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Chapter 1

Equilibrium Models of Asset Pricing

The term structure literature is a part of the asset pricing literature, as it aims to study
the relationship among the yields of zero-coupon bonds (which, we see below, is equivalent
to working with their prices). As such, we first introduce here some fundamental results
of asset pricing.

1.1 Fundamentals of Asset Pricing

We primarily work with the following setup. Let there be an asset with a sequence of
payoffs {Xt}t∈N+ . The time t+1 payoff of the asset Xt+1 is understood to be the payoff
the investor would recieve at time t+ 1 if she were to invest in (purchase) the asset at
time t and then sell it at time t+ 1. Consider the following examples:

Stocks If {Xt}t∈N+ is a sequence of payoffs for a stock share, then Xt+1 would be the
stock price at time t+ 1 plus the dividends for one period.

Bonds If {Xt}t∈N+ is a sequence of payoffs for a bond, then Xt+1 is the bond price at
time t+1 plus the coupon paid at time t+1. In particular, a zero-coupon bond’s
time t+ 1 payoff Xt+1 equals the bond price at time t+ 1.

As the name suggests, asset pricing aims to assign a price pt to the asset at time t as
a function of its payoff Xt+1 at time t+ 1. Specifically, we want to find the time t price
pt of the asset as a function of Xt+1, that is, as

pt = πt(Xt+1).

The rate of return of this asset at time t+ 1 is defined as

rt+1 = Xt+1−pt
pt

= Xt+1
pt
−1,
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1.1. FUNDAMENTALS OF ASSET PRICING CHAPTER 1. ASSET PRICING 1

that is, the rate of return at time t+ 1 from investing in the asset at time t. The asset’s
return at time t+ 1 is defined as 1 + rt+1, which is the payoff the investor stands to
receive if she invests exactly one dollar in the asset. Since the price of an asset can be
formulated in terms of the rate of return and the payoff as

pt = Xt+1
1 + rt+1

,

asset pricing is equivalent to the study of the rate of return of the asset.

In general, since the payoff at time t+ 1 is unknown at time t, neither is the rate of
return rt+1. This means that the return 1+rt+1 is a random variable given the information
up to time t; it is in this sense that we say assets are risky.

An asset whose rate of return at time t+ 1 is known at time t is called a risk-free
asset, and its rate of return at time t+ 1 is denoted by rft+1

1. The reason this asset is
risk-free is because its time t+ 1 return 1 + rft+1 is a known at time t. Equivalently, it is
a degenerate random variable, that is, a random variable with variance 0, conditional on
all the information up to time t.

The amount of risk that an asset possesses at time t is represented by the variance
Vart (rt+1) of its one-period ahead rate of return rt+1. In general, the higher this variance,
the riskier the asset. On the other hand, the profitability of the asset at time t is rep-
resented by its expected rate of return Et [rt+1]. An asset is said to be high-risk and
high-return if Et [rt+1] and Vart (rt+1) are both large; likewise, it is low-risk and low-return
if these quantities are both small.

The time t risk premium, or expected excess return of an asset is defined as

RPt+1 = Et [rt+1]− rft+1;

note that this quantity is known at time t, since both the time t expectation of rt+1 and
the risk-free rate of return rft+1 are known at time t. Heuristically, the risk premium repre-
sents the compensation that an investor receives in exchange for taking on risk. Generally,
the riskier the asset, the higher its risk premium.

Broadly speaking, there are two strands of the asset pricing literature. One strand aims
to price assets using an equilibrium approach, or in other words, as the result of the util-
ity maximization of rational investors. Notable examples of this approach are the CAPM
and C-CAPM. The other strives to price assets under minimal assumptions, usually in
the form of the no-arbitrage condition. Examples of this approach are the Black-Scholes

1Some authors prefer to use the time subscript t for the time t+ 1 rate of return of a risk-free asset,
to indicate that the quantity is known at time t, but for the sake of notational consistency we retain the
time subscript t+ 1.
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model for option pricing and term structure models. In this chapter we focus on the first
type of model, and in the next move onto the second type.

1.2 The Capital Asset Pricing Model (CAPM)

We start with the earliest and simplest asset pricing model, the CAPM. For brevity, we
do not discuss the Markowitz portfolio theory2 that laid the foundations for the CAPM.
Our assumptions are as follows:

A1. Many Homogeneous Investors
We assume that there exists a large number of investors who are homogeneous in
the sense that they possess the same utility function. This allows for the model to
admit a representative investor.

A2. Two-Period Model
The economy lasts for two periods 0 and 1. The investors form their portfolios at
time 0 and receive the payoffs at time 1. Thus, we can omit the time subscripts.

A3. Many Risky Assets and One Risk-free Asset
We assume that there exists n risky assets with rates of return r1, · · · , rn, and one
risk-free asset with rate of return rf . Investors form their portfolios by choosing the
weights w1, · · · ,wn on the risky assets, which implies a weight of 1−∑n

i=1wi on the
risk-free asset.

The mean and covariance matrix of the vector of risky asset rates of return r =
(r1, · · · , rn) are given by

µ=


µ1
...
µn

 and Σ =


σ11 · · · σ1n

... . . . ...
σn1 · · · σnn


As usual, we assume that Σ is a positive definite n×n matrix.

A portfolio with weights w = (w1, · · · ,wn) has expected rate of return

µp = w′µ+ (1−w′ι)rf
2See Markowitz (1952).
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and variance

σ2
p = w′Σw,

where ι ∈ Rn is a vector of ones.

A4. Mean-Variance Utility
Given a portfolio with expected rate of return r and variance σ2, the representative
investor receives utility equal to

u(er,σ2) = er− A2 σ
2.

In other words, the expected rate of return is a good and the variance is a bad.

The representative investor must choose the vector of weights w = (w1, · · · ,wn) as the
solution to the following maximization problem:

max
w∈Rn

u(µp,σ2
p) = w′µ+ (1−w′ι)rf −

A

2 w
′Σw.

Letting w∗ be a solution to the above problem, the first order condition for maximization
tells us that

µ− ι · rf −A ·Σw =On×1.

Therefore, for any 1≤ i≤ n,

µi− rf = A ·
n∑
j=1

σijw
∗
j .

The optimal portfolio, also called the market portfolio, has expected rate of return

µM =
n∑
i=1

w∗i (µi− rf ) + rf

and variance

σ2
M = w∗′Σw∗ =

n∑
i=1

n∑
j=1

σijw
∗
iw
∗
j .
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The first order condition above then implies that

µM − rf =
n∑
i=1

w∗i (µi− rf ) = A
n∑
i=1

n∑
j=1

σijw
∗
iw
∗
j = A ·σ2

M .

Furthermore, for any 1≤ i≤ n,

Cov(ri, rM ) = Cov
ri, n∑

j=1
w∗j · rj

=
n∑
j=1

w∗j ·Cov(ri, rj) =
n∑
j=1

σijw
∗
j .

It follows that

µi− rf = A ·
n∑
j=1

σijw
∗
j

= µM − rf
σ2
M

·Cov(ri, rM )

= Cov(ri, rM )
σ2
M

(
µM − rf

)
.

In other words, the risk premium of asset i is given as the product of the beta term

βi = Cov(ri, rM )
σ2
M

and the expected excess return of the market portfolio

µM − rf .

Note that µM − rf can be interpreted as a common factor that determines the risk pre-
mium of each asset, with the coefficient βi determining how much the factor loads onto
the risk premium of asset i.
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1.3 The Consumption-CAPM (C-CAPM)

We now take a more general approach to the equilibrium pricing method studied above.
Most notably, we depart from the assumption of mean-variance utility, and consider a
multi-period portfolio selection problem. Our assumptions are as follows:

A1. Many Homogeneous Investors
We assume that there exists a large number of investors who are homogeneous in
the sense that they possess the same utility function. This allows for the model to
admit a representative investor.

A2. Multi-Period Model
The economy starts at time 0, and is populated by infinitely lived investors.

A3. Many Risky Assets and One Risk-free Asset
We assume that there is one consumption good, whose price is normalized to 1. In
addition, there exists n assets with time t+ 1 rates of return

r1
t+1, · · · , rnt+1

, of which the first asset is assumed to be the single risk-free asset with time t+ 1
rate of return rft+1. At time t+ 1, the representative investor holds ait+1 units of
asset i. At time 0, the representative investor is assumed to be endowed with ai0
units of asset i.

At time t, the price and dividend of asset i is given as pit and dit, respectively.

A4. General Utility Function
The representative investor has instantaneous utility function u : R+→R such that
u′(·) > 0 and u′′(·) < 0. This makes it so that the investors are risk-averse and re-
ceive positive marginal utilities from consumption. She faces a discount factor of
β ∈ (0,1), and receives wage income of yt each period.

At each time t, the representative investor chooses how much to consume and how
much to save by choosing how many units of each asset to hold. Thus, the representative

9
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investor solves the following maximization problem:

max
{ct}t∈N+ ,{a

i
t}t∈N+

E0

[ ∞∑
t=0

βt ·u(ct)
]

subject to ct+
n∑
i=1

pit ·ait = yt+
n∑
i=1

(pit+dit) ·ait−1.

The Lagrangian for this problem is

L= E0

[ ∞∑
t=0

βt
[
u(ct) +λt

(
yt+

n∑
i=1

(pit+dit) ·ait−1− ct−
n∑
i=1

pit ·ait

)]]
,

and the first order conditions for maximization tell us that

∂L
∂ct

= u′(ct)−λt = 0

∂L
∂ait

=−λt ·pit+β ·Et
[
λt+1

(
pit+1 +dit+1

)]
= 0 for any 1≤ i≤ n.

These conditions then yield the Euler equation

u′(ct) = βEt
[
u′(ct+1) · p

i
t+1 +dit+1

pit

]
.

Note that pit+1 +dit+1 is equal to the payoff Xi
t+1 of asset i at time t+ 1; therefore,

pit+1 +dit+1
pit

= Xi
t+1
pit

= 1 + rit+1,

and the Euler equation can be written as

u′(ct) = βEt
[
u′(ct+1) · (1 + rit+1)

]
for any 1≤ i≤ n. This has the usual economic interpretation of equating marginal benefit
from an additional unit of consumption at time t with the expected marginal cost of that
additional unit of consumption.

In the asset pricing literature, the Euler equation is often interpreted as a pricing
equation. Rearranging the Euler equation so that pit is on the left hand side yields

pit = Et
[
β
u′(ct+1)
u′(ct)

·Xi
t+1

]
.

In other words, the time t price of asset i is given as the expectation of its payoff Xi
t+1,
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discounted by the stochsatic discount factor (SDF)

Mt+1 = β
u′(ct+1)
u′(ct)

.

Heuristically, we can interpret the SDF as follows: if the investor expects to consume
more tomorrow than today, thenMt+1 become smaller, which means that asset i’s payoff
is discounted much more and ends up with a lower price today. In other words, if the
investor expects to consume more tomorrow, then her assets, which serve as a sort of
insurance, become less valuable and thus command a lower price today. This suggest that
consumption serves the same role here as the market portfolio does in the CAPM, an idea
that we expand on further below.

In any case, the pricing formula is given as

pit = Et
[
Mt+1 ·Xi

t+1
]
,

which suggests that, if we define the function πt as

πt(X) = Et [Mt+1 ·X] ,

then the price of every asset is given as the πt-value of its one-period ahead payoff:

pit = πt(Xi
t+1).

We show in a later section that this sort of representation also follows from the no-
arbitrage assumption alone.

1.3.1 The Beta Representation

Here we derive a convenient and useful representation of the expected excess return of an
asset using the pricing formulat derived above. Dividing both sides of the pricing formula
by pit yields the equation

1 = Et
[
Mt+1 · (1 + rit+1)

]
= Covt

(
Mt+1, r

i
t+1
)

+Et [Mt+1] ·
(
1 +Et

[
rit+1

])
.

Rearranging this equation yields

Et
[
rit+1

]
= 1

Et [Mt+1] −1− 1
Et [Mt+1]Covt

(
Mt+1, r

i
t+1
)
.
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Since this holds for any asset, even the risk-free asset, we have

rft+1 = 1
Et [Mt+1] −1,

where the covariance term disappears because rft+1 is known at time t. Therefore,

Et
[
rit+1

]
− rft+1 =− 1

Et [Mt+1]Covt
(
Mt+1, r

i
t+1
)

=−(1 + rft+1)Covt
(
Mt+1, r

i
t+1
)

=
Covt

(
Mt+1, rit+1

)
Vart (Mt+1) ·

[
−(1 + rft+1)Vart (Mt+1)

]

for any 1 ≤ i ≤ n. Note the similarities with the CAPM: the risk premium of each asset
depends on a common factor

MPRt =−(1 + rft+1)Vart (Mt+1) ,

which loads on the risk premium of asset i with loading

βi,t =
Covt

(
Mt+1, rit+1

)
Vart (Mt+1)

unique to the asset.
The beta term βi,t represents the unique risk associated with the ith asset. The more

highly correlated the asset is with the SDF Mt+1, the more risky it is (= the less it
functions as insurance against macro risks) and therefore asset i commands a higher risk
premium.

The term MPRt is called the market price of risk, since it determines how much
the risk premium increases in response to a unit increase in the riskiness, or in other
words, the beta, of an asset. The higher MPRt, the more the risk premium of an asset
increases in response to a unit increase in its beta; that is, a high MPRt indicates that
an additional unit of risk commands a high price in terms of the risk premium, or com-
pensation for risk. MPRt is also common to all assets, so it can be interpreted as the
common “market price” of risk.

1.3.2 The Sharpe Ratio

The Sharpe Ratio (SR) of an asset is an indicator of the profitability of an asset relative
to its risk. The SR of asset i from time t to t+ 1 is defined as

SRit+1 =
Et
[
rit+1

]
− rft+1

σt(rit+1)
,

12



1.3. C-CAPM CHAPTER 1. ASSET PRICING 1

where σt(rit+1) is the standard deviation of rit+1. The higher the Sharpe Ratio, the greater
the profitability of the asset compared to other assets with the same amount of risk,
quantified in terms of the standard deviation of the rate of return.

We can express the SR of asset i in terms of the correlation between the asset’s rate
of return and the SDF. To see this, recall that the pricing formula implies

Et
[
rit+1

]
− rft+1 =− 1

Et [Mt+1]Covt
(
Mt+1, r

i
t+1
)

=− 1
Et [Mt+1]Corrt

(
Mt+1, r

i
t+1
)
·σt(Mt+1) ·σt(rit+1),

where the last equality follows from the definition of the correlation coefficient. Therefore,

SRit+1 =
Et
[
rit+1

]
− rft+1

σt(rit+1)
=−Corrt

(
Mt+1, r

i
t+1
)
· σt(Mt+1)
Et [Mt+1] .

This indicates that the highest and lowest possible SRs are

σt(Mt+1)
Et [Mt+1] and − σt(Mt+1)

Et [Mt+1] ,

which are the ratios of assets whose rate of return is perfectly correlated with the SDF.
Note also that the definition of the Sharpe Ratio tells us that the expected rate of

return of an asset and its standard deviation satisfies the following trade-off:

Et
[
rit+1

]
= rft+1 +SRit+1 ·σt(rit+1)

The slope of this line, which is called the capital allocation line (CAL) in classical
portfolio theory, is exactly the Sharpe Ratio. In light of the maximum and minimum ratios
derived above, this implies that, for any asset i, the pair (Et

[
rit+1

]
,σt(rit+1)) lies in the

area surrounded by the mean-variance frontier, pictured below:

1.3.3 The Case of Log-Normal Returns

Suppose now that the log of the SDFMt+1 and return of asset i 1+rit+1 jointly follow a
normal distribution conditional on information up to time t:

 log(Mt+1)
log
(
1 + rit+1

) :=
mt+1

rit+1

∼N ,

13
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where we used the approximation log
(
1 + rit+1

)
≈ rit+1. Then, the pricing formula can be

written as

1 = Et
[
Mt+1 · (1 + rit+1)

]
= Et

[
exp

(
mt+1 + rit+1

)]
= exp

(
Et
[
mt+1 + rit+1

]
+ 1

2Vart
(
mt+1 + rit+1

))
,

where the last equality used the formula for the MGF of normally distributed variables.
Since

Vart
(
mt+1 + rit+1

)
= Vart (mt+1) + Vart

(
rit+1

)
+ 2 ·Covt

(
mt+1, r

i
t+1
)
,

taking logs on both sides of the equation above yields

0 = Et [mt+1] +Et
[
rit+1

]
+ 1

2
(
Vart (mt+1) + Vart

(
rit+1

))
+ Covt

(
mt+1, r

i
t+1
)
.

Since

exp
(
−rft+1

)
≈ 1

1 + rft+1
= Et [Mt+1] = Et [exp(mt+1)]

= exp
(
Et [mt+1] + 1

2Vart (mt+1)
)
,

14
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taking logs on both sides yields

−rft+1 = Et [mt+1] + 1
2Vart (mt+1) ,

which implies

Et
[
rit+1

]
− rft+1 =−1

2Vart
(
rit+1

)
−Covt

(
mt+1, r

i
t+1
)
.

This tells us that, if the SDF and asset return are jointly log-normally distributed, then
the expected excess return includes an additional variance term alongside the familiar
covariance term. This term is called the Jensen’s Inequality term, and it is often
ignored when talking of the expected excess returns of an asset.

In this case, the Sharpe ratio takes into consideration the Jensen’s inequality term,
and is defined as

SRit+1 =
Et
[
rit+1

]
− rft+1 + 1

2Vart
(
rit+1

)
σt(rit+1)

=−Covt
(
mt+1, r

i
t+1
) 1
σt(rit+1)

=−Corrt
(
mt+1, r

i
t+1
)
σt(mt+1).

The maximum Sharpe ratio in this case is equal to the standard deviation σt(mt+1) of
the log SDF.

1.3.4 The Case of CRRA Utility

An important special case, which, among other things, will serve as the benchmark for our
derivation of the empirical SDF, is the case of CRRA utility. Suppose the utility function
is given in the CRRA form

u(c) = c1−θ−1
1− θ ,

where θ ≥ 0 is the coefficient of relative risk aversion (the case where θ = 1 corresponds
to log utility). Then, the time t+ 1 SDF is

Mt+1 = β
u′(ct+1)
u′(ct)

= β ·
(
ct+1
ct

)−θ
.

Defining consumption growth gt+1 = ct+1−ct
ct

, we can see that

Mt+1 = β · (1 +gt+1)−θ .

15
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An important approximation result in macroeconomics tells us that

(1 +x)a ≈ 1 +ax

when x is small, which follows from a first order Taylor expansion applied to the mapping
x 7→ (1+x)a around 0. Assuming that consumption growth is near 0 (which in most cases
it is), we now obtain the approximation

Mt+1 = β · (1 +gt+1)−θ ≈ β(1− θgt+1),

so that the expected excess return of asset i is

Et
[
rit+1

]
− rft+1 =− 1

Et [Mt+1]Covt
(
Mt+1, r

i
t+1
)

=−(1 + rft+1) ·Covt
(
β(1− θgt+1), rit+1

)
= β(1 + rft+1) · θCovt

(
gt+1, r

i
t+1
)
.

In other words, the risk premium of asset i is proportional to the level of risk aversion
of the investors θ and the covariance of consumption growth and the return to asset i,
Covt

(
gt+1, rit+1

)
. As usual, the covariance term (=beta temr) represents the systematic

risk present in the asset itself, and differs from asset to asset. Meanwhile, the risk aversion
coefficient θ is contained in the market price of risk term, and thus represents how sensitive
investors are (=the amount of compensation investors demand) to a unit increase in risk;
note how it is not dependent on a specific asset.

We usually call gt+1 the risk factor, in other words, the factor that represents the
systematic risk present in the economy. The expected excess return of an asset can then
be said to be determined by an asset-specific part, namely the correlation of the rate of
return with the risk factor, and an non asset-specific part, namely the market price of
risk, or investors’ attitude to risk.

1.3.5 The Equity Premium Puzzle

Under CRRA utility, the pricing formula suggests that asset risk premia should be deter-
mined according to the equation

Et
[
rit+1

]
− rft+1 = β(1 + rft+1) · θCovt

(
gt+1, r

i
t+1
)
.

However, the actual data for the expected excess return on stocks (on average 0.06)
indicate that the relative risk aversion coefficient θ should be around 30, a value that is
too high to be plausible. This discrepancy between theory and practice is referred to as

16
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the equity premium puzzle; here, equity premium refers to the excess return on stocks
compared to bonds (=risk-free asset).

