– Since the sets of measure 0 in {B1, · · · ,BN} and
(⋃N

i=1Bi
)c

are disjoint,

µ(B0) = µ

( N⋃
i=1

Bi

)c= 1−µ
(
N⋃
i=1

Bi

)
< ε.

– By design, µ(Bi)> 0 for 1≤ i≤ k.

– For any 1 ≤ i ≤ k, because Bi ⊂ A for some A ∈ B′, where µ(∂A) = 0 and A has
radius less than ε

2 , it follows that µ(∂Bi) = 0 and Bi has diameter less than or
equal to ε.

– Finally, each Bc
i has boundary of measure 0 under µ (since ∂Bi =Bi∩Bc

i = ∂Bc
i ),

so that µ(∂B0) = 0 as well.

The preceding result now implies that, for any m∈N+, there exists a finite measurable
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partition {Bm
0 , · · · ,Bm

km
} of E such that



µ(Bm
0 )< 2−m

µ(Bm
i )> 0 for 1≤ i≤ km

µ(∂Bm
i ) = 0 for 0≤ i≤ km

diam(Bm
i )≤ 2−m for 1≤ i≤ km,

.

Since µn→ µ weakly as n→∞, and the boundary of each Bm
i has measure 0 under µ,

by the Portmanteau theorem we can see that

lim
n→∞

µn(Bm
i ) = µ(Bm

i ).

Thus, if µ(Bm
i )> 0, then there exists an Nm,i ∈N+ such that

|µ(Bm
i )−µn(Bm

i )|< 2−m ·µ(Bm
i )

for any n≥Nm,i, and in particular,

µn(Bm
i )> (1−2−m)µ(Bm

i )

for any n≥Nm,i. If µ(Bm
i ) = 0, then

µn(Bm
i )≥ 0 = (1−2−m)µ(Bm

i )

for any n ∈ N+, so we can take Nm,i as any natural number in this case. Defining
Nm = max(Nm,1, · · · ,Nm,km) ∈N+, it follows that

µn(Bm
i )≥ (1−2−m)µ(Bm

i )

for any n≥Nm and 0≤ i≤ km. Finally, we can choose the sequence {Nm}m∈N+ to be
a subsequence of N+.

For each 0≤ i≤ km and n ∈N+, define the probability measure µmn,i on (E,E) as

µmn,i(A) =


µn(A∩Bmi )
µn(Bmi ) if µn(Bm

i )> 0

µn(A) if µn(Bm
i ) = 0

for any A ∈ E . It is easy to show that µmn,i is indeed a probability measure on (E,E).

Step 2: Constructing the Sequence {Xn}n∈N+

Now we are ready to construct the random variables corresponding to {µn}n∈N+ and
µ.
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By Ionescu-Tulcea’s theorem for independent random variables, there exists a probabil-
ity space (Ω′,H′,P′) such that the random variablesX,ζ,{Yn}n∈N+ ,{Yni}n,i∈N,{Zn}n∈N+

are mutually independent and have the following distributions:

– X has distribution µ.

– ζ is uniformly distributed on [0,1].

– For any n ∈N+, Yn has distribution µn.

– If Nm ≤ n <Nm+1, then for any 0≤ i≤ km, Yni has distribution µmn,i.

– For any n ∈N+, if Nm ≤ n <Nm+1, then

P′ (Zn ∈A) = 2m
km∑
i=0

µmn,i(A)
[
µn(Bm

i )− (1−2−m)µ(Bm
i )
]

for any A ∈ E .
Letting the distribution of Zn be denoted vn, it is clear that vn is a probability
measure on (E,E) because it is the linear combination of measures µmn,0, · · · ,µmn,km
with non-negative coefficients, and

vn(E) = 2m
km∑
i=0

[
µn(Bm

i )− (1−2−m)µ(Bm
i )
]

= 2mµn(E)−2m(1−2−m)µ(E) = 1

by finite additivity (Bm
0 , · · · ,Bm

km
are disjoint and have union E).

Define the sequence {Xn}n∈N+ as follows:

i) n <N1

In this case, let Xn = Yn. Clearly, Xn has distribution µn.

ii) Nm ≤ n <Nm+1 for some m ∈N+

In this case, we let

Xn =

Yni if ζ < 1−2−m and X ∈Bm
i

Zn if ζ ≥ 1−2−m
.

Then, for any A ∈ E ,

{Xn ∈A}=

km⋃
i=1

[
{Yni ∈A}∩{X ∈Bm

i }∩{ζ < 1−2−m}
]∪ ({ζ ≥ 1−2−m}∩{Zn ∈A}

)
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so by finite additivity and the independence of all these random variables,

P′ (Xn ∈A) = (1−2−m)
km∑
i=0

P′ (Yni ∈A)P′ (X ∈Bm
i ) + 2−m ·P′ (Zn ∈A)

=
km∑
i=0

(
(1−2−m)µmn,i(A)µ(Bm

i ) +µmn,i(A)
[
µn(Bm

i )− (1−2−m)µ(Bm
i )
])

=
km∑
i=0

µmn,i(A)µn(Bm
i ).

For any m ∈N+ and 0≤ i≤ km, we can consider two cases: if µn(Bm
i ) = 0, then

µmn,i(A)µn(Bm
i ) = 0 = µn(A∩Bm

i ),

while if µn(Bm
i )> 0, then by definition

µmn,i(A)µn(Bm
i ) = µn(A∩Bm

i ).

Therefore,

P′ (Xn ∈A) =
km∑
i=0

µmn,i(A)µn(Bm
i ) =

km∑
i=0

µn(A∩Bm
i ) = µn(A)

by finite additivity and the fact that E = ⋃km
i=0B

m
i . It follows that each Xn has

distribution µn.

Step 3: Showing that Xn Converges to X

It remains to show that {Xn}n∈N+ converges almost surely to X. To this end, first
note that, for any n≥Nm and 1≤ i≤ km, the fact that µn(Bm

i )≥ (1−2−m)µ(Bm
i ) and

µ(Bm
i )> 0 implies that µn(Bm

i )> 0. Thus,

P′ (Yni ∈Bm
i ) = µn(Bm

i )
µn(Bm

i ) = 1.

It follows that the set

Ω0 =
⋂
m

Nm+1−1⋂
n=Nm

km⋂
i=1
{Yni ∈Bm

i }

has measure 1 under P′.

Define

Am = {X /∈Bm
0 }∩{ζ < 1−2−m}∩Ω0.
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for any m ∈N+, and let

A= liminf
m→∞

Am =
⋃
k

 ⋂
m≥k

Am

 .
For any n ∈N+ such that Nm ≤ n <Nm+1, then for any ω ∈Am, X(ω) ∈Bm

i for some
1 ≤ i ≤ km, and because ζ < 1−2−m, it follows that Xn(ω) = Yni(ω). Since ω ∈ Ω0, it
follows that Yni(ω) ∈Bm

i . Each Bm
i has diameter less than or equal to 2−m, so we have

d(X(ω),Xn(ω))≤ sup
x,y∈Bmi

d(x,y) = diamBm
i ≤ 2−m.

For any ω ∈ A, there exists a k ∈N+ such that ω ∈⋂m≥kAm. For any ε > 0, choosing
M ∈N+ such that M > k and 2−M < ε, since ω ∈Am for any m≥M , we can see that

d(Xn(ω),X(ω))< ε

for any n≥NM . This holds for any ω ∈ A and ε > 0, so Xn converges to X pointwise
on A.

It remains to be seen that A is a set of measure 1 under P. This can be accomplished
by noting that

P′ (Acm)≤ P′ (X ∈Bm
0 ) +P′

(
ζ ≥ 1−2−m

)
+P′ (Ωc

0) = 2−m+1.

Since

Ac =
⋂
k

 ⋃
m≥k

Acm

 ,
it follows that, for any k ∈N+,

P′ (Ac)≤ P′
 ⋃
m≥k

Acm

≤ ∞∑
m=k

P′ (Acm) =
∞∑
m=k

2−m+1

by countable subadditivity. Therefore,

P′ (Ac) = lim
n→∞

P′ (Ac)≤ lim
k→∞

∞∑
m=k

2−m+1 = 0.

Q.E.D.
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4.2.1 Application: The Continuous Mapping Theorem

Skorokhod’s representation theorem is powerful because it shows us that, for a suitable choice of
probability space, weak convergence is as strong as almost sure convergence. We illustrate this
power in the next result, which is the continuous mapping theorem for weak convergence:

Theorem 4.7 (Continuous Mapping Theorem)
Let (E,d) be a separable metric space, with corresponding Borel σ-algebra E . Let {Xn}n∈N+

be a sequence of random variables taking values in (E,E) that converge in distribution to some
random variable X taking values in (E,E).

Let (F,ρ) be another separable metric space with corresponding Borel σ-algebra F . If f :
E→ F is a Borel measurable function on E that is continuous µ-a.e., then

f ◦Xn
d→ f ◦X.

Proof) We show the result by relying on the continuous mapping theorem for almost surely
convergent sequences of random variables. First, let µn be the distribution of each Xn,
and µ that of X. By assumption, {µn}n∈N+ converges weakly to µ.

By Skorokhod’s representation theorem, there exists a probability space (Ω′,H′,P′), a
sequence {Yn}n∈N+ of random variables defined on Ω′ taking values in (E,E), and a
random variable Y defined on Ω′ taking values in (E,E) such that

– Yn has the distribution µn for any n ∈N+,

– Y has the distribution µ, and

– Yn
a.s.→ Y .

Denote the set of discontinuity points of f by D; by assumption, µ(D) = 0. Let Ω0 ∈H′

be an almost sure set on which Yn→ Y pointwise, and define

Ω1 = Y −1(Dc) ∈H′,

where the inclusion holds because D ∈ E . Because µ(D) = 0, it follows that

P′ (Ω1) = P′ (Y ∈Dc) = µ(Dc) = 1,

and as such, P′ (Ω0∩Ω1) = 1. Since f is continuous at all points on Dc, it follows that,
for any ω ∈ Ω1∩Ω0,

lim
n→∞

f(Yn(ω)) = f(Y (ω)),

since Y (ω) ∈Dc. By definition, f ◦Yn a.s.→ f ◦Y , and because almost sure convergence
implies convergence in probabilty, which in turn implies convergence in distribution
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(due to the completeness and separability of (F,ρ)), it follows that

f ◦Yn
d→ f ◦Y.

The distribution of each f ◦Yn is the pushforward measure µn ◦f−1, and likewise, the
distribution of f ◦Y is µ◦f−1; we have seen that

µn ◦f−1→ µ◦f−1

weakly. Because the distribution of each f ◦Xn is µn ◦f−1 and that of f ◦X is µ◦f−1,
this implies that

f ◦Xn
d→ f ◦X.

Q.E.D.
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4.3 Slutsky’s Theorem

This section concerns another important connection between convergence in probability and
distribution. In a sense, it shows that convergence in distribution dominates convergence in
probability; if two variables converge, one in distribution and one in probabilty, then any con-
tinuous function of the two variables converges in distribution.
We first state the first variant of the theorem:

Theorem 4.8 (Slutsky’s Thereom I)
Let (E,d) be a separable metric space, with corresponding Borel σ-algebra E . Let {Xn}n∈N+ ,
{Yn}n∈N+ be sequences of random variables taking values in (E,E).

Suppose that {Xn}n∈N+ converges in distribution to some random variable X taking values
in (E,E), and that

d(Xn,Yn) p→ 0.

Then, {Yn}n∈N+ also converges in distribution to X.

Proof) Choose any f ∈ Cb(E,R) that is Lipschitz continuous with Lipschitz constant equal to
L > 0, that is,

|f(x)−f(y)| ≤ L ·d(x,y)

for any x,y ∈E, and suppose that f is bounded above by M ∈ (0,+∞). For any ε > 0,
by Lipschitz continuity

|f(x)−f(y)|< ε

for any x,y ∈ E such that d(x,y)≤ ε
L = δ.

For any n ∈N+, we now have

|E [f ◦Xn]−E [f ◦Yn]| ≤ E|f ◦Xn−f ◦Yn|

≤ E
[
|f ◦Xn−f ◦Yn| · I{d(Xn,Yn)≤δ}

]
+E

[
|f ◦Xn−f ◦Yn| · I{d(Xn,Yn)>δ}

]
≤ εP(d(Xn,Yn)≤ δ) + 2M ·P(d(Xn,Yn)> δ)

≤ ε+ 2M ·P(d(Xn,Yn)> δ) .

Therefore,

|E [f ◦Yn]−E [f ◦X]| ≤ |E [f ◦Xn]−E [f ◦X]|+ ε+ 2M ·P(d(Xn,Yn)> δ) .
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By definition,

lim
n→∞

P(d(Xn,Yn)> δ) = 0,

and because Xn
d→X,

lim
n→∞

|E [f ◦Xn]−E [f ◦X]|= 0.

Taking n→∞ on both sides thus yields

limsup
n→∞

|E [f ◦Yn]−E [f ◦X]| ≤ ε.

This holds for any ε > 0, so

lim
n→∞

E [f ◦Yn] = E [f ◦X] .

This in turn holds for any Lipschitz continuous f ∈ Cb(E,R), so by the Portmanteau
theorem,

Yn
d→X.

Q.E.D.

The next result applies the previous theorem to make a claim about a pair of random variables.

Theorem 4.9 (Slutsky’s Thereom II)
Let (E,d) and (F,ρ) be separable metric spaces with corresponding Borel σ-algebras E and
F . Let {Xn}n∈N+ and {Yn}n∈N+ be sequences of random variables taking values in (E,E) and
(F,F), respectively.

Suppose that {Xn}n∈N+ converges in distribution to some random variable X in (E,E), and
that {Yn}n∈N+ converges in distribution to some random variable Y in (F,F).

If Y is a degenerate random variable, then the sequence {(Xn,Yn)}n∈N+ of random variables
in (E×F,E⊗F) satisfies

(Xn,Yn) d→ (X,Y ).

Moreover, for any continuous function g on E×F ,

g(Xn,Yn) d→ g(X,Y ).

Proof) Because (E,d) and (F,ρ) are separable, letting τ and s be their metric topologies in-
duced by d and ρ, the product topology τ × s generates the product σ-algebra E⊗F .
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Furthermore, we also showed that the product metric d× ρ metrizes τ × s, so that
E
⊗
F is precisely the Borel σ-algebra associated with the metric space (E×F,d×ρ).

Because the individual metric spaces (E,d) and (F,ρ) are separable, so is (E×F,d×ρ);
this means that the theorems concerning convergence in distribution we have studied so
far also apply to sequences of probability measures on the product space (E×F,E⊗F).

Note first that, for any n ∈N+,

(d×ρ) [(Xn,Y ),(Xn,Y )] = max(d(Xn,Xn),ρ(Yn,Y )) = max(0,ρ(Yn,Y )) = ρ(Yn,Y ),

and because

ρ(Yn,Y ) p→ 0

by the assumption that Yn
p→ Y , it follows that

(d×ρ) [(Xn,Y ),(Xn,Y )] p→ 0

as well.

Because Y is a degenerate random variable, Y = k almost surely for some k ∈ F . It
then follows that, for any f ∈ Cb(E×F,R),

E [f ◦ (Xn,Y )] = E [f ◦ (Xn,k)]

for any n ∈ N+. Defining the function h : E → R as h(x) = f(x,k) for any x ∈ E, h
is continuous because the sections of continuous functions are continuous, and it is
bounded because f is. Therefore, by the definition of convergence in distribution,

lim
n→∞

E [f ◦ (Xn,Y )] = lim
n→∞

E [f ◦ (Xn,k)]

= lim
n→∞

E [h◦Xn] = E [h◦X] = E [f ◦ (X,k)] = E [f ◦ (X,Y )] .

This holds for any f ∈ Cb(E×F,R), so by definition

(Xn,Y ) d→ (X,Y ).

Finally, by the first version of Slutsky’s theorem, we can now see that

(Xn,Yn) d→ (X,Y ).

Finally, letting g be a function on E×F that is continuous with respect to d×ρ, by
the continuous mapping theorem we have

g(Xn,Yn) d→ (X,Y ).
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Q.E.D.

4.3.1 Application: Convergence of Random Vectors and Matrices

The following are some applications of Slutsky’s theorem to random vectors on euclidean spaces.
Let {Xn}n∈N+ , {Bn}n∈N+ be sequences of k-dimensional random vectors, and {An}n∈N+ a se-
quence of m×k random matrices. Suppose that Xn

d→X for some k-dimensional random vector
X, and that An

p→A, Bn
p→B for some non-random A ∈ Rm×k and B ∈ Rk.

Convergence of Sums and Products
Denoting by dk the euclidean metric on Rk and ρm×k the metric induced by the trace norm

on Rm×k, define the functions f : Rk×Rk→ Rk and g : Rm×k×Rk→ Rk as

f(x,y) = x+y and g(M,x) =Mx

for any x,y ∈Rk and M ∈Rm×k. Both these functions are continuous with respect to the product
metrics on their respective domains: starting with f , for any x,y,z,w ∈ Rk,

|f(x,y)−f(z,w)|= |x+y− (z+w)| ≤ |x−z|+ |y−w|

≤ 2 ·max(|x−z|, |y−w|) = 2 · (dk×dk)((x,y),(z,w)),

so that f is actually Lipschitz continuous with Lipschitz constant equal to 2. Similarly, for any
M,S ∈ Rm×k and x,y ∈ Rk,

|g(M,x)−g(S,y)|= |Mx−Sy|= |Mx−My+My−Sy|

≤ ‖M‖|x−y|+‖M −S‖ · |y|.

For any ε > 0, define

δ = min
(

ε

‖M‖+ |x|+ 1 ,1
)
> 0.

For any (S,y) ∈ Rm×k×Rk such that

(ρm×k×dk)((M,x),(S,y)) = max(‖M −S‖, |x−y|)< δ,

we can see that

|y| ≤ |x−y|+ |x|< 1 + |x|

and

|g(M,x)−g(S,y)| ≤ ‖M‖|x−y|+‖M −S‖ · |y| ≤ δ [‖M‖+ |x|+ 1]< ε.
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This holds for any ε > 0, so g is continuous at (M,x), and indeed on Rm×k×Rk.
In light of the continuity results above, by Slutsky’s theorem,

AnXn+Bn
d→AX+B.

Convergence of Quadratic Forms
Another popular application concerns quadratic forms. Suppose m = k, and note that the

mapping h : Rk×k×Rk→ R defined as

h(M,x) = x′Mx

for any M ∈Rk×k and x ∈Rk is continuous with respect to the product metric ρk×k×dk. To see
this, choose any M ∈ Rk×k and x ∈ Rk. For any ε > 0, define

δ = min
(

ε

|x|‖M‖+ |x|(|x|+ 1) + (‖M‖+ 1)(|x|+ 1) ,1
)
> 0.

Then, for any S ∈ Rk×k and y ∈ Rk such that

(ρk×k×dk)((M,x),(S,y)) = max(‖M −S‖, |x−y|)< δ,

we can see that

|y| ≤ |x−y|+ |x|< 1 + |x|

‖S‖ ≤ ‖M −S‖+‖M‖< 1 +‖M‖

and

|h(M,x)−h(S,y)|=
∣∣x′Mx−y′Sy

∣∣= ∣∣x′Mx−x′My+x′My−x′Sy+x′Sy−y′Sy
∣∣

≤ |x|‖M‖|x−y|+ |x|‖M −S‖|y|+ |x−y|‖S‖|y|

≤ [|x|‖M‖+ |x|(|x|+ 1) + (‖M‖+ 1)(|x|+ 1)]δ < ε,

where the last inequality follows by design. This holds for any ε > 0, so by definition h is
continuous at (M,x) and indeed on Rk×k×Rk. By Slutsky’s theorem, we can now see that

X ′nAnXn
d→X ′AX.
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4.4 Tightness and Prohorov’s Theorem

In this section we state and prove a theorem that allows us to determine whether a given sequence
or collection of probability measures converges weakly. This theorem forms the cornerstone in
both the usual central limit theorem (via the continuity theorem, proved below) and the func-
tional central limit theorem.

A central concept is the relative compactness of probability measures. Let (E,d) be an arbi-
trary metric space and E the associated Borel σ-algebra. A collection Π of probability measures
on (E,E) is said to be relatively compact if, for any sequence {µn}n∈N+ in Π there exists a
subsequence {µnk}k∈N+ of {µn}n∈N+ that converges weakly to some probability measure µ on
(E,E), not necessarily in Π. This is similar to the characterization of relative compactness in a
metric space, in which a set is relatively compact if and only if any sequence in that set has a
convergent subsequence. However, the relative compactness of measures is not quite the same
as the topological concept of the same name, since we have not defined any metric or topology
on the space of probability measures.
Relative compactness comes in handy because of the following result:

Lemma 4.10 Let (E,d) be a metric space with associated Borel σ-algebra E . Suppose
{µn}n∈N+ is a relatively compact sequence of probability measures on (E,E). In addition, as-
sume that every weakly convergent subsequence of {µn}n∈N+ is has the same weak limit µ.
Then, {µn}n∈N+ itself converges weakly to µ.

Proof) Suppose that {µn}n∈N+ does not converge weakly to µ. Then, there exists a bounded
and continuous real valued function f such that {

∫
E fdµn}n∈N+ does not converge to∫

E fdµ. By definition, there exists an ε > 0 such that, for any n ∈ N+ there exists an
N ≥ n such that ∣∣∣∣∫

E
fdµN −

∫
E
fdµ

∣∣∣∣≥ ε.
As usual, we can construct a subsequence {

∫
E fdµnk}k∈N+ of {

∫
E fdµn}n∈N+ such that∣∣∣∣∫

E
fdµnk −

∫
E
fdµ

∣∣∣∣≥ ε
for any k ∈N+. Since {µnk}k∈N+ is a sequence in the set Π = {µn | n ∈N+}, which is
relatively compact, by definition there exists a subsequence {µnkm}m∈N+ of {µnk}k∈N+

that is weakly convergent. {µnkm}m∈N+ is itself a subsequence of {µn}n∈N+ , so by
assumption, it converges weakly to µ. As such,

lim
m→∞

∫
E
fdµnkm =

∫
E
fdµ.
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However, the fact that ∣∣∣∣∫
E
fdµnkm −

∫
E
fdµ

∣∣∣∣≥ ε
for any m ∈ N+ contradicts the above convergence result. It follows that {µn}n∈N+

should converge weakly to µ.

Q.E.D.

Therefore, if we can establish the two results above, we can easily show that a given sequence
of probability measures converges weakly. It is for this reason that we wish to find sufficient
conditions that ensure relative compactness. The main concern here is finding, for any sequence
in a collection Π of probability measures, a subsequence that converges weakly to a probability
measure. In order to ensure that the weak limit is a probability measure, we require a condition
that precludes any mass from escaping the probability measures in the limit. This condition is
called tightness, and the formal definition is given below.

A collection of probability measures Π on (E,E) is said to be tight if, for any ε > 0, there exists
a compact set K in E such that

µ(Kc)< ε

for any µ ∈ Π. In other words, there exists a compact set such that the mass of each measure
in Π on the set can be made arbitrarily close to 1. This is the sense in which mass is precluded
from escaping in the limit.

An easy result that follows from the definition is that a probability measure on a metric
space that is both complete and separable is itself tight. We can further extend this so that any
relatively compact collection of probability measures on a complete and separable metric space
is tight; it turns out that this is the necessity part of Prohorov’s theorem.

Theorem 3.10 (Prohorov’s Theorem: Necessity)
Let (E,d) be a complete and separable metric space, τ the topology induced by d and E the
Borel σ-algebra generated by τ . For any collection of probability measures Π on (E,E), Π is
tight if it is relatively compact.

Proof) The three properties of relative compactness, separability and completeness come into
play one by one, and the proof can be divided into steps in which each property is used.

Step 1: Relative Compactness

Let {Gn}n∈N+ be a sequence of open sets increasing to E. The relative compactness of
Π implies that, for any ε > 0, there exists an N ∈N+ such that µ(GN )≥ 1− ε for any
µ ∈Π.
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To see this, suppose that, for any n∈N+, there exists a µn ∈Π such that µn(Gn)< 1−ε.
Then, {µn}n∈N+ is a sequence in Π and, by relative compactness, it has a weakly
convergent subsequence {µnk}k∈N+ . Letting v be the weak limit of this subsequence,
by the Portmanteau theorem we have

v(Gn)≤ liminf
k→∞

µnk(Gn)

for any n ∈N+. For m ∈N+ such that nm > n, we have

µnm(Gn)≤ µnm(Gnm)

because Gn ⊂Gnm , so that

inf
m≥k

µnm(Gn)≤ inf
m≥k

µnm(Gnm)

for any k ∈N+ and thus

liminf
k→∞

µnk(Gn) = sup
k∈N+

(
inf
m≥k

µnm(Gn)
)
≤ liminf

k→∞
µnk(Gnk).

Finally, µnk(Gnk)< 1− ε for any k ∈N+, so

v(Gn)≤ liminf
k→∞

µnk(Gnk)≤ 1− ε.

This holds for any n ∈N+, so by sequential continuity

1 = v(E) = lim
n→∞

v(Gn)≤ 1− ε,

which is a contradiction. Therefore, there must exist an N ∈N+ such that

µ(GN )≥ 1− ε for any µ ∈Π.

Indeed, because {Gn}n∈N+ is an increasing sequence of open sets,

µ(Gn)≥ 1− ε for any n≥N and µ ∈Π.

Step 2: Separability

Now we will construct a sequence {Gn}n∈N+ of open sets increasing to E using the
separability of (E,d). Throughout, we fix ε > 0.

Since (E,d) is separable, there exists a countable set E0 that is dense in E. For any
k ∈ N+, letting Bk = {Akn}n∈N+ be the collection of all open balls centered at some
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point in E0 with radius 1
k , Bk covers E. To see this, let x ∈ E and note that, by the

denseness of E0 in E, there exists some y ∈E0 such that d(x,y)< 1
k , which implies that

x ∈Bd(y,1/k), where Bd(y,1/k) ∈ Bk.

Defining

Gn =
n⋃
i=1

Aki

for any n ∈N+, {Gn}n∈N+ is now a sequence of open sets in E that increases to E. By
the preceding result, there exists an Nk ∈N+ such that

µ

Nk⋃
i=1

Aki

> 1− ε

2k ,

or equivalently,

µ

Nk⋂
i=1

Acki

<
ε

2k

for any µ ∈Π.

Now define

Bk =
Nk⋂
i=1

Acki for any k ∈N+ and B =
⋃
k

Bk.

Then, we can see that

µ(B)≤
∞∑
k=1

µ(Bk)≤ ε

by countable subadditivity.

Finally, defining K = Bc, because Kc ⊂ B, we have µ(Kc)≤ ε. It will now follow that
Π is tight if we can show that K is compact. To do so, we show that Bc is relatively
compact (in the topological sense); by definition, this means that K, the closure of Bc,
is a compact set.

Step 3: Completeness

Recall that Bc is relatively compact (in the topological sense) if any sequence in Bc

has convergent subsequence. Let {xn}n∈N+ be a sequence in

Bc =
⋂
k

Nk⋃
i=1

Aki.
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Put {xn,0}n∈N+ = {xn}n∈N+ , and suppose that we have constructed a subsequence
{xn,k−1}n∈N+ of {xn}n∈N+ for some k ≥ 1. Then, since {xn,k−1}n∈N+ lies in the set⋃Nk
i=1Aki, there must exist an 1≤ i≤Nk such that Aki contains infinitely many elements

of {xn,k−1}n∈N+ . Let {xn,k}n∈N+ collect these elements of {xn,k−1}n∈N+ ; {xn,k}n∈N+

is a subsequence of {xn,k−1}n∈N+ and by extension {xn}n∈N+ . Moreover, because each
xn,k ∈Aki and Aki has radius smaller than 1

k , we have

d(xn,k,xm,k)<
1
k

for any n,m ∈N+.
Now consider the sequence {xk,k}k∈N+ of elements of E. We can immediately tell this
is a subsequence of {xn}n∈N+ , since, for any k ∈N+, {xn,k+1}n∈N+ is a subsequence of
{xn,k}n∈N+ and thus xk+1,k+1 is at least as far along {xn}n∈N+ as xk+1,k, whcih tells
us that xk+1,k+1 is further along {xn}n∈N+ than xk,k.
In addition, for any k,m ∈N+, we saw above that

d(xk,k,xm,m)< 1
min(k,m) .

Thus, as k,m→∞, the quantity on the left hand side converges to 0.
We have seen that {xk,k}k∈N+ is a subsequence of {xn}n∈N+ that is Cauchy with re-
spect to the metric d. By the completeness of (E,d), it converges to some x ∈E, which
completes our proof.

Q.E.D.

Note that the above theorem holds when Π = {µ} for some probability measure µ on (E,E)
becauase Π is trivially relatively compact in this case. Therefore, the theorem shows that every
singleton is tight if the underlying metric space is complete and separable.

Prohorov’s theorem furnishes sufficient and necessary conditions for a collection of probability
measures to be relatively compact, and it is the main result of this section; we proved the ne-
cessity part above. The surprising result is that tightness by itself is sufficient and (under some
additional conditions) necessary for relative compactness. First, we present a preliminary result
concerning the convergence of functions defined on a countable space.

Lemma 4.12 Let E be a countable set and {fn}n∈N+ a sequence of real vector or com-
plex valued pointwise bounded functions on E. Then, there exists a subsequence {fnk}k∈N+ of
{fn}n∈N+ that converges pointwise.

Proof) Let F = Rn or C.
Let {xn}n∈N+ be the elements of the countable set E arranged into a sequence. Because
{fn(x1)}n∈N+ is a bounded sequence, by the Bolzano-Weierstrass theorem there exists
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a subsequence {fn,1}n∈N+ of {fn}n∈N+ such that {fn,1(x1)}n∈N+ converges pointwise
to some fx1 ∈ F .
Suppose, for some k≥ 1, that we have found a subsequence {fn,k}n∈N+ of {fn}n∈N+ such
that {fn,k(xi)}n∈N+ converges to some fxi ∈ F for 1≤ i≤ k. Again, {fn,k(xk+1)}n∈N+

is a bounded sequence, so there exists a subsequence {fn,k+1}n∈N+ of {fn,k}n∈N+ and
by extension {fn}n∈N+ such that

fn,k+1(xk+1)→ fxk+1

as n→∞ for some fxk+1 ∈ F .
Note that, for any k ∈N+ and 1≤ i≤ k,

lim
m→∞

fm,k(xi) = fxi

and {fm,k(xi)}m∈N+ is a subsequence of {fm,j(xi)}m∈N+ for any 1≤ j ≤ k.
Now consider the sequence {fk,k}k∈N+ of functions. {fk,k}k∈N+ is a subsequence of
{fn}n∈N+ because, for any k ∈N+, {fn,k+1}n∈N+ is a subsequence of {fn,k}n∈N+ and
thus fk+1,k+1 is at least as far along {fn}n∈N+ as fk+1,k, which implies that fk+1,k+1 is
further along {fn}n∈N+ than fk,k.

It remains to see whether {fk,k}k∈N+ converges pointwise. For any ε > 0 and i ∈N+,

lim
m→∞

fm,i(xi) = fxi ,

so there exists an N ∈N+ such that N ≥ i and

|fm,i(xi)−fxi |< ε

for any m≥N .
Choose any k ≥N . Because {fm,k(xi)}m∈N+ is a subsequence of {fm,i(xi)}m∈N+ , there
exists anm∈N+ such that fk,k(xi) = fm,i(xi). fk,k(xi) is the kth element of {fm,k(xi)}m∈N+ ,
so m≥ k ≥N , which implies that

|fk,k(xi)−fxi |= |fm,i(xi)−fxi |< ε

by the above result.
This holds for any ε > 0, so by definition the sequence {fk,k(xi)}k∈N+ converges to fxi .
Define f : E→ F as

f(xi) = fxi

for any i ∈ N+. Then, the above result shows that {fk,k}k∈N+ is a subsequence of
{fn}n∈N+ that converges pointwise to f .
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Q.E.D.

We now state and prove the sufficiency part of Prohorov’s theorem below:

Theorem 4.13 (Prohorov’s Theorem: Sufficiency)
Let (E,d) be a metric space, τ the metric topology induced by d, and E the Borel σ-algebra on
E generated by τ . Let Π be a collection of probability measures on (E,E).
If Π is tight, then it is relatively compact.

Proof) Interestingly, the sufficiency part holds for metric spaces that are not necessarily com-
plete or separable; it is shown below that, instead of separability on the metric space,
we can make use of the separability of compact sets to obtain the desired result.

The proof proceeds roughly as follows. Choosing an arbitrary sequence in Π, we first
construct a well-behaved countable collection of Borel sets F and find a subsequence of
that sequence that converges pointwise on that countable collection. Using the point-
wise limit above, we construct an outer measure on E in a similar manner to the Riesz
representation theorem. It can then be shown that E is exactly the collection of all outer
measurable sets, and as such, by Caratheodory’s restriction theorem, the restriction of
that outer measure to E defines a measure µ on (E,E). Finally, the choice of F allows us
to conclude that the pointwise convergent subsequence found above converges weakly
to µ, and that µ is a probability measure.

We now detail each of the above procedures. Initially, let {µn}n∈N+ be a sequence in
the tight collection Π of probability measures on (E,E).

Step 1: Constructing F
By the tightness of Π, for any n ∈N+ there exists a compact set Kn such that

µ(Kn)> 1− 1
n

for any µ ∈ Π; without loss of generality, we can choose Kn so that {Kn}n∈N+ is an
increasing sequence of compact subsets of E. Define K =⋃

nKn ⊂E. We show that K
is covered by a countable collection of open balls.

For any q ∈Q and n ∈N+, note that the collection {Bd(x,q)}x∈Kn is an open cover of
Kn; by the compactness of Kn, there exists a finite collection En,q of points in Kn such
that

Kn ⊂
⋃

x∈En,q
Bd(x,q).
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This holds for any n ∈N+, so defining Eq =⋃
nEn,q,

K =
⋃
n

Kn ⊂
⋃
x∈Eq

Bd(x,q).

Defining

A= {Bd(x,q) | q ∈Q,x ∈ Eq}.

A is a countable collection of open sets in E such that

K ⊂
⋃
A∈A

A.

Furthermore, for any open G and x∈K∩G, because G is open there exists an ε > 0 such
that x ∈Bd(x,ε)⊂G. Choosing any q ∈Q such that q < ε

4 , because K ⊂⋃y∈EqBd(y,q)
and x ∈K, there exists a y ∈Eq such that x ∈Bd(y,q). It is also the case that Bd(y,q)
is contained in G; to see this, note that, for any z ∈Bd(y,q),

d(x,z)≤ d(x,y) +d(y,z)< 2q < ε

2 ,

which implies that

Bd(y,q)⊂Bd(x,ε/2).

Denoting A=Bd(y,q), by construction A ∈ A and

A⊂ {z ∈ E | d(x,z)≤ ε/2} ⊂Bd(x,ε)⊂G,

so that

x ∈A⊂A⊂G.

Summarizing our construction so far, we have found a countable collection A of open
balls in E such that:

– A covers K =⋃
nKn

– For any open set G and x∈K∩G, there exists an A∈A such that x∈A⊂A⊂G.

This suggests that A is actually a countable base for the subspace topology τK on K

induced by τ . Despite the fact that we have not assumed the separability (and thus
second countability) of (E,τ), the second countability of (K,τK) follows from the fact
that K is the countable union of compact sets.

From A, we can construct the countable collection of interest. Define F as the collection
of all subset of E that can be expressed as the finite union of sets of the form A∩Kn,
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where A ∈ A and n ∈N+; formally,

F =
{ ⋃
j∈J

(Aj ∩Knj ) | J is finite, ∀j ∈ J,Aj ∈ A and nj ∈N+
}
∪{∅}.

Step 2: The Properties of F
We list below some properties of F :

– F is a countable collection of subsets of E
This is clear because F consists of finite unions of sets from a countable collection
of subsets of E.

– Any H ∈ F is compact and contained in some Km

Let H ∈F be nonempty. Then, there exist A1, · · · ,An ∈A and an m1, · · · ,mn ∈N+

such that

H =
n⋃
i=1

(
Ai∩Kmi

)
.

Because H is the union of closed sets, it is itself closed. Furthermore, it is con-
tained in the compact set ⋃ni=1Kmi = Km, where m = max(m1, · · · ,mn), so H is
itself compact.
If H is the empty set, then it is trivially compact.
By implication, H is Borel measurable and F ⊂ E .

– Each Kn is contained in F
Because En,q is finite for each n ∈N+ and q ∈Q, we have

Kn =
⋃

x∈En,q

(
Bd(x,q)∩Kn

)
∈ F ,

since Bd(x,q) ∈ A for any x ∈ En,q.

– F is closed under finite unions
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This is obvious, since F consists of finite unions of sets in the countable collection

{A∩Kn |A ∈ A,n ∈N+}

along with the empty set.

Heuristically, F consists of compact sets that separate closed and open sets. Doing so
allows us to formulate results on open sets in terms of approximating sets from below
that belong in F .
The formal result can be stated as follows:

Let F and G be closed and open sets in E such that F ⊂G, and suppose that F
is contained in some H ∈F . Then, there exists an H0 ∈F such that F ⊂H0 ⊂G.

To prove the above statement, let F , G be closed and open sets such taht F ⊂G and
F ⊂H for some H ∈ F .
If H = ∅, then F = ∅ and thus we can take H0 = ∅.
Suppose now that H is nonempty. Choose any x ∈ F ; because H is a compact set
contained in K, x ∈ K. Furthermore, x ∈ F ⊂ G, which implies that x ∈ G and thus
x ∈K ∩G. There then exists an Ax ∈ A such that

x ∈Ax ⊂Ax ⊂G.

{Ax}x∈F is thus an open cover of F whose union is contained in G, and because F ,
being a closed subset of a compact set H, is itself compact, there exists a finite collection
x1, · · · ,xn ∈ F such that

F ⊂
n⋃
i=1

Axi .

Lastly, because H is contained in Km for some m ∈N+, F ⊂H ⊂Km, and defining

H0 =
n⋃
i=1

(
Axi ∩Km

)
∈ F ,

we thus have

F ⊂H0 ⊂
n⋃
i=1

Axi ⊂G.
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We can also show, as an application of the last result, the following:

Let G1,G2 be open sets such that H ⊂G1∪G2 for some H ∈F . Then, there exist
H1,H2 ∈ F such that H1 ⊂G1, H2 ⊂G2 and H ⊂H1∪H2.

To prove this, choose any open sets G1,G2 and let H ⊂G1∪G2 for some H ∈F . Define

F1 = {x ∈H | d(x,Gc1)≥ d(x,Gc2)} and F2 = {x ∈H | d(x,Gc1)≤ d(x,Gc2)}.

Since Gc1 and Gc2 are closed, the function h= d(·,Gc1)−d(·,Gc2) is continuous on E; we
can write

F1 = h−1 ([0,+∞))∩H and F2 = h−1 ((−∞,0])∩H,

which tells us that F1 and F2 are closed sets (H is closed, and the inverse images of h
are as well by the closedness of [0,+∞), (−∞,0] and the continuity of h). Furthermore,
for any x ∈ F1, suppose x /∈G1; then, since x ∈H ⊂G1∪G2, this means that x ∈G2.
However, this means that

d(x,Gc2)> 0 = d(x,Gc1),

which contradicts x ∈ F1. Therefore, x ∈G1, so that F1 ⊂G1. Likewise, F2 ⊂G2.
We have thus seen that F1,F2 are closed sets contained in G1,G2 and also in the set
H ∈ F ; therefore, by the previous result, there exist H1,H2 ∈ F such that

Fi ⊂Hi ⊂Gi

for i= 1,2.
Finally, since H = F1∪F2, it follows that

H ⊂H1∪H2.
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Step 3: Choosing a Pointwise Convergent Subsequence
The chosen sequence {µn}n∈N+ can be viewed as a sequence of functions on the count-
able collection F of subsets of E that are pointwise bounded (in fact, they are uniformly
bounded since they, being probability meausres, all take values in [0,1]). By lemma 4.12,
then, there exists a subsequence {µnk}k∈N+ of {µn}n∈N+ and a function α :F →R such
that

lim
k→∞

µnk(H) = α(H)

for any H ∈ F . Because each µnk takes values in [0,1], so does α.
The function α possesses the following properties:

– α(∅) = 0 trivially, since µnk(∅) = 0 for any k ∈N+.

– For any disjoint H1,H2 ∈ F ,

µnk(H1∪H2) = µnk(H1) +µnk(H2)

for any k ∈N+ by finite additivity, so

α(H1∪H2) = α(H1) +α(H2)

as well; α is finitely additive.

– For any H1,H2 ∈ F that are not necessarily disjoint,

α(H1∪H2) = α(H1 \H2) +α(H2)

= α(H1)−α(H1∩H2) +α(H2)≤ α(H1) +α(H2)

by finite additivity, so that α is finitely subadditive.

– For any H1,H2 ∈ F such that H1 ⊂H2,

α(H2) = α(H1) +α(H2 \H1)≥ α(H1)

by finite additivity, since H1∩H2 =H1. Thus, α is monotonic.
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Suppose µ is a probability measure on (E,E) such that

µ(G) = sup{α(H) |H ∈ F ,H ⊂G}.

for any open set G. Then, for any k ∈N+ and H ∈ F such that H ⊂G,

µnk(G)≥ µnk(H)

holds, and taking k→∞ on both sides yields

liminf
k→∞

µnk(G)≥ α(H).

Finally, this holds for any H ∈ F such that H ⊂G, so

liminf
k→∞

µnk(G)≥ sup{α(H) |H ∈ F ,H ⊂G}.= µ(G),

and by the Portmanteau theorem, µnk → µ weakly.

Therefore, our goal is now to construct some probability measure µ on (E,E) such that

µ(G) = sup{α(H) |H ∈ F ,H ⊂G}.

It is during this process that Caratheodory’s restriction theorem comes into play. Specif-
ically, we first construct an outer measure on E that satisfies the above property for
any subset of E, and then show that its restriction to E is a probability measure.
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Step 4: Constructing an Outer Measure on E

As in the Riesz representation theorem, define the function β : τ → [0,1] as

β(G) = sup{α(H) |H ∈ F ,H ⊂G}

for any G ∈ τ . Note that the set {α(H) |H ∈ F ,H ⊂G} is nonempty; this is because,
for any G∈ τ , ∅ ⊂G and ∅ ∈F . so that α(∅) = 0 is contained in the above set. It follows
that β is well-defined because the set {α(H) |H ∈F ,H ⊂G} is nonempty and a subset
of [0,1], so that the least upper bound property of the real line ensures β takes values
in [0,1] as well.

It is easy to show that β possesses the following properties:

– β(∅) = 0 because ∅ is the only set in F contained in ∅.

– For any G1,G2 ∈ τ such that G1 ⊂G2,

{α(H) |H ∈ F ,H ⊂G1} ⊂ {α(H) |H ∈ F ,H ⊂G2},

it follows that β(G1)≤ β(G2). Thus, β is monotonic on τ .

We can show that β is countably subadditive on the collection of open sets. We first
show that β is finitely subadditive, and then move onto countable subadditivity.

– Finite Subadditivty
Choose any open G1,G2 with union G. Then, for any H ∈ F such that H ⊂ G,
there exist H1,H2 ∈ F such that H ⊂ H1 ∪H2 and H1 ⊂ G1 and H2 ⊂ G2. By
implication,

α(H)≤ α(H1) +α(H2) (Monotonicity and Subadditivity of α)

≤ β(G1) +β(G2) (Definition of β)

This holds for any H ∈ F such that H ⊂G, so

β(G)≤ β(G1) +β(G2),

which shows that β is finitely subadditive on τ .

– Countable Subadditivity
Now let {Gn}n∈N+ be a sequence of open sets with union G (that is also open).
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Choose any H ∈ F such that H ⊂G. This makes {Gn}n∈N+ an open cover of the
compact set H, and as such there exists an N ∈N+ such that

H ⊂
N⋃
i=1

Gi.

Then, by definition and finite subadditivity,

α(H)≤ β
(
N⋃
i=1

Gi

)
≤

N∑
i=1

β(Gi)≤
∞∑
n=1

β(Gn).

This holds for any H ∈ F such that H ⊂G, so

β(G)≤
∞∑
n=1

β(Gn).

Now we define the function µ∗ : 2E → [0,1] as

µ∗(A) = inf{β(G) |A⊂G,G ∈ τ}

for any A ⊂ E. Again, {β(G) | A ⊂ G,G ∈ τ} is nonempty (each A ⊂ E is contained
in the open set E) and a subset of [0,1] (β takes values in [0,1]), so that µ∗(A) is
well-defined and takes values in [0,1] for any A⊂ E.
It is also the case that µ∗ and β agree on the collection of all open sets. To see this,
choose any G ∈ τ ; since G is itself an open set containing G,

µ∗(G)≤ β(G).

On the other hand, for any ε > 0, by the definition of the infimum there exists an open
set V ∈ τ such that G⊂ V and

µ∗(G)≤ β(V )< µ∗(G) + ε.

By the monotonicity of β, it follows that

β(G)≤ β(V )< µ∗(G) + ε,

and since this holds for any ε > 0, we have β(G)≤ µ∗(G) and thus µ∗(G) = β(G).

We can now show that µ∗ is an outer measure on E, similarly to the Riesz representation
theorem. We verify each property one by one.
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1) Because ∅ is an open set and µ∗ and β agree on τ ,

µ∗(∅) = β(∅) = 0.

2) For any A1,A2 ∈ 2E such that A1 ⊂A2, because

{β(G) |A2 ⊂G,G ∈ τ} ⊂ {β(G) |A1 ⊂G,G ∈ τ},

it follows that

µ∗(A1)≤ µ∗(A2).

3) It remains to verify that µ∗ is countably subadditive. Choose any sequence {An}n∈N+

of subsets of E with union A. By the definition of the infimum, for any ε > 0 and
n ∈N+, there exists an open set Gn such that An ⊂Gn and

µ∗(An)≤ β(Gn)< µ∗(An) + ε

2n .

Then, G=⋃
nGn is an open set that contains A; by definition and the countable

subadditivity of β,

µ∗(A)≤ β(G)≤
∞∑
n=1

β(Gn)≤
∞∑
n=1

µ∗(An) + ε.

This holds for any ε > 0, so

µ∗(A)≤
∞∑
n=1

µ∗(An),

which shows that µ∗ is countably subadditive.

Thereofre, µ∗ is an outer measure on E; define the set of all µ∗-measurable sets as M,
and recall that

M= {A⊂ E | µ∗(B) = µ∗(B∩A) +µ∗(B∩Ac) for all B ⊂ E}.

We will now show that M contains E .

215



Step 5: M contains E
Because M is a σ-algebra on E, it suffices to show that M contains every closed set;
then, because M is closed under complements, it contains every open set, and thus
contains E because the latter is by definition the smallest σ-algebra on E containing
every open set.

Let F be a closed set. Then,

µ∗(B)≤ µ∗(B∩F ) +µ∗(B∩F c)

by the suabdditivity of µ∗, so it remains to see that the reverse inequality holds.

Let G be an open set. Because F c∩G is an open set, by the definition of the supremum
there exists for any ε > 0 an H1 ⊂ F c∩G such that

β(F c∩G)− ε < α(H1)≤ β(F c∩G).

Since H1 is again compact and thus closed, Hc
1 ∩G is open, and by the same line of

reasoning as above, there exists an H2 ⊂Hc
1 ∩G such that

β(Hc
1 ∩G)− ε < α(H2)≤ β(Hc

1 ∩G).

Because H1 and H2 are disjoint, by the finite additivity of α we have

α(H1∪H2) = α(H1) +α(H2)> β(F c∩G) +β(Hc
1 ∩G)−2ε

= µ∗(F c∩G) +µ∗(Hc
1 ∩G)−2ε,

where the last equality follows becausae µ∗ and β agree on the open sets.

Furthermore, because H1 ⊂ F c, we have F ⊂Hc
1 and

α(H1∪H2)> µ∗(F c∩G) +µ∗(F ∩G)−2ε

by the monotonicity of µ∗.

Finally, since H1∪H2 ⊂G, by the definition of β we have

µ∗(G) = β(G)≥ α(H1∪H2)> µ∗(F c∩G) +µ∗(F ∩G)−2ε.

This holds for any ε > 0, so

µ∗(G) = β(G)≥ µ∗(F c∩G) +µ∗(F ∩G).
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Now let B ⊂ E arbitrarily. For any open G such that B ⊂G,

β(G)≥ µ∗(F c∩G) +µ∗(F ∩G)≥ µ∗(F c∩B) +µ∗(F ∩B),

where the last inequality follows by the monotonicity of µ∗. Therefore,

µ∗(B) = inf{β(G) |G ∈ τ,B ⊂G}

≥ µ∗(F c∩B) +µ∗(F ∩B).

By definition, F ∈M, and thus M⊂E .
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Step 6: Constructing the Probability Measure µ

By Caratheodory’s restriction theorem, letting µ0 be the restriction of µ∗ to M,
(E,M,µ0) is a complete measure space such that

µ0(G) = µ∗(G) = β(G)

for any open set G. Furthermore, since µ∗ takes values in [0,1], so does µ0.

As such, letting µ : E → [0,1] be defined as

µ(A) = µ0(A)

for any A∈ E , so that µ is the restriction of µ0 to E , the triple (E,E ,µ) forms a measure
space. In particular, for any open set G,

µ(G) = µ0(G) = β(G) = sup{α(H) |H ∈ F ,H ⊂G}.

By the remark at the end of step 3, the proof is complete if we can show that µ is a
probability measure on (E,E).

To see this, note that, for any m ∈N+,

1≥ µ(E) = β(E)≥ α(Km) = lim
k→∞

µnk(Km),

where the second inequality follows because Km ∈ F , E is open and Km ⊂ E. By how
we chose Km,

µnk(Km)> 1− 1
m

for any k ∈N+, which tells us that

1≥ µ(E)≥ α(Km)≥ 1− 1
m
.

This holds for any m ∈N+, so taking m→∞ on both sides yields

µ(E) = 1.

Therefore, µ is a probability measure on (E,E), and the proof is complete.

Q.E.D.

218



4.4.1 Application: Lévy’s Continuity Theorem

Prohorov’s theorem can be used to prove, among other things, Lévy’s continuity theorem, which
shows the equivalence of the convergence in distribution of sequences of real valued random
vectors and the pointwise convergence of the corresponding characteristic functions.
The formal statement and proof are stated below:

Theorem 4.14 (Lévy’s Continuity Theorem)
Let {Xn}n∈N+ be a sequence of k-dimensional random vectors with corresponding characteristic
functions {ϕn}n∈N+ . For any k-dimensional random vector X with characteristic function ϕ,
Xn

d→X if and only if

lim
n→∞

ϕn(t) = ϕ(t)

for any t ∈ Rk.

Proof) Let {µn}n∈N+ be the distributions of {Xn}n∈N+ and µ that of X.

Necessity follows easily. Suppose Xn
d→ X. For any non-zero t ∈ Rk, becuase the sine

and cosine functions are bounded, real valued and continuous functions on Rk,

lim
n→∞

∫
Rk

cos
(
t′x
)
dµn(x) =

∫
Rk

cos
(
t′x
)
dµ(x) and

lim
n→∞

∫
Rk

sin
(
t′x
)
dµn(x) =

∫
Rk

sin
(
t′x
)
dµ(x)

by the definition of weak convergence. Therefore,

lim
n→∞

ϕn(t) = lim
n→∞

∫
Rk

exp
(
it′x

)
dµn(x)

= lim
n→∞

∫
Rk

cos
(
t′x
)
dµn(x) + i ·

(
lim
n→∞

∫
Rk

sin
(
t′x
)
dµn(x)

)
=
∫
Rk

cos
(
t′x
)
dµ(x) + i

(∫
Rk

sin
(
t′x
)
dµ(x)

)
=
∫
Rk

exp
(
it′x

)
dµ= ϕ(t).

ϕn(0) = 1 = ϕ(0) for any n ∈N+, so it follows that

ϕn→ ϕ

pointwise on Rk.

Moving onto sufficiency, suppose that ϕn→ ϕ pointwise on Rk. Then, if {µnk}k∈N+ is
a subsequence of {µn}n∈N+ that converges weakly to some probability measure v on
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(Rk,B(Rk)), then v = µ. To see this, note that, for any t ∈ Rk,∫
Rk

exp
(
it′x

)
dv(x) = lim

n→∞

∫
Rk

exp
(
it′x

)
dµnk(x) (µnk → v weakly)

= lim
n→∞

ϕnk(t)

= ϕ(t). (By assumption)

Therefore, v and µ have the same characteristic functions; as such, v = µ on B(Rk),
and µnk → µ weakly.

As such, in light of lemma 4.10, we can show that µn → µ weakly if Π = {µn}n∈N+

is relatively compact. Going one step further, it is sufficient, in light of Prohorov’s
theorem, to show that Π is tight to conclude that Π is relatively compact. This is
precisely what we set out to prove below.

We want to prove that, for any ε > 0, there exists a compact set K such that

µn(K)> 1− ε

for any n ∈N+.
The proof proceeds roughly as follows.

Since ϕ, being a characteristic function, is continuous at 0, for sufficiently small m> 0
it holds that the integral

1
(2m)k

∫
[−m,m]k

(1−ϕ(t))dt

is also sufficiently small (note that ϕ(0) = 1). Furthermore, because ϕn→ ϕ pointwise,
for large enough n the above tells us that

1
(2m)k

∫
[−m,m]k

(1−ϕn(t))dt

is also small. It can be shown that the integral above is bounded below by the measure
of the complement of [−m−1,m−1]k under µn. As such, for large enough n, the value of
µn outside some compact k-cell can be made arbitrarily small. We can also find such
compact k-cells for µn with small n, since there are only finitely many µn with small
n, so taking the (finite) union of these compact k-cells yields the desired K.
The details of the above proof are given below:
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Step 1: A Positive Lower Bound for 1
(2m)k

∫
[−m,m]k(1−ϕn(t))dt

For any n ∈N+ and m> 0, the following holds:

1
(2m)k

∫
[−m,m]k

(1−ϕn(t))dt= 1− 1
(2m)k

∫
[−m,m]k

∫
Rk

exp
(
it′x

)
dµn(x)dt

= 1−
∫
Rk

 1
2m

k∏
j=1

∫ m

−m
exp(itjxj)dtj

dµn(x)

(Fubini’s theorem)

=
∫
Rk

1− 1
2m

k∏
j=1

∫ m

−m
exp(itjxj)dtj

dµn(x).

(µn is a probability measure)

For any 1≤ j ≤ k, assuming that xj 6= 0,

1
2m

∫ m

−m
exp(itjxj)dtj = 1

2m

∫ m

−m
cos(tjxj)dtj + i ·

( 1
2m

∫ m

−m
sin(tjxj)dtj

)
= 1
m

∫ m

0
cos(tjxj)dtj = sin(mxj)

mxj
.

On the other hand, if xj = 0, then

1
2m

∫ m

−m
exp(itjxj)dtj = 1 = lim

xj→0

sin(mxj)
mxj

.

Thus,

1
(2m)k

∫
[−m,m]k

(1−ϕn(t))dt=
∫
Rk

1−
k∏
j=1

sin(mxj)
mxj

dµn(x),

where the value of sin(mxj)
mxj

at xj = 0 is taken to be its limit 1.
For any x ∈ R such that |x|> π

2 , we have
∣∣∣ sin(x)

x

∣∣∣≤ 1
|x| ≤

2
π < 1, so if |mxj |> π

2 for any
1≤ j ≤ k, then

1−
k∏
j=1

sin(mxj)
mxj

≥ 1−
( 2
π

)k
= c > 0.