Many attempts have been made to resolve the equity premium puzzle; here we present
a few popular approaches:

1) Habit Formation
This theory, introduced in Campbell and Cochrane (1999), posits that utility is
derived not only from consumption but also from adherence to previously formed
“habits”. This has the effect of raising the degree of risk aversion during recessions
and lowering it during booms, so that θ is only required to be high during recessions,
a reasonable conclusion.

2) Distorted Beliefs
This theory suggests that the conditional expectation Et [·] does not accurately re-
flect investors’ attitudes to risk. For instance, it does not reflect how investors’
patterns of risk aversion change during recessions and booms.

3) Survivorship Bias
Finally, one strand of the literature emphasizes that the left hand side expression
Et
[
rit+1

]
− rft+1 will be computed using only assets in the United States. However,

investors, who consider assets of other less sucessful countries, will actually be facing
a risk premium that is much lower than 0.06.

17
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1.4 Models of Stock Prices

Here we briefly study models of stock prices. We focus on two results: the dividend dis-
count model and the dynamic Gordon formula. The first is a direct consequence of the
C-CAPM, while the latter is an alternative approach that only makes use of the definition
of stock returns.

1.4.1 The Dividend Discount Model

Suppose {Xt}t∈N+ is the payoff stream of a share of stock, so that

Xt+1 = pt+1 +dt+1,

where pt+1 is the time t+ 1 price of the stock and dt+1 its time t+ 1 dividend. In this
case, the pricing formula becomes

pt = Et [Mt+1Xt+1] = Et [Mt+1(pt+1 +dt+1)]

for any t ∈ N. The above equation represents a recursion, so that, for any T > t, we have

pt = Et [Mt+1(pt+1 +dt+1)]

= Et [Mt+1Et+1 [Mt+2(pt+2 +dt+2)]] +Et [Mt+1dt+1]

= Et [Mt+1Mt+2 ·pt+2] +Et [Mt+1dt+1] +Et [Mt+1Mt+2 ·dt+2]

= · · ·= Et

 T∏
s=1
Mt+s

pt+T
+

T∑
s=1

Et
[(

s∏
r=1
Mt+r

)
·dt+s

]
.

Assuming that

lim
T→∞

Et

 T∏
s=1
Mt+s

pt+T
= 0,

which requires discounted stock prices to converge to 0 in the far future and thus represents
a no-bubble condition, we can express pt as

pt =
∞∑
s=1

Et
[(

s∏
r=1
Mt+r

)
·dt+s

]
.

Here, the s-period ahead dividend is discounted by ∏sr=1Mt+r, so that

Λt,t+s =
s∏
r=1
Mt+r

18
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is the SDF from time t to t+s. Using this more general expression for the discount factor,
stock prices are given as

pt =
∞∑
s=1

Et [Λt,t+s ·dt+s] .

This tells us that the current stock price is the sum of expected discounted future divi-
dends; this equation forms the centerpiece of the dividend discount model (DDM) of
stock prices.

1.4.2 The Dynamic Gordon Formula

This is another approach to the modeling of stock prices that relies not on the C-CAPM
but only the definition of stock returns. Let Rt+1 = 1 + rt+1 denote the returns at time
t+ 1, Pt the time t price, and Dt the time t dividend. We denote by pt and dt the logs
of Pt and Dt. The ratio Dt

Pt
is the dividend-price ratio (DPR), and its log dt− pt is

referred to as the log DPR.
By definition,

Rt+1 = 1 + rt+1 = Pt+1 +Dt+1
Pt

= Pt+1
Pt

(
1 + Dt+1

Pt+1

)
.

Using the fact that

Pt+1
Pt

= exp(log(Pt+1)− log(Pt)) = exp(pt+1−pt)

and

1 + Dt+1
Pt+1

= exp
(

log
(

1 + Dt+1
Pt+1

))
= exp(log(1 + exp(dt+1−pt+1))),

the rate of return can be approximated as

rt+1 ≈ log(1 + rt+1) = log(Rt+1)

= pt+1−pt+ log(1 + exp(dt+1−pt+1)) .

Letting d−p be the mean log DPR, a Taylor expansion of log(1 + exp(dt+1−pt+1)) with
respect to dt+1−pt+1 around d−p yields

log(1 + exp(dt+1−pt+1))≈ log
(
1 + exp

(
d−p

))
+

exp
(
d−p

)
1 + exp

(
d−p

) (dt+1−pt+1−d−p
)
.
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Defining ρ= 1
1+exp(d−p) ∈ (0,1), we have

log(1 + exp(dt+1−pt+1))≈− log(ρ) + (1−ρ)
(
dt+1−pt+1− log

(
ρ−1−1

))
,

and the rate of return is approximated by

rt+1 ≈ pt+1−pt+ (1−ρ)(dt+1−pt+1)− log(ρ)− (1−ρ) log
(
ρ−1−1

)
.

Defining

k =− log(ρ)− (1−ρ) log
(
ρ−1−1

)
,

stock prices are now given by

pt = k+pt+1− rt+1 + (1−ρ)(dt+1−pt+1)

= k+ (1−ρ)dt+1− rt+1 +ρ ·pt+1.

Recursively substituting the above formula leads to

pt = k+ (1−ρ)dt+1− rt+1 +ρ(k+ (1−ρ)dt+2− rt+2 +ρ ·pt+2)

= ρ2 ·pt+2 +k (1 +ρ) + (1−ρ)(dt+1 +ρ ·dt+2)− (rt+1 +ρ · rt+2)

= · · ·= ρT+1 ·pt+T+1 +k

 T∑
s=1

ρs−1

+ (1−ρ)
T∑
s=1

ρs−1dt+s−
T∑
s=1

ρs−1rt+s

for any T > t. If we assume that the no-bubble condition

lim
T→∞

ρT pt+T = 0

holds, then stock prices are given in the limit as

pt = k

1−ρ + (1−ρ) ·
∞∑
s=1

ρs−1dt+s−
∞∑
s=1

ρs−1rt+s.

This is a similar conclusion to the dividend discount model, where current stock prices are
given as the discounted sum of future dividends, but with an additional term invovling
future rates of return. It is worth noting that this was derived (albeit approximately) from
the definition of the rate of return alone.

Using the above formula for stock prices, we can now obtain an expression for the log
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DPR:

dt−pt = dt−
k

1−ρ −
∞∑
s=1

ρs−1dt+s+
∞∑
s=1

ρsdt+s+
∞∑
s=1

ρs−1rt+s

=
(
dt−dt+1 +ρ(dt+1−dt+2) +ρ2(dt+2−dt+3) + · · ·

)
− k

1−ρ +
∞∑
s=1

ρs−1rt+s

=− k

1−ρ +
∞∑
s=1

ρs−1 (rt+s−∆dt+s)

where we define ∆dt+s = dt+s− dt+s−1, which is the dividend growth rate from time
t+ s− 1 to t+ s. Therefore, the log DPR is determined as the sum of the discounted
differences between future rates of return and dividend growth rates. This formula, derived
from the definition of the rate of return and thus possessing great generality, is called the
dynamic Gordon formula.

Given the close relationship between the log DPR and future rates of return, the DPR
has been used, ever since Campbell and Shiller (1988), as a predictor for future stock
returns. Another variable that is often used to test the predictability of stock returns is
the consumption-wealth ratio (CAY), which is calculated as

cayt = Ct−β1 ·at−β2 ·Yt,

where Ct is consumption, at is wealth and Yt is income.
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Chapter 2

Arbitrage-based Models of Asset
Pricing

In contrast to the previous chapter, which dealt with equilibrium approaches to asset
pricing, the arbitrage-based strand of the asset pricing literature strives to obtain asset
pricing results from the weakest possible assumptions. Here, we study this approach to as-
set pricing, which covers sufficient conditions for the existence of an SDF, the risk-neutral
measure, and the form of the empirical SDF.

2.1 Hilbert Spaces and Lp Spaces

Here we briefly introduce and prove results pertaining to Hilbert spaces and Lp spaces.
Hilbert spaces will be very useful when studying arbitrage pricing theory, and indeed, has
very wide applicability even outside of asset pricing (a notable example is in time series
analysis).

2.1.1 Definition of a Hilbert Space

Let (V,〈·, ·〉) be an inner product space over the complex field. Recall the following defi-
nition of an inner product 〈·, ·〉 : V → C:

a) Linearity in the First Argument
For any u,v,m ∈ V and z ∈ C,

〈z ·u+v,m〉= z · 〈u,m〉+ 〈v,m〉.

b) Conjugate Symmetry

22



2.1. HILBERT SPACES AND LP SPACES CHAPTER 2. ASSET PRICING 2

For any u,v ∈ V ,

〈u,v〉= 〈v,u〉.

c) Positive Definiteness
For any v ∈ V ,

〈v,v〉> 0 if and only if v 6= 0V ,

where 0V is the zero vector of V .

The following properties follow by definition:

〈0V ,v〉= 〈v,0V 〉= 0 for any v ∈ V

〈v,v〉 ≥ 0 for any v ∈ V

〈v,v〉= 0 if and only if v = 0V
〈m,z ·u+v〉= z · 〈m,u〉+ 〈m,v〉 for any m,u,v ∈ V and z ∈ C

〈u+v,u+v〉= 〈u,u〉+ 〈v,v〉+ 2 ·Re(〈u,v〉) for any u,v ∈ V.

The Cauchy-Schwarz inequality is trickier to prove (for a proof, consult any linear algebra
textbook):

|〈u,v〉| ≤
√
〈u,u〉 ·

√
〈v,v〉 for any u,v ∈ V.

Let ‖·‖ be the norm induced by the inner product, that is, the function ‖·‖ : V → R+

defined as

‖v‖=
√
〈v,v〉

for any v ∈ V . We can easily verify that ‖·‖ satisfies the conditions of a norm using the
properties above and the Cauchy-Schwarz inequality:

a) For any v ∈ V , ‖v‖= 0 if and only if v = 0V .

b) For any v ∈ V and z ∈ C, ‖z ·v‖= |z| · ‖v‖.

c) For any u,v ∈ V , ‖u+v‖ ≤ ‖u‖+‖v‖.

Let d : V ×V → R+ be the metric induced by the norm ‖·‖, that is, the function defined
as

d(u,v) = ‖u−v‖

23



2.1. HILBERT SPACES AND LP SPACES CHAPTER 2. ASSET PRICING 2

for any u,v ∈ V . It is also not difficult to show that d satisfies the conditions of a metric:

a) For any u,v ∈ V , d(u,v) = 0 if and only if u= v.

b) For any u,v ∈ V , d(u,v) = d(v,u).

c) For any u,v,m ∈ V , d(u,v)≤ d(u,m) +d(m,v).

Therefore, the pair (V,d) is a metric space. We call the inner product space (V,〈·, ·〉)
a Hilbert space if the metric space (V,d) is a complete metric space: for any sequence
{xn}n∈N+ in V that is Cauchy, that is,

lim
m,n→∞d(xn,xm) = 0,

{xn}n∈N+ is convergent, that is, there exists some x ∈ V such that

lim
n→∞d(xn,x) = 0.

2.1.2 Orthogonal Projections

Given some subset V of an inner product space (H,〈·, ·〉), we call y ∈ V an orthogonal
projection of x ∈H on V if

‖x−y‖= inf
z∈V
‖x− z‖.

The following are some general results on orthogonal projections:

Theorem (Properties of Orthogonal Projections)
Let (H,〈·, ·〉) be an inner product space over the complex field and ‖·‖ and d the norm
and metric induced by 〈·, ·〉. Let V be a subset of H. The following hold true:

i) Let x ∈H, and suppose that y ∈ V is an orthogonal projection of x on V , that is,

‖x−y‖= inf
z∈V
‖x− z‖.

Then, y is the unique orthogonal projection of x on y if V is a convex set.

ii) Let x ∈H, and suppose that V is a subspace of H. Then, y ∈ V is the unique or-
thogonal projection of x on V if and only if 〈x−y,z〉= 0 for any z ∈ V .
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iii) Let V be a subspace of H.
Suppose that, for any x ∈H, there exists a unique orthogonal projection of x on V .
Then, H = V

⊕
V ⊥.

Moreover, denoting the mapping from x to its unique orthogonal projection on V

by P , and the mapping from x to x−Px by Q, P,Q are linear transformations from
H into V and V ⊥, and Qx is the orthogonal projection of x on V ⊥.
For any x ∈H, we have

‖x‖2 = ‖Px‖2 +‖Qx‖2.

Proof) i) Let x ∈H, and suppose that y ∈ V is an orthogonal projection of x on V ,
that is,

‖x−y‖= inf
z∈V
‖x− z‖.

Suppose that V is a convex set, and let y′ ∈ V be another orthogonal pro-
jection of x on V . Denoting δ = ‖x−y‖ = ‖x−y′‖, by the parallelogram
law,

∥∥∥∥1
2
(
y−y′

)∥∥∥∥2
+
∥∥∥∥∥x− y+y′

2

∥∥∥∥∥
2

= 2 ·
∥∥∥∥1

2(x−y)
∥∥∥∥2

+ 2 ·
∥∥∥∥1

2(x−y′)
∥∥∥∥2
.

Multiplying both sides by 4 and noting that y+y′
2 ∈ V because V is convex,

we can see that

∥∥∥y−y′∥∥∥2
= 2 ·

‖x−y‖2 +
∥∥∥x−y′∥∥∥2

−2
∥∥∥∥∥x− y+y′

2

∥∥∥∥∥
2

≤ 2 ·
(
2δ2−2δ2

)
= 0,

since
∥∥∥∥x− y+y′

2

∥∥∥∥2
≥ δ2. Therefore, ‖y−y′‖ = 0 and y = y′, making y the

unique orthogonal projection of x on V .

ii) Let V be a subspace of H, and for any x ∈ H, suppose that y ∈ V is the
orthogonal projection of x on V (it is unique because V is convex). Then,
by definition,

‖x−y‖ ≤ ‖x− z‖

for any z ∈ V . Choose any z ∈ V ; if z = 0H , then 〈x− y,z〉 = 0 trivially.
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Supose that z 6= 0H . For any a ∈ C, y+az ∈ V because V is a subspace of
H, and thus

‖x−y‖ ≤ ‖x− (y+az)‖= ‖(x−y)−az‖

by the definition of y as the orthogonal projection of x on V . Then, we have

‖x−y‖2 ≤ ‖(x−y)−az‖2 = 〈(x−y)−az,(x−y)−az〉

= ‖x−y‖2 + |a|2‖z‖2−a · 〈z,x−y〉− ā · 〈x−y,z〉,

so that

0≤ |a|2‖z‖2−a · 〈z,x−y〉− ā · 〈x−y,z〉.

Putting a= 〈x−y,z〉
‖z‖2

∈ C, the above inequality becomes

0≤ |〈x−y,z〉|
2

‖z‖2
−2 · |〈x−y,z〉|

2

‖z‖2
=−|〈x−y,z〉|

2

‖z‖2
,

and multiplying both sides by −‖z‖2, we obtain

|〈x−y,z〉|2 ≤ 0.

This implies that |〈x−y,z〉|2 = 0, or that 〈x−y,z〉= 0.

Now suppose that y ∈ V satisfies 〈x− y,z〉 for any z ∈ V . Then, for any
z ∈ V ,

‖x− z‖2 = 〈(x−y) + (y− z),(x−y) + (y− z)〉

= ‖x−y‖2 +‖y− z‖2 + 2 ·Re(〈x−y,y− z〉) .

Since y−z ∈ V (V is a subspace), by assumption we have 〈x−y,y−z〉= 0,
so that

‖x− z‖2 = ‖x−y‖2 +‖y− z‖2 ≥ ‖x−y‖2.

This holds for any z ∈ V , so y is an orthogonal projection of x on V , and by
the convexity of V , it is the unique orthogonal projection of x on V .

iii) Let V be a subspace of H, and suppose that, for any x ∈ H, there exists
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a unique orthogonal projection of x on V . Define the mapping P : H → V

so that Px is the unique orthogonal projection of x on V for any x ∈ H.
For any x ∈H, by the second result, we can see that 〈x−Px,z〉= 0 for any
z ∈ V . This means that x−Px ∈ V ⊥, so defining the mapping Q :H→ V ⊥

as Qx= x−Px for any x ∈H,

x= Px+Qx,

where Px∈ V and Qx∈ V ⊥, for any x∈H. This shows us that H = V
⊕
V ⊥,

where the sum becomes a direct sum because V and V ⊥ are independent.

To see that P and Q are linear, choose any x,y ∈H, a ∈ C, and note that

a · (Px+Qx) + (Py+Qy) = a ·x+y

= P (ax+y) +Q(ax+y)

by the decomposition above. Rearranging terms yields

P (ax+y)−a ·Px−Py = a ·Qx+Qy−Q(ax+y);

the left hand side is in V and the right hand side in V ⊥, and because
V ∩V ⊥ = 0H (if z ∈ V ∩V ⊥, then 〈z,z〉= ‖z‖2 = 0, or z = 0H ), this tells us
that

P (ax+y)−a ·Px−Py = a ·Qx+Qy−Q(ax+y) = 0H .

The linearity of P and Q follows immediately.

For any x ∈H and y ∈ V ⊥,

〈x−Qx,y〉= 〈Px,y〉= 0

because Px ∈ V ; by the previous result, this tells us that Qx ∈ V ⊥ is the
unique orthogonal projection of x on V ⊥.

Finally, choose any x ∈H, and note that

‖x‖2 = ‖Px+Qx‖2 = ‖Px‖2 +‖Qx‖2 + 2 ·Re(〈Px,Qx〉) = ‖Px‖2 +‖Qx‖2

because Px ∈ V and Qx ∈ V ⊥.
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Q.E.D.

It is well-known that orthogonal projections from a point to a subspace always exists
in finite-dimensional inner product spaces. However, this may not be the case for infinite-
dimensional inner product spaces. It is one of the most important properties of Hilbert
spaces that any closed convex subspace has a unique orthogonal projection.

2.1.3 The Projection Theorem

In general, there does not always exist an orthogonal projection of a vector x ∈ H onto
an arbitrary subset V of H. However, Hilbert spaces are special in that, for any closed
convex subset V of H and some x ∈H, there always exists an orthogonal projection of x
onto V .

This property, called the Hilbert projection theorem, allows us to work with orthgo-
nal projections without worrying about their existence in infinite-dimensional spaces (for
example, function spaces like Lp spaces), and as such forms the cornerstone of many im-
portant mathematical results, including but not limited to the Radon-Nikodym theorem
and the characterization of conditional expectations.

The projection theorem is stated below:

Theorem (The Hilbert Projection Theorem)
Let (H,〈·, ·〉) be a Hilbert space over the complex field and ‖·‖ and d the norm and metric
induced by 〈·, ·〉. For any nonempty closed convex subset V of H and x ∈H, there exists
a unique y ∈ V such that

‖x−y‖= inf
z∈V
‖x− z‖.

Furthermore, if V is a closed subspace of H, then the following hold true:

i) H = V
⊕
V ⊥.

ii) Defining Px as the unique orthogonal projection of x on V for any x ∈ H, the
mapping x 7→ Px is a linear transformation from H into V .

iii) Defining Qx= x−Px for any x∈H, the mapping x 7→Qx is a linear transformation
from H into V ⊥, and Qx is an orthogonal projection of x on V ⊥ for any x ∈H.
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iv) For any x ∈H, x= Px+Qx and

‖x‖2 = ‖Px‖2 +‖Qx‖2.

Proof) Choose any x ∈H. Since the set

{z ∈ V | ‖x− z‖}

is nonempty due to the nonemptiness of V and bounded below by 0, the infimum

δ = inf
z∈V
‖x− z‖

exists in R+. For any n ∈ N+, by the definition of the infimum there exists a
yn ∈ V such that

δ ≤ ‖x−yn‖< δ+ 1
n
,

or equivalently,

|‖x−yn‖− δ|<
1
n
,

so the sequence {‖x−yn‖}n∈N+ converges to δ.
For any m,n ∈N+, by the parallelogram law we can see that

∥∥∥∥1
2 (yn−ym)

∥∥∥∥2
+
∥∥∥∥x− yn+ym

2

∥∥∥∥2
= 2 ·

∥∥∥∥1
2 (x−yn)

∥∥∥∥2
+ 2 ·

∥∥∥∥1
2 (x−ym)

∥∥∥∥2
,

and because yn+ym
2 ∈ V by the convexity of V ,

δ2 = inf
z∈V
‖x− z‖2 ≤

∥∥∥∥x− yn+ym
2

∥∥∥∥2

and we have

‖yn−ym‖2 ≤ 2‖x−yn)‖2 + 2‖x−ym‖2−4δ2.