Therefore,

1
(2m)k

∫
[−m,m]k

(1−ϕn(t))dt=
∫
Rk

1−
k∏
j=1

sin(mxj)
mxj

dµn(x)

≥
∫(

[ π
2m ,

π
2m ]k

)c
1−

k∏
j=1

sin(mxj)
mxj

dµn(x)

≥ c
(

1−µn
([

π

2m,
π

2m

]k))
≥ 0.
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Step 2: A Small Upper Bound for 1
(2m)k

∫
[−m,m]k(1−ϕn(t))dt

Recall that ϕ, being a characteristic function, is uniformly continuous, and in particular,
continuous at 0. Therefore, for any ε > 0, there exists a δ > 0 such that

|1−ϕ(t)|< c · ε
2

for any t ∈ Rk such that t ∈ [−δ,δ]k. Therefore,∣∣∣∣∣ 1
(2m)k

∫
[−m,m]k

(1−ϕ(t))dt
∣∣∣∣∣≤ 1

(2m)k
∫

[−m,m]k
|1−ϕ(t)|dt < c · ε

2

for any m≤ δ. In addition, because ϕn→ ϕ pointwise and |ϕn| ≤ 1 for any n ∈N+, by
the BCT we have

lim
n→∞

1
(2δ)k

∫
[−δ,δ]k

(1−ϕn(t))dt= 1
(2δ)k

∫
[−δ,δ]k

(1−ϕ(t))dt,

which implies that there exists an N ∈N+ such that∣∣∣∣∣ 1
(2δ)k

∫
[−δ,δ]k

(1−ϕn(t))dt− 1
(2δ)k

∫
[−δ,δ]k

(1−ϕ(t))dt
∣∣∣∣∣< c · ε

2

for any n≥N , where N depends only on δ and thus only on ε.

Step 3: Constructing K

From the preceding results, we can see that, for any n≥N ,

1
(2δ)k

∫
[−δ,δ]k

(1−ϕn(t))dt≤
∣∣∣∣∣ 1
(2δ)k

∫
[−δ,δ]k

(1−ϕn(t))dt− 1
(2δ)k

∫
[−δ,δ]k

(1−ϕ(t))dt
∣∣∣∣∣

+
∣∣∣∣∣ 1
(2δ)k

∫
[−δ,δ]k

(1−ϕ(t))dt
∣∣∣∣∣

<
c · ε
2 + c · ε

2 = c · ε

which implies that

1−µn
([

π

2δ ,
π

2δ

]k)
≤ 1
c

1
(2δ)k

∫
[−δ,δ]k

(1−ϕn(t))dt < ε.

In other words,

µn

([
π

2δ ,
π

2δ

]k)
> 1− ε

for any n≥N .
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Finally, since, for any 1≤ i≤N ,

lim
m→∞

µi([−m,m]k) = 1

by sequential continuity, there exists an M ∈N+ such that

µi([−M,M ]k)> 1− ε

for any 1≤ i≤N . Defining

K =
[
−max

(
M,

π

2δ

)
,max

(
M,

π

2δ

)]
,

K is a compact subset of E such that

µn(K)> 1− ε

for any n ∈N+.

It follows by definition that Π is a tight collection of probability measures, so by Pro-
horov’s theorem, {µn}n∈N+ is relatively compact. Then, by lemma 4.10, we can conclude
that µn→ µ weakly, or in other words, Xn

d→X.

Q.E.D.
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4.4.2 Application: Returning to the Cramer-Wold Device

Like how the continuity theorem above extended the inversion formula so that characteristic
functions characterized not only the distribution of a random vector but also the weak con-
vergence of a sequence of random vectors, we can generalize the Cramer-Wold device studied
earlier to account for weak convergence as well. Specifically, we can show that a given sequence
{Xn}n∈N+ of random vectors converges in distribution to some random vector X if and only
if {r′Xn}n∈N+ , converges in distribution to r′X for any nonrandom vector r. This allows us to
reduce multidimensional problems to univariate problems, and as such is very useful in prov-
ing multidimensional analogues of the central limit theorem. The result is important enough to
warrant its own section.

Theorem 4.15 (Cramer-Wold Device II)
Let {Xn}n∈N+ be a sequence of k-dimensional random vectors and X a k-dimensional random
vector. Then, Xn

d→X if and only if r′Xn
d→ r′X for any nonzero r ∈ Rk.

Proof) Let {ϕn}n∈N+ and {µn}n∈N+ be the characteristic functions and distributions corre-
sponding to the sequence {Xn}n∈N+ , and ϕ, µ the characteristic function and distribu-
tion of X.

Suppose that Xn
d→X. Then, for any non-zero r ∈Rk, the function f : Rk→R defined

as

f(x) = r′x

for any x ∈ Rk is continuous on Rk. By the continuous mapping theorem,

r′Xn = f ◦Xn
d→ f ◦X = r′X.

Conversely, suppose that r′Xn
d→ r′X for any non-zero r ∈ Rk. Choose any r ∈ Rk and

define f as above. Let cn be the characteristic functions of r′Xn and c that of r′X.
The distribution of each r′Xn is the pushforward measure µ ◦ f−1, and likewise, the
distribution of X is µ◦f−1. Defining h : R→ C as

h(x) = exp(ix)

for any x ∈ R, by lemma 1.1

ϕn(r) =
∫
Rk

exp
(
ir′x

)
dµn(x) =

∫
Rk

(h◦f)dµn

=
∫
R
hd(µn ◦f−1) =

∫
R

exp(ix)d(µn ◦f−1)(x) = cn(1),
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and likewise,

ϕ(r) =
∫
R

exp(ix)d(µ◦f−1)(x) = c(1).

Because µn ◦f−1→ µ◦f−1 weakly as n→∞, by the continuity theorem the character-
istic functions {cn}n∈N+ converge pointwise to c. Therefore,

lim
n→∞

ϕn(r) = ϕ(r).

This holds for any non-zero r ∈ Rk, and it is trivial when r = 0, so by the continuity
theorem, Xn

d→X.

Q.E.D.
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4.5 Metric for Weak Convergence: The Prohorov Metric

We develop here a metric for weak convergence, similarly to how we developed a metric for
convergence in probability. There, given an underlying metric space (E,d), we defined the met-
ric dprob on the space of all random variables taking values in E so that convergence in dprob

is equivalent to convergence in probability. Likewise, our goal in this section is to develop a
metric π on the space of all probability measures, so that convergence in π is equivalent to weak
convergence. This metric, called the Prohorov metric, is useful because it allows us to easily
work with functions of probability measures, for instance by letting us to verify continuity via
results concerning weak convergence such as the Portmanteau theorem. We formally develop the
Prohorov metric and derive relevant proprties below.

Let (E,d) be a metric space, τ the metric topology induced by d, and E = B(E,τ) the Borel
σ-algebra generated by τ . For any A ⊂ E and ε > 0, the ε-neighborhood Aε of A is defined as
the union of all open balls that are centered in A and have radius ε; formally,

Aε =
⋃
x∈A

Bd(x,ε).

Clearly, Aε contains A. Furthermore, being the union of open sets, Aε is open and thus always
Borel-measurable.
The following are properties of ε-neighborhoods:

Lemma 4.16 Let (E,d) be a metric space, τ the metric topology induced by d, and E =B(E,τ)
the Borel σ-algebra generated by τ . The following hold true:

i) For any closed set F , and a sequence {εn}n∈N+ of positive real numbers that decrease to
0, {F εn}n∈N+ is a decreasing sequence of open sets such that

F =
⋂
n

F εn .

ii) For any ε1, ε2 > 0 and A⊂ E,

(Aε1)ε2 ⊂Aε1+ε2 .

Proof) i) It is clear that {F εn}n∈N+ is a decreasing sequence of sets, since

F εn+1 =
⋃
x∈F

Bd(x,εn+1)⊂
⋃
x∈F

Bd(x,εn) = F εn

for any n ∈N+. Because F ⊂ F εn for any n ∈N+, we have

F ⊂
⋂
n

F εn .
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Conversely, for any x ∈
⋂
nF

εn , there exists for any n ∈ N+ a point xn ∈ F such
that x ∈Bd(xn, εn). Therefore, {xn}n∈N+ is a sequence in F converging to x, and
because F is closed, x ∈ F . This implies that the reverse inclusion holds, and as
such

F =
⋂
n

F εn ,

that is, {F εn}n∈N+ is a sequence in B(E,τ) decreasing to F .

ii) Choose any x ∈ (Aε1)ε2 . Then, because

x ∈
⋃

y∈Aε1
Bd(y,ε2),

there exists a y ∈Aε1 such that x ∈Bd(y,ε2). Similarly, because

y ∈
⋃
z∈A

Bd(z,ε1),

there exists a z ∈A such that y ∈Bd(z,ε1). It now follows that x ∈Bd(z,ε1 + ε2),
since

d(x,z)≤ d(x,y) +d(y,z)< ε1 + ε2.

Therefore,

x ∈
⋃
z∈A

Bd(z,ε1 + ε2) =Aε1+ε2 ,

and because this holds for any x ∈ (Aε1)ε2 , we have the inequality

(Aε1)ε2 ⊂Aε1+ε2 .

Q.E.D.

Denote by Mp(E) the collection of all probability measures on (E,E). Define the function
π :Mp(E)2→ [0,+∞) as

π(µ,v) = inf{ε > 0 | µ(A)≤ v(Aε) + ε ∀A ∈ B(E,τ)}

for any µ,v ∈Mp(E). Note that π(µ,v) is well-defined and takes values in [0,+∞) because the
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set

Πµ,v = {ε > 0 | µ(A)≤ v(Aε) + ε ∀A ∈ B(E,τ)}

is non-empty (the inequality is satisfied for any A ∈ B(E,τ) for ε= 1) and bounded below by 0.
We first establish the following important property:

Lemma 4.17 Let (E,d) be a metric space, τ the metric topology induced by d, and E =B(E,τ)
the Borel σ-algebra generated by τ . For any µ,v ∈Mp(E) and ε > 0, if

µ(A)≤ v(Aε) + ε,

for any A ∈ B(E,τ), then

v(A)≤ µ(Aε) + ε

for any A ∈ B(E,τ) as well.

Proof) Let A,B ⊂E, and choose any ε > 0. Then, A⊂ (Bε)c if and only if B ⊂ (Aε)c. To show
this, suppose that A⊂ (Bε)c. Then, A∩Bε = ∅. Assume, for the sake of contradiction,
that x ∈ B ∩Aε. By definition, x ∈ B and there exists a y ∈ A such that x ∈ Bd(y,ε).
The last inclusion can be written as y ∈ Bd(x,ε), and since x ∈ B, we have y ∈ Bε. In
other words, y ∈A∩Bε, a contradiction. It follows that B∩Aε = ∅. The converse holds
by a symmetric argument.

Suppose, for any µ,v ∈Mp(E) and ε > 0, that

µ(A)≤ v(Aε) + ε.

for any A ∈ B(E,τ). Choose any A ∈ B(E,τ) and define

B = (Aε)c.

Then, by definition B ⊂ (Aε)c, so the preceding result tells us that A⊂ (Bε)c, and by
the monotonicity of measures,

v(A)≤ µ((Bε)c) = 1−µ(Bε).

Because (Aε)c ∈ B(E,τ) as well, we have

µ(B) = 1−µ(Aε)≤ v(Bε) + ε
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by assumption. Therefore,

v(A)≤ 1−µ(Bε)≤ µ(Aε) + ε.

Q.E.D.

The above result tells us that, for any µ,v ∈Mp(E), we can re-express Πµ,v as

Πµ,v = {ε > 0 | µ(A)≤ v(Aε) + ε and v(A)≤ µ(Aε) + ε ∀A ∈ B(E,τ)}.

We now show that the function π defined above is a metric on the space Mp(E):

Theorem 4.18 Let (E,d) be a metric space, τ the metric topology induced by d, and E =
B(E,τ) the Borel σ-algebra generated by τ . Then, π :Mp(E)2→ [0,+∞) defined as

π(µ,v) = inf{ε > 0 | µ(A)≤ v(Aε) + ε ∀A ∈ B(E,τ)}

for any µ,v ∈Mp(E) is a metric on Mp(E).

Proof) By lemma 4.17, we immediately have the reflexivity property

π(µ,v) = π(v,µ)

for any µ,v ∈Mp(E).

Suppose that

π(µ,v) = 0

for some µ,v ∈Mp(E). Then, for any closed F ⊂ E and n ∈ N+, there exists an 0 <
εn <min

(
1
n , εn−1

)
(where we define ε0 = 1) such that

µ(F )≤ v (F εn) + εn and v(F )≤ µ(F εn) + εn.

By lemma 4.16, the sequence {F εn}n∈N+ is a sequence of open sets decreasing to F , so
by sequential continuity, taking n→∞ on both sides yields

µ(F ) = v(F ).

This holds for any closed F , and thus µ and v agree for every open set. Since they are
probability measures and τ is a π-system generating B(E,τ), we can see that µ= v on
B(E,τ).
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On the other hand, for any µ ∈Mp(E), it is clear that

π(µ,µ) = 0.

It remains to establish the triangle inequality. For any µ,w,v ∈Mp(E), note that, for
any ε1 ∈ Πµ,w and ε2 ∈ Πw,v, we have ε1 + ε2 ∈ Πµ,v. This can be seen with the help of
lemma 4.16: for any A ∈ B(E,τ),

µ(A)≤ w(Aε1) + ε1 and w(Aε1)≤ v((Aε1)ε2) + ε2,

and because

(Aε1)ε2 ⊂Aε1+ε2 ,

we have

µ(A)≤ v((Aε1)ε2) + ε1 + ε2 ≤ v(Aε1+ε2) + ε1 + ε2.

Therefore,

π(µ,v) = inf Πµ,v ≤ ε1 + ε2,

and since this holds for any ε1 ∈Πµ,w and ε2 ∈Πw,v,

π(µ,v)≤ inf Πµ,w + inf Πw,v = π(µ,w) +π(w,v).

Q.E.D.

The metric π is called the Prohorov metric on Mp(E).
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4.5.1 Convergence in the Prohorov Metric

We now show the most important property of the metric π, namely that a sequence {µn}n∈N+

inMp(E) converges in the metric π if and only if it converges weakly, given that the underlying
space (E,d) is separable.

Theorem 4.19 (Convergence in Prohorov Metric is Weak Convergence)
Let (E,d) be a metric space, τ the metric topology induced by d, and E = B(E,τ) the Borel
σ-algebra generated by τ . Let π be the Prohorov metric on Mp(E), and {µn}n∈N+ , µ measures
belonging to Mp(E). The following hold true:

i) If π(µn,µ)→ 0 as n→∞, then µn→ µ weakly.

ii) If (E,d) is separable and µn→ µ weakly, then π(µn,µ)→ 0 as n→∞.

Proof) Sufficiency

Suppose that π(µn,µ)→ 0 as n→∞. Then, for any n ∈N+ define

εn = min
(
π(µn,µ) + 1

n
,εn−1

)
,

where ε0 = 1; {εn}n∈N+ is a sequence of positive reals that decreases to 0 such that
π(µn,µ) < εn for any n ∈ N+. Choose any closed subset F of E; by lemma 4.16, we
immediately know that {F εn}n∈N+ is a sequence of open sets that sdecreases to F , and
that

lim
n→∞

µ(F εn) = µ(F )

by sequential continuity.

For any n ∈N+, because π(µn,µ)< εn, there exist a δ > 0 such that δ < εn and

µn(F )≤ µ(F δ) + δ.

It follows that

µn(F )≤ µ(F εn) + εn,

and since this holds for any n ∈N+,

limsup
n→∞

µn(F )≤ limsup
n→∞

(µ(F εn) + εn) = µ(F ).

This in turn holds for any closed set F , so by the Portmanteau theorem, µn→ µ weakly.
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Necessity

Suppose now that (E,d) is separable, and that µn→ µ weakly. By the separability of
E, there exists a countable subset E0 = {xk}k∈N+ of E that is dense in E. For any
ε > 0, this means that the collection {Bk}k∈N+ ⊂ B(E,τ) defined as

Bk =Bd(xk, ε/2)

for any k ∈N+ covers E, that is, E =⋃
kBk. By design, each Bk has a diameter of ε.

Now define A1 =B1 and

Ak =Bk \
(
k−1⋃
i=1

Bi

)

for any k ≥ 2. {Ak}k∈N+ is now a disjoint sequence of sets such whose union is E =⋃
kBk, and the diameter of each Ak is less than or equal to ε because each Ak is con-

tained in Bk, which has a diameter of ε.

By sequential continuity,

lim
k→∞

µ

(
k⋃
i=1

Ai

)
= µ(E) = 1,

so there exists an N ∈N+ such that

1−µ
(
N⋃
i=1

Ai

)
= µ

 ⋃
k>N

Ak

< ε.

We can now define the finite collection of open sets G as

G =
{

(Ai1 ∪·· ·∪Aim)ε | 1≤ i1 < · · ·< im ≤N
}
∪{∅}.

For any A ∈ B(E,τ), let A⊂ {1, · · · ,N} be defined as

A= {1≤ i≤N |Ai∩A 6= ∅},

and let the open set A0 be defined as

A0 =
⋃
i∈A

Ai,

where A0 = ∅ if A= ∅.

If A0 6= ∅, then by how we defined G, it can be seen that Aε0 ∈ G. In this case, Aε0 ⊂A2ε,
since for any x∈Aε0, there exists a y ∈A0 such that x∈Bd(y,ε), and in turn, there exists
a i∈A such that y ∈Ai. Since Ai∩A 6= ∅ by definition, we can choose a z ∈A∩Ai; Ai has
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diameter ε, and z,y ∈Ai, so we have d(z,y)≤ ε. Finally, we can see that x ∈Bd(z,2ε),
since

d(x,z)≤ d(x,y) +d(y,z)< 2ε.

This holds for any x ∈Aε0, so

Aε0 ⊂
⋃
z∈A

Bd(z,2ε) =A2ε.

If A0 = ∅, then the inclusion Aε0 ⊂A2ε follows trivially, since Aε0 = ∅.

Now we can see that, because G is a finite collection of open sets, µn→ µ weakly, and
by the Portmanteau theorem,

liminf
n→∞

µn(G)≥ µ(G)> µ(G)− ε

for any G ∈ G. This means that there exists an N0 ∈N+ such that, for any n≥N0,

inf
k≥n

µk(G)> µ(G)− ε,

and in particular,

µn(G)> µ(G)− ε

for any G ∈ G. Note that the choice of N0 depends only on G and ε, and because G is
defined only on the basis of ε, N0 in turn depends only on ε.

It can now be seen that, for any n≥N0, because Aε0 ∈ G,

µ(A) = µ

(
A∩

(
N⋃
i=1

Ai

))
+µ

(
A∩

( ⋃
i>N

Ai

))

≤ µ
(
A∩

(⋃
i∈A

Ai

))
+µ

( ⋃
i>N

Ai

)

≤ µ(A0) + ε

≤ µ(Aε0) + ε

≤ µn(Aε0) + 2ε

≤ µn(A2ε) + 2ε.

This holds for any A ∈ B(E,τ), so by definition, for any n≥N0 we have 2ε ∈Πµ,µn and
thus

π(µ,µn)≤ 2ε.
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Such an N0 exists for any ε > 0, so we can conclude that

lim
n→∞

π(µn,µ) = 0.

Q.E.D.
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4.5.2 Separability of Spaces of Probability Measures

Another important property of the Prohorov metric is that the space of probability measures
Mp(E) is separable under the Prohorov metric, with the countable dense set being a collection
of probability measures with finite support. Specifically, under the Prohorov metric π, any
probability measure µ on (E,E) is the π-limit of a sequence {µn}n∈N+ of a sequence of probability
measures with finite support, that is, a probability measure that assigns positive probability only
to a finite set.

Any probability measure v on (E,E) with finite support {x1, · · · ,xn} ⊂ E can be written as

v =
n∑
i=1

ai · δxi ,

where a1, · · · ,an ∈ [0,1] sum to 1 and δx is the Dirac delta measure sitting at x. In light of this
formulation, the separability result can be viewed as an analogue, for the space of probability
measures, of the fact that any measurable real function can be approximated by a sequence of
simple functions.

Theorem 4.20 (Separability under the Prohorov Metric)
Let (E,d) be a separable metric space, τ the metric topology induced by d, and E = B(E,τ) the
Borel σ-algebra generated by τ . Let π be the Prohorov metric on Mp(E) Then, there exists a
countable subset E0 of E such that the collection B defined as

B =
{ n∑
i=1

ri · δxi | r1, · · · , rn ∈Q+,
n∑
i=1

ri = 1, x1, · · · ,xn ∈ E0
}

is a countable subset of Mp(E) that is dense in Mp(E).

Proof) We proceed in steps.

Step 1: Constructing a Countable Partition of E

Choose any ε > 0.
Let {xk}k∈N+ be a countable subset of E that is dense in E, which exists by the
separability of (E,d). The collection {Bk}k∈N+ ⊂ B(E,τ) defined as

Bk =Bd(xk, ε/4)

for any k ∈N+ covers E, that is, E =⋃
kBk. Each Bk has a diameter of ε

2 .
Now define A1 =B1 and

Ak =Bk \
(
k−1⋃
i=1

Bi

)

for any k ≥ 2. {Ak}k∈N+ is now a disjoint sequence of sets such whose union is E =
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⋃
kBk, and the diameter of each Ak is less than or equal to ε

2 because each Ak is
contained in Bk, which has a diameter of ε

2 . For any k ∈N+, choose any yk ∈Bk if Bk
is non-empty, and let yk be any point in E if Bk is empty; define the countable subset
Eε of E as

Eε = {yk | k ∈N+},

and the countable set of probability measures Bε as

Bε =
{ n∑
i=1

ri · δxi | r1, · · · , rn ∈Q+,
n∑
i=1

ri = 1, x1, · · · ,xn ∈ Eε
}
.

We will now show that within the ε-ball of any probability measure in Mp(E) lies a
probability measure v in Bε.

Step 2: Constructing the Measure v in Bε
Choose any µ ∈Mp(E). By sequential continuity,

lim
k→∞

µ

(
k⋃
i=1

Ai

)
= µ(E) = 1,

so there exists an N ∈N+ such that

1−µ
(
N⋃
i=1

Ai

)
= µ

 ⋃
k>N

Ak

<
ε

8 .

Now choose r1, · · · , rN−1 ∈Q so that, for any 1≤ i≤N −1,

|ri−µ(Ai)|= µ(Ai)− ri <
ε

8N

if µ(Ai)≥ ε
8N , and ri = 0 otherwise. This means that ri ∈ [0,µ(Ai)] and

|ri−µ(Ai)|<
ε

8N

for any 1≤ i≤N −1.
Defining rN = 1−∑N−1

i=1 ri ∈Q, since

µ(AN ) = µ

(
N⋃
i=1

Ai

)
−µ

(
N−1⋃
i=1

Ai

)

= 1−µ
( ⋃
i>N

Ai

)
−
N−1∑
i=1

µ(Ai),
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we have

rN −µ(AN ) = 1−
N−1∑
i=1

ri−
(

1−µ
( ⋃
i>N

Ai

)
−
N−1∑
i=1

µ(Ai)
)

= µ

( ⋃
i>N

Ai

)
+
N−1∑
i=1

(µ(Ai)− ri)≥ 0,

so that rN ≥ µ(AN ) and

|rN −µ(AN )|= rN −µ(AN )< ε

8 + N −1
N

ε

8 <
ε

8 + ε

8 = ε

4 .

Therefore, r1, · · · , rN are non-negative rational numbers that sum to 1 and satisfy

N∑
i=1
|ri−µ(Ai)|=

N−1∑
i=1

(µ(Ai)− ri) + (rN −µ(AN ))

<
N −1
N

ε

8 + ε

4 <
ε

2 .

By implication, for any subset A of {1, · · · ,N},
∣∣∣∣∣∑
i∈A

µ(Ai)−
∑
i∈A

ri

∣∣∣∣∣≤∑
i∈A
|ri−µ(Ai)| ≤

N∑
i=1
|ri−µ(Ai)|<

ε

2 ,

so that

∑
i∈A

µ(Ai)<
∑
i∈A

ri+
ε

2 .

Define

v =
N∑
i=1

ri · δyi ∈ Bε,

where yi ∈Bi if Bi is non-empty by construction.

In what follows, we will show that the distance between µ and v is less than ε in the
Prohorov metric.

237



Step 3: The Distance between µ and v

Choose any A ∈ B(E,τ), and define

A= {1≤ i≤N |Ai∩A 6= ∅},

and

A0 =
⋃
i∈A

Ai,

where A0 = ∅ if A = ∅. Furthermore, A0 ⊂ Aε; this is trivial if A0 = ∅. If A0 6= ∅, then
for any x ∈A0, there exists an i ∈A such that x ∈Ai, and letting z ∈Ai∩A, it follows
from the fact that Ai has diameter less than or equal to ε

2 that

d(x,z)≤ ε

2 < ε

and x ∈Bd(z,ε), from which it follows that A0 ⊂Aε.
Furthermore, because

yi ∈A0 =
⋃
i∈A

Ai

if and only if i ∈ A, we have

v(A0) =
N∑
i=1

ri · δyi(A0) =
∑
i∈A

ri.

We now have

µ(A) = µ

(
A∩

(
N⋃
i=1

Ai

))
+µ

(
A∩

( ⋃
i>N

Ai

))

≤
∑
i∈A

µ(A∩Ai) +µ

( ⋃
i>N

Ai

)

≤
∑
i∈A

µ(Ai) + ε

8

<
∑
i∈A

ri+
ε

2 + ε

8

= v(A0) + ε

≤ v(Aε) + ε.

This holds for any A ∈ B(E,τ), so

π(µ,v)≤ ε.
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Step 4: The Separability of Mp(E)

Now define the countable subset E0 of E as

E0 =
⋃

n∈N+

E 1
n
,

from which we can deduce that

B =
⋃
n

B 1
n
.

We have seen that, for any µ ∈Mp(E) and n ∈N+, there exists a probability measure
v in B 1

n
such that π(v,µ)≤ 1

n . Therefore, for any ε > 0, there exists a v ∈ B such that
π(v,µ)≤ ε, and we can see that B is dense in Mp(E).

Q.E.D.
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4.5.3 Continuous Functions on Spaces of Probability Measures

The fact that any probability measure inMp(E) can be approximated with a sequence of prob-
ability measures with finite support yields the following representation theorem for continuous
functions on Mp(E). This is a particularly useful result in the study of expected utility in mi-
croeconomics:

Theorem 4.21 (Representation of Continuous Functions on Mp(E))
Let (E,d) be a separable metric space, τ the metric topology induced by d, and E = B(E,τ) the
Borel σ-algebra generated by τ . Let π be the Prohorov metric onMp(E), and P a convex subset
of Mp(E) that contains the Dirac delta measures δx for any x ∈ E.

Suppose U : P →R a continuous and bounded function with respect to the Prohorov metric
such that

U(tµ+ (1− t)v) = t ·U(µ) + (1− t) ·U(v)

for any µ,v ∈ P and t ∈ [0,1], a property we refer to as linearity.
Then, there exists a continuous and bounded function u : E→ R such that

U(µ) =
∫
E
udµ

for any µ ∈ P.

Proof) From the previous theorem, we know that there exists a countable subset E0 of E such
that the collection B of probability measures with finite support defined as

B =
{ n∑
i=1

ri · δxi | r1, · · · , rn ∈Q+,
n∑
i=1

ri = 1, x1, · · · ,xn ∈ E0
}

is dense in Mp(E).

We first define the function u : E→ R as

u(x) = U(δx)

for any x ∈ E, where δx ∈Mp(E) is the Dirac delta measure sitting at x. u is then
bounded because U is.

To see the continuity of u on E, choose any limit point x of E and a sequence {xn}n∈N+

in E that converges to x. For any continuous and bounded function f : E→ R,∫
E
fdδxn = f(xn)→ f(x) =

∫
E
fdδx

as n→∞ by the continuity of f , so by the definition of weak convergence, δxn → δx
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weakly as n→∞. By the equivalence of weak convergence and convergence in the
Prohorov metric π, we can see that

lim
n→∞

π(δxn , δx) = 0,

and because U is continuous on P, which includes the Dirac delta measures, this implies
that

lim
n→∞

u(xn) = lim
n→∞

U(δxn) = U(δx) = u(x).

Therefore, u is continuous at x, and by extension on E.

u is now trivially E-measurable by continuity, and since it is bounded, it is µ-integrable
for any µ ∈Mp(E). It remains to show that

U(µ) =
∫
E
udµ

for any µ ∈ P. We proceed in steps.

Step 1: Probability Measures with Finite Support

Choose any µ ∈Mp(E) with finite support; then, it has the representation

µ=
n∑
i=1

ai · δxi

for some a1, · · · ,an ∈ [0,1] that sum to 1, and x1, · · · ,xn ∈ E. The convexity of P then
tells us that µ ∈ P, and by the linearity of U , we have

U(µ) =
n∑
i=1

ai ·U(δxi) =
n∑
i=1

ai ·u(xi).

To evaluate the sum on the right hand side, we turn to a familiar stepwise construction:

1) Simple Functions
For any simple functions f on E with canonical form

f =
m∑
i=1

bi · IAi ,

we can see that
n∑
i=1

ai ·f(xi) =
n∑
i=1

m∑
j=1

aibj · δxi(Ai)

=
m∑
j=1

bj ·
(

n∑
i=1

ai · δxi(Ai)
)

=
m∑
j=1

bj ·µ(Ai) =
∫
E
fdµ.
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2) Non-negative Functions
Letting {fk}k∈N+ be a sequence of simple functions on E that increases pointwise
to the positive part u+ of u, this tells us that

n∑
i=1

ai ·u+(xi) = lim
k→∞

[
n∑
i=1

ai ·fk(xi)
]

= lim
k→∞

∫
E
fkdµ=

∫
E
u+dµ.

where the last equality is justified by the MCT. Likewise,

n∑
i=1

ai ·u−(xi) =
∫
E
u−dµ.

3) Arbitrary Integrable Functions
By the linearity of integration,

n∑
i=1

ai ·u(xi) =
n∑
i=1

ai ·u+(xi)−
n∑
i=1

ai ·u−(xi) =
∫
E
u+dµ−

∫
E
u−dµ=

∫
E
udµ.

Therefore, we can conclude that

U(µ) =
n∑
i=1

ai ·u(xi) =
∫
E
udµ

when µ has finite support.

Step 2: Arbitrary Probability Measures in P

Now let µ ∈ P in general. By the separability result, there exists a sequence {µn}n∈N+

in B that converges to µ in π, and, in light of the equivalence of convergence in π and
weak convergence, weakly as well. Since each µn has finite support, it is contained in
P, and the preceding result tells us that

U(µn) =
∫
E
udµn

for any n ∈N+. u is a continuous and bounded function, so by the definition of weak
convergence,

lim
n→∞

∫
E
udµn =

∫
E
udµ.
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Moreover, because U is continuous on P and {µn}n∈N+ converges to µ in the Prohorov
metric,

lim
n→∞

U(µn) = U(µ).

Finally, the uniqueness of limits in R tells us that

U(µ) =
∫
E
udµ.

Q.E.D.
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Chapter 5

The Law of Large Numbers and
Central Limit Theorems

The various modes of convegence for random variables and weak convergence are primarily used
in probability theory to derive laws of large numbers (LLNs) and central limit theorems (CLTs).
The former deal with convergence almost surely and in probability, while the latter involve
convergence in distribution, or weak convergence. If the convergence is almost sure, then the
LLN is question is called a strong LLN (SLLN), while it is called a weak LLN (WLLN) if the
convergence is in probability. While a stronger result, SLLNs are relatively rare and exceedingly
difficult to prove, so here we focus only on WLLNs.

We present in this chapter various WLLNs and CLTs. We initially start with uncorrelated
and i.i.d. sequences of real random vectors, and then consider the more general case of dependent
processes.

5.1 WLLN and CLTs for I.I.D. Sequences

5.1.1 WLLN for I.I.D. Sequences

The most well-known version of the WLLN is Chebyshev’s WLLN, which holds for pairwise
uncorrelated sequences of random variables with finite second moments. On the other hand,
Khinchin’s WLLN holds for sequences of independent random variables, which is more general
in the sense that we need only assume finite first moments.

We often use Chebyshev’s WLLN because of how simple it is to prove. Below, we state and
prove Chebyshev’s WLLN for doubly infinite sequences of random variables, that is, random
variables of the form {Yt}t∈Z, since this is the form assumed by most time series. We continue
abiding by this convention when discussing law of large numbers and central limit theorems.
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Theorem 5.1 (Chebyshev’s WLLN)
Let {Yt}t∈Z be a sequence of pairwise uncorrelated L2-bounded n-dimensional real random
vectors with common mean µ ∈ Rn. Then,

1
T

T∑
t=1

Yt
p→ µ

as T →∞.

Proof) Let

M = sup
t∈Z

E|Yt|2 <+∞.

For any t ∈ Z, since

tr(Var[Yt]) = E|Yt−µ|2 = E
[
(Yt−µ)′(Yt−µ)

]
= E

[
Y ′t Yt

]
−µ′E [Yt]−E

[
Y ′t
]
µ+µ′µ

= E|Yt|2−µ′µ

≤ E|Yt|2

by the linearity of integration, we can see that

sup
t∈Z

tr(Var[Yt])≤M <+∞

as well.

Since Rn is a separable metric space given the euclidean metric on Rn, to show that

1
T

T∑
t=1

Yt
p→ µ

we must show that

P
(∣∣∣∣∣ 1T

T∑
t=1

Yt−µ
∣∣∣∣∣> δ

)
= P

(∣∣∣∣∣ 1T
T∑
t=1

(Yt−µ)
∣∣∣∣∣> δ

)
→ 0

as T →∞ for any δ > 0. Choose any δ > 0 and T ∈N+. Then,

P
(∣∣∣∣∣ 1T

T∑
t=1

(Yt−µ)
∣∣∣∣∣> δ

)
≤ 1
δ2E

∣∣∣∣∣ 1T
T∑
t=1

(Yt−µ)
∣∣∣∣∣
2

= 1
T 2δ2

T∑
t=1

T∑
s=1

E
[
(Yt−µ)′(Ys−µ)

]
= 1
T 2δ2

T∑
t=1

T∑
s=1

tr(Cov[Yt,Ys])
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by Markov’s inequality. Since {Yt}t∈Z is pairwise uncorrelated,

P
(∣∣∣∣∣ 1T

T∑
t=1

(Yt−µ)
∣∣∣∣∣> δ

)
≤ 1
T 2δ2

T∑
t=1

tr(Var[Yt])≤
M

Tδ2 ,

and taking T →∞ on both sides shows us that

lim
T→∞

P
(∣∣∣∣∣ 1T

T∑
t=1

(Yt−µ)
∣∣∣∣∣> δ

)
= 0.

This holds for any δ > 0, so by definition

1
T

T∑
t=1

Yt
p→ µ.

Q.E.D.

Below we state and prove a version of the WLLN that requires independence instead of
the L2-boundedness assumption. It relies heavily on the Taylor expansion of the characteristic
function, so we first state two related results below:

Lemma 5.2 (Taylor Expansion of Characteristic Function)
Let X be an n-dimensional real random vector, and ϕ :Rn→C its characteristic function. Then,
the following hold true:

i) If X has finite first moments with mean µ ∈ Rn, then

ϕ(h) = 1 + ih′µ+o(1), |h| → 0

for any h ∈ Rn.

ii) If X has finite second moments with mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n, then

ϕ(h) = 1 + ih′µ− 1
2h
′ (Σ +µµ′

)
h+o(|h|), |h| → 0.

Proof) Suppose that X has a finite first moment with mean E [X] = µ ∈ Rn. For any h ∈ Rn,
the first-order Taylor expansion of the mapping x 7→ exp(ih′x) around the zero vector
0 tells us that

exp
(
ih′x

)
= 1 + exp

(
ir′x0

)
· ih′x,
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for any x ∈ Rn, where x0 = tx for some 0≤ t≤ 1. It follows that

∣∣exp
(
ih′x

)
−1− ih′x

∣∣= ∣∣(exp
(
ih′x0

)
−1)ih′x

∣∣≤ 2 ·
∣∣h′x∣∣≤ 2 · |h||x|,

where we used the Cauchy-Schwarz inequality to justify the last inequality. This holds
for any x ∈ Rn, so

∣∣exp
(
ih′X

)
− (1 + ih′X)

∣∣≤ 2 · |h||X|

on Ω. As such,

∣∣ϕ(h)− (1 + ih′µ)
∣∣= ∣∣E[exp

(
ih′X

)
− (1 + ih′X)

]∣∣
≤ E

∣∣exp
(
ih′X

)
− (1 + ih′X)

∣∣≤ |h| · (2E|X|) .
E|X|<+∞ by the assumption of finite first moments, so it follows that

ϕ(h) = 1 + ih′µ+ r1(h),

where

r1(h) = o(1) as |h| → 0.

Now suppose that X has a finite second moment with covariance matrix Σ ∈ Rn×n

and mean µ ∈ Rn. Then, for any h ∈ Rn, by the second order Taylor expansion of the
mapping x 7→ exp(ih′x) around the zero vector,

exp
(
ih′x

)
= 1 + ih′x− 1

2 exp
(
ih′x0

)
x′hh′x

for any x ∈ Rn, where x0 = tx for some 0≤ t≤ 1. It follows that∣∣∣∣exp
(
ih′x

)
−1− ih′x+ 1

2x
′hh′x

∣∣∣∣= ∣∣∣∣12 (exp
(
ih′x0

)
−1
)
x′hh′x

∣∣∣∣
≤
∣∣x′h∣∣2 ≤ |x|2|h|2

for any x ∈ Rn, so that∣∣∣∣exp
(
ih′X

)
− (1 + ih′X− 1

2X
′hh′X)

∣∣∣∣≤ |X|2|h|2
on Ω. Since

E
[
X ′hh′X

]
= tr

(
hh′ ·E

[
XX ′

])
= h′E

[
XX ′

]
h= h′

(
Σ +µµ′

)
h,
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we can see that∣∣∣∣ϕ(h)−
(

1 + ih′µ− 1
2h
′ (Σ +µµ′

)
h

)∣∣∣∣= ∣∣∣∣E[exp
(
ih′X

)
− (1 + ih′X− 1

2X
′hh′X)

]∣∣∣∣
≤ E

∣∣∣∣exp
(
ih′X

)
− (1 + ih′X− 1

2X
′hh′X)

∣∣∣∣
≤ |h|2 ·E|X|2 = |h|2 · tr

(
Σ +µµ′

)
.

It follows that

ϕ(h) = 1 + ih′µ− 1
2h
′ (Σ +µµ′

)
h+ r2(h),

where

r2(h) = o(|h|) as |h| → 0.

Q.E.D.

Theorem 5.3 (Khinchin’s WLLN)
Let {Yt}t∈Z be a sequence of independent and identically distributed n-dimensional real random
vectors with common mean µ ∈ Rn. Then,

1
T

T∑
t=1

Yt
p→ µ.

Proof) Since {Yt}t∈Z is identically distributed, they share a common characteristic function
ϕ : Rn→ C. Defining

XT = 1
T

T∑
t=1

Yt

for any T ∈N+, the characteristic function of XT can be written as

ψT (h) = E
[
exp

(
ih′XT

)]
= E

[
exp

(
T∑
t=1

1
T
ih′Yt

)]

= E
[
T∏
t=1

exp
(
i
h′

T
Yt

)]
.

Since Y1, · · · ,YT are independent, the characterization of independence via characteristic
functions tells us that

ψT (h) =
T∏
t=1

E
[
exp

(
i
h′

T
Yt

)]
= ϕ

(
h

T

)T
,
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where the last equality follows from the fact that Y1, · · · ,YT are identically distributed.

Since each random vector in {Yt}t∈Z has the same finite first moments, by the preceding
lemma we can see that

ϕ

(
h

T

)
= 1 + i

h′

T
µ+o(1), T →∞.

Therefore,

ψT (h) =
(

1 + ih′µ

T
+o(1)

)T
, T →∞,

so that

lim
T→∞

ψT (h) = lim
T→∞

(
1 + ih′µ

T

)T
= exp

(
ih′µ

)
.

Defining the degenerate random vector X = µ, we can see that the limit on the right
hand side is precisely the characteristic function ψ of X evaluated at h∈Rn. This result
can now be written as

lim
T→∞

ψT (h) = ψ(h)

for any h ∈ Rn, and by the continuity theorem,

XT
d→X.

Since convergence in distribution to a degenerate random variable implies convergence
in probability to that same random variable, this implies that

XT = 1
T

T∑
t=1

Yt
p→ µ.

Q.E.D.
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5.1.2 The CLT for I.I.D. Random Variables

The same Taylor expansion machinery used to prove Khinchin’s WLLN to prove the central limit
theorem for i.i.d. sequences. This is the most well-known version of the central limit theorem,
and it cements the central role played by the normal distribution in probability theory.

Theorem 5.4 (Lindeberg-Levy CLT)
Let {Yt}t∈Z be an independent and identically distributed sequence of n-dimensional real random
vectors with common mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n. Defining

ȲT = 1
T

T∑
t=1

Yt

for any T ∈N+,

√
T
(
ȲT −µ

)
d→N [0,Σ] .

Proof) Define Zt = Yt−µ for any t ∈ Z. Then, {Zt}t∈Z is an i.i.d. sequence of n-dimensional
real random vectors with mean zero and common covariance matrix Σ. We need only
prove that

1√
T

T∑
t=1

Zt
d→N [0,Σ] .

To this end, let ϕ be the common characteristic function of the Zt, and ψT the charac-
teristic function of 1√

T

∑T
t=1Zt. As in the proof of Khinchin’s WLLN, the i.i.d. property

of {Zt}t∈Z shows us that

ψT (h) = E
[
exp

(
ih′
(

1√
T

T∑
t=1

Zt

))]

= E
[
T∏
t=1

exp
(
i
h′√
T
Zt

)]

=
T∏
t=1

E
[
exp

(
i
h′√
T
Zt

)]

= ϕ

(
h√
T

)T
.

By the preceding lemma,

ϕ

(
h√
T

)
= 1− 1

2T h
′Σh+o(1) as T →∞.
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We can now see that

ψT (h) = ϕ

(
h√
T

)T
=
(

1 +
(
−1

2h
′Σh

) 1
T

+o(1)
)T
→ exp

(
−1

2h
′Σh

)

as T →∞. Letting X be an n-dimensional real random vector with distributionN [0,Σ],
its characteristic function is given as

ψ(h) = exp
(
−1

2h
′Σh

)
for any h ∈ Rn, so we can see that

lim
T→∞

ψT (h) = ψ(h)

for any h ∈ Rn. It follows from the continuity theorem that

1√
T

T∑
t=1

Zt
d→X ∼N [0,Σ] .

Q.E.D.

Note that, since
√
T
(
ȲT −µ

)
converges in distribution as T →∞, it is an Op(1) sequence. In

other words, ȲT is itself Op(T−1/2). Heuristically, this result can be understood to mean that the
sample mean ȲT of an i.i.d. process converges to its probability limit µ, the population mean,
at around the same speed as 1√

T
converges to 0.
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5.2 WLLN and CLTs for Dependent Processes

The last section mainly focused on WLLN and CLTs for i.i.d. processes. In most time series
applications, however, we cannot assume that the processes of interest are independent, nor can
we realistically assume that they are identically distributed. At most, we can construct them so
that they are pairwise uncorrelated, but this is insufficient to ensure that they follow some form
of the WLLN or CLT.

Here we focus on processes whose elements are not quite independent but unrelated to on
one another in a stronger sense than pairwise uncorrelatedness. We show that these processes,
called martingale difference sequences, do satisfy the WLLN and CLT given mild additional
assumptions. The results presented below are the workhorse asymptotic results in time series
analysis.

5.2.1 Martingale Difference Arrays

An array {ZT,t}1≤t≤k(T ),T∈N+ of real random variables is said to be a martingale difference array
with respect to the filtration array {FT,t}1≤t≤k(T ),T∈N+ if

• ZT,t is FT,t measurable and integrable for any T ∈N+ and 1≤ t≤ k(T )

• For any T ∈N+ and 1≤ t≤ k(T ),

E [ZT,t | FT,t−1] = 0,

where FT,0 is taken to be the trivial σ-algebra.

Before presenting a CLT for martingale difference arrays, we state some preliminary results:

Lemma 5.5 The following hold true:

i) For any x ∈ R, ∣∣∣∣∣exp(ix)−
(

1 + ix− x
2

2

)∣∣∣∣∣≤min
(
|x|3, |x|2

)
.

ii) For any z ∈ C,

|exp(z)− (1 +z)| ≤ |z|2 exp(|z|).
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Proof) i) Choose any x ∈ R, and let n ∈N+. Since

∂

∂s

(
− 1
n+ 1(x−s)n+1 exp(is)

)
= (x−s)n exp(is)− i

n+ 1(x−s)n+1 exp(is)

on R, we can see that∫ x

0
(x−s)n exp(is)ds− i

n+ 1

∫ x

0
(x−s)n+1 exp(is)ds= 1

n+ 1x
n+1,

or equivalently,∫ x

0
(x−s)n exp(is)ds= 1

n+ 1x
n+1 + i

n+ 1

∫ x

0
(x−s)n+1 exp(is)ds.

Putting n= 1 reveals that

i− i · exp(ix) = x+ i ·
∫ x

0
(x−s)exp(is)ds,

or that

exp(ix) = 1 + ix−
∫ x

0
(x−s)exp(is)ds.

The result for n= 2 now shows us that∫ x

0
(x−s)exp(is)ds= x2

2 + i

2

∫ x

0
(x−s)2 exp(is)ds,

or that

exp(ix) = 1 + ix− x
2

2 −
i

2

∫ x

0
(x−s)2 exp(is)ds

We therefore have the upper bound∣∣∣∣∣exp(ix)−
(

1 + ix− x
2

2

)∣∣∣∣∣≤ 1
2

∣∣∣∣∫ x

0
(x−s)2 exp(is)ds

∣∣∣∣.

To obtain the first bound, note that, if x≥ 0, then
∣∣∣∣∫ x

0
(x−s)2 exp(is)ds

∣∣∣∣≤ ∫ x

0
(x−s)2ds= x3

3 .

On the other hand, if x < 0, then
∣∣∣∣∫ x

0
(x−s)2 exp(is)ds

∣∣∣∣≤ ∫ 0

x
(x−s)2ds=−x

3

3 ,
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so that ∣∣∣∣∣exp(ix)−
(

1 + ix− x
2

2

)∣∣∣∣∣≤ |x|
3

6 ≤ |x|3.

It is slightly trickier to obtain the second bound. From the relationship

∫ x

0
(x−s)exp(is)ds= x2

2 + i

2

∫ x

0
(x−s)2 exp(is)ds,

we can see that

1
2

∣∣∣∣∫ x

0
(x−s)2 exp(is)ds

∣∣∣∣= ∣∣∣∣ i2
∫ x

0
(x−s)2 exp(is)ds

∣∣∣∣≤ ∣∣∣∣∫ x

0
(x−s)exp(is)ds

∣∣∣∣+ x2

2 .

If x≥ 0, then
∣∣∣∣∫ x

0
(x−s)exp(is)ds

∣∣∣∣≤ ∫ x

0
|x−s|ds=

∫ x

0
(x−s)ds= x2

2 ,

while if x < 0, then
∣∣∣∣∫ x

0
(x−s)exp(is)ds

∣∣∣∣≤ ∫ 0

x
|x−s|ds=

∫ 0

x
(s−x)ds= x2

2 .

Therefore,

1
2

∣∣∣∣∫ x

0
(x−s)2 exp(is)ds

∣∣∣∣≤ x2

2 ≤ x
2,

and we have ∣∣∣∣∣exp(ix)−
(

1 + ix− x
2

2

)∣∣∣∣∣≤min(|x|3, |x|2).

ii) Choose any z ∈ C. Then,

exp(z) =
∞∑
n=0

zn

n! = 1 +z+
∞∑
n=2

zn

n!

= 1 +z+ z2

·

( ∞∑
n=2

zn−2

n!

)
,

so that

|exp(z)− (1 +z)| ≤ |z|2 ·
( ∞∑
n=2

|z|n−2

n!

)
≤ |z|2 ·

( ∞∑
n=0

|z|n

n!

)
= |z|2 exp(|z|).
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Q.E.D.

We are now ready to present a CLT for martingale difference arrays:

Theorem 5.6 (CLT for Martingale Difference Arrays)
Let {ZT,t}T∈N+,1≤t≤k(T ) be a square integrable (or L2) martingale difference array with respect
to the filtration array F = {FT,t}1≤t≤k(T ),T∈N+ . Define σ2

T,t = E
[
Z2
T,t | FT,t−1

]
for any T ∈ N+

and 1≤ t≤ k(T ), and let

VT =
k(T )∑
t=1

σ2
T,t

for any T ∈N+. Assume that:

i) VT
p→ 1 as T →∞.

ii) (The Lindeberg Condition) For any ε > 0,

lim
T→∞

k(T )∑
t=1

E
[∣∣∣Z2

T,t

∣∣∣ · I{|ZT,t|>ε}]= 0.

Then, we have

k(T )∑
t=1

ZT,t
d→N(0,1).

Proof) We proceed in small steps.

Part 1: Bounding VT

We first modify the array {ZT,t}T∈N+,1≤t≤k(T ) so that the sum of conditional variances
VT is bounded. Define {VT,t}T∈N+,1≤t≤k(T ) as

VT,t =
t∑

s=1
σ2
T,s

for any T ∈N+, 1≤ t≤ k(T ), so that VT,T = VT , and let {YT,t}T∈N+,1≤t≤k(T ) be defined
as

YT,t = ZT,t · I{VT,t≤2}

for any T ∈N+ and 1≤ t≤ k(T ). We now establish some properties of {YT,t}T∈N+,1≤t≤k(T ):

– Martingale Difference Array
It is clear that {YT,t}T∈N+,1≤t≤k(T ) is a martingale difference array with respect
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to F ; for any T ∈ N+ and 1 ≤ t ≤ k(T ), since VT,t is FT,t−1-measurable, YT,t is
clearly FT,t measurable, integrable due to the integrability of ZT,t, and

E [YT,t | FT,t−1] = E [ZT,t | FT,t−1] · I{VT,t≤2} = 0.

– Square Integrable
By the square integrability of ZT,t, each YT,t is also square integrable. Furthermore,
defining

ΓT =
T∑
t=1

E
[
Y 2
T,t | FT,t−1

]
︸ ︷︷ ︸

ρ2
T,t

,

since

E
[
Y 2
T,t | FT,t−1

]
= E

[
Z2
T,t | FT,t−1

]
· I{VT,t≤2} = σ2

T,t · I{VT,t≤2},

we can see that

ΓT =
T∑
t=1

σ2
T,t · I{VT,t≤2}.

This implies that ΓT ≤ 2 on Ω.
Analgously to VT,t, we define

ΓT,t =
t∑

s=1
ρ2
T,s

for any T ∈N+ and 1≤ t≤ k(T ).

– Convergence of ΓT
Moreover,

|VT −ΓT |= VT −ΓT =
T∑
t=1

σ2
T,t · I{VT,t>2}

≤
(

T∑
t=1

σ2
T,t

)
· I{VT>2} = VT · I{VT>2}.

By assumption, VT
p→ 1, and for any δ > 0,

P
(
VT · I{VT>2} > δ

)
≤ P(VT > 2)≤ P(|VT −1|> 1) ,
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so that

lim
T→∞

P
(
VT · I{VT>2} > δ

)
= 0.

This holds for any δ > 0, so

VT · I{VT>2}
p→ 0

and we have

ΓT −VT
p→ 0

as T →∞ as well. Therefore, we can conclude that

ΓT
p→ 1.

– The Lindeberg Condition
For any T ∈N+ and ε > 0,

YT,t ≤ ZT,t

and thus

E
[
Y 2
T,t · I{|YT,t|>ε}

]
≤ E

[
Z2
T,t · I{|ZT,t|>ε}

]
for 1≤ t≤ k(T ), so that

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε}

]
≤
k(T )∑
t=1

E
[
Z2
T,t · I{|ZT,t|>ε}

]
.

The right hand side goes to 0 as T →∞, so {YT,t}T∈N+,1≤t≤k(T ) satisfies the
Lindeberg condition

lim
T→∞

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε}

]
= 0.

We have thus shown that {YT,t}T∈N+,1≤t≤k(T ) possesses all the same properties as
{ZT,t}T∈N+,1≤t≤k(T ), with the added property that

T∑
t=1

E
[
Y 2
T,t | FT,t−1

]
≤ 2
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for any T ∈N+. Furthermore, since∣∣∣∣∣∣
k(T )∑
t=1

ZT,t−
k(T )∑
t=1

YT,t

∣∣∣∣∣∣=
∣∣∣∣∣∣
k(T )∑
t=1

ZT,t · I{VT,t>2}

∣∣∣∣∣∣
≤

k(T )∑
t=1
|ZT,t|

 · I{VT>2},

and

P

k(T )∑
t=1
|ZT,t|

 · I{VT>2} > δ

≤ P(VT > 2)

for any δ > 0, we can see that

k(T )∑
t=1

ZT,t−
k(T )∑
t=1

YT,t
p→ 0.

Therefore, if we can show that

k(T )∑
t=1

YT,t
d→N(0,1),

then by Slutsky’s theorem, we can prove the claim of the theorem.

Part 2: The Characteristic Function of ∑k(T )
t=1 YT,t

To show that the partial sums ∑k(T )
t=1 YT,t converge in distribution to the standard

normal distribution, we make use of the continuity theorem and show that their char-
acteristic functions converge to that of the desired distribution. To that end, denote by
ϕT the characteristic function of

ST =
k(T )∑
t=1

YT,t

For any r ∈ R,∣∣∣∣∣ϕT (r)− exp
(
−r

2

2

)∣∣∣∣∣=
∣∣∣∣∣E [exp(ir ·ST )]− exp

(
−r

2

2

)∣∣∣∣∣
≤
∣∣∣∣∣E [exp(ir ·ST )]−E

[
exp(ir ·ST )exp

(
r2ΓT

2

)
exp

(
−r

2

2

)]∣∣∣∣∣
+
∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)
exp

(
−r

2

2

)]
− exp

(
−r

2

2

)∣∣∣∣∣
≤ E

∣∣∣∣∣1− exp
(
r2ΓT

2

)
exp

(
−r

2

2

)∣∣∣∣∣+
∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)
−1
]∣∣∣∣∣.
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Because ΓT
p→ 1, by the continuous mapping theorem

1− exp
(
r2ΓT

2

)
exp

(
−r

2

2

)
p→ 0.

Furthermore, for any T ∈N+, 0≤ ΓT ≤ 2 on Ω, so that the sequence

{
1− exp

(
r2ΓT

2

)
exp

(
−r

2

2

)}
T∈N+

is Lp-bounded for any p∈ [1,+∞). By implication, the sequence is uniformly integrable,
which, together with the convergence in probability result above, implies that

1− exp
(
r2ΓT

2

)
exp

(
−r

2

2

)
L1
→ 0,

or equivalently,

E
∣∣∣∣∣1− exp

(
r2ΓT

2

)
exp

(
−r

2

2

)∣∣∣∣∣→ 0

as T →∞.

Therefore, it remains to show that∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)
−1
]∣∣∣∣∣→ 0

as T →∞ for the characteristic function of ST to converge to that of the standard
normal distribution as T →∞.