Taking n,m→∞ on both sides, since

lim
n→∞‖x−yn)‖2 = lim

m→∞‖x−ym‖
2 = δ2,
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the right hand side converges to 0 and thus

lim
n,m→∞‖yn−ym‖

2 = 0.

This shows us that {yn}n∈N+ ⊂ V is Cauchy in the metric d; by the completeness
of the metric space (H,d), there exists a y∗ ∈ H such that yn → y∗ as n→∞
in the metric d. Finally, because V is a closed subset of H and {yn}n∈N+ is a
sequence in V , y∗ ∈ V as well. The continuity of the mapping y 7→ ‖x−y‖ on H

now tells us that

‖x−y∗‖= lim
n→∞‖x−yn‖= δ = inf

z∈V
‖x− z‖.

We have shown so far that y∗ is an orthogonal projection of x on V . Because V
is convex, by the preceding theorem, y∗ is the unique orthogonal projection of x
on V .

Suppose that V is a closed subspace of H. Then, because V is a closed convex
subset of H, by the result above, for any x ∈H there exists a unique orthogonal
projection of x on V . By the preceding theorem, we can now see that properties
i) to iv) above hold true.

Q.E.D.

Corollary to the Hilbert Projection Theorem Let (H,〈·, ·〉) be a Hilbert space
over the complex field and ‖·‖ and d the norm and metric induced by 〈·, ·〉. For any
nonempty closed convex subset V of H, there exists a unique y ∈ V of smallest norm,
that is, a unique element y ∈ V such that ‖y‖ ≤ ‖z‖ for any z ∈ V .

Proof) This follows immediately from the Hilbert Projection Theorem. Specifically, be-
cause V is a closed convex subset of the hilbert space H, there exists a unique
y ∈ V such that

‖y‖= ‖0H −y‖= inf
z∈V
‖0H − z‖= inf

z∈V
‖z‖.

Q.E.D.
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2.1.4 The Riesz Representation Theorem

A useful application of the Projection Theorem is the Riesz Representation Theorem,
which tells us that any linear functional on a Hilbert space can be represented as the
inner product with some element of that space.

We first define a property called continuity at 0. Given a real normed vector space
(V,‖·‖), we say that a function f : V → R is continuous at 0 if, for any {xn}n∈N+ ⊂ V
such that

lim
n→∞‖xn‖= 0,

we also have

lim
n→∞f(xn) = 0.

The statement and proof of the main theorem are given below:

Theorem (The Riesz-Fréchet Representation Theorem)
Let (H,〈·, ·〉) be a Hilbert space over the complex field and ‖·‖ and d the norm and metric
induced by 〈·, ·〉. For any linear functional L∈L(H,C) that is continuous at 0, there exists
a unique element ϕ ∈H (also called the Riesz representation of L) such that

L(x) = 〈x,ϕ〉

for any x ∈H. ϕ 6= 0H if there exists at least one x ∈H such that L(x) 6= 0.

Proof) We first show uniqueness. Suppose that there exist ϕ1,ϕ2 ∈H such that

L(x) = 〈x,ϕi〉

for any x ∈H and i= 1,2. Then,

L(ϕ1−ϕ2) = 〈ϕ1−ϕ2,ϕ1〉= 〈ϕ1−ϕ2,ϕ2〉,

so that

‖ϕ1−ϕ2‖2 = 〈ϕ1−ϕ2,ϕ1〉−〈ϕ1−ϕ2,ϕ2〉= 0.

This implies that ϕ1 = ϕ2, and that the Riesz representation of L, if it exists, is
unique.
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To show existence, first define V as the null space of L, that is, as V = L−1({0}).
We first show that V is a closed subset of H. Let x ∈ H be a limit point of V ;
then, there exists a sequence {xn}n∈N+ in V that converges to x, that is,

lim
n→∞‖xn−x‖= 0.

The continuity of L at 0 now tells us that

lim
n→∞L(xn−x) = 0,

and by the linearity of L,

lim
n→∞L(xn) = L(x).

Each xn is contained in V , the null space of L, so L(xn) = 0; therefore, L(x) = 0
as well, which tells us that x ∈ V . By definition, V is a closed set.

Furthermore, V is a linear subspace, so by the Hilbert Projection Theorem,
H = V

⊕
V ⊥, that is, for any x ∈ H there exists a unique P (x) ∈ V such that

x−P (x) ∈ V ⊥.

If L(x) = 0 for any x ∈H, then we can just put ϕ= 0H . Suppose now that there
exists at least one x ∈H such that L(x) 6= 0, so that V is a proper subset of H.
Then, x−P (x) ∈ V ⊥ but x−P (x) 6= 0H because P (x) ∈ V but x /∈ V , which tells
us that V ⊥ 6= {0H}.

Choose some z ∈ V ⊥ such that |z|= 1, and for any x ∈H, define

u(x) = L(x) · z−L(z) ·x.

It follows that

L(u(x)) = L(x) ·L(z)−L(z) ·L(x) = 0

by linearity, so u(x) ∈ V and 〈u(x), z〉= 0. Therefore,

0 = 〈u(x), z〉= 〈L(x) · z−L(z) ·x,z〉= L(x) · 〈z,z〉−L(z) · 〈x,z〉= L(x)−〈x,L(z) · z〉,

and rearranging terms, we have

L(x) = 〈x,L(z) · z〉.
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This holds for any x ∈H, so it follows that ϕ = L(z) · z Finally, ϕ 6= 0H because
z 6= 0H and L(z) 6= 0 by the facts that ‖z‖= 1 and z /∈ V .
Q.E.D.

2.1.5 Lp Spaces

For any p∈ [1,+∞), we define the space Lp as the collection of all complex-valued random
variables that have finite pth moments; formally,

Lp = {X | E|X|p <+∞}.

Since random variables are functions from the outcome space into a metric space, Lp

spaces are essentially function spaces. Indeed, we can define Lp spaces for more general
kinds of functions, but that is beyond the scope of this text.

The Lp norm ‖·‖p : Lp→ R+ is defined as

‖X‖p =
(
E|X|p

) 1
p

for any X ∈ Lp. Note how the finiteness condition is essential for ‖·‖p to be a real-valued
function. We can show that the pair (Lp,‖·‖p) is a normed vector space over the complex
field by using the following inequalities:

1) Hölder’s Inequality
For any random variables X,Y and p,q ∈N+ such that 1

p + 1
q = 1,

E|XY | ≤
(
E|X|p

) 1
p
(
E|Y |q

) 1
q .

2) Minkowski’s Inequality
For any random variables X,Y and p ∈ [1,+∞),

(
E|X+Y |p

) 1
p ≤

(
E|X|p

) 1
p +

(
E|Y |p

) 1
p .

These two inequalities appear often and are very useful, even outside the context of
Lp spaces (for instance, baby Rudin asks you to prove them as an exercise in chapter 6).

Let d : Lp×Lp→ R+ be the metric induced by the Lp norm ‖·‖p. The Riesz-Fischer
theorem tells us that the pair (Lp,d) is a complete metric space; in other words, (Lp,‖·‖p)
is a Banach space over the complex field.
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Of special interest are L2 spaces, since they are the only kind of Lp space to admit an
inner product. We define the L2-inner product 〈·, ·〉2 : L2×L2→ C as

〈X,Y 〉2 = E
[
X ·Y

]
for any X,Y ∈ L2. We can easily verify that 〈·, ·〉2 satisfies the properties of an inner
product on L2, and note that the norm induced by 〈·, ·〉2 is precisely the L2-norm ‖·‖2.
Since (L2,‖·‖2) is a Banach space over the complex field, (L2,〈·, ·〉2) becomes a Hilbert
space over the complex field. This property, in addition to the fact that almost every
random variable of interest has a finite variance, is the reason for the popularity of L2

spaces in economic analysis.
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2.2 The No-Arbitrage Condition

So far, we have derived asset prices as equilibrium prices in an economy populated by util-
ity maximizing rational investors. However, we also saw that the assumptions imposed
in such general equilibrium models are often restrictive. Aribtrage Pricing Theory
(APT), pioneered by Ross (1976), offers an elegant solution. Instead of starting at fun-
damental assumptions such as utility-maximizing investors, APT starts at the pricing
formula 1

pt = Et [Mt+1Xt+1]

It then investigates sufficient conditions for a strictly positive SDF Mt+1 to exist. These
conditions, which are much weaker than the assumptions of a general equilibrium pricing
model, become the starting point of APT, and results concerning asset pricing are derived
on the basis of the pricing formula alone. Because the no-arbitrage condition is the key
condition for the existence of a positive SDF, the pricing formula itself is often called the
no-arbitrage condition 2.

Here we analyze the two-period case 3. As in the exposition on the CAPM, we assume
that investors make investment decisions at time 0 and receive their payoffs at time 1.
Therefore, assets may be identified with their payoffs at time 1.

The set of all assets, or payoffs, is denoted P , and is taken to be a subset of L2.
Suppose there exists a pricing function π : P →R; that is, a function that assigns an asset
with payoff X the price p= π(X). We want to find sufficient conditions for there to exist
a strictly positive SDF M such that

π(X) = E [M·X] ,

so that the price of any asset is given as its expected discounted payoff.
1In Ross’ original paper, he used the CAPM representation

Et [rt+1] = rft+1 +βi ·λm

as the starting point and studies sufficient conditions for such a factor representation to exist. Since the
beta representation and the pricing formula are equivalent, as we saw above, we instead start from the
pricing formula. Indeed, this is the exposition chosen in Cochrane (2011).

2For an example, consult my paper.
3The multi-period case with conditioning information is studied in Hansen and Richard (1987).
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2.2.1 The Law of One Price

As a first step, we make the following assumptions:

A1. Complete and Linear Payoff Space
Let 〈·, ·〉2, ‖·‖2 be the L2-inner product and norm, and d the metric induced by ‖·‖2.

We assume that P is a linear subspace of L2 such that (P,d) is a complete metric
space. This ensures that (P,〈·, ·〉2) is a Hilbert space over the real field.

A2. Law of One Price (LOP)
We assume that the pricing function π : P →R is linear. Specifically, for two payoffs
X,Y ∈ P and weights w1,w2 ∈ R,

π(w1 ·X+w2 ·Y ) = w1 ·π(X) +w2 ·π(Y ).

A3. Continuity at 0
We assume that π is continuous at 0, that is, for any sequence {Xn}n∈N+ of payoffs
such that ‖Xn‖2→ 0 as n→+∞, we also have π(Xn)→ 0 as n→∞.

A4. Risk-Free Asset
We assume that P contains the risk-free payoff Xf = 1, which yields a payoff of 1
with certainty. In addition, π(Xf )> 0.

The first condition is a technical assumptions. The third assumption has the interpre-
tation that it requires asset prices to shrink to 0 if the payoff shrink to 0, which seems
reasonable. Finally, the fourth condition simply assumes that there exists a risk-free asset,
a standard assumption we have made in the previous sections.

The second condition is referred to as the law of one price because it requires the
repackaged asset with payoff w1 ·X +w2 ·Y to have “one price”. Suppose the LOP does
not hold, so that, for instance,

π(w1 ·X+w2 ·Y )> w1 ·π(X) +w2 ·π(Y ).

In this case, an investor would be able to earn a riskless positive profit by simply purchas-
ing w1 and w2 units of the assets X and Y , packaging them as w1 ·X+w2 ·Y , and then
selling them at the price π(w1 ·X +w2 ·Y ). This would cause the demand of the assets
X and Y to increase, which has the effect of raising their prices π(X) and π(Y ), so that
ultimately equality holds.
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An implication of the LOP is that the price of the risk-free asset should equal its
payoff, since

π(Xf ) = π(1) = w ·π(1) + (1−w) ·π(1)

We first show that, under the two assumptions above, there exists a non-zero SDFM:

Theorem (Existence of Non-zero SDF)
Under assumptions A1 to A4, there exists M∈ P such that M 6= 0 and

π(X) = E [M·X]

for any X ∈ P .

Proof) Note that, under the two assumptions, (P,〈·, ·〉2) is a Hilbert space and π : P →R
a linear functional on P that is continuous at 0 and not equal to 0 everywhere on
P . By the Riesz representation theorem, there exists a unique non-zero M∈ P
such that

π(X) = E [M·X]

for any X ∈ P .
Q.E.D.

Mathematically, we can say that the SDFM is simply the Riesz representation of the
pricing function π when the LOP holds. Note also that

π(Xf ) = E [M]> 0,

and since π(Xf ) = 1
1+rf , where rf is the risk-free rate of return, it follows that

1 + rf = 1
E [M] ,

as was derived from the C-CAPM.

2.2.2 The No-Arbitrage Assumption

We now want to find sufficient conditions for there to exist a strictly positive SDF. To
this end, we make the following additional assumptions:
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A5. The Payoff Space Includes all Derivatives
We assume that the payoff space P includes all derivatives with fundamentals whose
payoffs are in P . In other words, if X ∈ P , then f ◦X ∈ P for any measurable func-
tion f : R→ R such that f ◦X is square integrable.

A6. No-Arbitrage Opportunities
We say there exist arbitrage opportunities if a non-negative payoff X that is positive
with non-zero probability has a non-negative price, that is, if for any non-negative
X ∈ P such that P(X > 0)> 0, we have π(X)≤ 0.

We assume that there are no arbitrage opportunities, that is,

P({X > 0}∩{π(X)≤ 0}) = 0

for any X ∈ P such that X ≥ 0.

The no-arbitrage assumption tells us that, if an investor incurs no losses from an asset
and there is a non-negligible chance for that asset to deliver a positive payoff, then the
price of that payoff should be positive. This is clearly much stronger than the usual no
arbitrage requirement that an asset with an assured positive payoff should have positive
price.

Under these additional assumptions, we can show that there exists a positive SDF:

Theorem (Existence of Positive SDF)
Under assumptions A1 to A6, there exists a M∈ P such that M> 0 and

π(X) = E [M·X]

for any X ∈ P .

Proof) We already showed above that, if assumptions A1 to A4 hold, then there exists
an M∈ P such that M 6= 0 and

π(X) = E [M·X] .

It remains to show that M> 0 when we also assume A5 and A6.

Suppose that M≤ 0 with positive probability. Then, defining

X = I{M≤0},
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X ∈ P because P contains all derivatives with fundamentals in P , X ≥ 0, and
X > 0 with the same positive probability that M≤ 0. It follows from the no-
arbitrage assumption that

P({X > 0}∩{π(X)≤ 0}) = 0.

Since M is the Riesz representation of π, we can see that

π(X) = E [M·X] = E
[
M· I{M≤0}

]
≤ 0.

In other words,

P(X > 0) = P({X > 0}∩{π(X)≤ 0}) = 0,

which allows us to conclude that

P(M≤ 0) = P(X = 1) = P(X > 0) = 0.

This contradicts our initial assumption, so it must be the case that M> 0 with
probability 1.
Q.E.D.

Going forward, we collectively refer to assumptions A1 to A6 as the no-arbitrage
condition, so that the no-arbtirage equation

π(X) = E [M·X]

holds for any X ∈ P .
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2.3 The Risk-Neutral Measure

Under the no-aribtrage condition above, we saw that the no-arbitrage equation

π(X) = E [M·X]

holds for any X ∈ P . Here we develop an alternative representation of the no-arbitrage
equation.

2.3.1 Some (Really Rudimentary) Measure Theory

First, we introduce some very rudimentary measure theoretic concepts. Denote the sample
space by Ω, and the set of all events by H; obviously, H is a collection of subset of Ω, a
set of sets. An example of an event set is the power set 2Ω, which collects all the subsets
of Ω. We require the set of all events to be a σ-algebra on Ω:

a) Inclusion of Empty Set and Entire Set
H includes the empty and entire sets ∅ and Ω.

b) Closed under Complements
H is closed under complementation, that is, for any H ∈H,

Hc = Ω\H ∈H.

c) Closed under Countable Unions
H is closed under countable unions, that is, for any countable collection {Hn}n∈N+

of sets in H,

H =
⋃
n
Hn ∈H.

A probability measure µ :H→ [0,1] is a function defined on the set of all events H
that satisfies the following properties:

a) Empty Sets have measure 0
µ assigns measure 0 to the empty set; µ(∅) = 0.

b) Countable Additivity
For any disjoint countable collection {Hn}n∈N+ of sets in H,

µ

(⋃
n
Hn

)
=
∞∑
n=1

µ(Hn).
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c) Total Mass is 1
µ assigns a total mass of 1 to the entire set; µ(Ω) = 1.

We can easily show that any probability measure is also finitely additive, countably
subadditive and monotonic. The triple (Ω,H,µ) is called a probability space.

Measure theory was originally developed as the foundation for a system of integration
more general and abstract than Riemann integration. Here we briefly introduce some
concepts related to abstract integration. Let (Ω,H,µ) be a probability space. Consider
the simple function f : Ω→ R+ defined as

f =
n∑
i=1

ai · IHi ,

where H1, · · · ,Hn ∈H and a1, · · · ,an are non-negative real numbers. In other words, f is a
function that takes on finitely many values. The integral of f with respect to µ is defined
as

∫
Ω
fdµ=

n∑
i=1

ai ·µ(Hi).

Note that this is just the expected value of the random variable f .
Now consider an aribtrary non-negative function f : Ω→ [0,+∞]. We say that f is

measurable if there exists an increasing sequence {fn}n∈N+ of simple functions that con-
verges pointwise to f . It turns out that this is equivalent to requiring that

{ω ∈ Ω | f(ω)≤ x} ∈ H

for any x ∈ R, and that most functions are measurable (including continuous functions
that those with countably many discontinuities). The integral of f with respect to µ is
defined as

∫
Ω
fdµ= sup

n∈N+

∫
Ω
fndµ.

In other words, since {fn}n∈N+ approximates f from below, the integral of f is approxi-
mated by the integrals of fn. The integral, defined in this way, satisfies many of the useful
properties of integration, such as monotonicity and linearity.

Finally, let f : Ω→ R be an aribtrary real-valued function. The positive and negative
parts of f are defined as

f+ = max(f,0) and f− =−min(f,0).
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We say that f is integrable with respect to µ if
∫

Ω
|f |dµ <+∞,

and the integral of f in this case is defined as
∫

Ω
fdµ=

∫
Ω
f+dµ−

∫
Ω
f−dµ.

Again, the integral defined in this way satisfies properties of integration such as montonic-
ity and linearity.

We can now cast probability theory and expectations in a measure-theoretic light.
Let (Ω,H,µ) be our probability space. A random variable X is a real-valued measurable
function defined on the sample space Ω. X is said to be µ-integrable if the non-negative
variable |X| has finite expectation, or integral. In this case, its expected value is defined
as the integral of X with respect to µ, that is, as

E [X] :=
∫

Ω
Xdµ.

2.3.2 Mathematical Definition of the Risk-Neutral Measure

Usually, we work with the physical measure, or the P-measure, P. This is the probability
measure that, for a given event, yields the actual probability of the event occuring. The
expectation in the no-arbitrage equation

π(X) = E [M·X] :=
∫

Ω
(M·X)dP

is taken with respect to the P-measure.
Now consider an alternative probability measure Q, or the Q-measure, defined as

Q(H) := E
[
(1 + rf )M· IH

]
=
∫
H

(1 + rf )MdP

for any H ∈H, where IH is the indicator function that equals 1 if an outcome is included
in H and 0 otherwise. Note that Q assigns 0 to the empty set and, since

Q(Ω) = (1 + rf )E [M] = 1,

1 to the entire sample space. It can also be shown that Q satisfies the countable additivity
condition, so that Q is a proper probability measure on H with all the properties expected
of one.
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An important result in measure theory tells us that, for any random variable X such
that MX is P-integrable,

∫
Ω
XdQ = E

[
(1 + rf )M·X

]
=
∫

Ω

(
(1 + rf )MX

)
dP.

Denote expectations with respect to Q by EQ [·]. Then, this result tells us that, for any
payoff X that belongs to the payoff space P ,

EQ [X] = (1 + rf ) ·E [MX] = (1 + rf )π(X),

or equivalently,

π(X) = 1
1 + rf

EQ [X] .

This result is referred to as the first fundamental theorem of asset pricing: under
our assumptions, there exists a measure Q under which the price of any asset is equal to
the present value of its expected payoff.

The equation also reveals why Q is called the risk-neutral measure; if investors are
risk-neutral, then under the no arbitrage the expected return from selling an asset (π(X))
equals the expected discounted return from holding the asset and selling it next period(
EQ

[
1

1+rfX
])

.
It is also sometimes called the equivalent martingale measure, since it is the

measure ”equivalent” to the physical measure P that turns asset price processes into mar-
tingales.