Part 3: Decomposing the Second Term

We first express the term ∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)
−1
]∣∣∣∣∣

as a telescoping sum, that is,

E
[
exp(ir ·ST )exp

(
r2ΓT

2

)]
−1

=
k(T )∑
t=1

E
[
exp(ir ·ST,t)exp

(
r2ΓT,t

2

)
− exp(ir ·ST,t−1)exp

(
r2ΓT,t−1

2

)]
,
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where we define

ST,t =
t∑

s=1
YT,s

for 1 ≤ t ≤ k(T ). For any 1 ≤ t ≤ k(T ), using the law of iterated expectations, we can
see that

E
[
exp(ir ·ST,t)exp

(
r2ΓT,t

2

)
− exp(ir ·ST,t−1)exp

(
r2ΓT,t−1

2

)]

= E
[
exp(ir ·ST,t−1)exp

(
r2ΓT,t

2

)
E
[
exp(ir ·YT,t)− exp

(
−
r2ρ2

T,t

2

)∣∣∣FT,t−1

]]
.

Therefore, using the fact that ΓT,t is bounded above by 2 on Ω, we have

∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)]
−1
∣∣∣∣∣

≤ exp
(
r2
)
·
k(T )∑
t=1

E
∣∣∣∣∣E [exp(ir ·YT,t) | FT,t−1]− exp

(
−
r2ρ2

T,t

2

)∣∣∣∣∣.

Part 4: Finding an Upper Bound for the Second Term

For any 1≤ t≤ k(T ), the previous lemma tells us that∣∣∣∣∣E [exp(ir ·YT,t) | FT,t−1]−
(

1−
r2ρ2

T,t

2

)∣∣∣∣∣≤ E
[∣∣∣∣∣exp(ir ·YT,t)−

(
1 + ir ·YT,t−

r2Y 2
T,t

2

)∣∣∣∣∣∣∣∣FT,t−1

]

≤ E
[
min(|rYT,t|3, |rYT,t|2) | FT,t−1

]
.

It can now be seen that, for any ε > 0,

∣∣∣∣∣E [exp(ir ·YT,t) | FT,t−1]−
(

1−
r2σ2

T,t

2

)∣∣∣∣∣
≤ E

[
|rYT,t|3 · I{|YT,t|≤ε} | FT,t−1

]
+E

[
|rYT,t|2 · I{|YT,t|>ε} | FT,t−1

]
≤ ε|r|3 ·E

[
Y 2
T,t · I{|YT,t|≤ε} | FT,t−1

]
+ r2 ·E

[
Y 2
T,t · I{|YT,t|>ε} | FT,t−1

]
≤ ε|r|3 ·ρ2

T,t+ r2 ·E
[
Y 2
T,t · I{|YT,t|>ε} | FT,t−1

]
.
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Similarly, the second result in the previous lemma implies
∣∣∣∣∣exp

(
−
r2ρ2

T,t

2

)
−
(

1−
r2ρ2

T,t

2

)∣∣∣∣∣≤
∣∣∣∣∣r

2ρ2
T,t

2

∣∣∣∣∣
2

· exp
(
r2ρ2

T,t

2

)

≤ r4

4 exp
(
r2
)
ρ2
T,t ·

(
max

1≤s≤k(T )
ρ2
T,s

)
,

where we used the fact that

ρ2
T,t ≤ ΓT ≤ 2.

By implication,

∣∣∣∣∣E [exp(ir ·YT,t) | FT,t−1]− exp
(
−
r2ρ2

T,t

2

)∣∣∣∣∣
≤ ε|r|3 ·ρ2

T,t+ r2 ·E
[
Y 2
T,t · I{|YT,t|>ε} | FT,t−1

]
+ r4

4 exp
(
r2
)
·ρ2
T,t ·

(
max

1≤s≤k(T )
ρ2
T,s

)
,

and as such∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)]
−1
∣∣∣∣∣

≤ exp
(
r2
)
ε|r|3 ·E [ΓT ]+exp

(
r2
)
r2 ·

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε}

]
+exp

(
2r2
)r4

4 E
[
ΓT · max

1≤s≤k(T )
ρ2
T,s

]

≤ 2exp
(
r2
)
|r|3 · ε︸ ︷︷ ︸

I

+exp
(
r2
)
r2 ·

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε}

]
︸ ︷︷ ︸

II

+exp
(
2r2
)r4

2 E
[

max
1≤s≤k(T )

ρ2
T,s

]
︸ ︷︷ ︸

III

.

Part 5: The Convergence of the Second Term

The Lindeberg condition ensures that II converges to 0.

As for III, note that

ρ2
T,s = E

[
Y 2
T,s · I{|YT,s|≤ε} | FT,s−1

]
+E

[
Y 2
Tst · I{|YT,s|>ε} | FT,s−1

]
≤ ε2 +E

[
Y 2
T,s · I{|YT,s|>ε} | FT,s−1

]
≤ ε2 +

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε} | FT,t−1

]
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for any 1≤ s≤ k(T ), so

max
1≤s≤k(T )

ρ2
T,s ≤ ε2 +

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε} | FT,t−1

]
.

It follows that

E
[

max
1≤s≤k(T )

ρ2
T,s

]
≤ ε2 +

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε}

]
,

and by the Lindeberg condition,

limsup
T→∞

E
[

max
1≤s≤k(T )

ρ2
T,s

]
≤ ε2.

Therefore, the limit supremum of the term III is bounded above by exp
(
2r2) r4

2 · ε
2, so

that

limsup
T→∞

∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)]
−1
∣∣∣∣∣≤

[
2exp

(
r2
)
|r|3 · ε+ exp

(
2r2
)r4

2 · ε
2
]
.

Since this holds for any ε > 0, it follows that

lim
T→∞

∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)]
−1
∣∣∣∣∣= 0.

We have shown that

lim
T→∞

∣∣∣∣∣ϕT (r)− exp
(
−r

2

2

)∣∣∣∣∣= 0,

and because r ∈ R was chosen arbitrarily, by the continuity theorem we may conclude
that

ST
d→N(0,1).

Q.E.D.
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5.2.2 Martingale Difference Sequences

We now turn our attention to martingale difference sequences instead of arrays. A sequence
{Yt}t∈Z of n-dimensional random vectors is said to be an n-dimensional martingale difference
sequence (MDS) with respect to the filtration F = {Ft | t ∈ Z} if:

• Yt is Ft-measurable and integrable for any t ∈ Z

• E [Yt] = 0 for any t ∈ Z

• For any t ∈ Z,

E [Yt | Ft−1] = 0.

Given an n-dimensional MDS {Yt}t∈Z, it can easily be seen that {α′Yt}t∈Z is a univariate
MDS for any α∈Rn. Furthermore, given an univariate MDS {yt}t∈Z with respect to the filtration
F = {Ft | t ∈ Z}, we can always define a martingale difference array by defining

ZT,t = yt and FT,t = Ft

for any T ∈N+ and 1≤ t≤ T = k(T ).

To obtain a workable version of the martingale difference array CLT for martingale difference
sequences, we require the following law of large numbers, adapted from Andrews (1988).

Theorem 5.7 (A Martingale WLLN)
Let {Yt}t∈Z be an n-dimensional martingale difference sequence with respect to the filtration
F = {Ft}t∈Z such that {|Yt|p | t ∈ Z} is uniformly integrable for some 1≤ p≤ 2. Then,

1
T

T∑
t=1

Yt
Lp→ 0.

Proof) Choose any ε > 0. By uniform integrability,

lim
b→∞

sup
t∈Z

E
[
|Yt|p · I{|Yt|p>b}

]
= 0,

so there exists a B > 0 such that

sup
t∈Z

E
[
|Yt|p · I{|Yt|p>B}

]
<

(
ε

4

)p
.

For any t ∈ Z, define

et = Yt · I{|Yt|p≤B} and

ut = Yt · I{|Yt|p>B}.
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Then, Yt = et+ut, and we have

E [Yt | Ft−1] = 0 = E [et | Ft−1] +E [ut | Ft−1] .

Furthermore, the sequence {et−E [et | Ft−1]}t∈Z defines an n-dimensional MDS with
respect to F , since both et and E [et | Ft−1] are integrable random vectors and

E [et−E [et | Ft−1] | Ft−1] = 0.

For any T ∈N+, we now have
∥∥∥∥∥ 1
T

T∑
t=1

Yt

∥∥∥∥∥
p

≤
∥∥∥∥∥ 1
T

T∑
t=1

(et−E [et | Ft−1])
∥∥∥∥∥
p

+ 1
T

T∑
t=1
‖ut−E [ut | Ft−1]‖p

≤
∥∥∥∥∥ 1
T

T∑
t=1

(et−E [et | Ft−1])
∥∥∥∥∥
p

+ 1
T

T∑
t=1

(
‖ut‖p+‖E [ut | Ft−1]‖p

)

by Minkowski’s inequality. Note that, for any random vector X ∈ Lp(H,P), Jensen’s
inequality implies that

(E|X|p)
2
p ≤ E|X|2,

so that ‖X‖p ≤ ‖X‖2. Likewise, the conditional version of Jensen’s inequality tells us
that, for any t ∈ Z,

‖E [ut | Ft−1]‖p = (E|E [ut | Ft−1]|p)
1
p

≤ (E|ut|p)
1
p = ‖ut‖p.

It follows that ∥∥∥∥∥ 1
T

T∑
t=1

Yt

∥∥∥∥∥
p

≤
∥∥∥∥∥ 1
T

T∑
t=1

(et−E [et | Ft−1])
∥∥∥∥∥

2
+ 2
T

T∑
t=1
‖ut‖p.

Since

ut = Yt · I{|Yt|p>B},

by assumption we have

E|ut|p = E
[
|Yt|p · I{|Yt|p>B}

]
,
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and as such

sup
t∈Z
‖ut‖p ≤

(
sup
t∈Z

E
[
|Yt|p · I{|Yt|p>B}

]) 1
p

<
ε

4 ,

which implies ∥∥∥∥∥ 1
T

T∑
t=1

Yt

∥∥∥∥∥
p

≤
∥∥∥∥∥ 1
T

T∑
t=1

(et−E [et | Ft−1])
∥∥∥∥∥

2
+ ε

2 .

On the other hand, since martingale difference sequences are pairwise uncorrelated,

E
∣∣∣∣∣ 1T

T∑
t=1

(et−E [et | Ft−1])
∣∣∣∣∣
2

= 1
T 2

T∑
t=1

E|et−E [et | Ft−1]|2

≤ 1
T 2

T∑
t=1

E
[
(|et|+ |E [et | Ft−1]|)2

]

≤ 1
T 2

T∑
t=1

(‖et‖2 +‖E [et | Ft−1]‖2)2

(Minkowski’s inequality)

≤ 4
T 2

T∑
t=1

E|et|2.

(Conditional version of Jensen’s inequality)

By definition,

E|et|2 = E
[
|Yt|2 · I{|Yt|p≤B}

]
≤B

2
pP(|Yt|p ≤B)≤B

2
p ,

so we have ∥∥∥∥∥ 1
T

T∑
t=1

Yt

∥∥∥∥∥
p

≤ 2B
1
p

√
T

+ ε

2 .

Choose N ∈ N+ so that 2B
1
p√
T
< ε

2 for any T ≥ N ; this N depends on B and ε, and
because our choice of B depends only on ε, so does N . We can now see that, for any
T ≥N , ∥∥∥∥∥ 1

T

T∑
t=1

Yt

∥∥∥∥∥
p

< ε.

This holds for any ε > 0, so by definition

lim
T→∞

∥∥∥∥∥ 1
T

T∑
t=1

Yt

∥∥∥∥∥
p

= 0.
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Q.E.D.

We now state and prove a CLT for (possibly multivariate) martingale difference sequences:

Theorem 5.8 (CLT for Martingale Difference Sequences)
Let {Yt}t∈Z be an n-dimensional martingale difference sequence with respect to the filtration
F = {Ft}t∈Z. Suppose {Yt}t∈Z satisfies the following properties:

i) {|Yt| | t ∈ Z} is Lp-bounded for some p > 2.

ii) There exists a positive definite matrix Q ∈ Rn×n such that

1
T

T∑
t=1

YtY
′
t
p→Q.

Then, as T →∞,

1√
T

T∑
t=1

Yt
p→N [0,Q] .

Proof) We make use of the Cramer-Wold device to show this result. Choose any non-zero
α ∈ Rn, and define Zt = α′Yt for any t ∈ Z. As stated earlier, {Zt}t∈Z is a univariate
MDS with respect to F satisfying

σ2
T = 1

T

T∑
t=1

Z2
t = α′

(
1
T

T∑
t=1

YtY
′
t

)
α

p→ α′Qα= σ2.

Here, σ2 > 0 becausae Q is positive definite and α is non-zero. Furthermore, {Zt}t∈Z is
Lp-bounded, since

E|Zt|p ≤ |α|p ·E|Yt|p

for any t ∈ Z by the Cauchy-Schwarz inequality.

Defining

ZT,t = Zt

σ
√
T

and FT,t = Ft

for any T ∈ N+ and 1 ≤ t ≤ T = k(T ), we obtain the martingale difference array
{ZT,t}T∈N+,1≤t≤k(T ) with respect to the filtration array {FT,t | T ∈N+,1 ≤ t ≤ k(T )}.
This martingale difference array is clearly square integrable, due to the Lp-boundedness
of {Zt}t∈Z and the fact that p > 2. We now verify the conditions of the CLT for mar-
tingale difference arrays:
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– Convergence of Sum of Variances
For any T ∈N+, define

VT =
T∑
t=1

E
[
Z2
T,t | FT,t−1

]
= 1
σ2 ·T

T∑
t=1

E
[
Z2
t | Ft−1

]
.

We saw earlier that

σ2
T = 1

T

T∑
t=1

Z2
t

p→ σ2.

If we can show that σ2
T
σ2 −VT

p→ 0, then we will obtain the desired result VT
p→ 1.

To this end, define

xt = Z2
t −E

[
Z2
t | Ft−1

]
for any t ∈ Z. {xt}t∈Z defines a martingale difference sequence with respect to the
filtration F , since each xt is clearly Ft-measurable, integrable with mean 0, and

E [xt | Ft−1] = E
[
Z2
t | Ft−1

]
−E

[
Z2
t | Ft−1

]
= 0.

We noted above that {Zt}t∈Z was Lp-bounded; because p > 2, we can see that

E|Zt|p = E
∣∣∣Z2
t

∣∣∣ p2
for any t ∈ Z, which tells us that {Z2

t }t∈Z is L
p
2 -bounded, where p

2 > 1. By impli-
cation, it is uniformly integrable, which implies that {xt}t∈Z is also a uniformly
integrable martingale difference sequence. By the martingale WLLN proved ear-
lier,

1
T

T∑
t=1

xt
L1
→ 0,

from which it can be inferred that

σ2
T −σ2VT = 1

T

T∑
t=1

(
Zt−E

[
Z2
t | Ft−1

])
= 1
T

T∑
t=1

xt
p→ 0.

Therefore,

VT
p→ 1.

– The Lindeberg Condition
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We can also show that {ZT,t}T∈N+,1≤t≤k(T ) satisfies the Lindeberg condition. By
the Lp-boundedness of {Zt}t∈Z, there exists an M <+∞ such that

E|Zt|p <M

for any t ∈ Z, which implies that

k(T )∑
t=1

E|ZT,t|p = 1
σpT

p
2

k(T )∑
t=1

E|Zt|p ≤ σ−pT 1− p2 .

Since p
2 > 1, taking T →∞ on both sides yields

lim
T→∞

k(T )∑
t=1

E|ZT,t|p = 0,

which is actually equivalent to Lyapunov’s condition.

It now remains to show that Lyapunov’s condition implies Lindeberg’s. For any
ε > 0, if |ZT,t|> ε, then

|ZT,t|p = |ZT,t|2 · |ZT,t|p−2 > |ZT,t|2 · εp−2,

since p−2> 0; this means that

εp−2 · |ZT,t|2 · I{|ZT,t|>ε} ≤ |ZT,t|
p · I{|ZT,t|>ε} ≤ |ZT,t|

p.

Therefore,

k(T )∑
t=1

E
[
|ZT,t|2 · I{|ZT,t|>ε}

]
≤ ε2−p ·

k(T )∑
t=1

E|ZT,t|p,

so taking T →∞ on both sides yields

lim
T→∞

k(T )∑
t=1

E
[
|ZT,t|2 · I{|ZT,t|>ε}

]
= 0.

We have thus seen that the two conditions in the CLT for martingale difference arrays
are satisfied. As per that theorem, then, we can conclude that

1
σ
√
T

T∑
t=1

Zt =
k(T )∑
t=1

ZT,t
d→N(0,1).
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By Slutsky’s theorem, this then implies that

1√
T

T∑
t=1

Zt
d→N(0,σ2),

or equivalently, for some n-dimensional normally distributed random vector Z with
variance Q,

α′
(

1√
T

T∑
t=1

Yt

)
= 1√

T

T∑
t=1

Zt
d→ α′Z.

Thish holds for any non-zero α ∈ Rn, so by the Cramer-Wold device,

1√
T

T∑
t=1

Yt
d→ Z ∼N [0,Q] .

Q.E.D.
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Chapter 6

Continuous Function Spaces

In this chapter we apply the convergence results shown in chapter 4 to the space of continuous
functions. These spaces are of great interest because, given an intuitive and tractable metric,
they become complete metric spaces. In fact, it can be shown that spaces collecting continuous
functions defined on a compact set are also separable. We eventually build up to a central limit
theorem on these spaces, from which the existence of the Wiener process and the usual central
limit theorems follow, making it a singularly powerful result.

We will work with the following basic framework.
Let (E,τ) be a topological space and F = Rn or C. Then, we let B(E,F ) denote the set of all
bounded functions from E to F , and Cb(E,F ) the set of all continuous and bounded functions
from E to F . This notation has been encountered before; recall that the definition of the weak
convergence of the sequence {µn}n∈N+ of probability measures on E to the probability measure
µ on E is given as

lim
n→∞

∫
E
fdµn =

∫
E
fdµ

for any f ∈Cb(E,R). From this it can be shown that the above equation holds for any F =Rn or C
and f ∈ Cb(E,F ).

A special case arises when E is compact (indeed, this is the case of primary interest). Since
real continuous functions defined on a compact set are bounded by the extreme value theorem,
the space Cb(E,F ) in this case coincides with C(E,F ), the collection of all continuous functions
from E to F . As such, we can jettison the boundedness condition here (strictly speaking, the
boundedness condition is not relaxed, but rather follows from continuity and thus does not need
to be explicitly stated).

Returning to the general case, recall that the collection of all functions from E to F consti-
tutes a vector space over the complex field, with additive identity equal to the zero function on
E (denote the zero element of F by 0F ). B(E,F ) and Cb(E,F ), being subsets of this collection
that contain the zero function and which are closed under linear combinations, is also a vector
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space over the complex field. We can also show that they are normed vector spaces under the
same norm.

Define the function ‖·‖C :B(E,F )→ [0,+∞) as

‖f‖C = sup
x∈E
|f(x)|

for any f ∈B(E,F ). ‖·‖C is well-defined and finite because f is bounded. We can show that ‖·‖C
defines a norm on V (E,F ):

• If ‖f‖C = 0, then f(x) = 0 for any x∈E, so that f is the zero function. Conversely, if f = 0
on E, then ‖f‖C = 0 trivially.

• For any z ∈ C,

‖zf‖C = sup
x∈E
|zf(x)|= |z| ·

(
sup
x∈E
|f(x)|

)
= |z| · ‖f‖C .

• Because the eucliden norm satisfies the triangle inequality,

|f(x) +g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖C+‖g‖C

for any x ∈ E. Thus, it holds that

‖f +g‖C ≤ ‖f‖C+‖g‖C .

The pair (B(E,F ),‖·‖C) is a normed vector space over the complex field; ‖·‖C is called the
supremum norm on B(E,F ). Let d :B(E,F )×B(E,F )→ [0,+∞) be the metric induced by the
supremum norm, defined as

d(f,g) = sup
x∈E
|f(x)−g(x)|= ‖f −g‖C

for any f,g ∈B(E,F ). We call d the supremum metric on B(E,F ). We first study the space of
all bounded functions on E, and then move onto the space of continuous functions, which is our
main area of interest.
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6.1 The Properties of Continuous Function Spaces

Note that a sequence {fn}n∈N+ ⊂B(E,F ) converges to some f ∈B(E,F ) if and only if fn→ f

uniformly on E; this is easy to see.
Suppose that fn→ f uniformly on E. Then, for any ε > 0 there exists an N ∈N+ such that

|fn(x)−f(x)|< ε

for any n≥N . By implication, for any n≥N ,

d(fn,f) = sup
x∈E
|fn(x)−f(x)| ≤ ε,

and since this holds for any ε > 0, fn→ f in the metric d.
Conversely, if fn→ f in the metric d, for any ε > 0 there exists an N ∈N+ such that, for any
n≥N ,

|fn(x)−f(x)| ≤ d(fn,f)< ε

for any x ∈ E. By definition, fn→ f uniformly on E.

6.1.1 Completeness of Continuous Function Spaces

This equivalence between uniform convergence and convergence in d can be exploited to show
that (B(E,F ),d) is a complete metric space. By implication, (B(E,F ),‖·‖C) is a Banach space
over the complex field.

Theorem 6.1 (Completeness of Bounded Function Spaces)
Let E be an arbitrary set, and F = Rn or C. Suppose {fn}n∈N+ is a sequence in B(E,F ) that is
Cauchy with respect to the metric d. Then, there exists an f ∈B(E,F ) such that fn→ f in d.

Proof) Let {fn}n∈N+ ⊂B(E,F ) be a Cauchy sequence with respect to d. By definition,

lim
n,m→∞

d(fn,fm) = 0,

and because |fn(x)−fm(x)| ≤ d(fn,fm) for any x ∈ E, for any x ∈ E the sequence
{fn(x)}n∈N+ is a Cauchy sequence with respect to the euclidean metric on F . Since
(F, |·|) is a complete metric space, there exists an fx ∈F such that fn(x)→ fx as n→∞.

Defining f :E→ F as f(x) = fx for any x ∈E, by construction fn→ f pointwise on E.
It remains to verify that f is a bounded function on E and that fn→ f uniformly on E.
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Uniform Convergence

We first show that fn→ f uniformly on E.
For any ε > 0, by design there exists an N ∈N+ such that

d(fn,fm)< ε

2

for any n,m≥N , which implies that, if n,m≥N , then

|fn(x)−fm(x)|< ε

2

for any x ∈ E. Fix x ∈ E. Then, becauase fm(x)→ f(x) as m→∞, there exists an
N1 ∈N+ such that N1 >N and

|fm(x)−f(x)|< ε

2 .

It follows that, for any n≥N ,

|fn(x)−f(x)| ≤ |fn(x)−fN1(x)|+ |fN1(x)−f(x)|< ε.

Our choice of x ∈ E above was arbitrary, so if n≥N ,

|fn(x)−f(x)|< ε

for any x ∈ E. This holds for any ε > 0, so by definition, fn→ f uniformly.

Boundedness of f

It follows almost immediately that f is bounded.
From uniform convergence, there exists an N ∈N+ such that n≥N implies

|fn(x)−f(x)|< 1

for any x ∈ E. Thus,

|f(x)|< 1 + |fN (x)|

for any x ∈ E, and becauase fN is bounded, so is f .

Q.E.D.
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The completeness of the subspace Cb(E,F ) of B(E,F ) can be seen as an extension of the
completeness of B(E,F ). Specifically, given a Cauchy sequence in Cb(E,F ), because this is also a
Cauchy sequence in B(E,F ), the theorem above shows us that it converges to some f ∈B(E,F ).
The completeness of Cb(E,F ) will be established if we can only show that Cb(E,F ) is a closed
subset of B(E,F ), that is, if we can show that f is a continuous function.

Corollary to Theorem 6.1 (Completeness of Continuous Function Spaces)
Let (E,τ) be a topologcal space, and F = Rn or C. Suppose {fn}n∈N+ is a sequence in Cb(E,F )
that is Cauchy with respect to the metric d. Then, there exists an f ∈ Cb(E,F ) such that fn→ f

in d.

Proof) Let {fn}n∈N+ be a sequence in Cb(E,F ) that is Cauchy in the uniform metric d. By
the completeness of B(E,F ), there exists some f ∈B(E,F ) such that fn→ f in d. We
show below that f is a continuous function on E; this completes the proof.

Choose any open subset V of F and x∈ f−1(V ). This means that f(x)∈ V , and because
(F, |·|) is a metric space, there exists an ε > 0 such that Vε =B|·|(f(x), ε)⊂ V .
fm→ f uniformly as m→∞, so there exists an N ∈N+ such that, for any m≥N ,

|fm(x)−f(x)|< ε

3

for any x ∈ E.
Furthermore, since fN is continuous and the open ball

B =B|·|

(
fN (x), ε3

)

is an open subset of F , the inverse image U = f−1
N (B) ∈ τ . By design, fN (x) ∈ B, so

x ∈ f−1
N (B) = U , so that U is a neighborhood around x, and for any y ∈ U , fN (y) ∈B,

or equivalently,

|fN (y)−fN (x)|< ε

3 .

Note that the choice of U depends on ε and N , but because N depends only on ε, U is
chosen on the basis of ε alone.
Now let y ∈ U . Then, by the results above,

|f(y)−f(x)| ≤ |f(y)−fN (y)|+ |fN (y)−fN (x)|+ |fN (x)−f(x)|

<
ε

3 + ε

3 + ε

3 = ε.
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As such,

U ⊂ f−1(Vε)⊂ f−1(V ).

We have so far shown that, for any x ∈ f−1(V ), there exists a neighborhood Ux ∈ τ of
x such that Ux ⊂ f−1(V ). Then, defining

U =
⋃

x∈f−1(V )
Ux,

U ∈ τ because arbitrary unions of open sets are open sets, and

U = f−1(V ).

In other words, f−1(V ) is an open set in E, and because this holds for any open subset
V of F , by definition f is a continuous function on E.

Q.E.D.
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6.1.2 The Modulus of Continuity

Here we introduce a useful characterization of the uniform continuity of functions in Cb(E,F )
when (E,τ) is metrizable by some metric ρ on E. Define the function w : Cb(E,F )× (0,+∞)→
[0,+∞) as

w(f,δ) = sup{|f(x)−f(y)| | x,y ∈ E,ρ(x,y)< δ}

for any f ∈ Cb(E,F ) and δ > 0. This quantity is well-defined and finite by the least upper bound
property of the real line because the set {|f(x)−f(y)| | x,y ∈ E,ρ(x,y) < δ} is bounded above
(f is a bounded function). The following are the properties of the function w:

Lemma 6.2 Let (E,ρ) be a metric space, and F = Rn or C. Let w : Cb(E,F )× (0,+∞)→
[0,+∞) be defined as above. The following hold true:

i) For any f ∈ Cb(E,F ), the section δ 7→ w(f,δ) is increasing in δ.

ii) For any δ > 0, the section f 7→w(f,δ) is uniformly continuous on Cb(E,F ) with respect to
the supremum metric d.

iii) For any f ∈ Cb(E,F ), f is uniformly continuous on E if and only if

lim
δ→0

w(f,δ) = 0.

Proof) The first claim is obvious; for any f ∈ Cb(E,F ) and 0< h1 < h2,

{|f(x)−f(y)| | x,y ∈ E,ρ(x,y)< h1} ⊂ {|f(x)−f(y)| | x,y ∈ E,ρ(x,y)< h2},

so w(f,h1)≤ w(f,h2).

Now choose any δ > 0. For any f,g ∈ Cb(E,F ), assume without loss of generality that
w(f,δ) ≥ w(g,δ). Then, by the definition of the supremum, for any ε > 0 there exist
x,y ∈ E such that ρ(x,y)< δ and

w(f,δ)− ε < |f(x)−f(y)| ≤ w(f,δ).

It follows that

|w(f,δ)−w(g,δ)|= w(f,δ)−w(g,δ)

≤ |f(x)−f(y)|− |g(x)−g(y)|+ ε

≤ |f(x)−f(y)−g(x) +g(y)|+ ε

≤ |f(x)−g(x)|+ |f(y)−g(y)|+ ε= 2 ·d(f,g) + ε.
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This holds for any ε > 0, so

|w(f,δ)−w(g,δ)| ≤ 2 ·d(f,g),

which shows that w(·, δ) is uniformly continuous on Cb(E,F ) with respect to the metric
d.

To show the final claim, choose any f ∈ Cb(E,F ), and suppose it is uniformly continuous
on E. Then, for any ε > 0, there exists a δ > 0 such that

|f(x)−f(y)|< ε

for any x,y ∈ E such that ρ(x,y)< δ. Then, for any 0< h < δ,

w(f,h)≤ w(f,δ) = sup{|f(x)−f(y)| | x,y ∈ E,ρ(x,y)< δ} ≤ ε.

This holds for any ε > 0, so by definition,

lim
h→0

w(f,h) = 0.

Conversely, suppose that w(f,h)→ 0 as h→ 0. Then, for any ε > 0, there exists a δ > 0
such that w(f,h)< ε for any 0< h≤ δ. In particular,

w(f,δ) = sup{|f(x)−f(y)| | x,y ∈ E,ρ(x,y)< δ}< ε,

which implies that, for any x,y ∈ E such that ρ(x,y)< δ,

|f(x)−f(y)| ≤ w(f,δ)< ε.

This holds for any ε > 0, so by definition, f is uniformly continuous on E.
Q.E.D.

Due to the last property, which shows that the convergence of w(f, ·) to 0 is equivalent to the
uniform continuity of f , the function w(f, ·) is often called the modulus of continuity of f . We
will see later that the modulus of continuity helps characterize relative compactness and tight-
ness of continuous function spaces.
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6.1.3 Relative Compactness and Equicontinuity

In continuous function spaces, there exists a particularly convenient characterization of rela-
tive compactness that involves the concept of equicontinuity. Let (E,ρ) be a metric space, d
the supremum metric on Cb(E,F ) and A a subset of the space Cb(E,F ). We say that A is
equicontinuous at x ∈E if, for any ε > 0, there exists a δ > 0 such that, for any y ∈E satsifying
ρ(x,y)< δ,

|f(x)−f(y)|< ε

for any f ∈ A. In other words, A is equicontinuous at x if every function in A is continuous at
x to roughly the same degree.

A stronger notion than equicontinuity at a point is uniform equicontinuity. As the word suggests,
A is uniformly equicontinuous if every function in A is continuous at any point on E to roughly
the same degree. Formally, A is uniformly equicontinuous on E if, for any ε > 0, there exists a
δ > 0 such that, for any x,y ∈ E satisfying ρ(x,y)< δ, we have

|f(x)−f(y)|< ε

for any f ∈A. An equivalent formulation can be given in terms of the modulus of continuity: A
is uniformly equicontinuous on E if and only if

lim
h→0

sup
f∈A

w(f,h) = 0.

It is easy to see the equivalence:

• Necessity
If A is uniformly equicontinuous on E, then for any ε, there exists a δ > 0 such that, for
any x,y ∈ E satisfying ρ(x,y)< δ, we have

|f(x)−f(y)|< ε

for any f ∈A. It follows that, for any f ∈A,

w(f,δ) = sup{|f(x)−f(y)| | x,y ∈ E,ρ(x,y)< δ} ≤ ε,

so

sup
f∈A

w(f,δ)≤ ε.
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Because w(f, ·) is increasing on (0,+∞) for any f ∈ Cb(E,F ), for any 0< h < δ,

sup
f∈A

w(f,h)≤ ε.

This holds for any ε > 0, so

lim
h→0

sup
f∈A

w(f,h) = 0.

• Sufficiency
Suppose that

lim
h→0

sup
f∈A

w(f,h) = 0.

Then, for any ε > 0, there exists a δ > 0 such that

sup
f∈A

w(f,δ)< ε.

By definition, for any x,y ∈ E such that ρ(x,y)< δ,

|f(x)−f(y)| ≤ sup
g∈A

w(g,δ)< ε

for any f ∈A. Thsi holds for any ε > 0, so A is uniformly equicontinuous on E.

The next theorem characterizes relative compactness on Cb(E,F ) in terms of uniform equicon-
tinuity for the case when E is compact.
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Theorem 6.3 (The Arzela-Ascoli Theorem)
Let (E,ρ) be a compact metric space, and F = Rn or C. A subset A of C(E,F ) is relatively
compact if and only if

i) For any x ∈ E, supf∈A |f(x)|<+∞, and

ii) A is uniformly equicontinuous on E.

Furthermore, in this case supf∈A ‖f‖C <+∞ as well.

Proof) Sufficiency
Note first that, for any q ∈ Q, the collection {Bρ(x,q)}x∈E is an open cover of E; by
the compactness of E, there exists a finite collection Eq of points in E such that

E ⊂
⋃
x∈Eq

Bρ(x,q).

Define E0 =⋃
q∈QEq; E0 is clearly a countable subset of E.

Suppose that A is uniformly equicontinuous on E and that

sup
f∈A
|f(x)|<+∞

for any x ∈ E.
Choose any sequence {fn}n∈N+ of continuous functions in A. Since {fn}n∈N+ is point-
wise bounded and E0 is countable, there exists a subsequence {fnk}k∈N+ of {fn}n∈N+

that converges pointwise on E0. The proof will be complete if we can show that
{fnk}k∈N+ is Cauchy in d; then, the completeness of C(E,F ) ensures that the sequence
has a limit in C(E,F ).

By the uniform equicontinuity of A, for any ε > 0 there exists a δ > 0 such that, for any
x,y ∈ E satisfying ρ(x,y)< δ,

|f(x)−f(y)|< ε

3

for any f ∈A. Choosing q ∈Q so that q < δ, by construction,

E ⊂
⋃
y∈Eq

Bρ(y,q),

where Eq is finite. Since {fnk(y)}k∈N+ is convergent and thus Cauchy with respect to
the euclidean metric on F for any y ∈Eq, the finiteness of Eq tells us that there exists
an N ∈N+ such that

|fnk(y)−fnm(y)|< ε

3
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for any k,m≥N and y ∈ Eq.
Suppose k,m ≥ N , where N depends only on ε (it also depends on δ, but δ depends
only on ε). Choose any x ∈E. Then, there exists a y ∈Eq such that x ∈Bρ(y,q), which
implies that

ρ(x,y)< q < δ.

Therefore,

|fnk(x)−fnk(y)|< ε

3 and |fnm(x)−fnm(y)|< ε

3

by the equicontinuity result above, and putting everything together,

|fnk(x)−fnm(x)| ≤ |fnk(x)−fnk(y)|+ |fnk(y)−fnm(y)|+ |fnm(x)−fnm(y)|< ε.

This holds for any x ∈ E, which tells us that

d(fnk ,fnm) = sup
x∈E
|fnk(x)−fnm(x)| ≤ ε

for any k,m≥N . This in turn holds for any ε > 0, so {fnk}k∈N+ is Cauchy with respect
to d.

Necessity
Turning now to necessity, suppose thatA is relatively compact. For any ε> 0, {Bd(f,ε)}f∈A
is an open cover of the compact set A; by compactness, there exist f1, · · · ,fn ∈A such
that

A⊂A⊂
n⋃
i=1

Bd(fi, ε).

Each fi is bounded because E is a compact set and fi is continuous; letting

M = max
1≤i≤n

‖fi‖C <+∞,

for any f ∈A there exists an 1≤ i≤ n such that d(f,fi)< ε, which implies that

‖f‖C ≤ d(f,fi) +‖fi‖C ≤ ε+M.

Therefore,

sup
f∈A
‖f‖C ≤M + ε <+∞,
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from which it follows that

sup
f∈A
|f(x)|<+∞

for any x ∈A.
To show that A is uniformly equicontinuous, note that, {f1, · · · ,fn} is a finite collection
of functions that are uniformly continuous on the compact set E. Therefore, there exists
a δ > 0 such that

w(fi, δ)< ε

for 1 ≤ i ≤ n. Choosing any f ∈ A and letting f ∈ Bd(fi, ε) for some 1 ≤ i ≤ n, it now
follows that, for any x,y ∈ E such that ρ(x,y)< δ,

|f(x)−fi(x)|, |f(y)−fi(y)| ≤ d(f,fi)< ε

and

|fi(x)−fi(y)|< ε,

so that

|f(x)−f(y)| ≤ |f(x)−fi(x)|+ |fi(x)−fi(y)|+ |f(y)−fi(y)|< 3ε.

Thus,

w(f,δ)≤ 3ε,

and because this holds for any f ∈A,

sup
f∈A

w(f,δ)≤ 3ε.

Such a δ > 0 exists for any ε > 0, so by definition

lim
h→0

sup
f∈A

w(f,h) = 0.

Q.E.D.
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6.2 The Stone-Weierstrass Theorem

We take a brief detour to focus on the Stone-Weierstrass theorem, which allows us to approx-
imate all kinds of functions with simpler and more elementary functions, such as polynomials.
This result is then used to prove the separability of spaces of continuous functions defined on
compact metric spaces.

6.2.1 The Weierstrass Approximation Theorem

We first state and prove the Weierstrass approxmiation theorem, which the Stone-Weierstrass
theorem generalizes. It states that any complex continuous function on a closed interval can be
uniformly approximated by a sequence of polynomial functions on the real line.

Theorem 6.4 (Weierstrass Approximation Theorem)
For any continuous complex valued function f : [a,b]→ C there exists a sequence of polynomial
functions {Pn}n∈N+ on R such that Pn→ f uniformly. Moreover, each Pn can be chosen to be
real-valued if f is.

Proof) We gradually generalize the types of functions for which the above theorem holds.

Stage 1: [a,b] = [0,1] and f(0) = f(1) = 0
Assume initially that [a,b] = [0,1] and that f(0) = f(1) = 0. In this case, we can extend
the domain of f to R by assuming f(x) = 0 for any x /∈ [0,1], and f remains a contin-
uous function. In fact, f is a continuous function on R with support contained in the
compact set [0,1], so it is uniformly continuous on the real line. By the extreme value
theorem, f is bounded on the compact set [0,1] because it is continuous; let |f(x)|<M
for any x ∈ R, where M <+∞.

For any n ∈N+, since the mapping x 7→ (1−x2)n is non-negative polynomial function
on [−1,1], if

∫ 1

−1
(1−x2)ndx= 0,

then by the vanishing property for non-negative functions x2 = 1 for any x ∈ [−1,1], a
contradiction. Therefore, we can define

cn =
(∫ 1

−1
(1−x2)ndx

)−1
> 0.

Define the function h : R→ R as

h(x) = (1−x2)n−1 +nx2
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for any x ∈ R. Then, for any x ∈ (0,1),

h′(x) =−2nx(1−x2)n−1 + 2nx= 2nx
(
1− (1−x2)n−1

)
> 0

and h(0) = 0, which tells us that h(x)> h(0) = 0 for any x > 0. In other words,

(1−x2)n ≥ 1−nx2

for any x ∈ [0,1]. This result allows us to find the upper bound of cn as follows:

∫ 1

−1
(1−x2)ndx= 2

∫ 1

0
(1−x2)ndx (The integrand is an even function)

≥ 2
∫ 1√

n

0
(1−x2)ndx

≥ 2
∫ 1√

n

0
(1−nx2)dx ((1−x2)n ≥ 1−nx2 on [0,1])

= 2
[
x− n3x

3
] 1√

n

0
= 2n−

1
2 − 2n

3 n−
3
2

= 4
3
√
n
>

1√
n
,

which implies that

√
n >

(∫ 1

−1
(1−x2)ndx

)−1
= cn > 0.

Using this cn, we define

Qn(x) = cn(1−x2)n

for any x ∈ R, so that Qn is non-negative on [−1,1] with integral

∫ 1

−1
Qn(x)dx= 1.

We now use the Qn defined above to construct the sequence of polynomials that con-
verges uniformly to f . We proceed in smaller steps.
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Step 1: Construction of Polynomials Pn
For any n ∈N+, define the function Pn : [0,1]→ C as

Pn(x) =
∫ 1

−1
f(x+ t)Qn(t)dt

for any x∈ [0,1]. This integral is well-defined because f is bounded on R, Qn is bounded
on [−1,1] (being a polynomial, it is continuous and thus bounded on a compact set)
and the Lebesgue measure is finite on [−1,1].
To verify that Pn is indeed a polynomial function, we employ a linear change of variables
to see that, for any x ∈ [0,1],

Pn(x) =
∫ 1−x

−x
f(x+ t)Qn(t)dt (f = 0 outside [0,1] and [−x,1−x]⊂ [−1,1])

=
∫
R
f(x+ t)Qn(t)I[−x,1−x](t)dt

=
∫
R
f(t)Qn(t−x)I[−x,1−x](t−x)dt (Linear Change of Variables)

=
∫ 1

0
f(t)Qn(t−x)dt= cn

∫ 1

0
f(t)((1− t2) + 2tx−x2)ndt.

Expanding the last term and evaluating the integrals with respect to t (which are finite
because of the boundedness of f and the Lebesgue measure on [0,1]) yields a polynomial
of degree 2n with respect to x, so it follows that Pn is indeed a polynomial function on
[0,1]. Thus, there exist constants a(n)

0 , · · · ,a(n)
2n ∈ C such that

Pn(x) =
2n∑
i=0

a
(n)
i ·x

i

for any x ∈ [0,1]. We can now define

Pn(x) =
2n∑
i=0

a
(n)
i ·x

i

for any x ∈ R, which extends Pn to a polynomial function on the real line. Note that
the coefficients a(n)

0 , · · · ,a(n)
2n are real if f is real-valued; thus, Pn can be taken to be a

real polynomial if f is real-valued.

285



Step 2: Uniform Convergence of Pn
Note that, for any ε > 0, the uniform continuity of f on R tells us that there exists a
δ > 0 such that

|f(x)−f(y)|< ε

for any x,y ∈ R such that |x−y|< δ. Now choose any x ∈ [0,1], n ∈N+ and note that

|Pn(x)−f(x)|=
∣∣∣∣∫ 1

−1
f(x+ t)Qn(t)dt−

∫ 1

−1
f(x)Qn(t)dt

∣∣∣∣≤ ∫ 1

−1
|f(x+ t)−f(x)|Qn(t)dt

=
∫ −δ
−1
|f(x+ t)−f(x)|Qn(t)dt+

∫ 1

δ
|f(x+ t)−f(x)|Qn(t)dt

+
∫ δ

−δ
|f(x+ t)−f(x)|Qn(t)dt.

Since

|f(x+ t)−f(x)|< ε

for any |t|< δ,

0≤Qn(t) = cn(1− t2)n ≤
√
n(1− δ2)n

for any t ∈ [−1,1] such that |t| ≥ δ, and

∫ δ

−δ
Qn(t)dt≤

∫ 1

−1
Qn(t)dt= 1,

we can see that

|Pn(x)−f(x)| ≤ 4M ·
√
n(1− δ2)n+ ε ·

∫ δ

−δ
Qn(t)dt≤ 4M ·

√
n(1− δ2)n+ ε.

This holds for any x ∈ [0,1], so

sup
x∈[0,1]

|Pn(x)−f(x)| ≤ 4M ·
√
n(1− δ2)n+ ε

for any n ∈N+. Taking n→∞ on both sides, we can see that

limsup
n→∞

sup
x∈[0,1]

|Pn(x)−f(x)| ≤ ε.

This in turn holds for any ε > 0, so

lim
n→∞

sup
x∈[0,1]

|Pn(x)−f(x)|= 0,

which tells us that Pn→ f uniformly on [0,1].
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Stage 2: [a,b] = [0,1] but arbitrary f(0),f(1)
Given a continuous complex valued function f : [0,1]→ C, define g : [0,1]→ C as

g(x) = f(x)−f(0) +x · (f(0)−f(1))

for any x∈ [0,1]. g, being the sum of two continuous functions, is a continuous function
on [0,1], and g(0) = g(1) = 0 by construction. By the preceding result, there exists a
sequence {Pn}n∈N+ of polynomials (that are real if g is real) such that

sup
x∈[0,1]

|g(x)−Pn(x)| → 0

as n→∞. Since

f(x)−g(x) = (f(1)−f(0))x+f(0)

is a polynomial with respect to x, so is

Rn(x) = Pn(x) +f(x)−g(x).

for any n ∈ N+. Moreover, if f is real, then so is g, which implies that Rn is a real
polynomial function. For any x ∈ [0,1] and n ∈N+,

|f(x)−Rn(x)|= |g(x)−Pn(x)|,

so it follows that

sup
x∈[0,1]

|f(x)−Rn(x)| → 0

as n→∞; {Rn}n∈N+ is a sequence of polynomial functions that converges uniformly
to f on [0,1], and are real valued if f is real.
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Stage 3: Arbitrary [a,b] and f(0),f(1)
Now we generalize this result to continuous complex valued functions f : [a,b]→ C for
arbitrary closed intervals [a,b]. Define g : [0,1]→ C as

g(x) = f ((b−a)x+a)

for any x ∈ [0,1]; g, being the composition of two continuous functions, is itself con-
tinuous, so by the preceding result there exists a sequence of polynomial functions
{Pn}n∈N+ of polynomials on [0,1] such that Pn → g uniformly on [0,1] and are real
valued if g is real. For any n ∈N+, Rn : R→ C defined as

Rn(x) = Pn

(
x−a
b−a

)
for any x ∈R is a polynomial (the composition of polynomials is a polynomial), and it
is real valued if f is real valued (since g is also real valued in this case). We can now
see that

sup
x∈[a,b]

|f(x)−Rn(x)|= sup
x∈[a,b]

∣∣∣∣g(x−ab−a

)
−Pn

(
x−a
b−a

)∣∣∣∣≤ sup
x∈[0,1]

|g(x)−Pn(x)|

for any n ∈N+, so Rn→ f uniformly on [0,1].
Q.E.D.

The following corollary of the approximation theorem is of particular interest:

Corollary to the Approximation Theorem For any a> 0 there exists a sequence {Pn}n∈N+

of real valued polynomial functions on R such that Pn(0) = 0 and

lim
n→∞

sup
x∈[−a,a]

|Pn(x)−|x||= 0,

that is, Pn(x)→ |x| uniformly on [−a,a] as n→∞.

Proof) Define f : [−a,a]→R as f(x) = |x| for any x∈ [−a,a]. Since f is a real valued continuous
function, by the Weierstrass approximation theorem there exists a sequence {P ∗n}n∈N+

of real polynomial functions on R such that P ∗n → f uniformly on [−a,a].
For any n ∈ N+, define Pn : R→ R as Pn(x) = P ∗n(x)−P ∗n(0) for any x ∈ R. Then,
{Pn}n∈N+ is a sequence of real polynomial functions on R such that Pn(0) = 0, and

sup
x∈[−a,a]

|Pn(x)−f(x)| ≤ sup
x∈[−a,a]

|P ∗n(x)−f(x)|+ |P ∗n(0)|.

Since P ∗n(0)→ f(0) = 0 as n→∞, it follows that Pn→ f uniformly on [−a,a].
Q.E.D.
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6.2.2 Algebras Over a Field

The central objects of Stone’s generalization of the approximation theorem are algebras over a
field, not to be confused with algebras on a set, which is a measure-theoretic structure contain-
ing the entire set and closed under complements and finite unions. An algebra A over a field
F is a vector space over F that is also closed under the additional operation of elementwise
multiplication ×, which satisfies the following axioms:

• The Distributive Law
For any x,y,z ∈ A,

(x+y)×z = x×z+y×z and

z× (x+y) = z×x+z×y.

• Commutativity with Scalar Multiplication
For any α,β ∈ F and x,y ∈ A,

(αx)× (βy) = (αβ)(x×y).

The main types of algebras over a field that are of interest are spaces of functions. Let E be a
set, F a field, and F the collection of all functions from E to F . Then, we already know that F
is a vector space over F .
We can extend F into an algebra over F by defining the multiplicative operation × on F as
follows: for any f,g ∈ F , f ×g is the function on E defined as

(f ×g)(x) = f(x)g(x) ∈ F

for any x∈E. Note that this operation is well-defined because the target space F of the functions
in F is a field and element-wise multiplication is defined on F . This operation also satisfies the
two axioms above:

• For any f,g,h ∈ F ,

((f +g)×h)(x) = (f(x) +g(x))h(x) = f(x)h(x) +g(x)h(x) = (f ×h)(x) + (g×h)(x)

for any x ∈ E, so that

(f +g)×h= f ×h+g×h.

The left distributive law can be similarly shown.
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• For any f,g ∈ F and a,b ∈ F ,

((af)× (bg))(x) = (af(x)) · (bg(x)) = (ab) ·f(x)g(x) = ((ab) · (f ×g))(x)

for any x ∈ E, so that

(af)× (bg) = (ab) · (f ×g).

Therefore, F is a well-defined algebra over the field F . We write fg instead of f×g for notational
brevity.
Often, we will be interested in subsets of F that are themselves algebras over F . The two subsets
of interest are given below:

• The Algebra of Bounded Functions
Let F collect all bounded functions from E to F , where F = R or C. Then, F is an alge-
bra over F because it contains the zero function and is closed under addition (the sum of
bounded functions is bounded), scalar multiplication and element-wise multiplication (the
product of bounded functions is bounded).

• The Algebra of Bounded Continuous Functions
Let (E,τ) be a topological space and F = R or C. Since both R and C are fields, Cb(E,F )
is a subspace of the algebra F over the field F . Furthermore, since the zero function is
contained in Cb(E,F ) and the product of any two bounded continuous functions is also
bounded and continuous, Cb(E,F ) is a subalgebra of F over the field F .

Let F once again denote the collection of all functions from some set E into the field F =R or C.
The uniform closure of a subalgebra A of F is defined as the set of all functions f ∈ F such
that there exists a sequence {fn}n∈N+ ⊂ A that converges uniformly to f . If F = R or C and
A were a subset of the collection of all bounded continuous functions on E, then the uniform
closure would be the closure of A with respect to the supremum metric, hence the name uniform
”closure”.
An important result is that the uniform closure of a subalgebra A is also a subalgebra of F ,
given that the functions in F are bounded.

Lemma 6.5 For any set E and field F = R or C, let F be the collection of all functions from
E to F . Then, the uniform closure of any subalgebra A of F is a linear subspace of F .
If F instead collects all bounded functions from E to F , then the uniform closure of A is a
subalgebra of F .

Proof) Denote the uniform closure of A by A. Because the zero function is contained in A
(it is a subalgebra of F), it is also contained in A. It remains to see whether A is
closed under addition, scalar multiplication and element-wise multiplication; the first
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two ensure that it is a vector space over F , and the last condition is necessary for A to
be considered a subalgebra.

Choose any f,g ∈A and z ∈ F . Then, by definition there exist sequences {fn}n∈N+ and
{gn}n∈N+ such that fn→ f and gn→ g uniformly. For any n ∈N+,

z ·fn+gn,fngn ∈ A

because A is a subalgebra of F .
Since

|(z ·fn(x) +gn(x))− (z ·f(x) +g(x))| ≤ |z| · |fn(x)−f(x)|+ |gn(x)−g(x)|

for any x ∈ E, the uniform convergence of {fn}n∈N+ and {gn}n∈N+ implies that the
sequence {z ·fn+gn}n∈N+ is a sequence of functions in A that converges uniformly to
z ·f +g. Therefore, z ·f +g ∈ A, and it follows that A is a vector space over F .

Suppose that F collects all bounded functions from E to F , and that A is a subalgebra
of this algebra over F . Then, f,g ∈ F are bounded; suppose |f |, |g| ≤M on E for some
M ∈ (0,+∞). Then, for any x ∈ E,

|fn(x)gn(x)−f(x)g(x)| ≤ |fn(x)−f(x)||gn(x)−g(x)|+ |f(x)||gn(x)−g(x)|+ |g(x)||fn(x)−f(x)|

≤ |fn(x)−f(x)||gn(x)−g(x)|+M (|gn(x)−g(x)|+ |fn(x)−f(x)|) .

Therefore, the uniform convergence of {fn}n∈N+ and {gn}n∈N+ implies that the se-
quence {fngn}n∈N+ is a sequence of functions in A that converges uniformly to fg. It
follows that A is a subalgebra, in addition to being a subspace, of F .
Q.E.D.

Let E be a set, F a field with additive identity 0F , and F the algebra of all functions from E

to F . Letting A be a subalgebra of F , we say that A:

• Separates points on E

If, for any x1,x2 ∈ E such that x1 6= x2, there exists an f ∈ A such that f(x1) 6= f(x2).

• Vanishes at no point in E

If, for any x ∈ E, there exists an f ∈ A such that f(x) 6= 0F .

The following result is an important consequence of the above properties:
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Lemma 6.6 For any set E and field F with additive identity 0F , let F be the collection of
all functions from E to F and A a subalgebra of F . If A separates points on E and vanishes at
no point in E, then for any c1, c2 ∈ F and distinct points x1,x2 ∈ E there exists an f ∈ A such
that

f(x1) = c1 and f(x2) = c2.

Proof) Choose any c1, c2 ∈ F and x1,x2 ∈E such that x1 6= x2. Because A separates points on
E and vanishes at no point in E, there exist g,h1,h2 ∈ A such that

g(x1) 6= g(x2), h1(x1) 6= 0F , h2(x2) 6= 0F .

Denote a= g(x1)−g(x2) 6= 0F . Then, defining f : E→ F as

f = c1
a ·h1(x1)(gh1)− c1 ·g(x2)

a ·h1(x1)h1−
c2

a ·h2(x2)(gh2) + c2 ·g(x1)
a ·h2(x2)h2,

since gh1,gh2,h1,h2 ∈A and f is a linear combination of these functions, f ∈A. More-
over,

f(x1) = c1
a
g(x1)− c1 ·g(x2)

a
= c1

g(x1)−g(x2)
a

= c1,

and likewise, f(x2) = c2.
Q.E.D.
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6.2.3 Stone’s Generalization of the Weierstrass Approximation Theorem

Here we present the main result of this section, which extends the Weierstrass approximation
theorem to functions in arbitrary algebras that satisfy the given properties. We first formulate
the result for real-valued functions:

Theorem 6.7 (The Stone-Weierestrass Theorem: Real Version)
Let (E,τ) be a topological space, and A a subalgebra of the algebra C(E,R) over the real field.
If A separates points on E, then (E,τ) is a Hausdorff space.
If, in addition, A vanishes at no point in E and (E,τ) is a compact space, then C(E,R) is the
uniform closure of A, or in other words, the closure of A with respect to the supremum metric
d on C(E,R).

Proof) We first show that (E,τ) is a Hausdorff space if A separates points on E.
Choose any distinct points x1,x2 ∈ E. Then, because A separates points on E, there
exists an f ∈ A such that f(x1) 6= f(x2). Because f is continuous (A is a subalgebra
of the space of all real continuous functions on E), defining ε = |f(x1)−f(x2)|

2 > 0, the
inverse image

Vi = f−1
(
B|·|(f(xi), ε)

)
is an open subset of E that contains xi for i= 1,2. Furthermore, if t= V1∩V2, then

|f(t)−f(x1)|< ε and |f(t)−f(x2)|< ε,

which implies that

|f(t)−f(x2)| ≥ |f(x1)−f(x2)|− |f(t)−f(x1)|> |f(x1)−f(x2)|− ε= ε,

a contradiction. Therefore, V1,V2 are disjoint open subsets of E such that x1 ∈ V1 and
x2 ∈ V2, so that (E,τ) is Hausdorff by definition.