2.3.3 Intuitive Meaning of the Risk-Neutral Measure

While the risk-neutral measure is a mathematical construct, it also has an appealing
intuitive meaning. For simplicity, assume that the asset market is complete, so that any
L2 random variable is contained in the payoff space P . By design, the probability of some
event H ∈H under the risk-neutral measure is

Q(H) = E
[
(1 + rf )M· IH

]
= (1 + rf ) ·π(IH),

where we used the fact that π(X) = E [M·X] forany X ∈ P . In other words, the prob-
ability of H under the risk-neutral measure is proportional to the price of an asset that
yields a payoff of 1 if and only if the event H occurs.

Suppose there are two events, H1 and H2, of equal (phyiscal) probability. Let the event
H2 be riskier than H1; for instance, H1 can be the event that war breaks out far from
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home and H2 the event that war breaks out near home. If investors are risk-neutral, then
they choose assets based only on their expected payoff; since the two assets have the same
expected payoffs

E [IH1 ] = P(H1) = P(H2) = E [IH2 ] ,

a risk-neutral investor would be indifferent to either asset. However, if investors are risk
averse, then they would prefer the asset with payoff IH1 over the asset with payoff IH2 ,
since they have the same expected payoff but IH2 is riskier than IH1 .

In reality, investors are risk-neutral and thus asset 1 will command a higher demand
and higher price than asset 2, or equivalently, the expected rate of return for asset 2 will
be higher than asset 1 to compensate for the additional risk. In terms of the risk-neutral
measure, this means that

Q(H1) = (1 + rf ) ·π(IH1)> (1 + rf ) ·π(IH2) = Q(H2).

Thus, if risk averse investors lived in a world with Q as the probability measure, they
could make the same choice as in a world with P based only on the expected payoff of the
assets IH1 and IH2 . Another way to put this is that the risk-neutral measure implements
information about the risk of an asset into its expected payoff, making it possible for
risk averse investors to rely only on an asset’s expected payoff when making investment
decisions.

Since the expected payoff corresponds to the first moments of an asset’s payoff, and
the risk, being the variance, corresponds to the second moments, the risk-neutral measure
can also be said to collapses a two-dimensional problem into a one-dimensional problem.
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2.4 The Empirical SDF

We now have on hand two probability measures, the physical measure and the risk-neutral
measure. The two measures are related through the SDF M as follows:

Q(H) = exp
(
−rf

)
·E [M· IH ] ,

for any event H, where we have approximated 1 + rf with exp
(
rf
)

4. In this section, we
choose a general form for the SDF that has interesting implications for normally dis-
tributed variables under the risk-neutral and physical measures.

2.4.1 The Empirical SDF and Girsanov’s Theorem

Let Z be an n-dimensional standard normally distributed random vector under the phys-
ical measure. We define the empirical SDF as

M= exp
(
−rf −

1
2λ
′λ−λ′Z

)
,

where λ is some n-dimensional vector. This empirical SDF satisfies, in the first place, the
property that E [M] = exp

(
−rf

)
; this can be seen by noting that

E [M] = exp
(
−rf −

1
2λ
′λ
)
·E
[
exp

(
−λ′Z

)]
= exp

(
−rf −

1
2λ
′λ
)
· exp

(1
2λ
′λ
)

= exp
(
−rf

)
using the formula for the MGF of normally distributed variables.

In addition, define Z∗ = λ+Z, so that Z∗ is an n-dimensional normally distributed
random vector with mean λ and variance In under the physical measure. We can show that
Z∗ is a standard normal random vector under the risk-neutral measure: for any t ∈ Rn,

EQ
[
exp

(
t′Z∗

)]
= exp

(
rf
)
·E
[
M· exp

(
t′Z∗

)]
= E

[
exp

(
−1

2λ
′λ−λ′Z

)
· exp

(
t′Z∗

)]
= exp

(
−1

2λ
′λ+ t′λ

)
·E
[
exp

(
−(λ− t)′Z

)]
= exp

(
−1

2λ
′λ+ t′λ

)
· exp

(1
2(λ− t)′(λ− t)

)
= exp

(1
2t
′t
)
,

4This follows from a first order Taylor expansion, and if the approximation error bothers you, then
we can always define rf as rf = log

(
π(Xf )

)
.
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where we again used the formula for the MGF of normally distributed variables. There-
fore, the MGF of Z∗ under the risk-neutral measure is exactly the MGF of the the n-
dimensional standard normal distribution. Since two random vectors with the same MGF
are identically distributed, this implies that Z∗ ∼N [On×1, In].

This result, known in continuous time as Girsanov’s theorem, shows us that, if the
SDF assumes the (stochastic exponential) form above, then simply changing the location
of a random vector that is standard normally distributed under the physical measure can
produce a random vector that has the same distribution under the risk-neutral measure.
This monumental result allows us to shift between the physical and risk-neutral measures
via a simple change in mean, and is one of the reasons for the widespread use of Gaussian
innovations in financial models.

2.4.2 Intuitive Meaning of the Empirical SDF

At first glance, the empirical SDF might seem like a purely mathematical construct,
designed to ease the transition between the risk-neutral and physical measures. However,
the form of the empirical SDF can also be motivated by general equilibrium pricing models
such as the C-CAPM, and in fact, making this connection elucidates the economic meaning
of λ.

Recall that, in the C-CAPM, the SDF is given as

M= β · u
′(C1)
u′(C0) ,

where the time subscripts have been modified to accomodate our two-period environment.
Under a CRRA utility function given by

u(C) = C1−θ

1− θ ,

the SDF becomes

M= β ·
(
C1
C0

)−θ
,

and if the subjective discount rate is given as ρ, we can express

β = 1
1 +ρ

≈ exp(−ρ).

Taking logs on both sides thus yields

log(M) =−ρ− θ (log(C1)− log(C0))≈−rf − θ ·∆c
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=−ρ− θ ·E [∆c]− θσ(∆c) · z,

where ∆c is consumption growth, σ(∆c) is its standard deviation and z = ∆c−E[∆c]
σ(∆c) .

Suppose that z ∼N (0,1) under the physical measure. The SDF satisfies the condition
E [M] = exp

(
−rf

)
, so

exp
(
−rf

)
= E [M] = E [exp(−ρ− θ ·E [∆c]− θσ(∆c) · z)]

= exp(−ρ− θ ·E [∆c]) ·E [exp(−θσ(∆c) · z)]

= exp
(
−ρ− θ ·E [∆c] + 1

2θ
2σ(∆c)2

)
.

Therefore,

M= exp
(
−rf −

1
2θ

2σ(∆c)2− θσ(∆c) · z
)
,

which is exactly the form of the empirical SDF. Recall that, in our analysis of the C-
CAPM, the relative risk aversion coefficient θ represented the market price of risk, that
is, it determined how much compensation investors demand for an additional unit of risk.
Meanwhile, (normalized) consumption growth z represented the systematic risk factor,
with the correlation of an asset’s rate of return with z determining the amount of risk
present in the factor.

This suggests that Z and λ in the general empirical SDF

M= exp
(
−rf −

1
2λ
′λ−λ′Z

)

can be interpreted as the vector of risk factors and the market prices of risk, respectively.
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2.5 Extension to a Multi-Period Setting

So far, we have studied the no-arbitrage condition, the risk-neutral measure and the
empirical SDF in a two-period setting. The extension of this model to a multi-period
setting is straightforward.

As in the beginning, we assume that to every asset is an associated sequence of payoffs
{Xt}t∈N+ , where Xt+1 is the payoff the investor receives at time t+1 if she invests in the
asset at time t and sells it at time t+ 1. Each time t+ 1 payoff Xt+1 is contained in the
time t+ 1 payoff space Pt+1, a subset of L2.

We assume that asset prices at time t are a function of its payoff at time t+ 1, that
is, we assume the existence of a function πt : Pt+1→R such that the time t price pt of an
asset with time t+ 1 payoff Xt+1 is given as

pt = πt(Xt+1).

Suppose assumptions A1 to A6 hold for each period, appropriately tailored to acco-
modate the fact that information is accumulated starting from the first period onward5.
Then, for any time t there exists an SDF Mt+1 ∈ Pt+1 such that

pt = Et [Mt+1 ·Xt+1] ,

where the subscript t denotes that the expectation is conditional on information up to
time t. Putting M0 = 1, the sequence {Mt}t∈N is referred to as our SDF process.

As in the previous sections, under the additional assumption that {Mt}t∈N is uni-
formly integrable6, there exists a risk-neutral measure Q such that

pt = Et [Mt+1 ·Xt+1] = EQ
t

[
exp

(
−rft+1

)
·Xt+1

]
for any Xt+1 ∈ Pt+1. The intuitive meaning and implication of the risk-neutral measure
remain unchanged.

Finally, {Mt}t∈N is said to be an empirical SDF process if

Mt+1 = exp
(
−rft+1−

1
2λ
′
tλt−λt ·vPt+1

)

for any t∈N, where vPt+1 is an n-dimensional standard normally distributed random vector
under the physical measure and λt is some n-dimensional random vector known at time

5We omit explicitly stating the extension of the assumptions. If curious, consult me directly.
6This is a technical assumption that ensures the SDF process is well-behaved in the far future. If the

time index is bounded, then we can omit the uniform integrability assumption.
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t. Defining

vQt+1 = λt+vPt+1,

under the above empirical SDF process vQt+1 follows an n-dimensional standard normal
distribution thanks to Girsanov’s theorem. Here, too, λt represents the market price of
risk, or the sensitivity of investors to an additional unit of risk, and vPt+1 the normalized
systematic risk factors.
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Chapter 3

Empirical Models of the Yield Curve

In this chapter, we first introduce some fundamental concepts concerning bonds and yields,
and then investigate the components of affine term structure models. Afterward, we study
some empirical models used to model the yield curve.

3.1 Bonds and Yields

A bond with face/par value A and maturity T is an asset that pays the fixed amount A at
time T . For this reason, it is sometimes called a fixed-income security. A coupon bond is
a bond that pays a dividend c in fixed intervals until the time of maturity, while a zero-
coupon bond is a bond that pays no coupons. Since a coupon bond that pays a coupon c
each period until maturity can be seen as a composite of various zero-coupon bonds with
face value c (this is called the STRIPS principle), we focus only on zero-coupon bonds.
In addition, we focus only on government bonds such as treasury bills, as the analysis of
corporate bonds requires the consideration of default risk.

Going forward, we will denote by Pt(τ) the price of a zero-coupon bond at time t with
face value 1 and τ periods left to maturity. A bond with τ periods left to maturity at time
t will also be called a τ -period bond at time t. The yield of this bond is defined as

Yt(τ) =−1
τ

log(Pt(τ)).

Note that

Yt(τ) = 1
τ

(log(1)− log(Pt(τ)))≈ 1
τ
· 1−Pt(τ)

Pt(τ) .

Since 1 is the amount that the investor stands to receive at maturity, 1−Pt(τ)
Pt(τ) is the rate

of return from investing in the bond at time t and holding it to maturity. In other words,
Yt(τ) is the rate of return of the bond upon maturity, calculated at time t and divded by
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the time left to maturity. This is why the time t yield Yt(τ) is said to be the average rate
of return of the bond until maturity.

Note that Yt(1) is the yield of the zero-coupon bond with one period left to maturity.
Since a zero-coupon bond with one period left to maturity provides a risk-free one-period
ahead payoff equal to 1, we can see that Yt(1) is essentially the risk-free rate of return. In
the term structure literature, the risk-free (one period ahead) rate of return is called the
short rate and is denoted

rt = Yt(1).

Clearly, Yt(0) = 0, since the bond price at the time of maturity is Pt(0) = 1.
While we defined bond yields using bond prices, we can conversely recover bond prices

from yields:

Pt(τ) = exp(−τ ·Yt(τ))≈ 1
1 + τ ·Yt(τ) .

This tells us that the time t yield is also the average discount rate under which the time
t bond price is its discounted face value.

The h-period ahead holding period return for a τ -period bond at time t is given as

r
(τ)
t,t+h = log(Pt+h(τ −h))− log(Pt(τ))≈ Pt+h(τ −h)−Pt(τ)

Pt(τ) .

This is the rate of return from holding a bond with maturity in τ periods from time t to
time t+h, and then selling it. The h-period ahead excess return for a τ -period bond is
now given as

exr
(τ)
t,t+h = r

(τ)
t,t+h−h ·Yt(h),

that is, as the difference in the rates of return from investing in a τ -period bond at time t
and selling it at time t+h, and that from an h-period bond with a guaranteed payoff of 1
at time t+h. Its expected value is the h-period ahead expected excess return, or h-period
ahead risk premium, of a τ -period bond.

The one-period ahead holding period return and excess return from time t to t+1 are
denoted by

r
(τ)
t+1 and exr

(τ)
t+1,

so that the usual (one period ahead) risk premium is equal to

Et
[
exr

(τ)
t+1

]
= Et

[
r

(τ)
t+1

]
− rt.
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3.1.1 The Forward Rate

This is a related, but somewhat more complicated concept. At time t, suppose we are
interested in the future risk-free (one period ahead) rate. Specifically, we are interested in
the value of rt+h. One way to investigate the current level of the future risk-free rate is
as follows:

Step 1: Issue a zero-coupon bond with maturity at time t+ h. This will give us Pt(h)
units of the numeraire.

Step 2: Buy Pt(h) worth of zero-coupon bonds with maturity at time t+h+1. This will
leave us with Pt(h)

Pt(h+1) units of zero-coupon bonds maturing at time t+h+ 1.

The asset constructed as such will require:

Cost of 1 at time t+h, since that is when the bond we issued will mature.

Payoff of Pt(h)
Pt(h+1) at time t+h+1, since that is when the bonds we purchased will mature.

This asset yields a risk-free payoff of Pt(h)
Pt(h+1) at time t+h+1 in exchange for a cost of

1 at time t+h, and requires no other costs, nor does it yield any other benefits. As such,
the rate of return of this asset can be viewed as the current level of the risk-free rate of
return h periods from now. It is given as

f
(h)
t = Pt(h)

Pt(h+ 1) −1 = Pt(h)−Pt(h+ 1)
Pt(h+ 1) ,

and is called the forward rate. A first order Taylor approximation yields

f
(h)
t ≈ log(Pt(h))− log(Pt(h+ 1)),

so that

− log(Pt(τ)) =
τ−1∑
h=0

(log(Pt(h))− log(Pt(h+ 1))) =
τ−1∑
h=0

f
(h)
t .

Therefore,

Yt(τ) =−1
τ

log(Pt(τ)) = 1
τ

τ−1∑
h=0

f
(h)
t .

In other words, the time t yield of a bond with maturity in τ periods is the average of the
forward rates across the remaining life of the bond.
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Another useful expression for the forward rate can be obtained in terms of h+1-period
ahead holding period returns:

f
(h)
t = log(Pt(h))− log(Pt(h+ 1))

=− log(Pt+h(1)) + [log(Pt+h(1))− log(Pt(h+ 1))]− [log(Pt+h(0))− log(Pt(h))]

= rt+h+ r
(h+1)
t,t+h − r

(h)
t,t+h,

where the we used the fact that

rt+h = Yt+h(1) =− log(Pt+h(1)).

In other words, the difference between the forward rate f (h)
t from time t+h to time t+h+1

and the risk-free rate across the same time interval equals the difference in holding pe-
riod returns from time t to time t+h between an h+1-period bond and an h-period bond.

3.1.2 The Expectations Hypothesis

The expectations hypothesis (EH) refers to a series of equalities that must hold
under the law of one price when investors are risk-neutral. In this case, the law of one
price dictates that any two assets with the same price (expected payoff) must have the
same expected payoff (price). Following the lead of Cochrane and Piazzesi (2008), we
formulate the expectations hypothesis in three equivalent forms:

1) For Long Term Yields
The expected payoffs from investing a unit of the numeraire in a τ -period bond until
maturity and that from successively investing it in a one-period bond for τ periods
must be equal:

1 + τ ·Yt(τ) =
τ−1∏
h=0

(1 +Yt+h(1)).

Under a first order Taylor expansion, the above equation can be formulated as

Yt(τ) = 1
τ

τ−1∑
h=0

rt+h.

Since the right hand side is unknown at time t, under risk neutrality we equate
expected returns:

Yt(τ) = 1
τ

τ−1∑
h=0

Et [rt+h] .
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2) For Short Rates
The risk premium of a τ -period bond is 0:

Et
[
exr

(τ)
t+1

]
= 0,

or equivalently,

Et
[
r

(τ)
t+1

]
= rt.

3) For Forward Rates
The h-period ahead forward rate is equal to the expected h-period ahead risk-free
rate:

f
(h)
t = Et [rt+h] .

Empirically, the expectations hypotheses have found little support, most likely due to
the risk aversion of investors. When taking into consideration that investors are risk averse,
the hypotheses above can be reformulated with the appropriate risk premia appended to
either side:

Yt(τ) = 1
τ

τ−1∑
h=0

Et [rt+h] +TPt(τ)

Et
[
r

(τ)
t+1

]
= rt+RPt(τ)

f
(h)
t = Et [rt+h] +FRPt(h),

where TPt(τ), RPt(τ) and FRPt(h) are referred to as the Term Premium, (one-period
ahead) Risk Preimum and Forward Premium. In particular, the term

EHt(τ) = 1
τ

τ−1∑
h=0

Et [rt+h]

is referred to as the EH component of a τ -period yield, so that a long term yield can be
expressed as the sum of its EH component and the term premium.
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3.2 Principal Components of the Yield Curve

We will now investigate some empirical models of the yield curve, before imposing no-
arbitrage restrictions in the next chapter. The simplest and most ubiquitous means of
modeling the yield curve is to summarize the variation present in the sample yields using
three factors: the level, slope and curvature. These factors are taken as the first three
principal components of a given panel of yields, and they are usually understood as rep-
resenting the short, long and middle ends of the yield curve. Here we briefly introduce
principal component analysis, before applying it to the yield curve.

3.2.1 Principal Component Analysis

Principal component analysis (PCA) is a means of summarizing the variation present
in multiple random variables using linear combinations of said variables. Suppose there
are k square integrable random variables X1, · · · ,Xk with mean zero that are collected
into a k-dimensional real random vector X = (X1, · · · ,Xk). Denote the covariance matrix
of X by

Σ = E
[
XX ′

]
,

and assume that it is positive definite.
If k is large, then instead of using all k variables for our analysis, it may be more

advantageous (and of course, parsimonious) to use a select few linear combinations of the
k variables that represent their co-movement. Intuitively, we can think of the information
contained in the k variables as divided into signal and noise. Signal refers to the unique
information stored in each variable, represented by the variance of a certain variable. On
the other hand, noise is redundant information contained in a certain variable, represented
by the covariance of this variable with others (the covariance represents, heuristically,
the overlap between information in different variables). Therefore, we want to find linear
combinations of the k variables that best capture the signal, that is, maximize the variance,
while minimizing the noise, or covariance. Mathematically, this problem can be formulated
as follows:

First, we want to find coefficients v ∈Rk such that the variance of the linear combination

v′X =
k∑
i=1

vi ·Xi

55



3.2. PRINCIPAL COMPONENTS CHAPTER 3. EMPIRICAL MODELS

is maximized. The variance in question is given by

Var
(
v′X

)
= v′E

[
XX ′

]
v = v′Σv.

Second, if there are two such coefficients v1,v2 ∈ Rk, then we want to ensure that the lin-
ear combination v′1X and v′2X are orthogonal, or uncorrelated. The covariance in
question is given by

Cov
(
v′1X,v

′
2X
)

= v′1E
[
XX ′

]
v2 = v′1Σv2.

Third, we wnat to normalize the coefficients v so that |v| = 1, in order to preclude trivial
results (such as sending the coefficients to ∞ to maximize the variance).

We now search for these coefficients v one by one. We first search for the first coefficient
v1 ∈ Rk, which solves the constrained maximization problem

max
v∈Rk

v′Σv

subject to |v|= 1.

For the time being, we need not worry about the 0 covariance condition because v1 is the
first set of conditions. Since the objective function is strictly quasiconcave and the map-
ping v 7→ v′v is quasiconcave, there exists a unique solution v1 ∈ Rk to the maximization
problem. This solution must satisfy the first order condition

Σv1 = λ1v1

for some λ1 ∈R. We can immediately see that v1 must be an unit eigenvector of the positive
definite matrix Σ, and that the value of the objective function at v1 is v′1Σv1 = λ1, the
eigenvalue of Σ corresponding to v1. It follows that v1 must be a unit eigenvector of Σ
associated with its largest eigenvalue λ1 1. The linear combination v′1X is called the first
Principal Component (PC) of X.