Now we can show the second claim. Suppose A separates points on E, vanishes at no
point in E and that (E,τ) is a compact topological space.
As above, let A denote the uniform closure of A. Note initially that, because C(E,R)
is a collection of bounded real valued functions on E due to the compactness of E and
the continuity of the functions comprising C(E,R), by lemma 6.5 A is a subalgebra of
C(E,R). Thus, it remains to verify that C(E,R) is a subalgebra of A.
We proceed in steps:

Step 1: If f ∈ A, then |f | ∈ A
Choose any f ∈ A. Since f is a bounded continuous function, there exists an M ∈
(0,+∞) such that |f | <M on E. By the corollary to the Weierstrass approximation
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theorem, there exists a sequence {Pn}n∈N+ of real polynomial functions on R such that
Pn(0) = 0 for any n ∈N+ and

sup
x∈[−M,M ]

|Pn(x)−|x|| → 0

as n→∞. For any n ∈ N+, because Pn is a polynomial function on R, there exist
a0, · · · ,am ∈ R such that

Pn(x) =
m∑
i=0

ai ·xi

for any x ∈ R; Pn(0) = 0 implies that a0 = 0, so that

Pn ◦f =
m∑
i=1

ai ·f i.

Because A is an algebra over the real field, f,f1, · · · ,fm ∈ A, and since A is closed
under linear combinations of its elements, Pn ◦f ∈ A.
This holds for any n ∈N+, so for any x ∈ E,

|(Pn ◦f)(x)−|f(x)|| ≤ sup
y∈[−M,M ]

|Pn(y)−|y||

since f(x) ∈ [−M,M ], which implies that

d(Pn ◦f, |f |)≤ sup
y∈[−M,M ]

|Pn(y)−|y||.

Taking n→∞ on both sides, we can see that |f | is the uniform limit of the sequence
{Pn ◦f}n∈N+ of bounded continuous functions in A. Since A is closed with respect to
the supremum metric d, this implies that |f | ∈ A.

Step 2: If f,g ∈ A, then max(f,g),min(f,g) ∈ A
Choose any f,g ∈ A. Then,

max(f,g) = f +g

2 + |f −g|2 and min(f,g) = f +g

2 − |f −g|2 ,

where f + g,f − g, |f −g| ∈ A by step 1 and the fact that A is an algebra over R, so
max(f,g),min(f,g) ∈ A.
This can easily be generalized to finite collections of functions in A. Specifically, if
{g1, · · · ,gn} ⊂ A, then

max(g1, · · · ,gn),min(g1, · · · ,gn) ∈ A.
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Step 3: Approximating f ∈ C(E,R) with functions in A
Let f ∈ C(E,R) and ε > 0.
Choose any distinct x,y ∈ E. Then, because A separates points on E and vanishes at
no point in E, there exists a function hy ∈ A such that

hy(x) = f(x) and hy(y) = f(y).

By the continuity of hy and thus ky = hy−f , the inverse image

Jy = k−1
y

(
B|·|(0, ε)

)
is an open subset of E that contains y and x. In particular, for any t ∈ Jy,

|ky(t)|= |hy(t)−f(t)|< ε,

and in particular hy(t)> f(t)− ε.

{Jy}y∈E,y 6=x is an open cover of E, and by the compactness of E, there exist y1, · · · ,yn ∈
E such that yi 6= x for 1≤ i≤ n and

E ⊂ Jy1 ∪·· ·∪Jyn .

Then, defining gx = max(hy1 , · · · ,hyn) ∈ A,

gx(x) = max(hy1(x), · · · ,hyn(x)) = f(x)

and, for any t ∈ E such that t 6= x, letting t ∈ Jyi for some 1≤ i≤ n,

gx(t)≥ hyi(t)> f(t)− ε.

By the continuity of gx and thus rx = gx−f , the inverse image

Px = r−1
x

(
B|·|(0, ε)

)
is an open subset of E that contains x and such that, for any t ∈ Px,

|rx(t)|= |gx(t)−f(t)|< ε,

and in particular f(t) + ε > gx(t).

The above holds for any x ∈E, so the collection {Px}x∈E is an open cover of E. By the
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compactness of E again, there exist x1, · · · ,xm ∈ E such that

E ⊂ Px1 ∪·· ·∪Pxm .

Define g = min(gx1 , · · · ,gxm) ∈ A. Then, for any t ∈ E, because

gxi(t)> f(t)− ε

for any 1≤ i≤m by construction, we have

g(x) = min(gx1(t), · · · ,gxm(t))> f(t)− ε.

Furthermore, letting t ∈ Pxi for some 1≤ i≤m,

g(t)≤ gxi(t)< f(t) + ε,

so that

|f(t)−g(t)|< ε.

This holds for any t ∈ E, so

d(f,g) = sup
t∈E
|f(t)−g(t)| ≤ ε.

We have thus shown that, for any ε > 0, there exists a g ∈ A such that g ∈Bd(f,ε). In
other words, f is contained in the closure of A with respec to d; because A is closed,
it is equal to its closure and thus f ∈ A. Finally, this holds for any f ∈ C(E,R), so
C(E,R) =A.
Q.E.D.
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The above theorem only holds for algebras of continuous real-valued functions: for the result
to hold for algebras of complex continuous functions, we require the additional condition of
self-adjointness. An algebra A of functions from a set E to C is said to be self-adjoint if the
conjugate of every function in A is also contained in A, that is, if for any f ∈A, the function f
defined as

f(x) = f(x)

for any x ∈ E is also contained in A.

Theorem 6.8 (The Stone-Weierestrass Theorem: Complex Version)
Let (E,τ) be a topological space, and A a subalgebra of the algebra C(E,C) over the complex
field. If A separates points on E, then (E,τ) is a Hausdorff space.
If, in addition, A vanishes at no point in E, is self-adjiont, and (E,τ) is a compact space, then
C(E,C) is the uniform closure of A, or in other words, the closure of A with respect to the
supremum metric d on C(E,C).

Proof) The fact that (E,τ) must be a Hausdorff space if A separates points follows from the
continuity of the functions in A in the same manner as in the previous theorem.

Suppose now that A separates points on E, vanishes at no point in E, is self-adjoint,
and that (E,τ) is a compact topological space. By lemma 4.5, we know once again that
A is a subalgebra of C(E,C).
Define AR as the collection of all real-valued functions in A; AR is non-empty since it
contains the zero function on E. In addition, for any f ∈ A, since f ∈ A as well,

Re(f) = f +f

2 , Im(f) = 1
2i
(
f −f

)
∈ A

as well, and because Re(f), Im(f) are real-valued functions, they are contained in AR.
We can show that AR separates points on E and vanishes at no point in E. For the first
property, choose any x1,x2 ∈E; because A separates points on E, there exists an f ∈A
such that f(x1) 6= f(x2). This implies that either Re(f) or Im(f) must give different
values for x1 and x2, so that AR also separates points on E.
Now choose any x ∈E; because A vanishes at no point in E, there exists an f ∈A such
that f(x) 6= 0. This implies that the value of either Re(f) or Im(f) must be non-zero
at x, so that AR also vanishes at no point in E.
By the real version of the Stone-Weierstrass theorem, it now follows that the uniform
closure of AR is precisely the collection C(E,R) of all real-valued continuous functions
on E.

Choose any f ∈ C(E,C). Then, Re(f), Im(f) are real-valued continuous functions on
E, so by the preceding result, there exist sequences {gn}n∈N+ and {hn}n∈N+ in AR
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such that

d(gn,Re(f)),d(hn, Im(f))→ 0

as n→∞. Defining fn = gn+ i ·hn for any n ∈N+, fn ∈ A because A is closed under
addition and scalar multiplication, and for any x ∈ E,

|fn(x)−f(x)| ≤ |gn(x)−Re(f)(x)|+ |hn(x)− Im(f)(x)| ≤ d(gn,Re(f)) +d(hn, Im(f)),

so that

d(fn,f)≤ d(gn,Re(f)) +d(hn, Im(f)).

It follows that {fn}n∈N+ is a sequence of functions in A that converges uniformly to f ,
so that, by definition, f ∈ A. This holds for any f ∈ C(E,C), so C(E,C) =A.
Q.E.D.
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6.2.4 The Separability of Continuous Function Spaces

The Stone-Weierstrass Theorem can now be used to show that the space of continuous func-
tions defined on compact metric spaces are separable. This result is proved by first constructing
a countable collection of continuous functions using the separability of compact sets and the
associated metric, and then showing that this collection is an algebra of continuous functions
that separates points and does not vanish (if the algebra is over C, we also show that it is
self-adjoint). Then, the Stone-Weierstrass theorem can be used to establish the separability of
the function space.

Theorem 6.9 (Separability of Continuous Function Spaces)
Let (E,ρ) is a compact metric space, and F = Rn or C. Then, letting d be the supremum metric
on C(E,F ), the pair (C(E,F ),d) defines a complete and separable metric space.

Proof) We showed earlier that (C(E,F ),d) is a complete metric space. We must now show that
it is separable. To this end, note that the compactness of E implies its separability; let
E0 be the countable subset of E that is dense in E.

First let F = R or C, and define

B = {ρ(·,x) | x ∈ E0}∪{0},

where 0 is the zero function. For any x ∈ E, the mapping y 7→ ρ(y,x) is uniformly
continuous on E by the triangle inequality and takes values in [0,+∞), so B⊂ C(E,F ).
Every function in C(E,F ) is bounded, so the functions in B are also bounded. Now
define

B′ =
{ n∏
i=1

fi | f1, · · · ,fn ∈ B
}
,

or the collection of the products of all the functions in B. Because of the finiteness
of the products, B′ continues to be a collection of bounded and continuous functions.
Finally, define

A=
{ n∑
i=1

ai ·fi | n ∈N+,a1, · · · ,an ∈ F and f1, · · · ,fn ∈ B′
}
.

Each function in A is a finite linear combination of continuous bounded functions, so
A⊂ C(E,F ). It is also the case that A is an algebra over F : for any functions

f =
n∑
i=1

ai ·fi, g =
m∑
i=1

bi ·gi

in A and z ∈F , zf+g is a linear combination of the functions f1, · · · ,fn,g1, · · · ,gm ∈B′,
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so zf +g ∈ A. Likewise,

fg =
n∑
i=1

m∑
j=1

(aibj) ·figj ,

where each figj ∈ B′ and aibj ∈ F , so fg ∈ A as well. Finally, the zero function is in-
cluded in B and thus A. By definition, A is a subalgebra of C(E,F ).

We will now show that A separates points on E and vanishes at no point in E.
Choose any x1,x2 ∈E such that x1 6= x2; then, because E0 is dense in E, choosing q ∈Q
so that q < ρ(x1,x2)

2 , there exists a y ∈ E0 such that

ρ(x1,y)< q.

It follows that

ρ(x2,y)≥ ρ(x1,x2)−ρ(x1,y)> ρ(x1,x2)− q > ρ(x1,x2)
2 > q.

Defining f : E→ R as f(x) = ρ(x,y) for any x ∈ E, f ∈ A because y ∈ E0, and

f(x1) = ρ(x1,y)< q < ρ(x2,y) = f(x2),

so that f(x1) 6= f(x2). This shows us that A separates points on E.
Next, choose some x∈E. Then, for any y ∈E0 such that x 6= y (such a y exists because
E contains more than one element), d(·,y) ∈ A and d(x,y) > 0. This shows us that A
vanishes at no point in E.
If F = C, then A is also self-adjoint because each function in B′ is real-valued.

By the Stone-Weierstrass theorem, the uniform closure A equals the collection C(E,F )
of all continuous functions on E taking values in F . Because A is a countable subset of
C(E,F ), by definition (C(E,F ),d) is a separable metric space.

Suppose now that F = Rn, and let

A=
{ n∑
i=1

ai ·fi | n ∈N+,a1, · · · ,an ∈ R and f1, · · · ,fn ∈ B′
}

as before. Defining

An = {f : E→ Rn | fi ∈ A for any 1≤ i≤ n},

because each A is countable and consists of real continuous bounded functions on E,
An is also a countable collection of n-dimensional real continuous bounded functions
on E. It remains to show that An is dense in C(E,F ).
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Choose any f ∈ C(E,F ). Then, for any ε > 0 and 1≤ i≤ n, there exists a gi ∈ A such
that

sup
x∈E
|fi(x)−gi(x)|< ε

n
.

Defining g = (g1, · · · ,gn) ∈ An, we now have

|f(x)−g(x)| ≤
n∑
i=1
|fi(x)−gi(x)|< ε

for any x ∈ E, so that

d(f,g) = sup
x∈E
|f(x)−g(x)| ≤ ε.

This holds for any ε > 0, so An is dense in C(E,F ) and (C(E,F ),d) is a separable metric
space.
Q.E.D.
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6.3 Borel σ-algebras on Continuous Function Spaces

Let (E,ρ) be a compact metric space, τ the topology induced by ρ and E the Borel σ-algebra
generated by τ . For F = Rn or C, we showed above that (C(E,F ),d) is a complete and separable
metric space, where d is the supremum metric on C(E,F ). We denote by BC(E,F ) the Borel
σ-algebra generated by the topology on C(E,F ) induced by d.
Below we study two topics closely related to BC(E,F ). The first concerns a π-system that gener-
ates this σ-algebra. Afterwards, we investigate how to characterize tight sequences of probability
measures on (C(E,F ),BC(E,F )).

6.3.1 Finite Dimensional Sets

It is of interest further down the line to have a π-system that generates BC(E,F ). This will
be furnished in the form of the collection of finite-dimensional sets Cf . First, we define what is
meant by the projection of a function f ∈ C(E,F ). Let F = Rn in what follows.
For any t1, · · · , tk ∈E that may or may not be distinct, the projection function πt1,··· ,tk : C(E,F )→
F k is defined as

πt1,··· ,tk(f) = (f(t1), · · · ,f(tk))

for any f ∈ C(E,F ). πt1,··· ,tk has the following basic propreties:

• Uniform Continuity
For any f,g ∈ C(E,F ),

|πt1,··· ,tk(f)−πt1,··· ,tk(g)|= |(f(t1)−g(t1), · · · ,f(tk)−g(tk))|

≤
k∑
i=1
|f(ti)−g(ti)| ≤ k ·d(f,g),

so that πt1,··· ,tk is uniformly continuous on C(E,F ).

• Inverse Images of Projections
For any A ∈ B(F k), where B(F k) is the standard Borel σ-algebra on the euclidean space
F k,

π−1
t1,··· ,tk(A) ∈ BC(E,F )

because the continuity of πt1,··· ,tk ensures that it is measurable relative to BC(E,F ) and
B(F k).

The inverse images above are referred to as finite-dimensional sets, and the collection of all finite
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dimensional sets is thus defined as

Cf =
{
π−1
t1,··· ,tk(A) | t1, · · · , tk ∈ E,A ∈ B(F k)

}
.

We can show that Cf is a π-sysetm on C(E,F ) that generates BC(E,F ).

Theorem 6.10 Let (E,ρ) be a compact metric space, F = Rn, d the supremum metric on
C(E,F ), and BC(E,F ) the associated Borel σ-algebra on C(E,F ). Then, the collection Cf of all
finite-dimensional sets is a π-system that generates BC(E,F ).

Proof) We first show that Cf is a π-system on C(E,F ).
Choose any H1,H2 ∈ Cf . There exist t1, · · · , tk ∈ E and s1, · · · ,sm ∈ E and A ∈ B(F k),
B ∈ B(Fm) such that

H1 = π−1
t1,··· ,tk(A) and H2 = π−1

s1,··· ,sm(B).

Then, since A×B ∈ B(F k)⊗B(Fm) = B(F k+m),

H1∩H2 = π−1
t1,··· ,tk,s1,··· ,sm(A×B) ∈ Cf ,

whcih tells us that Cf is a π-system.

Every set in Cf is contained in BC(E,F ), so the σ-algebra σCf generated by Cf is
contained in BC(E,F ). We now show the reverse inclusion.
Choose any f ∈ C(E,F ) and ε > 0. By the compactness of E, E is separable and there
exists a countable subset E0 that is dense in E. It can then be seen that

Bd(f,ε) = {g ∈ C(E,F ) | d(f,g)≤ ε}

=
⋂
x∈E0

{g ∈ C(E,F ) | |f(x)−g(x)| ≤ ε}.

To show this, first choose any g ∈Bd(f,ε). Then,

|f(x)−g(x)| ≤ d(f,g)≤ ε

for any x ∈ E, so |f(x)−g(x)| ≤ ε for any x ∈ E0 and thus g is contained in the inter-
section on the right hand side.
Conversely, choose any g ∈ C(E,F ) such that |f(y)−g(y)| ≤ ε for any y ∈E0. Then, for
any x ∈ E, by the continuity of f and g at x, for any η > 0 there exists a δ > 0 such
that

|f(z)−f(x)|, |g(z)−g(x)|< η

2

for any z ∈E such that ρ(x,z)< δ. Because E0 is dense in E, there exists a y ∈E0 such
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that ρ(x,y)< δ, which implies that

|f(x)−g(x)| ≤ |f(x)−f(y)|+ |f(y)−g(y)|+ |g(x)−g(y)| ≤ ε+η.

This holds for any η > 0, so

|f(x)−g(x)| ≤ ε,

and because this in turn holds for any x ∈ E,

d(f,g) = sup
x∈E
|f(x)−g(x)| ≤ ε,

or equivalently, g ∈Bd(f,ε).
The above equality can also be written as

Bd(f,ε) =
⋂
x∈E0

π−1
x

(
B|·|(f(x), ε)

)
,

where

B|·|(f(x), ε) = {y ∈ F | |f(x)−y| ≤ ε} ∈ B(F ).

Since E0 is countable and each π−1
x

(
B|·|(f(x), ε)

)
∈ Cf , it follows that

Bd(f,ε) ∈ σCf .

Note that any open ball Bd(f,ε) is the countable union of closed balls:

Bd(f,ε) =
⋃
n

Bd

(
f,ε− 1

n

)
,

and because each closed ball on the right hand side is contained in the σ-algebra σCf ,
so is the open ball Bd(f,ε).
Finally, since (C(E,F ),d) is a separable metric space, there exists a countable base on
C(E,F ) consisting of open balls that generates the metric topology induced by d. This
implies that any open set in C(E,F ) is the countable union of open balls, so that any
open set in C(E,F ) is also contained in σCf . Since the collection of all open sets in
C(E,F ) generates BC(E,F ), we can see that BC(E,F )⊂ σCf .
Q.E.D.

In the above proof, the separability of both (E,ρ) and (C(E,F ),d) are needed, which is why the
claim only holds when (E,ρ) is a compact metric space.
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6.3.2 Characterizing Tightness on Continuous Function Spaces

Let (E,ρ) be a compact metric space, and F = Rn. So far, we have seen that:

• (C(E,F ),d) is a complete and separable metric space, where d is the supremum metric on
C(E,F )

• (The Arzela-Ascoli Theorem) A subset A of C(E,F ) is relatively compact if and only
if A is pointwise/uniformly bounded and uniformly equicontinuous on E

• The set Cf of all finite-dimensional sets in C(E,F ) is a π-system generating BC(E,F ), the
Borel σ-algebra associated with d.

Since (C(E,F ),BC(E,F )) is a measurable space, we can define probability measures on this
space, and by extension talk of the tightness of a collection of probability measures on C(E,F ).
Since this involves compact sets in C(E,F ), it is possible for us to make use of the Arzela-Ascoli
theorem, which provides us a characterization of (relatively) compact sets in C(E,F ). This is
precisely what we do below:

Theorem 6.11 (Tightness on Continuous Function Spaces)
Let (E,ρ) be a compact metric space, F = Rn, d the supremum metric on C(E,F ), and BC(E,F )
the associated Borel σ-algebra on C(E,F ).
Suppose Π = {µn}n∈N+ is a sequence of probability measures on (C(E,F ),BC(E,F )). Then, Π
is tight if and only if

i) For any η > 0 and x ∈ E, there exists an a > 0 such that

µn ({f | |f(x)|> a})≤ η

for any n ∈N+.

ii) For any ε > 0,

lim
δ→0

limsup
n→∞

µn ({f | w(f,δ)> ε}) = 0.

Proof) Note initially that, for any x ∈ E and a > 0,

{f | |f(x)|> a}= π−1
x

(
B|·|(0,a)c

)
.

Since πx is continuous on C(E,F ) and the complement of the closed ball B|·|(0,a) is
open, the inverse image on the right hand side is an open set in C(E,F ). Therefore,

µn ({f | |f(x)|> a})
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is well-defined for any n ∈N+.
Likewise, for any δ > 0 and ε > 0,

{f | w(f,δ)≥ ε}= w(·, δ)−1 ((ε,+∞))

is an open set in C(E,F ) because the mapping f 7→ w(f,δ) is uniformly continous on
C(E,F ), so that

µn ({f | w(f,δ)> ε})

is well-defined for any n ∈N+.

Necessity
Suppose that Π is a tight sequence of probability measures on (C(E,F ),BC(E,F )).
Then, for any η > 0, there exists a compact set K in C(E,F ) such that

µn(Kc)< η

for any n∈N+. Because K is also a relatively compact set, by the Arzela-Ascoli theorem
K is pointwise bounded and uniformly equicontinuous; formally,

sup
f∈K
|f(x)|<+∞

for any x ∈ E, and

lim
h→0

sup
f∈K

w(f,h) = 0.

By the pointwise boundedness of functions in K, for any x ∈ E there exists an M ∈
(0,+∞) such that |f(x)| ≤M for any f ∈K, so that

K ⊂ {f | |f(x)| ≤M},

and by implication,

µn ({f | |f(x)|>M})≤ µn(Kc)< η

for any n ∈N+. This proves that i) holds.
Next, note that the uniform equicontinuity result implies that, for any ε > 0, there
exists a δ > 0 such that

sup
f∈K

w(f,h)≤ ε
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for any 0< h < δ. Therefore, for any 0< h < δ,

K ⊂ {f | w(f,h)≤ ε},

so that

µn ({f | w(f,h)> ε})≤ µn(Kc)< η

for any n ∈N+. It follows that

limsup
n→∞

µn ({f | w(f,h)> ε})≤ η

for any 0< h < δ. Such a δ > 0 exists for any η > 0, so

lim
h→0

limsup
n→∞

µn ({f | w(f,h)> ε}) = 0,

which shows that ii) holds.

Sufficiency
Now suppose conditions i) and ii) hold. By the compactness of E, there exists a count-
able subset E0 of E that is dense in E. Let {xk}k∈N+ be the arrangement of the elements
of E0 into a sequence.
For any η > 0 and k ∈ N+, i) tells us that we can choose an ak > 0 such that, for
Ak = {f | |f(xk)|> ak},

µn(Ak)≤
η

2k+1

for any n ∈N+. Define B =⋃
kAk.

Furthermore, by ii), for any k ∈N+ there exists a δk,0 > 0 such that

limsup
n→∞

µn ({f | w(f,h)> 1/k})< η

2k+1

for any 0< h≤ δk,0, and therefore there exists an Nk ∈N+ such that

µn ({f | w(f,δk,0)> 1/k})≤ sup
m≥Nk

µm ({f | w(f,δk,0)> 1/k})< η

2k+1

for any n≥Nk.
Because µ1, · · · ,µNk are probability measures on (C(E,F ),BC(E,F )) and (C(E,F ),d) is
a complete and separable metric space, the singletons {µi} for 1≤ i≤Nk are all tight.
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It follows that, for any 1≤ i≤Nk, there exists a compact set Ki in C(E,F ) such that

µi(Kc
i )<

η

2k+1 ,

and because the finite union of compact sets is compact, defining K0 =⋃Nk
i=1Ki, K0 is

a compact set such that

µi(Kc)< η

2k+1 ,

for any 1≤ i≤Nk. Because K0 is uniformly equicontinuous,

lim
h→0

sup
f∈K0

w(f,h) = 0

and there exists a δ0 such that supf∈K0 w(f,h)≤ 1
k for any 0< h≤ δ0. As such,

K0 ⊂ {f | w(f,δ0)≤ 1/k}

and

µi ({f | w(f,δ0)≤ 1/k})≤ µi(Kc
0)< η

2k+1

for any 1≤ i≤Nk. Therefore, defining δk = min(δ0, δk,0)> 0, we can see that

µn ({f | w(f,δk)≤ 1/k})< η

2k+1

for any n ∈N+. Define Bk = {f | w(f,δk)≤ 1/k}.

Now define

A=Bc∩
(⋂

k

Bc
k

)

and K =A. We will show that K is compact by showing that A is relatively compact.
This will be done via the Arzela-Ascoli theorem.

– Property 1: Uniform Equicontinuity
For any ε > 0, letting k ∈N+ be chosen so that 1

k < ε, there exists a δk > 0 such
that

w(f,h)<w(f,δk)≤
1
k
< ε

for any 0< h < δk and f ∈A, since A⊂Bc
k. By implication,

sup
f∈A

w(f,h)< ε
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for any 0< h < δk, and because this holds for any ε > 0,

lim
h→0

sup
f∈A

w(f,h) = 0,

or in other words, A is uniformly equicontinuous on C(E,F ).

– Property 2: Pointwise Boundedness
For any k ∈ N+ and f ∈ A, because f ∈ Ack as well (Ack contains the countable
intersection Bc), we have |f(xk)| ≤ ak by design.
The uniform equicontinuity of A on E tells us that there exists a ζ > 0 such that

|f(z)−f(y)|< 1

for any f ∈A and z,y ∈ E such that ρ(z,y)< ζ.
Now choose any x ∈ E. By the denseness of E0 in E there exists a k ∈ N+ such
that ρ(x,xk)< ζ; it follows that

|f(x)| ≤ |f(x)−f(xk)|+ |f(xk)| ≤ ak + 1.

for any f ∈A. Therefore,

sup
f∈A
|f(x)| ≤ ak + 1<+∞,

and because this holds for any x ∈E, A is a pointwise bounded collection of func-
tions in C(E,F ).

By the Arzela-Ascoli theorem, it follows that A is relatively compact, so that K is a
compact set.
Finally, since

Kc ⊂Ac =B∪
(⋃

k

Bk

)
=
⋃
k

(Ak ∪Bk) ,

by countably subadditivity

µn(Kc)≤
∞∑
k=1

(µn(Bk) +µn(Ak))≤ η

for any n ∈N+. Our choice of η > 0 was arbitrary, so this shows that Π = {µn}n∈N+ is
a tight sequence of probability measures on (C(E,F ),BC(E,F )).
Q.E.D.
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6.4 Random Functions

Let (Ω,H,P) be a probability space, (E,ρ) a compact metric space and F = Rn. A random (con-
tinuous) function X : Ω→ C(E,F ) is a random variable taking values in the measurable space
(C(E,F ),BC(E,F )), that is, a function that is measurable relative to H and BC(E,F ).

Often times it is convenient to work with stochastic processes that correspond to some random
function instead of the random function itself. Consider a random function X. Then, for any
t ∈ E, define Xt = πt ◦X; since πt is a continuous function on C(E,F ) taking values in F , it is
measurable relative to BC(E,F ) and B(F ), and because measurability is preserved across com-
positions, Xt is a random variable taking values in (F,B(F )).
As such, the stochastic process {Xt}t∈E is well-defined. Furthermore, for any ω ∈Ω, the mapping
t 7→Xt(ω) on E is precisely the continuous function X(ω) from E to F . Therefore, {Xt}t∈E is
a stochastic process taking values in (F,B(F )) with continuous paths.

Conversely, consider some stochastic process {Xt}t∈E taking values in (F,B(F )) with continuous
paths, and define X : Ω→ C(E,F ) so that, for any ω ∈ Ω, X(ω) is the function t 7→Xt(ω). To
show that X is a random function, we use the fact that the collection Cf of all finite-dimensional
sets in C(E,F ) is a π-system generating BC(E,F ).
For any A ∈ Cf , there exist t1, · · · , tk ∈ E and H ∈ B(F k) such that

A= π−1
t1,··· ,tk(H).

We can now see that

X−1(A) = (πt1,··· ,tk ◦X)−1 (H) = (Xt1 , · · · ,Xtk)−1 (H) ∈H,

where the last inclusion holds becauseXt1 , · · · ,Xtk are random variables taking values in (F,B(F )).
Thus, the fact that Cf generates BC(E,F ) implies that

X−1(A) ∈H

for any A ∈ BC(E,F ), and by definition X is a random function.