Suppose now that we have found the first 1≤m< k coefficients v1, · · · ,vm ∈ Rk with
unit 1 such that the PCs v′1X, · · · ,v′mX have ordered variances

λ1 ≥ ·· · ≥ λm > 0,
1Recall that the eigenvalues of symmetric matrices can be ordered because they are all real, and that

in particular the eigenvalues of positive semidefinite matrices are all non-negative
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and the covariances of any two PCs v′iX and v′jX is 0:

v′iΣvj = 0 for any 1≤ i 6= j ≤m.

The m+ 1th coefficient vm+1 ∈ Rk solves the following maximization problem:

max
v∈Rk

v′Σv

subject to |v|= 1,

v′Σvi = 0 for any 1≤ i≤m

The Lagrangian for this problem is

L= v′Σv+λ
(
1−v′v

)
−

m∑
i=1

γi ·v′Σvi

and by the first order conditions of maximization, there exist λm+1,γ1, · · · ,γm ∈ R such
that

Σvm+1 = λm+1 ·vm+1 +
m∑
i=1

γi ·Σvi.

Since v1, · · · ,vm are orthonormal eigenvectors of Σ with non-zero eigenvalues, we can see
that

0 = v′m+1Σvi = λi ·v′m+1vi,

and as such that v′m+1vi = 0. Of course, the zero covariance restriction tells us that
v′iΣvm+1 = 0 for any 1 ≤ i ≤ n. By implication, for any 1 ≤ i ≤ m, premultipyling the
first order condition on both sides by vi yields

0 = v′iΣvm+1 =
m∑
j=1

γj ·v′iΣvj = γi ·v′iΣvi = γi ·λi,

where the third inequality follows from the fact that v′iΣvj = 0 for any j 6= i. Therefore,
each γi is equal to 0, using which the first order conditions can be rewritten as

Σvm+1 = λm+1 ·vm+1.

Therefore, vm+1 is a unit eigenvector of Σ with eigenvalue λm+1 that is orthogonal to the
eigenvectors v1, · · · ,vm. Note that, if λm+1 is greater than any one eigenvalue in λ1, · · · ,λm,
then vm+1 would have been chosen as one of the earlier coefficients. Therefore, λm+1 must
be smaller than or equal to λm. v′m+1X is our m+ 1th PC, and it has variance λm+1.
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By induction, letting {v1, · · · ,vk} be a set of orthonormal eigenvectors of Σ that have
been ordered so that their eigenvalues λ1, · · · ,λk satisfy

λ1 ≥ ·· · ≥ λk > 0,

the k PCs of X are given as the linear combinations

v′1X, · · · ,v′kX.

Note that we can find exactly k PCs in this case because Σ is a symmetric and positive
definite matrix; by the principal axis theorem, it has an orthonormal eigenbasis. Collecting
the coefficients v1, · · · ,vk into the k×k matrix

P =
(
v1 · · · vk,

)
we can easily see that

P ′ΣP =


λ1 · · · 0
... . . . ...
0 · · · λk.


Thus, P can be seen as a basis of Rk that rotates the variables in X so that they become
uncorrelated and are arranged in the order of highest variance. In other words, P is
a rotation of X that eliminates all the noise among the variables in X and retains the
signal contained in them, ordered from the strongest to the weakest signal. Since λ1, · · · ,λk
represent the strength of the signals contained in the first to the last PC, we can say that

pi = λi∑k
j=1λj

∈ (0,1)

represents the proportion of the co-movement among X1, · · · ,Xk explained by the ith PC.
Usually, we reduce the dimension of X1, · · · ,Xk via PCA by choosing the first m PCs that
explain more than 80% of the co-movement among X1, · · · ,Xk.

So far, we have used the population covariance matrix Σ of X = (X1, · · · ,Xk) to extract
the PCs. Since Σ is not known, in practice we use a simple sample analogue of Σ. Suppose
we have n observations x1i, · · · ,xni of variable 1 ≤ i ≤ k. Then, collecting these into the
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data matrix

X =


x11 · · · x1k

... . . . ...
xn1 · · · xnk,


and denoting xi = (xi1, · · · ,xik), or the value of the variables for the ith observation, we
can express

1
n
X ′X = 1

n

(
x1 · · · xn

)
x′1
...
x′n

= 1
n

n∑
i=1

xix
′
i.

If the sample {xi}1≤i≤n satisfies certain independence or limited dependence assumptions,
as well as distributional assumptions, then the law of large numbers tells us that 1

nX
′X

converges in probability to Σ. As such, we can extract the sample PCs by choosing an
orthonormal eigenbasis {v(n)

1 , · · · ,v(n)
k } of 1

nX
′X with ordered eigenvalues λ(n)

1 ≥ ·· · ≥ λ
(n)
k ;

we can succinctly express this relationship as

v

(n)′
1
...

v
(n)′
k


( 1
n
X ′X

)(
v

(n)
1 · · · v

(n)
k

)
=


λ

(n)
1 · · · 0
... . . . ...
0 · · · λ

(n)
k

 .

Given these eigenvectors, the rows of the matrix

X
(
v

(n)
1 · · · v

(n)
k

)

represents the ith observation of the k sample PCs. Since λ(n)
1 , · · · ,λ(n)

k are the sample
variances of each sample PC, we usually normalize the PCs by dividing the ith PC by the
square root of λ(n)

i :

1√
λ

(n)
1

Xv
(n)
1 , · · · , 1√

λ
(n)
k

Xv
(n)
k .

A final point we need to touch upon is that of identifying the PCs. In general, the
orthonormal eigenbasis {v1, · · · ,vk} of some k×k positive definite matrix Σ is not unique,
since an eigenspace of an eigenvalue with geometric multiplicity greater than 1 may have
infinitely many orthonormal bases. Therefore, identification of the PCs in this case requires
additional restrictions.
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Figure 3.1: Yields of Various Maturities The figure below maps daily yields of maturity
3, 6, 12, 60 and 120 months.

A special case is when Σ has k distinct eigenvalues

λ1 > · · ·> λk.

In this case, the geometric multiplicity of each eigenvalue is equal to 1. This means that
the orthonormal basis of each eigenspace is unique up to sign changes, so that the PCs
are now unique up to sign changes. The signs of the PCs in this case are left up to the
researcher’s discretion.

3.2.2 The Level, Slope and Curvature Factors

Data on the yield curve is often viewed as a panel of data. Specifically, suppose that we
have data on m yields with maturities 1≤ τ1 < · · ·< τm, from time 1 to T . Then, the data
on the yields are collected in the T ×m matrix

Y =


Y1(τ1) · · · Y1(τm)

... . . . ...
YT (τ1) · · · YT (τm),

=


Y ′1
...
Y ′T

 ,

where

Yt =


Yt(τ1)

...
Yt(τm)
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Figure 3.2: Loadings of the First Three PCs The figure below maps the orthornomal
eigenvectors corresponding to the first three PCs.

for each 1≤ t≤ T . In most cases, the number of maturities collected in this panel, m, is
quite high; therefore, we want to extract the time series of a few factors that explain most
of the variation in yields in order to facilitate analysis.

One way to do this is through the use of principal components, as exemplified by
Litterman and Scheinkman (1991). In this paper, it is found that the yield curve is special
in that most of the co-movement of the yields are captured in the first three PCs of the
yield curve. In fact, the first factor predominantly explains the variation in the yield curve.
The tables and figures below provide an illustration. Monthly yields of maturities 1 to
120 months obtained from the Liu and Wu database2 are plotted in Figure 3.1. We can
immediately see that yields of longer maturities are often higher than those of shorter

2Usually, yield data are constructed by taking yields of maturities 1 year and up from Gurkaynak,
Sack, and Wright (2007), and yields of lower maturities from the H-15 release of the Federal Reserve.
The reason we take yields of lower maturities from the Fed is because it has been found empirically that
yields of short maturities found in GSW are generally unreliable.

Here, we use an alternative data source, namely the LW database of Liu and Wu (2021). This database
has an advantage over the traditional GSW database because it offers yields of maturities of every month
from 1 to 360, and because the way it constructed the yield data is more stable than that of GSW.
However, having been only recently introduced, the LW database is still not as widely used as the GSW
database.

In both cases, we take the data in daily frequencies first, and then construct either end-of-month or
monthly averages.
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Figure 3.3: First Three PCs The figure below maps the time series of the first three
PCs.

maturities, reflecting the risk associated with holding longer term bonds. Furthermore,
following the Great Inflation of the 1970s and early 1980s, we can see that yields exhibit
a marked downward trend; the problem of non-stationarity in yields will be dealt with
in more depth in later sections. Finally, it can be seen how, during the financial crisis of
2008 and the COVID pandemic, short term yields (3 month and 6 month maturities) were
bound by the zero lower bound. Modeling yields at the lower bound is also something
that will be addressed in a later section.

Now we extract the principal components of the (demeaned) yield curve. It turns out
that the first PC explains 98.47%, the second PC 1.38%, the third PC 0.12%, and the
fourth PC 0.02% of the variation in yields, with the remaining m−4 PCs not explaining
any proportion of this variation. This indicates that three, or maybe four PCs (if we
follow Cochrane and Piazzesi (2008)) summarize all the variation in the cross section of
the yields.

We study the shape of the coefficients v1,v2,v3 associated with the first three PCs
to identify them. Figure 3.2 shows that the coefficients for the first factor are almost
uniform across maturities. This means that the first PC acts as sort of an average of
yields of various maturities; this is why we call the first PC the level factor.

On the other hand, the coefficients for the second factor start high and then fall below
0. This means that yields of lower maturities load more heavily on the second PC than
yields of higher maturities; therefore, the second PC represents the short end of the yield
curve. It can actually be seen from Figure 3.3 that the shape of the second PC is similar
to that of the yield spread, that is, the difference between long and short term yields. The
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second PC is thus called the slope factor, for its role in capturing how steep the yield
curve is.

Finally, the coefficients for the third factor peak at a maturity of around 36 months, or
3 years. This suggests that the third factor represents the middle end of the yield curve,
and is called the curvature factor because it determines how curved the yield curve is.
Since the slope and curvature factors explain the short and middle end of the yield curve,
it naturally follows that the level factor represents the long end of the yield curve.

While principal components are a simple and intuitive way of summarizing the in-
formation contained in the yield curve, they are still inadequate for our purposes in a
number of ways. First, the coefficients of the PCs are dependent on the number of yields
m and the sample size T , which means that they contain a degree of real-time instability.
This instability proves fatal when estimating term structure models, with models using
the PCs as proxies for latent factors proving to be very difficult to estimate. In addition,
it is unclear specifically how the three PCs determine the shape of the yield curve, and
if they really can be interpreted as representing the long, short and medium end of the
yield curve.

An alternative to the principal components approach is detailed starting from the next
section. In this alternative approach, we assume from the outset that the yields are de-
termined by three latent factors, and the loadings of these factors are determined so that
the three factors always represent the long, short and medium end of the yield curve. The
shape of the yield curve is, in addition, determined by a single decay parameter, which
helps make the model parsimonious. This approach is that of the famous Nelson-Siegel
model.

3.3 The Nelson-Siegel Model

In the Nelson-Siegel model, a yield that has τ periods left to maturity at time t is
determined as the linear combination of the level factor Lt, the slope factor St, and the
curvature factor Ct in the following manner:

Yt(τ) = Lt+
1− exp(−τκ)

τκ
St+

(
1− exp(−τκ)

τκ
− exp(−τκ)

)
Ct.

Here, κ ∈ (0,1) is a decay parameter whose role will be made clear shortly. The factor
loadings

β(τ ;κ)′ =
(
1 1−exp(−τκ)

τκ
1−exp(−τκ)

τκ − exp(−τκ)
)
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Figure 3.4: Nelson-Siegel Factor Loadings The figure below maps the N-S factor
loadings by maturity. The decay parameter is given as κ= 0.0609.

for the τ -maturity bond are derived by solving a second-order differential equation involv-
ing the forward rate; for details, consult Nelson and Siegel (1987).

The Nelson-Siegel factor loadings are displated in Figure 3.4. As with the coefficients
associated with the first three yield curve PCs, it is immediately clear why the three
factors are referred to as level, slope and curvature; they represent the long, short and
middle end of the yield curve, respectively. Unlike the first three PCs, the Nelson-Siegel
factors represent the long, short and middle ends of the yield curve by design. To see
this, note that the loading of the level factor is equal to 1 for all maturities, and that the
mapping

β2(τ ;κ) = 1− exp(−τκ)
τκ

has derivative

∂β2(τ ;κ)
∂τ

= exp(−τκ)
τ

− 1− exp(−τκ)
τ2κ

= 1
τ2κ

(τκexp(−τκ)−1 + exp(−τκ))

= 1
τ2κ

((τκ+ 1)exp(−τκ)−1)< 0,

with respect to τ , where the last inequality follows because

x+ 1< exp(x)
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Figure 3.5: Peaks of the Curvature Factor Loading The figure below maps the
maturities at which the curvature factor loading peaks for various values of κ.

for any x > 0. This revelas that β2(τ ;κ) is decreasing in τ for any fixed κ.
As for the third facctor loading, note that

β3(τ ;κ) = 1− exp(−τκ)
τκ

− exp(−τκ)

has derivative

∂β3(τ ;κ)
∂τ

= 1
τ2κ

((τκ+ 1)exp(−τκ)−1) +κexp(−τκ)

= exp(−τκ)
τ2κ

(
τ2κ2 + τκ+ 1

)
− 1
τ2κ

with respect to τ . Let x∗ > 0 be the non-zero solution to the equation

x2 +x+ 1− exp(x) = 0.

Then, since x2 +x+1> exp(x) for any 0< x< x∗ and x2 +x+1< exp(x) for any x > x∗,
we can see that β3(τ ;κ) is maximized when

τ∗(κ) = x∗

κ
.

The larger κ, the shorter the maturity τ∗(κ) at which the curvature factor loading peaks.
This tells us that the parameter κ determines where the curvature factor loading peaks
and thus which maturity yield best represents the middle end of the yield curve. Figure
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3.5 plots τ∗(κ) for values of κ between 0.03 and 0.1. Since yields of maturities bewteen
24 months and 36 months are usually taken to be representative of the middle end of the
yield curve, a standard value for the decay parameter presented in Diebold and Li (2006)
is 0.0609, which corresponds to a peak of around 30 months.

In short, under the NS model, each factor has a clearly defined role that identifies it
against the other factors, and this role is invariant to the sample size given the decay
parameter κ. It also turns out that the Nelson-Siegel model fits the yield curve extremely
well, with minimal measurement errors. This property will be demonstrated in the up-
coming subsections.

3.3.1 Estimating Static Approximate Factor Models

In this section we briefly introduce methods of estimating static factor models, or
factor models in which the dynamics of the factors are left unspecified. Consider a general
macro panel model with T time series observations and N macroeconomic variables. The
observation of the ith variable at time t is denoted by xit. In the factor model framework,
we assume that there exist r <min(T,N) common factors whose value at time t is denoted
ft such that the ith variable at time t is determined as a fixed linear combination of the
factors at time t plus an error term: formally, we assume that there exists an r-dimensional
vector of factor loadings λi such that

xit = λ′ift+ eit

for any 1≤ i≤N and 1≤ t≤ T . An example of this type of model is the APT introduced
in Ross (1976), in which xit represents the risk premium of asset i at time t, λi the factor
loadings associated with asset i and ft the common factors at time t.

Factor models such as the APT are examples of exact factor models, in which
the factors ft completely explain the cross-sectional and temporal co-movement in the
macroeconomic variables, rendering the error term eit as purely idiosyncratic terms. In
other words, in exact factor models, the errors eit are uncorrelated across i and t, in
addition to being independent of the factors ft and loadings λi. This proves to be very
restrictive in practice, so recent papers in the factor model literature have focused on
approximate factor models, in which limited cross-sectional and temporal correlation
among the errors eit is allowed, and they are allowed to be correlated with the factors ft
to an extent.

Below we study the estimation of large static approximate factor models (LSAFM),
including the estimation of the factors, factor loadings, and the number of factors. These
models are large in that both the cross-sectional dimension N and the time dimension T
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are allowed to go to infinity when studying the asymptotic properties of the estimators.
The exposition mainly follows Bai and Ng (2002) and Bai (2003).

To study static approximate factor models, we first arrange the data into tractable
matrices. One way of organizing the data is to organize it by variable; for any 1≤ i≤N ,
define

x̃i =


xi1
...
xiT

=


f ′1
...
f ′T


︸ ︷︷ ︸
F

λi+


ei1
...
eiT


︸ ︷︷ ︸

ẽi

.

The data on each variable can then be collected as

X̃ =


x̃′1
...
x̃′N

=


λ′1
...
λ′N


︸ ︷︷ ︸

Λ

F ′+


ẽ′1
...
ẽ′N


︸ ︷︷ ︸

ẽ

.

In summation, we can organize the data in terms of the variables first to obtain

X̃︸︷︷︸
N×T

= Λ︸︷︷︸
N×r
· F ′︸︷︷︸
r×T

+ ẽ︸︷︷︸
N×T

.

An alternative means of organizing the data is to organize it by time. For any 1≤ t≤ t,
define

xt =


x1t
...

xNt

=


λ′1
...
λ′N


︸ ︷︷ ︸

Λ

ft+


e1t
...
eNt


︸ ︷︷ ︸

et

,

which leads to

X =


x′1
...
x′T

=


f ′1
...
f ′T


︸ ︷︷ ︸
F

Λ′+


e′1
...
e′T


︸ ︷︷ ︸

e

,

so that we are left with

X︸︷︷︸
T×N

= F︸︷︷︸
T×r
· Λ′︸︷︷︸
r×N

+ e︸︷︷︸
T×N

.
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Note that X̃ =X ′.

The Principal Components (PC) Estimator, or Least Squares Estimator of
Λ and F is a non-parametric estimator that is found as the minimizer of the objective
function

V (Λ,F ) = 1
NT

n∑
i=1

T∑
t=1

∣∣∣xit−λ′ift∣∣∣2
= 1
NT

T∑
t=1

(xt−Λft)′(xt−Λft)

= 1
NT

N∑
i=1

(x̃i−Fλi)′(x̃i−Fλi)

= 1
NT

tr
((
X−FΛ′

)′ (
X−FΛ′

))
,

or the sample mean squared error. Note that the organization of the data suggests two
methods of minimizing the above objective function; either by concentrating out λi or ft
first. We detail each approach below.

1) Concentrating Out the Factor Loadings
We proceed in multiple steps.

Step 1: Obtaining the Concentrated Objective Function
The objective function can be expressed as

V (Λ,F ) = 1
NT

N∑
i=1

(x̃i−Fλi)′(x̃i−Fλi),

For any possible value of the factors F , the minimizer of V (Λ,F ) with respect to
λi, denoted λ̃i(F ), satisfies the first order conditions

F ′(x̃i−F · λ̃i(F )) =Or×1,

so that

λ̃i(F ) = (F ′F )−1F ′x̃i.
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Collecting the estimators of λ1, · · · ,λN into the N × r matrix

Λ̃(F ) =


λ̃1(F )′

...
λ̃N (F )′

=


x̃′1
...
x̃′N

F (F ′F )−1 =X ′F (F ′F )−1,

we can see that Λ is estimated as if it were the coefficient in a linear regression in
the hypothetical case where F is known.

Substituting this expression back into the objective function, we obtain the concen-
trated objective function

Ṽ (F ) = V (Λ̂(F ),F ) = 1
NT

tr
((
X−F Λ̃(F )′

)′ (
X−F Λ̃(F )′

))
= 1
NT

tr
(
X ′MFX

)
,

where MF = IT −F (F ′F )−1F ′ is the residual maker associated with the columns of
the T × r matrix F . Further simplifying the concentrated objective function yields

Ṽ (F ) = 1
NT

tr
(
X ′X

)
− 1
NT

tr
(
X ′F (F ′F )−1F ′X

)
= 1
NT

tr
(
X ′X

)
− 1
NT

tr
(
F ′XX ′F (F ′F )−1

)
.

Step 2: Obtaining Estimates of Factors
Now we impose the identification restriction that F ′F

T = Ir. This means that the
columns of F form a set of r orthonormal vectors, and is imposed to normalize the
magnitude and co-dependence among the factors. Our minimization problem can
now be written as

min
F∈RT×r

V̄ (F ) = 1
NT

tr
(
X ′X

)
− 1
NT

tr
(
F ′XX ′F (F ′F )−1

)
subject to F ′F

T
= Ir.