We call the stochastic process {Xt}t∈E taking values in (F,B(F )) with continuous paths and
the random function X taking values in C(E,F ) constructed as above the process and function
corresponding to one another.
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6.4.1 Sufficienct Conditions for Weak Convergence

The equivalence of random functions and stochastic processes, as well as the characterization of
tightness on continuous function spaces derived in the previous section, allow us to formulate
the following sufficient conditions for the weak convergence of random functions:

Theorem 6.12 (Conditions for Weak Convergence)
Let (E,ρ) be a compact metric space, F =Rm, d the supremum metric on C(E,F ), and BC(E,F )
the associated Borel σ-algebra on C(E,F ).
Let {Xn}n∈N+ be a sequence of random functions andX a random function on (C(E,F ),BC(E,F )).
Letting {Xn

t }t∈E and {Xt}t∈E be the stochastic processes corresponding to Xn and X, if:

i) (Xn
t1 , · · · ,X

n
tk

) d→ (Xt1 , · · · ,Xtk) for any t1, · · · , tk ∈ E

ii) For any ε > 0,

lim
δ→0

limsup
n→∞

P(w(Xn, δ)> ε) = 0,

then Xn d→X.

Proof) Let Π = {µn}n∈N+ be the distributions of {Xn}n∈N+ , and µ that of X. The first con-
dition tells us that, for any t1, · · · , tk ∈ E,

πt1,··· ,tk ◦X
n d→ πt1,··· ,tk ◦X,

or equivalently,

µn ◦π−1
t1,··· ,tk → µ◦π−1

t1,··· ,tk

weakly. Suppose that {µnk}k∈N+ is a weakly convergent subsequence of {µn}n∈N+ .
Letting the weak limit be the probability measure v on C(E,F ), by the continuous
mapping theorem

µnk ◦π
−1
t1,··· ,tk → v ◦π−1

t1,··· ,tk

weeakly as k→∞, so that, by the uniqueness of weak limits,

µ◦π−1
t1,··· ,tk = v ◦π−1

t1,··· ,tk .

This holds for any t1, · · · , tk ∈E, so µ(H) = v(H) for any finite-dimensional set H ∈ Cf .
Since Cf is a π-system generating BC(E,F ) and µ,v are probability measures, it follows
that µ= v on BC(E,F ). Therefore, every weakly convergent subsequence of {µn}n∈N+

has the weak limit µ.

311



In light of lemma 4.10, we need only prove that Π is relatively compact to show that
µn→ µ weakly. Furthermore, the sufficiency part of Prohorov’s theorem implies that
this can be shown by simply proving that Π is tight. This is in turn shown using the
characterization of tightness on continuous function spaces.
By i), for any t ∈ E

µn ◦π−1
t → µ◦π−1

t

weakly. As such, the sequence {µn ◦π−1
t }n∈N+ of probability measures on (F,B(F )) is

trivially relatively compact, so that the necessity part of Prohorov’s theorem implies
that it is tight. By definition, for any η > 0, there exists a compact set K in F such
that

µn
(
π−1
t (Kc)

)
< η

for any n ∈ N+. K, being bounded, is contained in some closed ball around 0 with
radius a > 0, and as such

µn ({f | |f(t)|> a})≤ µn
(
π−1
t (Kc)

)
< η

for any n ∈N+.
Furthermore, ii) tells us that

lim
δ→0

limsup
n→∞

µn ({f | w(f,δ)> ε}) = 0

for any ε > 0, so Π is a tight collection of probability measures on C(E,F ) (by theorem
6.11).
Q.E.D.
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6.4.2 Construction of the Wiener Measure and Donsker’s Theorem

Here we construct the m-dimensional Wiener measure, and by extension the Wiener process, on
[0,1]. The m-dimensional Wiener process on more general closed intervals can be constructed
by stitching together the processes defined on [0,1] (technically, we stitch together Brownian
bridges instead of the Wiener processes themselves). The Wiener measure in question is derived
as the weak limit of a sequence of random functions defined on the compact space [0,1] equipped
with the euclidean metric.
We start by constructing a sequence of stochastic processes with index set [0,1] and a sequence
of corresponding random functions in C([0,1],Rm). The Wiener measure will be found as the
limit of this sequence.
Let {εt}t∈Z be a sequence of independent and identically distributed m-dimensional random vec-
tors with mean 0, variance Im and finite fourth moments. For any T ∈N+, define the stochastic
process {XT (r)}r∈[0,1] as

XT (r) = 1√
T

bTrc∑
t=1

εt+
1√
T

(Tr−bTrc)εbTrc+1

= 1√
T
SbTrc+

1√
T

(Tr−bTrc)εbTrc+1

for any r ∈ [0,1], where {St}t∈N is the partial sum process of {εt}t∈N+ with S0 = 0. Being the
linear combination of random vectors, each XT (r) is a random vector, and {XT (r)}r∈[0,1] clearly
has continuous paths. Therefore, there exists a random function XT taking values in C([0,1],Rm)
that corresponds to {XT (r)}r∈[0,1]. Let µT be the distribution of XT ; it is a probability measure
on (C([0,1],Rm),BC([0,1],Rm)).

We start with a characterization of tightness of the sequence {µT }T∈N+ . We once again make use
of theorem 4.11, which furnishes necessary and sufficient conditions for a sequence of probability
measures on a continuous function space to be tight.

Theorem 6.13 (Conditions for Tightness of {µT })
Let {µT }T∈N+ be the sequence of probability measures on (C([0,1],Rm),BC([0,1],Rm)) defined
above. Then, Π = {µT }T∈N+ is tight if

lim
λ→∞

limsup
n→∞

λ2P
(

max
k≤n
|Sk|> λ

√
n

)
= 0.

Proof) Since [0,1] is compact when equipped with the euclidean metric on R, by theorem 6.11
Π = {µT }T∈N+ is a tight sequence of probability measures if and only if:

– For any η > 0 and r ∈ [0,1], there exists an a > 0 such that

µT ({f | |f(r)|> a})≤ η
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for any T ∈N+.

– For any ε > 0,

lim
δ→0

limsup
T→∞

µT ({f | w(f,δ)> ε}) = 0.

Condition 1

We will first show that the pointwise boundedness condition holds. For any T ∈ N+

and r ∈ [0,1],

µT ◦π−1
r

is the distribution of πr ◦XT , which is given as

πr ◦XT = 1√
T
SbTrc+

1√
T

(Tr−bTrc)εbTrc+1.

Since ∣∣∣∣ 1√
T

(Tr−bTrc)εbTrc+1

∣∣∣∣≤ 1√
T

∣∣∣εbTrc+1

∣∣∣,
we can see that, for any δ > 0,

P
(∣∣∣∣ 1√

T
(Tr−bTrc)εbTrc+1

∣∣∣∣> δ

)
≤ 1
δ2 ·T

tr
(
E
[
εbTrc+1ε

′
bTrc+1

])
= m

δ2 ·T

by Chebyshev’s inequality; taking T →∞ on both sides yields

lim
T→∞

P
(∣∣∣∣ 1√

T
(Tr−bTrc)εbTrc+1

∣∣∣∣> δ

)
= 0.

Therefore,

1√
T

(Tr−bTrc)εbTrc+1
p→ 0

as T →∞.

On the other hand, note that

1√
T
SbTrc =

√
bTrc√
T
·

 1√
bTrc

bTrc∑
t=1

εt

 .
By the Lindeberg-Levy CLT and Slutsky’s theorem, we now have

πr ◦XT
d→ r ·Z,

314



where Z ∼N(0, Im). This implies that the sequence

{µT ◦π−1
r }T∈N+

converges weakly, and the proof of theorem 6.12 shows us that this implies, for any
η > 0, the existence of an a > 0 such that

µT ({f | |f(r)|> a})≤ η

for any T ∈N+.

Condition 2

Now we show that our assumption implies that, for any ε > 0,

lim
δ→0

limsup
T→∞

µT ({f | w(f,δ)> ε}) = 0.

Choose any ε > 0 and η > 0. By assumption,

lim
λ→∞

limsup
n→∞

λ2P
(

max
k≤n
|Sk|> λ

√
n

)
= 0,

so there exists an M > 0 such that

inf
d∈N+

(
sup
n≥d

λ2P
(

max
k≤n
|Sk|> λ

√
n

))
< η,

for any λ>M , and in turn, for any λ>M , by the definition of the infimum there exists
a dλ ∈N+ such that

sup
n≥dλ

λ2P
(

max
k≤n
|Sk|> λ

√
n

)
<
ηε2

288 .

Letting λ(δ) = ε
6·
√

2δ , we choose δ ∈ (0,1) so that

λ(δ)>M.

Now we proceed in steps:

Step 1: Bounding the Measure

For any T ∈N+, define

m(T,δ) = dδT e, v(T,δ) = dT/m(T,δ)e,
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and let

tiT =


i·m(T,δ)

T if 0≤ i≤ v(T,δ)−1

1 if i= v(T,δ).

m(T,δ) is an integer smaller than or equal to T , v(T,δ) is a natural number, and
{t0T , · · · , tv(T,δ)T } is a partition of [0,1], where

tv(T,δ)−1,T = (v(T,δ)−1) ·m(T,δ)
T

< 1 = tv(T,δ)T .

For any T ∈N+, choose any f ∈ C([0,1],Rm) such that w(f,δ) > ε. Then, there exists
some x,y ∈ [0,1] such that |x−y|< δ and

w(f,δ)≥ |f(x)−f(y)|> ε.

Because the length of the intervals in the partition {t0T , · · · , tv(T,δ)T } is greater than or
equal to δ, x and y are either contained in the same interval or contained in adjacent
intervals. Consider two cases:

– x and y are in the same interval
Assuming that ti−1,T ≤ x,y ≤ tiT for some 1≤ i≤ v(T,δ),

|f(x)−f(y)| ≤ |f(ti−1,T )−f(x)|+ |f(y)−f(ti−1,T )| ≤ 2 · sup
ti−1,T≤z≤tiT

|f(ti−1,T )−f(z)|.

– x and y are contained in different intervals
Assuming that ti−1,T ≤ x ≤ tiT and tiT ≤ y ≤ ti+1,T for some 1 ≤ i ≤ v(T,δ)− 1,
we have

|f(x)−f(y)| ≤ |f(ti−1,T )−f(x)|+ |f(ti−1,T )−f(y)|

≤ |f(ti−1T )−f(x)|+ |f(ti,T )−f(y)|+ |f(ti,T )−f(ti−1,T )|

≤ 2 · sup
ti−1,T≤z≤tiT

|f(ti−1,T )−f(z)|+ sup
ti,T≤z≤ti+1,T

|f(ti,T )−f(z)|.

Therefore, it must be the case that

max
1≤i≤v(T,δ)

sup
ti−1,T≤z≤tiT

|f(ti−1,T )−f(z)|> ε

3

for |f(x)−f(y)|> ε to hold. In other words,

{f | w(f,δ)> ε} ⊂
{
f | max

1≤i≤v(T,δ)
sup

ti−1,T≤z≤tiT
|f(ti−1,T )−f(z)|> ε

3
}
,
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and it follows that

µT ({f | w(f,δ)> ε})≤ µT
({

f | max
1≤i≤v(T,δ)

sup
ti−1,T≤z≤tiT

|f(ti−1,T )−f(z)|> ε

3
})

≤
v(T,δ)∑
i=1

P
(

sup
ti−1,T≤z≤tiT

|XT (ti−1,T )−XT (z)|> ε

3

)
.

Step 2: Using the iid Condition

Choose any 1≤ i≤ v(T,δ). Then, since ti−1,T = i·m(T,δ)
T , for any ti−1,T ≤ z ≤ tiT we have

i ·m(T,δ)≤ Tz ≤min((i+ 1) ·m(T,δ),T ) .

and therefore

P
(

sup
ti−1,T≤z≤tiT

|XT (ti−1,T )−XT (z)|> ε

3

)
≤ P

 sup
i·m(T,δ)≤k≤(i+1)·m(T,δ)

∣∣∣Sk−Si·m(T,δ)

∣∣∣
√
T

>
ε

6


+P

(
max

i·m(T,δ)≤k≤(i+1)·m(T,δ)
|εk+1|>

ε
√
T

6

)

= P
(

sup
k≤m(T,δ)

|Sk|>
ε
√
T

6

)
+P

(
max

1≤i≤m(T,δ)
|εi|>

ε
√
T

6

)
,

where the last equality follows because {εt}t∈Z is i.i.d. Thus,

µT ({f | w(f,δ)> ε})≤ v(T,δ) ·P
(

sup
k≤m(T,δ)

|Sk|>
ε
√
T

6

)
+v(T,δ) ·P

(
max

1≤i≤m(T,δ)
|εi|>

ε
√
T

6

)
.

Step 3: Taking T →∞

By construction,

δT −1<m(T,δ)≤ δT ;

thus,

1
δ
≤ T

m(T,δ) <
T

m(T,δ) + 1 <
1
δ
,

and sending T →∞

T

m(T,δ) →
1
δ
.
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Therefore, there exists an N ∈N+, dependent on δ, such that∣∣∣∣ T

m(T,δ) −
1
δ

∣∣∣∣< 1
2δ <

1
δ

for any T ≥N , so that, for any T ≥N ,

1
2δ <

T

m(T,δ) <
2
δ
.

Likewise, because

T

m(T,δ) −1< v(T,δ)≤ T

m(T,δ) ,

for any T ≥N we have

v(T,δ)≤ T

m(T,δ) <
2
δ
.

Therefore, for any T ≥N , because

T >
m(T,δ)

2δ ,

we have

µT ({f | w(f,δ)> ε})≤ 2
δ
·P

 sup
k≤m(T,δ)

|Sk|>
ε

6 ·

√
m(T,δ)

2δ


︸ ︷︷ ︸

I

+2
δ
·P
(

max
1≤i≤m(T,δ)

|εi|>
ε
√
T

6

)
︸ ︷︷ ︸

II

.

We study each term in turn:

i) Term I
Under the definition of λ(δ), term I can be written as

I = 144
ε2
·λ(δ)2P

(
sup

k≤m(T,δ)
|Sk|> λ(δ) ·

√
m(T,δ)

)
.

m(T,δ)→∞ as T →∞, so there exists an N1 ∈ N+ such that N1 ≥ N and, for
any T ≥N1,

m(T,δ)> dλ(δ).

Then, for any T ≥N1,
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144
ε2
·λ(δ)2P

(
sup

k≤m(T,δ)
|Sk|> λ(δ) ·

√
m(T,δ)

)

≤ 24
ε
·
(

sup
n≥dλ(δ)

λ(δ)2P
(

sup
k≤n
|Sk|> λ(δ)

√
n

))
<
η

2 .

ii) Term II
Since

{
max1≤i≤m(T,δ)|εi|>

ε
√
T

6
}
⊂
m(T,δ)⋃
i=1

{
|εi|>

ε
√
T

6
}
,

we have

P
(

max
1≤i≤m(T,δ)

|εi|>
ε
√
T

6

)
≤
m(T,δ)∑
i=1

P
(
|εi|>

ε
√
T

6

)

≤ 64 ·m(T,δ)
ε4 ·T 2 ·E|ε1|4.

where we used the fact that ε1,ε2, · · · are iid. The preceding result tells us that
m(T,δ)
T → δ as T →∞, and {εt}t∈Z has finite fourth moments, so

lim
T→∞

P
(

max
1≤i≤m(T,δ)

|εi|>
ε
√
T

6

)
= 0

Thus, there exists an N2 ∈N+ such that N2 ≥N1 and, for any T ≥N2, we have

P
(

max
1≤i≤m(T,δ)

|εi|>
ε
√
T

6

)
<
ηδ

4 .

Putting the results together, we can see that, for any T ≥N2, where this N2 depends
only on δ,

µT ({f | w(f,δ)> ε})< η.

Therefore,

limsup
T→∞

µT ({f | w(f,δ)> ε})≤ η.

Because the modulus of continuity w is decreasing in its second argument, for any
h ∈ (0, δ), we also have

limsup
T→∞

µT ({f | w(f,h)> ε})≤ η.
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Our choice of η > 0 was arbitrary, so this implies that

lim
h→0

limsup
T→∞

µT ({f | w(f,h)> ε}) = 0,

which is exactly what we wanted to show.

Q.E.D.

A series of lemmas show us that the condition introduced in the theorem above is satisfied.

Lemma 6.14 (Etemadi’s Inequality)
Let {et}t∈N+ be an independent sequence of m-dimensional random vectors and {VT }T∈N+ their
partial sum process. Then, for any n ∈N+ and α > 0,

P
(

max
k≤n
|Vk|> α

)
≤ 3 ·max

k≤n
P
(
|Vk|>

α

3

)
.

Proof) For any n ∈N+ and 1≤ k ≤ n, define

Bk = {|Vk|> α}∩

k−1⋂
j=1
{|Vj | ≤ α}

 .
Then, the collection {B1, · · · ,Bn} of H-measurable sets are disjoint and have the union

n⋃
k=1

Bk =
{

max
k≤n
|Vk|> α

}
.

Therefore, by countable additivity,

P
(

max
k≤n
|Vk|> α

)
=

n∑
k=1

P(Bk)

=
n∑
k=1

P
({
|Vn|>

α

3
}
∩Bk

)
+

n∑
k=1

P
({
|Vn| ≤

α

3
}
∩Bk

)

≤ P
(
|Vn|>

α

3

)
+

n∑
k=1

P
({
|Vn| ≤

α

3
}
∩Bk

)
.

For each 1≤ k ≤ n, since |Vk|> α and |Vn| ≤ α
3 , we have

|Vn−Vk| ≥ |Vk|− |Vn|>
2α
3 ,

and Vn−Vk is independent of V1, · · · ,Vk and by implication Bk since Vn−Vk is the sum
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of et for k+ 1≤ t≤ n. Therefore,

P
(

max
k≤n
|Vk|> α

)
≤ P

(
|Vn|>

α

3

)
+

n∑
k=1

P
({
|Vn−Vk|>

2α
3
}
∩Bk

)

= P
(
|Vn|>

α

3

)
+

n∑
k=1

P
(
|Vn−Vk| ≤

2α
3

)
·P(Bk)

≤ P
(
|Vn|>

α

3

)
+
(

max
k≤n

P
(
|Vn−Vk|>

2α
3

))( n∑
k=1

P(Bk)
)
.

By countably additivity again,

n∑
k=1

P(Bk) = P
(

n⋃
k=1

Bk

)
≤ 1

and |Vn−Vk|> 2α
3 implies either |Vn|> α

3 or |Vk|> α
3 , we can see that

P
(

max
k≤n
|Vk|> α

)
≤ 2 ·P

(
|Vn|>

α

3

)
+
(

max
k≤n

P
(
|Vk|>

α

3

))
≤ 3 ·max

k≤n
P
(
|Vk|>

α

3

)
.

Q.E.D.

Lemma 6.15 Let {µT }T∈N+ be the sequence of probability measures defined above. {µT }T∈N+

is a tight sequence of probability measures.

Proof) By Etemadi’s inequality and the independence of {εt}t∈Z, we can see that

λ2P
(

max
k≤n
|Sk|> λ

√
n

)
≤ 3λ2 ·

(
max
k≤n

P
(
|Sk|>

λ

3
√
n

))
for any λ > 0 and n ∈N+. For any 1≤ k ≤ n,

P
(
|Sk|>

λ

3
√
n

)
≤ P

(
|Sk|>

λ

3
√
k

)
≤ 81
λ4k2E|Sk|

4

= 81
λ4k2

 k∑
t=1

E|εt|4 +
k∑
t=1

k∑
s 6=t

E
[
ε′tεtε

′
sεs
]
+

k∑
t=1

k∑
s 6=t

E
[
ε′tεsε

′
tεs
]
+

k∑
t=1

k∑
s 6=t

E
[
ε′tεsε

′
sεt
]

= 81
λ4k2

(
k ·E|ε1|4 +k(k−1)(m2 + 2m)

)
= 81
λ4k
·E|ε1|4 + 81

λ4 ·
k(k−1)(m2 + 2m)

k2

≤ 81
λ4 ·E|ε1|4 + 81

λ4 · (m
2 + 2m).

321



Therefore,

max
k≤n

P
(
|Sk|>

λ

3
√
n

)
≤ 81
λ4 ·E|ε1|4 + 81

λ4 · (m
2 + 2m),

and by the finiteness of the fourth moments of {εt}t∈Z, we have

lim
λ→∞

limsup
k→∞

3λ2 ·
(

max
k≤n

P
(
|Sk|>

λ

3
√
n

))
= 0.

By implication,

lim
λ→∞

limsup
n→∞

λ2P
(

max
k≤n
|Sk|> λ

√
n

)
= 0

as well, and by theorem 6.13, {µT }T∈N+ is tight.
Q.E.D.

Because the metric space (C([0,1],Rm),d), where d is the supremum metric on C([0,1],Rm), is
complete, and the sequence {µT }T∈N+ is tight, by the sufficiency part of Prohorov’s theorem
{µT }T∈N+ is relatively compact. By implication, there exists a subsequence of {µT }T∈N+ that
converges weakly to some probability measure µW on (C([0,1],Rm),BC([0,1],Rm)).

This measure µW is called the standard m-dimensional Wiener measure on [0,1], and the
random function W with distribution µW is referred to as the standard m-dimensional Wiener
function on [0,1]. Similarly, the m-dimensional stochastic process {W (r)}r∈[0,1] with continuous
paths corresponding to W is the standard m-dimensional Wiener process on [0,1].
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6.4.3 Donsker’s Theorem

Before studying some of the properties of the Wiener measure, we first derive the analogue of the
Lindeberg-Levy CLT for sequences of random continuous functions. Specifically, we prove that
{µT }T∈N+ converges weakly to µW , or equivalently, that {XT }T∈N+ converges in distribution
toW . This result is called Donsker’s Theorem, or the Functional Central Limit Theorem (FCLT).

Theorem 6.16 (Donsker’s Theorem)
Let {εt}t∈Z be a sequence of independent and identically distributed m-dimensional random vec-
tors with mean 0, variance Im and finite fourth moments. For any T ∈N+, define the stochastic
process {XT (r)}r∈[0,1] as

XT (r) = 1√
T

bTrc∑
t=1

εt+
1√
T

(Tr−bTrc)εbTrc+1

for any r ∈ [0,1]. Let XT be the random function taking values in C([0,1],Rm) that corresponds
to {XT (r)}r∈[0,1], and µT the distribution of XT .
Then, the sequence {µT }T∈N+ of probability measures on C([0,1],Rm) converges weakly to the
Wiener measure µW .

Proof) We have already shown above that {µT }T∈N+ is a tight sequence of probability mea-
sures. By the sufficiency part of Prohorov’s theorem and the completeness of the metric
space (C([0,1],Rm),d), where d is the supremum metric, {µT }T∈N+ is relatively com-
pact. In light of lemma 4.10, we need only show that every weakly convergent subse-
quence of {µT }T∈N+ converges to µW .

We will show that any weak limit of a convergent subsequence of {µT }T∈N+ has the same
set of finite-dimensional distributions. Let v be a probability measure on C([0,1],Rn)
such that there exists a weakly convergent subsequence {µTk}k∈N+ of {µT }T∈N+ with
weak limit equal to v.

Choose any 0 = t0 < · · ·< tk ≤ 1. Then, for large enough T , Tt0, · · · ,T tk are all integers,
so that

XT (ti) = 1√
T
STti

for 0≤ i≤ k. By implication, for large T ,

XT (ti)−XT (ti−1) = 1√
T

Tti∑
t=Tti−1+1

εt

=
√
ti− ti−1

 1√
T (ti− ti−1)

Tti∑
t=Tti−1+1

εt

 ,
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and because T (ti− ti−1)→+∞ as T →∞, by the Lindeberg-Levy CLT

XT (ti)−XT (ti−1) d→N [0,(ti− ti−1) · Im] .

Furthermore, since XT (ti)−XT (ti−1) involve non-overlapping terms in {εt}t∈Z across
1≤ i≤ k for any T that is large enough, we can see that these increments are indepen-
dent. Defining

IT =


XT (t1)−XT (t0)

...
XT (tk)−XT (tk−1)

 ,

the characteristic function for IT at any r = (r1, · · · , rk) ∈ Rmk is therefore

E
[
exp

(
ir′IT

)]
=

k∏
j=1

E
[
exp

(
ir′j(XT (ti)−XT (ti−1))

)]
.

By the continuity theorem,

lim
T→∞

E
[
exp

(
ir′j(XT (ti)−XT (ti−1))

)]
= exp

(
−1

2(ti− ti−1)r′jrj
)

for 1≤ i≤ k, so we have

lim
T→∞

E
[
exp

(
ir′IT

)]
=

k∏
j=1

exp
(
−1

2(ti− ti−1)r′jrj
)

= exp
(
−1

2r
′V r

)
,

where

V =


(t1− t0) · Im · · · O

... . . . ...
O · · · (tk− tk−1) · Im

 .

By the continuity theorem again,

IT
d→N [0,V ] .

We can easily find that

πt1,··· ,tk ◦X
T =


XT (t1)

...
XT (tk)

=


Im · · · O
... . . . ...
Im · · · Im


︸ ︷︷ ︸

R

IT ,
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so by the continuous mapping theorem,

πt1,··· ,tk ◦X
T d→N

[
0,RV R′

]
.

Furthermore, since {XTk}k∈N+ is a subsequence of {XT }T∈N+ that converges in distri-
bution, and

µTk ◦π
−1
t1,··· ,tk → v ◦π−1

t1,··· ,tk ,

the uniqueness of weak limits tells us that

v ◦π−1
t1,··· ,tk ∼N

[
0,RV R′

]
.

Note that the right hand side depends only on t1, · · · , tk, and that v(0) = 0 trivially.
Therefore, any weak limit of a convergent subsequence of {µT }T∈N+ has the same finite-
dimensional distributions.

The proof is now essentially complete. Choose any weakly convergent subsequence
{µTk}k∈N+ of {µT }T∈N+ , and denote its weak limit by µ. Because µW was also found as
the weak limit of some convergent subsequence of {µT }T∈N+ , the preceding result tells
us that µW and µ have the same finite-dimensional distributions, that is, they agree on
the set Cf . Since Cf is a π-system that generates BC([0,1],Rm), by implication µ= µW ,
and we can conclude that {µTk}k∈N+ converges weakly to µW . Finally, by lemma 4.10,
because every weakly convergent subsequence of {µT }T∈N+ converges weakly to µW ,
the relative compacness of {µT }T∈N+ tells us that

µT → µW

weakly.

Q.E.D.
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6.4.4 Properties of the Wiener Measure

We can show that {W (r)}r∈[0,1] possesses the following properties:

• Initial Value
Because XT (0) = 0 for any T ∈N+, and XT d→W by construction, the continuous mapping
theorem tells us that π0 ◦XT d→ π0 ◦W . Therefore, π0 ◦W =W (0) = 0 as well.

• Continuous Paths
{W (r)}r∈[0,1] has continuous paths by construction.

• Stationary and Independent Increments
From the proof of Donsker’s theorem, we can infer that, for any 0 = t0 < t1, · · · , tk ≤ 1,
defining

∆W =


∆W (t0)

...
∆W (tk)

 ,

where

∆W (ti) =W (ti)−W (ti−1)

for 0≤ i≤ k, we have

∆W ∼N [0,V ]

for

V =


(t1− t0) · Im · · · O

... . . . ...
O · · · (tk− tk−1) · Im

 .

In other words, {∆W (t0), · · · ,∆W (tk)} are independent random vectors such that

∆W (ti)∼N [0,(ti− ti−1) · Im]

for 1≤ i≤ k.

This also implies that

W (t1)∼N [0, t1 · Im]
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for any t1 ∈ (0,1], since W (t0) = 0.
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