Substituting the constraint into the objective function and noting that 1
NT tr(X ′X)

does not involve F in any way, we can see that the problem reduces to

max
F∈RT×r

tr
( 1√

T
F

)′ 1
NT

XX ′
(

1√
T
F

)
subject to

(
1√
T
F

)′( 1√
T
F

)
= Ir.
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To solve this minimization problem, we take a brief detour. A useful result in linear
algebra reveals that, for any positive semidefinite matrix M ∈ RT×T with ordered
eigenvalues µ1 ≥ ·· · ≥ µT ≥ 0 and a matrix A ∈RT×k such that A′A= Ik, the trace
tr(A′MA) is bounded above as follows3:

tr
(
A′MA

)
≤

k∑
i=1

µi.

This maximum can be attained by letting the columns of A equal orthonormal
eigenvectors of M corresponding to the eigenvalues µ1 ≥ ·· · ≥ µk.

Letting F̃ be the solution to the above minimization problem, since
(

1√
T
F̃
)′ ( 1√

T
F̃
)

=
Ir and 1

NTXX
′ is positive semidefinite, we can see that the columns of 1√

T
F̃

must equal orthonormal eigenvectors corresponding to the r largest eigenvalues
µ1 ≥ ·· · ≥ µr of 1

NTXX
′, and that the maximized value of the objective function is

MSE(r) := Ṽ (F̃ ) = 1
NT

tr
(
XX ′

)
−

r∑
i=1

µi.

To summarize, the estimators of the factors and factor loadings, as well as the
minimized mean squared errors are given as

F̃ =
√
T ×any r orthonormal eigenvectors corresponding to the

r largest eigenvalues µ1 ≥ ·· · ≥ µr of 1
NT

XX ′

Λ̃ = Λ̃(F̃ ) = 1
T
X ′F̃

MSE(r) = 1
NT

tr
(
XX ′

)
−

r∑
i=1

µi.

2) Concentrating Out the Factors
This alternative approach proceeds similarly to the previous one.

Step 1: Obtaining the Concentrated Objective Function
3For a proof, consult my factor model text.
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The objective function can be expressed alternatively as

V (Λ,F ) = 1
NT

T∑
t=1

(xt−Λft)′(xt−Λft).

For any possible values of Λ, the minimizer of V (Λ,F ) with respect to ft, denoted
f t(Λ), satisfies the first order conditions

Λ′(xt−Λ ·f t(Λ)) =Or×1,

so that

f t(Λ) = (Λ′Λ)−1Λ′xt.

Collecting the factor estimators into the T × r matrix

F (Λ) =


f1(Λ)′

...
fT (Λ)′

=XΛ
(
Λ′Λ

)−1
,

we can see that, this time, the factors are actually estimated as we would the coef-
ficients from a linear regression.

The concentrated objective function is now given as

V (Λ) = V (Λ,F (Λ)) = 1
NT

tr
((
X ′−ΛF (Λ)′

)′ (
X ′−ΛF (Λ)′

))
= 1
NT

tr
(
XMΛX

′
)
,

where MΛ = IN −Λ(Λ′Λ)−1Λ′ is the residual maker associated with the columns of
Λ. Expanding this expression further yields

V (Λ) = 1
NT

tr
(
X ′X

)
− 1
NT

tr
(
Λ′X ′XΛ(Λ′Λ)−1

)
,

which is an expression analogous to the previous case.

Step 2: Obtaining Estimates of Factor Loadings
This time, we impose the identification restriction that Λ′Λ

N = Ir. Our minimization
problem can now be written as

max
Λ∈RN×r

1
NT

tr
(
Λ′X ′XΛ(Λ′Λ)−1

)
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subject to Λ′Λ
N

= Ir.

Substituting the constraint into the objective function changes the problem into

max
Λ∈RN×r

tr
( 1√

N
Λ
)′ 1
NT

X ′X

(
1√
N

Λ
)

subject to
(

1√
N

Λ
)′( 1√

N
Λ
)

= Ir.

The matrix inequality shown in the previous section reveals now that the solution Λ
to the above problem, as well as the factor estimates F = F (Λ̃), and the minimized
mean squared errors, are given as

Λ =
√
N ×any r orthonormal eigenvectors corresponding to the

r largest eigenvalues µ1 ≥ ·· · ≥ µr of 1
NT

X ′X

F = 1
N
XΛ̂

MSE(r) = 1
NT

tr
(
X ′X

)
−

r∑
i=1

µi.

Note that the eigenvalues µ1 ≥ ·· · ≥ µr here are exactly those of the preceding
approach, since the positive semidefinite matrices 1

NTXX
′ and 1

NTX
′X share the

same set of eigenvalues.

Perusing the solution for the factor estimates F , we can see why this estimation
method is called PC estimation. Specifically, F are here given as 1√

N
times the first

r PCs of the N variables collected in the columns of X.

Since the first approach requires the computation of the eigenvectors of a T×T matrix,
while the second requires the eigenvectors of an N ×N , the first approach is less compu-
tationally burdensome if T < N , while the second is preferred if T > N . We often deal
with the case T > N , so the factors are often estimated as PCs rather than eigenvectors
themselves.

It turns out that the factor estimators F̃ and F obtained from either approach are
closely related, as shown in Bai and Ng (2002). Suppose that the first r eigenvalues of

1
NTXX

′ (and equivalently, of 1
NTX

′X) are distinct and non-zero, so that the columns of
1√
T
F̃ and 1√

N
Λ are unique up to sign changes. Fixing the signs of each column, we can see

that, in this case, the columns of 1√
T
F̃ and 1√

N
Λ are the unique orthonormal eigenvectors

of 1
NTXX

′ and 1
NTX

′X corresponding to µ1 > · · ·> µr > 0.
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Letting VNT be the diagonal matrix with diagonal entries equal to µ1, · · · ,µr,( 1
NT

X ′X
) 1√

N
Λ = 1√

N
ΛVNT

and ( 1
NT

XX ′
) 1√

T
F̃ = 1√

T
F̃VNT

by the definition of eigenvectors. Premultiplying both sides of the first equation by 1√
NT

X

shows us that ( 1
NT

XX ′
) 1√

T
F = 1√

T
FVNT ,

where

F
′
F

T
=
(

1√
N

Λ
)′( 1

NT
X ′X

)( 1√
N

Λ
)

= VNT ,

using Λ′Λ
N = Ir. By implication,

(
1√
T
FV

− 1
2

NT

)′( 1√
T
FV

− 1
2

NT

)
= Ir.

The uniqueness of 1√
T
F̃ now tells us that

1√
T
F̃ = 1√

T
FV

− 1
2

NT ,

or equivalently,

FV
1
2
NT = F̃ VNT =

( 1
NT

XX ′
)
F̃ = 1

N
XΛ̃.

Therefore, we have the relationships

1
N
XΛ = F

1
N
XΛ̃ = F

F ′F
T


1
2

.

Note that, because the post-multiplication of F by
(
F
′
F
T

) 1
2

is effectively a normalization
of the scale of the columns of F by the square root of the corresponding eigenvalues, 1

NXΛ̃
are the normalized PCs studied earlier.
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Bai and Ng (2002) shows that the normalized PCs

F̂ = 1
N
XΛ̃ = F

F ′F
T


1
2

consistently estimate a rotation of the factors as both the cross-sectional and time dimen-
sions go to infinity:

1
T

T∑
t=1

∣∣∣F̂t−H ′F 0
t

∣∣∣2 =Op

(
1

min(N,T )

)
∣∣∣F̂t−H ′F 0

t

∣∣∣2 =Op

(
1

min(N,T )

)
for any t ∈N+

as N,T →∞, where ‖·‖ is the trace norm, F 0 is the true value of the factors F , and

H =
(

Λ0′Λ0

N

)(
F 0′F̃

T

)

is an Op(1) rotation. This shows us that even though F̂t does not converge to the true
factors themselves, it does converge to a rotation of the true factors, and that the speed of
convergence is min(

√
N,
√
T ). This is a result that can provide a theoretical basis for the

use of principal components to summarize the co-movement among different variables.
The asymptotic normality of the PC estimators under additional assumptions is shown
in Bai (2003).

Another area of interest is the estimation of the number of factors r. Let MSE(k) be
the minimum mean squared error under the assumption of k factors. We saw above that

MSE(k) = 1
NT

tr
(
XX ′

)
−

k∑
i=1

µi,

where µ1 ≥ ·· · ≥ µk are the k largest eigenvalues of the positive semidefinite matrix
1
NTXX

′. By positive semidefiniteness, the eigenvalues of XX ′ are all non-negative, and
as such the greater the number of factors k, the smaller the minimum mean squared
error MSE(k). This indicates that MSE(k) can serve a role similar to the maximized
log-likelihood in information criteria such as the AIC and BIC.

Various criteria for determining the number of factors based on MSE(k) have been
introduced. One such criterion is the eigenvalue ratio (ER) test introduced in S. C.
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Ahn and Horenstein (2013), which proposes to choose the number of factors as

rmax = argmax
1≤k≤kmax−1

µk
µk+1

.

This is inspired by the intuition that the eigenvalue µk+1 represents the amount of infor-
mation added (the amount by which the MSE falls) by the inclusion of the k+1th factor.
Intuitively, the true number of factors must be the number k such that µk is large, so that
the kth factor contributes meaningfully to explaining the co-movement among the macro
variables, but µk+1 is low, so that additional factors do not contribute much to explaining
this co-movement.

Another popular criterion for the determination of the number of factors is the panel
information criterion (PIC) introduced in Bai and Ng (2002). The number of factors
under the PIC is chosen as the minimizer of

PIC(k) = log(MSE(k)) +k ·g(N,T )

across {1, · · · ,kmax}, where g(N,T ) is a penalty function such that

g(N,T )→ 0 and min(N,T ) ·g(N,T )→+∞

as N,T →∞. It is shown in Bai and Ng (2002) that using the PIC allows for the consistent
estimation of the true number of factors r. A popular penalty function is

g(N,T ) = N +T

NT
log

(
NT

N +T

)
.

3.3.2 Estimating the Nelson-Siegel Model

The Nelson-Siegel model can be estimated similarly to LSAFM. Given a large enough
selection of maturities m and periods T , the panel of yields Y certainly quantifies as
large. Furthermore, the yields of time t can be written as

Yt = Λ(κ)ft+ et,

where et contains the measurement errors at time t, and ft is a 3× 1 vector comprising
the level Lt, slope St, and curvature Ct. The factor loadings are determined by the decay
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Figure 3.6: Estimated Nelson-Siegel Factors The figure below maps the estimated
Nelson-Siegel factors, given daily yield curve data from 1972 to 2023 and maturities 1 to
120 months.

parameter κ as

Λ(κ) =


1 1−exp(−τ1κ)

τ1κ
1−exp(−τ1κ)

τ1κ
− exp(−τ1κ)

... ... ...
1 1−exp(−τmκ)

τmκ
1−exp(−τmκ)

τmκ
− exp(−τmκ).


Estimation of the model can be done non-parametrically, as in the previous section. The
only difference is that, instead of the factor loadings being unrestricted m× 3 matrices,
they depend only on a single parameter κ. This means that it is convenient to first
concentrate out the factors, and then obtain an estimator of κ. The mean squared error
is given as

V (κ,F ) = 1
mT

T∑
t=1

(Yt−Λ(κ)ft)′(Yt−Λ(κ)ft).

For any value of the decay parameter κ, the minimizer of V (κ,F ) with respect to ft,
denoted f t(κ), is given as

f t(κ) =
(
Λ(κ)′Λ(κ)

)−1
Λ(κ)′Yt,
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Figure 3.7: Estimated Nelson-Siegel Decay Parameter The figure below maps the
N-S decay parameter estimated using samples with endpoints from 2008 to 2022.

and these are collected as

F (κ) =


f1(κ)′

...
fT (κ)′

= YΛ(κ)
(
Λ(κ)′Λ(κ)

)−1
.

The concentrated objective function is

V (κ) = V (κ,F (κ)) = 1
mT

tr
((
Y ′−Λ(κ)F (κ)

)′ (
Y ′−Λ(κ)F (κ)

))
= 1
mT

tr
(
Y ′Y

)
− 1
mT

tr
(
YΛ(κ)

(
Λ(κ)′Λ(κ)

)−1
Λ(κ)′Y ′

)
.

We find our estimator of κ as the solution to the following problem:

max
κ∈[ε,1−ε]

1
mT

tr
(
YΛ(κ)

(
Λ(κ)′Λ(κ)

)−1
Λ(κ)′Y ′

)
.

Here, ε > 0 is a small positive value that ensures the above problem has a solution κ.
Since a value of the decay parameter below 0.02 indicates that yields of maturity 10 years
or longer represent the middle end of the yield curve, which is not really plausible, in
practice we let ε= 0.02. The factor estimators are then given as

F = YΛ(κ)
[
Λ(κ)′Λ(κ)

]−1
.
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We can show that, under certain assumptions, the estimators above are consistent for the
true factors as both the cross-sectional and time dimensions go to infinity. For details,
consult the appendix.

The estimated value of the decay parameter is 0.0447, which corresponds to a peak
of roughly 40 months, which is slightly on the higher side. The estimated factors are
displayed in Figure 3.6. We can see that the shape of the three factors are similar to those
of the first three PCs, which is unsurprising given that they play the same role in the N-S
model as in the naive PC model. One difference is that the level factor is now very high;
this reflects the fact that information on the mean of the yields is contained in the level
factor.

The real-time estimates of the decay parameter every year from 2008 to 2022 are given
in Figure 3.7. There are significant fluctuations in the estimate, with the maturity that
represents the middle end of the yield curve increasing over time.

So far, the N-S model that we have studied does not specify the dynamics of the fac-
tors, instead relying only on the relationship between the factors and the yields. In the
next section, we study how specifying the factor dynamics enrichens the model, and how
to incorporate the additional information on the factor dynamics in the estimation process.

3.4 The Dynamic Nelson-Siegel Model

The Dynamic Nelson-Siegel (DN-S) model was developed by Diebold and Li (2006)
as a special version of the N-S model where the dynamics of the factors is specified. As
before, let the sample comprise yields of m maturities 1≤ τ1 < · · ·< τm, and suppose that
a yield of τ maturities depends on the level, slope and curvature factors Lt,St and Ct in
the following manner:

Yt(τ) =
(
1 1−exp(−τκ)

τκ
1−exp(−τκ)

τκ − exp(−τκ)
)

︸ ︷︷ ︸
β(τ ;κ)′


Lt

St

Ct

 .

This is simply the specification of the static N-S model. In contrast, the standard DN-S
model is formulated in the following state-space form, with an explicit measurement error
et and the assumption that the factors follow a VAR(1) specification4.

Yt = Λ(κ)ft+ Σet (Measurement Equation)

ft = c+Gft−1 +Hut, (Transition Equation)
4As usual, we can assume that the VAR lag order is greater than 1, but this does not alter the model

in any major way because we need only choose the companion form of the model in this case
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where Yt collects the sample yields at time t and Λ(κ) the factor loadings. Here, Σet is a
vector of mean 0 time t measurement error terms with variance ΣΣ′, and Hut a vector
of mean 0 factor innovations with variance HH ′. We allow the dimension of ut is allowed
to be smaller than the number of factors ft, to accomodate more general cases, including
those where the lag order is greater than 1.

Below we study generic methods of estimating dynamic factor models, or state-space
models. We focus on two methods: a two-step method devised by Doz, Giannone, and
Reichlin (2011) based on the PC estimators of the static factor model, and a QMLE-
EM algorithm method, proposed in Doz, Giannone, and Reichlin (2012) and refined in
Barigozzi and Luciani (2019).

3.4.1 Estimating Small Dynamic Factor Models

As in the static factor model case, consider panel data of N macroeconomic variables
and T time series observations. The time t observation of the ith variable is, as before,
denoted by xit, and the time t variables are collected into the vector

xt =


x1t
...

xNt

 .

Suppose there are r factors that explain the co-movement of the N macroeconomic vari-
ables, whose time t values are collected in the random vector ft.

A generic dynamic factor model (DFM) is given in the following state space model
form:

xt = Λ︸︷︷︸
N×r

ft+ Σ︸︷︷︸
N×N

et (Measurement Equation)

ft = c+Gft−1 + H︸︷︷︸
r×q

ut, (Transition Equation)

where et is an N -dimensional random vector with mean 0 and variance IN representing
the idiosyncratic errors, and ut is a q ≤ r dimensional random vector with mean 0 and
variance Iq representing the factor innovations. We allow the dimension of ut to be smaller
than r to accomodate more general cases that arise in the literature, such as the case where
the lag order of the transition equation is greater than 1.

In small dynamic factor models (SDFM), that is, models in which N is small
and fixed, while T goes to infinity, it is customary to estimate the model via Gaussian
Quasi-Maximum Likelihood Estimation (QMLE). In other words, we find the values of the
parameters that maximize the likelihood derived under the assumption that the idiosyn-
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cratic errors and factor innovations {et}t∈Z and {ut}t∈Z are i.i.d. Gaussian. If the true
idiosyncratic errors and factor innovations are not i.i.d. Gaussian, then the log-likelihood
derived under the i.i.d. Gaussian assumption is an approximation to the true likelihood,
which is why this method is, strictly speaking, only “Quasi”-MLE.

The Kalman Filter

To derive the Gaussian log-likelihood, we make use of the Kalman filter. The filter allows
us, under the assumption of Gaussian errors, to derive the best real-time estimates of the
factors ft. That is, it yields closed-form recursions for the conditional expectations

E [ft | xt, · · · ,x1] ,

which is the point estimate of ft that minimizes the mean squared error, provided that
we have information on the macro variables up to time t.

To compute the Kalman filter, let

θ = {Λ,Σ, c,G,H}

be the vector collecting the model parameters. First, we define the following quantities:

Ft = σ{xt, · · · ,x1}, or the information contained up to the tth sample period

ft|t−1(θ) = E [ft | Ft−1, θ]

ft|t(θ) = E [ft | Ft, θ]

xt|t−1(θ) = E [xt | Ft−1, θ]

Pt|t−1(θ) = Var(ft | Ft−1, θ) = E
[
(ft−ft|t−1(θ))(ft−ft|t−1(θ))′ | Ft−1, θ

]
Pt|t(θ) = Var(ft | Ft, θ) = E

[
(ft−ft|t(θ))(ft−ft|t(θ))′ | Ft, θ

]
Vt|t−1(θ) = Var(xt | Ft−1, θ) = E

[
(xt−xt|t−1(θ))(xt−xt|t−1(θ))′ | Ft−1, θ

]
.

The filter is initialized as follows:

f0 | θ ∼N
[
f0|0(θ),P0|0(θ)

]
,

where f0|0(θ) and P0|0(θ) are the unconditional mean and variance of the initial factor
f05. Due to the assumption that {et}t∈Z and {ut}t∈Z are i.i.d. Gaussian, we can also claim

5If the factors are non-stationary, then neither the unconditional mean nor the uncondition variance
of f0 exists. In this case, f0|0 and P0|0 are interpreted as initial values for the non-stationary process
{ft}t∈N, and they are chosen accordingly during estimation. The choice of initial values will be studied
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that 
f0

e1

u1

 | θ ∼N
 f0|0(θ)

O(N+q)×1

 , diag
(
P0|0(θ), IN+q

) .

Now suppose, for some 1≤ t≤ T , that we have obtained ft−1|t−1(θ) and Pt−1|t−1(θ),
and that 

ft−1

et

ut

 | Ft−1, θ ∼N

ft−1|t−1(θ)
O(N+q)×1

 , diag
(
Pt−1|t−1(θ), IN , Iq

) .

We can see that

ft|t−1(θ) = E [ft | Ft−1, θ] = E [c+Gft−1 +Hut | Ft−1, θ]

= c+Gft−1|t−1(θ)

Pt|t−1(θ) = E
[
(ft−ft|t−1(θ))(ft−ft|t−1(θ))′ | Ft−1, θ

]
= E

[(
G(ft−1−ft−1|t−1(θ)) +Hut

)(
G(ft−1−ft−1|t−1(θ)) +Hut

)′
| Ft−1, θ

]
=GPt−1|t−1(θ)G′+HH ′.

Since ft
et

=
ft|t−1(θ)
ON×1

+
G(ft−1−ft−1|t−1(θ)) +Hut

et



=
ft|t−1(θ)
ON×1

+
 G Or×N H

ON×r IN ON×q



ft−1−ft−1|t−1(θ)

et

ut

 ,

we have ft
et

 | Ft−1, θ ∼N

ft|t−1(θ)
ON×1

 , diag
(
Pt|t−1(θ), IN

) .
In addition, the measurement equation

xt = Λft+ Σet

in more detail during Professor Kang’s lecture.
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implies that

xt|t−1(θ) = E [xt | Ft−1, θ] = Λft|t−1(θ)

Vt|t−1(θ) = E
[
(xt−xt|t−1(θ))(xt−xt|t−1(θ))′ | Ft−1, θ

]
= E

[(
Λ(ft−ft|t−1(θ)) + Σet

)(
Λ(ft−ft|t−1(θ)) + Σet

)′
| Ft−1, θ

]
= ΛPt|t−1(θ)Λ′+ ΣΣ′.

Finally, since
ft
xt

=
ft|t−1(θ)
xt|t−1(θ)

+
 ft−ft|t−1(θ)

Λ
(
ft−ft|t−1(θ)

)
+ Σet



=
ft|t−1(θ)
xt|t−1(θ)

+
Ir Or×N

Λ Σ

ft−ft|t−1(θ)
et

 ,
we have ft

xt

 | Ft−1, θ ∼N

ft|t−1(θ)
xt|t−1(θ)

 ,
 Pt|t−1(θ) Pt|t−1(θ)Λ′

ΛPt|t−1(θ) Vt|t−1(θ)

 .
By the updating formula for jointly normally distributed random variables6,

ft | Ft, θ ∼ ft | xt,Ft−1, θ ∼N
[
ft|t(θ),Pt|t(θ)

]
,

where

ft|t(θ) = ft|t−1(θ) +Pt|t−1(θ)Λ′Vt|t−1(θ)−1
(
xt−xt|t−1(θ)

)
Pt|t(θ) = Pt|t−1(θ)−Pt|t−1(θ)Λ′Vt|t−1(θ)−1ΛPt|t−1(θ)

=
[
IN −Pt|t−1(θ)Λ′Vt|t−1(θ)−1Λ

]
Pt|t−1(θ).

The Kalman gain is defined as

Kt|t−1(θ) = Pt|t−1(θ)Λ′Vt|t−1(θ)−1,

using which we can write the above quantities as

ft|t(θ) = ft|t−1(θ) +Kt|t−1(θ)
(
xt−xt|t−1(θ)

)
6For reference, see the section “Conditional Distributions” in https://en.wikipedia.org/wiki/

Multivariate_normal_distribution.
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Pt|t(θ) =
[
IN −Kt|t−1(θ)Λ

]
Pt|t−1(θ).

Heuristically, the Kalman gain represents how much of the information on the time t data
xt to use when updating our estimate of the factors ft from ft|t−1 to ft|t.

To complete our derivation, note that, because Ft and ft− ft|t(θ) are independent
of et+1 and ut+1, ft− ft|t(θ) is conditionally independent of et+1 and ut+1 given Ft7.
Furthermore, they are all Gaussian given Ft, so


ft

et+1

ut+1

 | Ft, θ ∼N
 ft|t(θ)

O(N+q)×1

 , diag
(
Pt|t(θ), IN+q

) .

By induction, the Kalman filtered values are given as follows:

ft|t−1(θ) = c+Gft−1|t−1(θ) (3.1)

Pt|t−1(θ) =GPt−1|t−1(θ)G′+HH ′ (3.2)

xt|t−1(θ) = Λft|t−1(θ) (3.3)

Vt|t−1(θ) = ΛPt|t−1(θ)Λ′+ ΣΣ′ (3.4)

Kt|t−1(θ) = Pt|t−1(θ)Λ′Vt|t−1(θ)−1 (3.5)

ft|t(θ) = ft|t−1(θ) +Kt|t−1(θ)
(
xt−xt|t−1(θ)

)
(3.6)

Pt|t(θ) =
[
Ir−Kt|t−1(θ)Λ

]
Pt|t−1(θ). (3.7)

Note that, while Pt|t−1(θ) is likely to be singular when q < r due to the singularity of
HH ′, Vt|t−1 remains non-singular because it is the sum of a positive semidefinite matrix
ΛPt|t−1(θ)Λ′ and a positive definite matrix ΣΣ′. Thus, the inverse matrix that appears in
the Kalman gain exists regardless of whether q < r or not.

Using the values above, we can compute the Gaussian Quasi-log likelihood. The log-
likelihood can be decomposed as

l(xT , · · · ,x1 | θ) =
T∑
t=1

log (f(xt | Ft−1, θ))

where f(xt | Ft−1, θ) is the density of xt given Ft−1 and θ. For any 1≤ t≤ T , since

xt = Λft+ Σet,
7If you want to know the reason why, consult me.
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where (ft, et) are independent and jointly Gaussian given Ft−1,

xt | Ft−1, θ ∼N
[
xt|t−1(θ),Vt|t−1(θ)

]
,

and

log(f(xt | Ft−1, θ)) =−N2 log(2π)− 1
2 log

∣∣∣Vt|t−1(θ)
∣∣∣− 1

2(xt−xt|t−1(θ))′Vt|t−1(θ)−1(xt−xt|t−1(θ)).

Therefore,

l(xT , · · · ,x1 | θ) =−NT2 log(2π)− 1
2

T∑
t=1

log
∣∣∣Vt|t−1(θ)

∣∣∣
− 1

2

T∑
t=1

(xt−xt|t−1(θ))′Vt|t−1(θ)−1(xt−xt|t−1(θ)).

The Gaussian QMLE of θ is now found by maximizing this Gaussian Quasi log likelihood
with respect to θ. However, in the current form l(xT , · · · ,x1 | θ) is a very complicated
function of θ, which makes numerical maximization intractable. In order to find the max-
imizer in a more stable manner, we must turn to the EM algorithm, for which we require
the Kalman smoother. This will be the next topic we focus on.

The Kalman Smoother

If the Kalman filter allowed us to obtain expressions for the best (mean squared error
minimizing) estimate of the time t factor ft given the information up to time t, the
Kalman smoother utilizes the information available in the entire sample to estimate ft.
Consequently, we are able to obtain more precise estimates of ft.

As above, we start by defining the following terms:

ft|T (θ) = E [ft | FT , θ]

Pt|T (θ) = Var(ft | FT , θ) = E
[
(ft−ft|T (θ))(ft−ft|T (θ))′ | FT , θ

]
,

where FT represents the information present in the entire sample. As with the Kalman
filter, the values of ft|T (θ) and Pt|T (θ) are also obtained recursively, this time starting
from fT |T (θ), PT |T (θ) and moving backward in time. For this reason, the Kalman filtering
process is often called the forward pass and the smoothing process the backward pass.

Note that the values of fT |T (θ) and PT |T (θ) have already been computed as the last
step of the forward pass. Suppose that, for some 0≤ t <T , we have ft+1|T (θ) and Pt+1|T (θ).
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We want to compute the quantities

ft|T (θ) and Pt|T (θ).

We address two cases: the case when q = r, so that Pt+1|t(θ) is invertible, and q < r, where
Pt+1|t(θ) is most likely singular.

i) The Non-singular Case
In this case, the derivation is relatively straightforward. Note that

 ft

ft+1

=
 ft|t(θ)
c+Gft|t(θ)

+
 ft−ft|t(θ)
G
(
ft−ft|t(θ)

)
+Hut+1


=
 ft|t(θ)
ft+1|t(θ)

+
Ir Or×q

G H

ft−ft|t(θ)
ut+1

 ,
so that  ft

ft+1

 | Ft, θ ∼N
 ft|t(θ)

ft+1|t(θ)

 ,
 Pt|t(θ) Pt|t(θ)G′

GPt|t(θ) Pt+1|t(θ)

 .
In addition, we can see that

xt+1 = Λft+1 + Σet+1

is determined by ft+1 and et+1. Likewise,

xt+2 = Λft+2 + Σet+2

= Λc+ ΛGft+1 + ΛHut+2 + Σet+2

is determined by ft+1 and the error terms ut+2 and et+2. In other words, the infor-
mation set FT is contained in the information set

σ{Ft,ft+1, et+1, · · · , eT ,ut+1, · · · ,uT}.

The updating formula for jointly normal variables tells us that

ft | ft+1,Ft, θ ∼N
[
ft|t+1(θ),Pt|t+1(θ)

]
,

where

ft|t+1(θ) = ft|t(θ) +Pt|t(θ)G′Pt+1|t(θ)−1
(
ft+1−ft+1|t(θ)

)
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Pt|t+1(θ) = Pt|t(θ)−Pt|t(θ)G′Pt+1|t(θ)−1GPt|t(θ).

Letting Et+1 be defined as

Et+1 = σ{et+1, · · · , eT ,ut+1, · · · ,uT},

the observation about the information sets above tells us that

ft|T (θ) = E [ft | FT , θ]

= E [E [ft | Et+1,ft+1,Ft, θ] | FT , θ]

= E [E [ft | ft+1,Ft, θ] | FT , θ]

= E
[
ft|t+1(θ) | FT , θ

]
= ft|t(θ) +Pt|t(θ)G′Pt+1|t(θ)−1

(
ft+1|T (θ)−ft+1|t(θ)

)
,

where the second equality follows from the law of iterated expectations, and the
third from the independence of Et+1 and ft given ft+1 and Ft. Similarly,

Pt|T (θ) = E
[
(ft−ft|T (θ))(ft−ft|T (θ))′ | FT , θ

]
= E

[
ftf
′
t | FT , θ

]
−ft|T (θ)ft|T (θ)′

= E
[
E
[
ftf
′
t | ft+1,Ft, θ

]
| FT , θ

]
−ft|T (θ)ft|T (θ)′

= E
[
Pt|t+1(θ) +ft|t+1(θ)ft|t+1(θ) | FT , θ

]
−ft|T (θ)ft|T (θ)′

= Pt|t(θ)−Pt|t(θ)G′Pt+1|t(θ)−1GPt|t(θ)

+ Var
(
ft|t+1(θ) | FT , θ

)
= Pt|t(θ)−Pt|t(θ)G′Pt+1|t(θ)−1GPt|t(θ)

+Pt|t(θ)G′Pt+1|t(θ)−1Pt+1|T (θ)Pt+1|t(θ)−1GPt|t(θ)

= Pt|t(θ)−Pt|t(θ)G′Pt+1|t(θ)−1
[
Pt+1|t(θ)−Pt+1|T (θ)

]
Pt+1|t(θ)−1GPt|t(θ).

In summary, the smoothed factors and the smoothed factor variance under the
parameter values θ are given as

ft|T (θ) = ft|t(θ) +Pt|t(θ)G′Pt+1|t(θ)−1
(
ft+1|T (θ)−ft+1|t(θ)

)
(3.8)

Pt|T (θ) = Pt|t(θ)−Pt|t(θ)G′Pt+1|t(θ)−1
[
Pt+1|t(θ)−Pt+1|T (θ)

]
Pt+1|t(θ)−1GPt|t(θ).

(3.9)
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ii) The Singular Case
This case is trickier to deal with. If q < r, then Pt+1|t(θ)−1 is likely to not exist,
so that the formulas above become inadmissible. As such, we pursue a different
smoothing method. The Kalman smoother in this case is given as

ft|T (θ) = ft|t−1(θ) +Pt|t−1(θ)rt−1 (3.10)

Pt|T (θ) =
(
Ir−Pt|t−1(θ)Nt−1(θ)

)
Pt|t−1(θ) (3.11)

rt−1(θ) = Λ′Vt|t−1(θ)−1
(
xt−xt|t−1(θ)

)
+Lt(θ)′rt(θ) (3.12)

Nt−1(θ) = Λ′Vt|t−1(θ)−1Λ +Lt(θ)′Nt(θ)Lt(θ) (3.13)

rT (θ) =Or×1 (3.14)

NT (θ) =Or×r (3.15)

Lt(θ) =G
(
Ir−Kt|t−1(θ)Λ

)
(3.16)

for 1≤ t≤ T . For details, consult the appendix.

Assuming that the parameter values are known, the Kalman smoothed factors ft|T (θ)
represent the most accurate estimators of the factors ft given the data in the sample. Since
the cross-sectional dimension N does not go to infinity in small DFMs, the asymptotic
convergence of ft|T (θ) to the true factor values ft is not guaranteed; for this reason, the
smoothed values are often used to estimate the factors, since they are at least the most
accurate.

The filtered values and smoothed values derived above are mean-square optimal when
the error terms are Gaussian. However, even when the error terms are non-Gaussian, they
retain some value as the best linear projections, that is, ft|t(θ) represents the best linear
projection of ft on the variables collected in Ft, Pt|t(θ) is the mean squared projection
error associated with ft|t(θ), and so on. This is why their use is so widespread even beyond
Gaussian systems. For more details on the linear projection approach to the Kalman filter
and smoother, consult Hamilton (2020).
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The EM Algorithm

The expecation-maximization (EM) algorithm is an iterative method that is de-
signed to find the local maxima of the log likelihood function l(xT , · · · ,x1 | θ). Denote
X = (x1, · · · ,xT ) and F = (f0,f1, · · · ,fT ). Given initial parameter values θ(0), the algo-
rithm consists of two steps:

1) The E-Step
In the E-step, which is short for the “expectation” step, we calculate the expectation

Q(θ | θ(i)) = E
[
logf(X,F | θ) |X,θ(i)

]
=
∫

logf(X,F | θ) ·f(F |X,θ(i))dF.

2) The M-Step
In the M-step, which is short for the “maximization” step, we update the parameter
estimates by maximizing Q(θ | θ(i)) with respect to θ:

θ(i+1) = argmax
θ∈Θ

Q(θ | θ(i)).

The algorithm stops once it has converged according to the convergence criterion

ck =

∣∣∣l(X | θ(k))− l(X | θ(k−1))
∣∣∣

1
2

∣∣∣l(X | θ(k)) + l(X | θ(k−1))
∣∣∣ .

This is the convergence criterion used in Doz, Giannone, and Reichlin (2012), where the
algorithm is said to have converged if ck < 10−4. The formal reasoning as to why the EM
algorithm helps find local maxima is contained in the appendix.

For linear state space models, there exist closed form solutions for both the E-and M-
steps invovling the Kalman smoothed quanities. In what follows, we assume that c=Or×1

for simplicity.

In the E-step, we must calculate the expectation

Q(θ | θ(i)) =
∫

logf(X,F | θ) ·f(F |X,θ(i))dF.
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To do so, we first decompose the integrand as follows:

logf(X,F | θ) =
T∑
t=1

logf(xt,ft | Ft−1,ft−1, · · · ,f0, θ)

=
T∑
t=1

logf(xt | ft, θ) +
T∑
t=1

logf(ft | ft−1, θ).

Since

xt | ft, θ ∼N
[
Λft,ΣΣ′

]
ft | ft−1, θ ∼N

[
Gft−1,HH

′
]
,

we can write the above expression as

logf(X,F | θ)'−T2 log
∣∣∣ΣΣ′

∣∣∣− 1
2

T∑
t=1

(xt−Λft)′(ΣΣ′)−1(xt−Λft)

− T2 log
∣∣∣HH ′∣∣∣− 1

2

T∑
t=1

(ft−Gft−1)′(HH ′)−1(ft−Gft−1),

where the equality is up to constants and initial values. If HH ′ is singular, as it is in the
case q < r, then we can replace |HH ′| by |H ′H| and (HH ′)−1 by H†′H†, where

H† = (H ′H)−1H ′

is the left multiplication pseudo-inverse of H. In this case, H†′H† has rank equal to q,
since H is a full rank matrix.

Now the expectation can be evaluated as

Q(θ | θ(i)) =−T2 log
∣∣∣ΣΣ′

∣∣∣− T2 log
∣∣∣HH ′∣∣∣

− 1
2

T∑
t=1

tr
(
(ΣΣ′)−1 ·E

[
(xt−Λft)(xt−Λft)′ | FT , θ(i)

])

− 1
2

T∑
t=1

tr
(
(HH ′)−1 ·E

[
(ft− c−Gft−1)(ft− c−Gft−1)′ | FT , θ(i)

])
.

We start with the term invovling xt. For any 1≤ t≤ T ,

E
[
(xt−Λft)(xt−Λft)′ | FT , θ(i)

]
= xtx

′
t−ΛE

[
ft | FT , θ(i)

]
x′t

−xtE
[
f ′t | FT , θ(i)

]
Λ′+ ΛE

[
ftf
′
t | FT , θ(i)

]
Λ′

= xtx
′
t−Λf (i)

t|Tx
′
t
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−xtf (i)′
t|T Λ′+ Λ

[
P

(i)
t|T +f

(i)
t|T f

(i)′
t|T

]
Λ′

=
(
xt−Λf (i)

t|T

)(
xt−Λf (i)

t|T

)′
+ ΛP (i)

t|TΛ′.

Meanwhile, the term invovling ft can be evaluated as

E
[
(ft−Gft−1)(ft−Gft−1)′ | FT , θ(i)

]
= E

[
ftf
′
t | FT , θ(i)

]
−E

[
ftf
′
t−1 | FT , θ(i)

]
G′

−GE
[
ft−1f

′
t | FT , θ(i)

]
+GE

[
ft−1f

′
t−1 | FT , θ(i)

]
G

= P
(i)
t|T +f

(i)
t|T f

(i)′
t|T −

(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)
t−1|T

)
G′

−G ·
(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)
t−1|T

)′
+GP

(i)
t−1|TG

′+Gf
(i)
t−1|T f

(i)′
t−1|TG

′,

where we define8

C
(i)
t,t−1|T = E

[(
ft−ft|T

)(
ft−1−ft−1|T

)′
| FT , θ(i)

]
.

The expectation is thus computed as

Q(θ | θ(i)) = T

2
(
log

∣∣∣(ΣΣ′)−1
∣∣∣+ log

∣∣∣(HH ′)−1
∣∣∣)

− 1
2

T∑
t=1

tr
[
(ΣΣ′)−1

(
xt−Λf (i)

t|T

)(
xt−Λf (i)

t|T

)′]

− 1
2

T∑
t=1

tr
[
(ΣΣ′)−1ΛP (i)

t|TΛ′
]

− 1
2

T∑
t=1

tr
[
(HH ′)−1

(
P

(i)
t|T +f

(i)
t|T f

(i)′
t|T

)]

+
T∑
t=1

tr
[
(HH ′)−1

(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)
t−1|T

)
G′
]

8For the computation of Ct,t−1|T , we first obtain the smoothed factor variance Pt|T from the aug-
mented state space model

xt =
(
Λ ON×r

)( Ft
Ft−1

)
+ Σet

(
Ft
Ft−1

)
=
(
G Or×r
Ir Or×r

)(
Ft−1
Ft−2

)
+
(

H
Or×q

)
ut.

and take the block matrix in its (1,2) position. Since the factor innovation covariance matrix of this
augmented model is necessarily singular, we implement the recursions for the Kalman smoother in the
case q < r to compute Pt|T .
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− 1
2

T∑
t=1

tr
[
(HH ′)−1G

(
P

(i)
t−1|T +f

(i)
t−1|T f

(i)′
t−1|T

)
G′
]
.

For the sake of completeness, we state the form of the expectation when the variance HH ′

is singular:

Q(θ | θ(i)) = T

2
(
log

∣∣∣(ΣΣ′)−1
∣∣∣+ log

∣∣∣H†H†′∣∣∣)
− 1

2

T∑
t=1

tr
[
(ΣΣ′)−1

(
xt−Λf (i)

t|T

)(
xt−Λf (i)

t|T

)′]

− 1
2

T∑
t=1

tr
[
(ΣΣ′)−1ΛP (i)

t|TΛ′
]

− 1
2

T∑
t=1

tr
[(
H†′H†

)(
P

(i)
t|T +f

(i)
t|T f

(i)′
t|T

)]

+
T∑
t=1

tr
[(
H†′H†

)(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)′
t−1|T

)
G′
]

− 1
2

T∑
t=1

tr
[(
H†′H†

)
G
(
P

(i)
t−1|T +f

(i)
t−1|T f

(i)′
t−1|T

)
G′
]
.

Moving onto the M-step, we must maximize Q(θ | θ(i)) with respect to θ if we are to
find the next iterates θ(i+1). To find θ, we must maximize Q(θ | θ(i)) with respect to:

Λ,ΣΣ′︸︷︷︸
Γx

, c,G,HH ′︸ ︷︷ ︸
Γf

.

First, note that

− 1
2

T∑
t=1

(
tr
[
(ΣΣ′)−1

(
xt−Λf (i)

t|T

)(
xt−Λf (i)

t|T

)′]
− tr

[
(ΣΣ′)−1ΛP (i)

t|TΛ′
])

=−1
2

T∑
t=1

(
xt−Λf (i)

t|T

)′
(Γx)−1

(
xt−Λf (i)

t|T

)
− 1

2

T∑
t=1

vec(Λ)′
(
P

(i)
t|T
⊗

(Γx)−1
)

vec(Λ)

=−1
2

T∑
t=1

[
xt−

(
f

(i)′
t|T

⊗
IN

)
vec(Λ)

]′
(Γx)−1

[
xt−

(
f

(i)′
t|T

⊗
IN

)
vec(Λ)

]

− 1
2

T∑
t=1

vec(Λ)′
(
P

(i)
t|T
⊗

(Γx)−1
)

vec(Λ) ,
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so we have

∂Q(θ | θ(i))
∂vec(Λ) =

T∑
t=1

(
f

(i)
t|T
⊗

IN

)
(Γx)−1

[
xt−

(
f

(i)′
t|T

⊗
IN

)
vec(Λ)

]
−

T∑
t=1

(
P

(i)
t|T
⊗

(Γx)−1
)

vec(Λ) .

Λ(i+1) equates the above first order condition with 0, so that

vec
(
Λ(i+1)

)
=


 T∑
t=1

(
f

(i)
t|T f

(i)′
t|T +P

(i)
t|T

)−1⊗
IN

vec
 T∑
t=1

xtf
(i)′
t|T



= vec


 T∑
t=1

xtf
(i)′
t|T

 T∑
t=1

(
f

(i)
t|T f

(i)′
t|T +P

(i)
t|T

)−1 ,
and by implication,

Λ(i+1) =
 T∑
t=1

xtf
(i)′
t|T

 T∑
t=1

(
f

(i)
t|T f

(i)′
t|T +P

(i)
t|T

)−1

.

Likewise, since

T∑
t=1

tr
[
(HH ′)−1

(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)′
t−1|T

)
G′
]
− 1

2

T∑
t=1

tr
[
(HH ′)−1G

(
P

(i)
t−1|T +f

(i)
t−1|T f

(i)′
t−1|T

)
G′
]

=−1
2

T∑
t=1

vec(G)′
[(
P

(i)
t−1|T +f

(i)
t−1|T f

(i)′
t−1|T

)⊗(
Γf
)−1]

vec(G)

+
T∑
t=1

vec(G)′
[
Ir
⊗(

Γf
)−1]

vec
(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)′
t−1|T

)
,

we have

∂Q(θ | θ(i))
∂vec(G) =

T∑
t=1

[(
P

(i)
t−1|T +f

(i)
t−1|T f

(i)′
t−1|T

)⊗(
Γf
)−1]

vec(G)

+
T∑
t=1

[
Ir
⊗(

Γf
)−1]

vec
(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)′
t−1|T

)
.

G(i+1) must then satisfy

vec
(
G(i+1)

)
=


 T∑
t=1

(
P

(i)
t−1|T +f

(i)
t−1|T f

(i)′
t−1|T

)−1⊗
Ir


−1

vec
 T∑
t=1

(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)′
t−1|T

)
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= vec


 T∑
t=1

(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)′
t−1|T

) T∑
t=1

(
P

(i)
t−1|T +f

(i)
t−1|T f

(i)′
t−1|T

)−1 ,
so that

G(i+1) =
 T∑
t=1

(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)′
t−1|T

) T∑
t=1

(
P

(i)
t−1|T +f

(i)
t−1|T f

(i)′
t−1|T

)−1

.

Moving onto the covariance terms, we first obtain an expression for Γx. Since

∂Q(θ | θ(i))
∂(Γx)−1 = T

2 (Γx)−1− 1
2

T∑
t=1

[(
xt−Λf (i)

t|T

)(
xt−Λf (i)

t|T

)′
+ ΛP (i)

t|TΛ′
]
,

Γx(i+1) should be given as

Γx(i+1) = 1
T

T∑
t=1

[(
xt−Λ(i+1)f

(i)
t|T

)(
xt−Λ(i+1)f

(i)
t|T

)′
+ Λ(i+1)P

(i)
t|TΛ(i+1)′

]

= 1
T

T∑
t=1

xtx
′
t−

1
T

T∑
t=1

Λ(i+1)f
(i)
t|Tx

′
t−

1
T

T∑
t=1

xtf
(i)
t|TΛ(i+1)′

+ 1
T

T∑
t=1

Λ(i+1)
(
f

(i)
t|T f

(i)′
t|T +P

(i)
t|T

)
Λ(i+1)′.

Σ(i+1) can then be defined as the Cholesky factor of Γx(i+1).
The updated value of Γf is trickier to obtain. If q= r, then analogously to the preceding

result,

Γf(i+1) = 1
T

T∑
t=1

[
f

(i)
t|T f

(i)′
t|T +P

(i)
t|T

]

− 1
T

T∑
t=1

(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)′
t−1|T

)
G(i+1)′− 1

T

T∑
t=1

G(i+1)
(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)′
t−1|T

)′

+ 1
T

T∑
t=1

G(i+1)
(
P

(i)
t−1|T +f

(i)
t−1|T f

(i)′
t−1|T

)
G(i+1)′.

H(i+1) can then be taken as the square root9 of Γf(i+1).
9The square root of a positive semidefinite matrix A is taken to be PD 1

2 , where A = PDP ′ is the
eigendecomposition of A. We take the square root instead of the Cholesky factor to preserve consistency
between the cases q = r and q < r.
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When q < r, we take

H(i+1) =W (i+1)
(
M (i+1)

) 1
2 ,

where W (i+1) is an r× q matrix whose columns are orthonormal eigenvectors of Γf(i+1)

corresponding to the q largest eigenvalues, and M (i+1) is a diagonal q× q matrix col-
lecting these eigenvalues. Note that H(i+1) is exactly the square root of Γf(i+1), so that
we may take H(i+1) to be equal to the above quantity regardless of whether q = r or q < r.

To obtain a more tractable expression for the values obtained so far, define

Z =
T∑
t=1

xtf
(i)
t|T

E =
T∑
t=1

[
C

(i)
t,t−1|T +f

(i)
t|T f

(i)′
t−1|T

]

F =
T∑
t=1

[
f

(i)
t|T f

(i)′
t|T +P

(i)
t|T

]

F−1 =
T∑
t=1

[
f

(i)
t−1|T f

(i)′
t−1|T +P

(i)
t−1|T

]
.

Then, we have

Λ(i+1) = ZF−1

G(i+1) = EF−1
−1

and

Γx(i+1) = 1
T

(
X ′X−Λ(i+1)Z′−ZΛ(i+1)′+ Λ(i+1)FΛ(i+1)′

)
= 1
T

(
X ′X−ZF−1Z′

)

Γf(i+1) = 1
T

(
F−EG(i+1)′−G(i+1)E′+G(i+1)F−1G

(i+1)′
)

= 1
T

(
F−EF−1

−1 E′
)

= 1
T

T∑
t=1

[
f

(i)
t|T f

(i)′
t|T +P

(i)
t|T −

(
C

(i)
t,t−1|T +f

(i)
t|T f

(i)′
t−1|T

)
G(i+1)′

]
.
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Summarizing, at the end of the M-step, we are left with the following updated param-
eter values:

Λ(i+1) = ZF−1 (3.17)

G(i+1) = EF−1
−1 (3.18)

Γx(i+1) = 1
T

(
X ′X−ZF−1Z

)
(3.19)

Γf(i+1) = 1
T

(
F−EF−1

−1E
′
)

(3.20)

where

Z =
T∑
t=1

xtf
(i)
t|T (3.21)

E =
T∑
t=1

[
C

(i)
t,t−1|T +f

(i)
t|T f

(i)′
t−1|T

]
(3.22)

F =
T∑
t=1

[
f

(i)
t|T f

(i)′
t|T +P

(i)
t|T

]
(3.23)

F−1 =
T∑
t=1

[
f

(i)
t−1|T f

(i)′
t−1|T +P

(i)
t−1|T

]
. (3.24)

3.4.2 Estimating Large Dynamic Factor Models

For the sake of completeness, we re-state the basic state-space form of our DFM:

xt = Λft+ Σet
ft = c+Gft−1 +Hut.

The QMLE method is often used to estimate small DFMS, or those with a small cross-
sectional dimension N . If the cross-sectional dimension N is large, on the other hand, we
have a large dynamic factor model (LDFM), and QMLE method above cannot be
used without modification. Most notably, since the parameters

Λ,Σ, c,G,H

must be estimated in the above model, there are a total of Nr+ N(N+1)
2 + r+ r2 + rq =

O(N2) parameters that must be estimated. However, since both T and N go to infinity
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in LDFMs, the number of parameters to be estimated can easily to go infinity faster than
the number of observations NT , which makes estimation unreliable. For this reason, two
alternative methods of estimating LDFMs have been proposed.

The first, proposed in Doz, Giannone, and Reichlin (2011), is a two-step estimator
based on the non-parametric PC estimator of static factor models. Recall that assumptions
on the cross-sectional and time series dependence on the idiosyncratic errors Σet, as well
as the boundedness of the true factors ft and factor loadings Λ are sufficient to guarantee
that the PC estimators are well-behaved. Therefore, consistent estimators of the factors
and factor loadings in the measurement equation can be obtained even without taking
into consideration the dynamics of the factors contained in the transition equation.

Using the consistent estimators of the factors as proxies for the true factors, an OLS
regression now yields estimates of the factor intercept c, mean reversion parameter G and
the innovation matrix HH ′. It remains to estimate the covariance of the idiosyncratic
errors et, and it is here that we introduce an approximation; specifically, we use an ap-
proximating model where the idiosyncratic errors are uncorrelated and homoskedastic, so
that their covariance matrix is given as σ2IN . σ2 can then be estimated as a function of
the PC estimators and data. Finally, once these parameter estimates have been obtained,
we use them to estimate the factors using the Kalman smoother. Formally, we proceed as
follows:

Step 1: Initial Estimates of the Parameters
The factor loadings Λ, the time t factors ft, and the idiosyncratic variance σ2 are
estimated via PCA as follows:

Λ =
√
N × r orthonormal eigenvectors of 1

NT
X ′X corresponding to

the r largest eigenvalues µ1 ≥ ·· · ≥ µr > 0

f t =
(
Λ′Λ

)−1
Λ′xt = 1

N
Λ′xt

F =


f
′
1
...
f
′
T

= 1
N
XΛ

σ2 = 1
NT

tr
(
X ′X

)
− 1
NT

r∑
i=1

µi.

Using the estimated factors f t, we estimate the transition equation parameters c,G
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and Γf =HH ′ as follows:
 c′
G
′

=
 T∑
t=2

zt−1z
′
t−1

−1 T∑
t=2

zt−1f
′
t

 ,

Γf = 1
T

T∑
t=2

(
f t− c−Gf t−1

)(
f t− c−Gf t−1

)′
,

where

zt−1 =
 1
f t−1

 .

Step 2: Smoothed Estimates of the Factors
Given the estimated parameters

θ = {Λ,σ2IN , c,G,Γf},

we can obtain the smoothed version of the factors and their variances,

ft|T (θ) and Pt|T (θ).

The smoothers can be computed using either method introduced in the previous
section, depending on whether H is a square matrix (q = r) or not (q < r).

The smoothing process serves to eliminate any noise that may have been present in
the original factor estimates F .

It is shown in Doz, Giannone, and Reichlin (2011), among others, that the estimates
Λ, c,G and Γf are consistent as N,T →∞ regardless of the approximation introduced
into the model through the covariance matrix of the idiosyncratic errors. Likewise, the
smoothed factors ft|T (θ) are shown to be consistent for a rotation of the true factors ft
as N,T →∞ despite the additional approximation of Gaussian errors, under which we
derived the Kalman smoother.

An alternative approach, studied in Barigozzi and Luciani (2019), is the usual QMLE
method, with the added approximation that the idiosyncratic errors are uncorrelated and
(possibly) heteroskedastic. This means that the parameters to be estimated are

Λ,σ2
1, · · · ,σ2

N , c,G,H,
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where σ2
i is the variance of the ith idiosyncratic error. In other words, we need only esti-

mate a total of Nr+N+r+r2 +rq=O(N) parameters, so that the number of parameters
will be smaller than the number of obserations NT as N,T →∞. Estimation of the model
is done through the EM algorithm; the updated parameter values are the same as above,
except that now Γx(i+1) is given as a diagonal matrix whose diagonal entries are those of

1
T

T∑
t=1

[(
xt−Λ(i+1)f

(i)
t|T

)(
xt−Λ(i+1)f

(i)
t|T

)′
+ Λ(i+1)P

(i)
t|TΛ(i+1)′

]
.

In other words, we are estimating the off-diagonal terms of Γx = ΣΣ′ as 0. It is pointed
out in Barigozzi and Luciani (2019) that the two-step estimator is a special case of the
QMLE method with the number of iterations equal to 1. Below are summarized all the
approximations made when estimating the model by QMLE:

• The idiosyncratic errors et and factor innovations ut are approximated by i.i.d.
normally distributed processes.

• The global maximum of the log-likelihood is approximated by the local maximum
to which the EM algorithm converges.

• Values like E [ftf ′t | FT ] are approximated by their Kalman smoother values, which
are equal only when the system is Gaussian.

• (For large DFMs) The cross-sectional dependence of the idiosyncratic errors et
are approximated by 0.

In spite of these approximations made in the estimation process, Barigozzi and Luciani
(2019) show that, under weak assumptions on the cross-sectional and temporal depen-
dence of the error terms, the QMLE estimators of the model parameters and factors are
consistent.

3.4.3 Estimating the Dynamic Nelson-Siegel Model

We now apply the techniques studied above to estimate the DN-S model. To this end,
we opt for the two-step method in Doz, Giannone, and Reichlin (2011) for its relative
computational simplicity. Below we adapt the two-step estimation procedure for the DN-
S model, which is made simple because we already derived the estimates for the N-S model
earlier:
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Step 1: Initial Estimates of the Parameters
The decay parameter κ, the time t factors ft, and the idiosyncratic variance σ2 are
estimated via least squares as follows:

κ= argmax
κ∈[ε,1−ε]

1
mT

tr
(
Y ′Y

)
− 1
mT

tr
(
YΛ(κ)

(
Λ(κ)′Λ(κ)

)−1
Λ(κ)′Y ′

)

f t =
[
Λ(κ)′Λ(κ)

]−1
Λ(κ)′Yt

F =


f
′
1
...
f
′
T

= YΛ(κ)
[
Λ(κ)′Λ(κ)

]−1

σ2 = 1
mT

tr
(
Y ′Y

)
− 1
mT

tr
(
YΛ(κ)

(
Λ(κ)′Λ(κ)

)−1
Λ(κ)′Y ′

)

Using the estimated factors f t, we estimate the transition equation parameters c,G
and Γf =HH ′ as follows:

 c′
G
′

=
 T∑
t=2

zt−1z
′
t−1

−1 T∑
t=2

zt−1f
′
t

 ,

Γf = 1
T

T∑
t=2

(
f t− c−Gf t−1

)(
f t− c−Gf t−1

)′
,

where

zt−1 =
 1
f t−1

 .

Step 2: Smoothed Estimates of the Factors
Given the estimated parameters

θ = {Λ(κ),σ2IN , c,G,Γf},

we can obtain the smoothed version of the factors and their variances,

ft|T (θ) and Pt|T (θ).
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Figure 3.8: Estimated Dynamic Nelson-Siegel Factors The figure below maps the
smoothed N-S factor estimates obtained via the two-step estimation procedure.

It is shown in the appendix that the estimates of the transition equation parameters
c,G,H obtained using the first step estimates of the factors are consistent for their true
values. The consistency of σ2 for the true measurement error variance σ2 follows easily
from the proof in appendix A, and the fact that

1√
m

∥∥∥Λ0−Λ(κ)
∥∥∥= op(1)

and ∥∥∥∥∥∥
(

Λ0′Λ0

m

)−1
−
(

Λ(κ)′Λ(κ)
m

)−1∥∥∥∥∥∥= op(1).

The smoothed estimates of the dynamic N-S factors are presented in Figure 3.8. Com-
pared to the N-S factors estimated via least squares, the smoothed factors are literally
more smooth. In general, they follow the same trends as the N-S factors estimated earlier,
which is a testament to the accuracy of the least squares estimators.
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Chapter 4

Affine Term Structure Models

In this chapter, we study the basic affine term structure model as formulated in Duffie
and Kan (1996)1 and developed in subsequent works such as Dai and Singleton (2000),
Dai and Singleton (2002) and Joslin, Singleton, and Zhu (2011).

In term structure models, it is typically assumed that there exists a sequence of latent
factors {ft}t∈N such that time t bond prices and yields are determined as functions of the
time t factors ft. Suppose there are n factors, so that each ft is an n-dimensional random
vector.

We first make preliminary assumptions. Throughout, we assume that there exists an
SDF process {Mt}t∈N withM0 = 1 such that the time t price of an asset with time t+1
payoff Xt+1 is given by

Et [Mt+1Xt+1] .

The SDF process is assumed to be the empirical SDF process defined as

Mt+1 = exp
(
−rt−

1
2λ
′
tλt−λ′tvPt+1

)
,

where λt is the n-dimensional market prices of risk and vPt+1 an n-dimensional random
vector that is standard normally distributed under the physical measure given the in-
formation up to time t. Owing to Girsanov’s theorem, we put vQt+1, the n-dimensional
random vector that is standard normally distributed under the risk-neutral measure, as

vQt+1 = λt+vPt+1.

Unless stated otherwise, all expectations at time t are taken conditional on the informa-
tion up to time t 2.

1There, the model was formulated in continuous time, but we opt to exposit in discrete time.
2Formally, we assume there is a filtration {Ft}t∈N such that the σ-algebra Ft represents the information

up to time t. The conditional expectation Et [·] is equivalent to the conditional expectation E [· | Ft].
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Term structure models are comprised of four components:

1) The Short Rate Dynamics
This dictates how the short rate is determined as a function of ft. Usually, the short
rate dynamics are written as

rt = g(ft)

for some function g(·).

2) The Q-(risk-neutral) Dynamics
This dictates the dynamics of the factors ft under the risk-neutral measure. Usually,
the risk-neutral dynamics are written as

ft+1 = µQt + Σt ·vQt+1.

Here, µQt is the conditional mean of ft+1 under the risk-neutral measure and ΣtΣ′t
the conditional variance.

3) The P-(physical) Dynamics
This dictates the dynamics of the factors ft under the physical measure. Usually,
the physical dynamics are written as

ft+1 = µPt + Σt ·vPt+1.

Note that µPt is the conditional mean of ft+1 unde the physical measure and, since
vPt+1 and vQt+1 differ only by location, ΣtΣ′t is still the conditional variance of ft+1.

4) The Specification for the Market Prices of Risk λt

This dictates how the market prices of risk are determined as functions of the factors
ft. Formally, we assume there exists a function Λt(·) such that

λt = Λt(ft).

In practice, we need only specify the short rate dynamics and two of the latter three

I have stated this for the sake of completeness; unless you have a good grasp on measure theory at this
stage, I advise you to ignore this technical detail.
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components. To see why, note that the following relationship holds:

Et [ft+1] = µPt

= Et
[
µQt + Σt ·vQt+1

]
= µQt + Σt ·λt.

Therefore, the market prices of risk are given as functions of Σt, µQt and µPt as follows:

λt = Σ−1
t

(
µPt −µ

Q
t

)
.

If we specify the risk-neutral and physical dynamics, which means that we specify Σt, µQt
and µPt , then we automatically obtain an expression for the market prices of risk λt. On
the other hand, if we specify the market prices of risk and the risk-neutral dynamics, then
because µPt is given as

µPt = µQt + Σt ·λt,

and the variance of the factors is the same under either measure, we automatically obtain
the physical factor dynamics. The same goes for the case where we specify the physical
dynamics and the market prices of risk.

In most cases, we choose to specify the risk-neutral and physical dynamics. However,
in some cases, most notably when we do not want to involve the risk-neutral measure, we
can choose to specify the market prices of risk and the physical dynaimcs instead.

4.1 Defintion of Affine Term Structure Models

Affine term structure models (ATSM) are term structure models in which the short
rate rt, the risk-neutral conditional mean µQt , and the conditional variance ΣtΣ′t are affine
functions of the factors ft. Specifically, in general affine term structure models the short
rate, risk-netural dynamics and the conditional variance are typically given as follows3:

rt = δ+β′ft

ft+1 =KQ +GQft+ Σt ·vQt+1

3This is the specification chosen in Dai and Singleton (2000), who characterize affine term structure
models depending on the number of factors n and the rank m of B = (β1, · · · ,βn), or the dependence of
the conditional variance on the factors. This complicated topic is not broached here.

103



4.2. BOND PRICES CHAPTER 4. ATSMS

Σt = Σ


√
α1 +β′1ft · · · 0

... . . . ...
0 · · ·

√
αn+β′nft.


︸ ︷︷ ︸√

St

We will see below that, under the above specification, yields are also given as affine
functions of the factors, hence the name “affine” term structure model.

The number of lags included in the model may, of course, be larger than 1. Note that
the n×n matrix Σ governs the dependence of the factors on each other, and that the
conditional variance of the ith normalized factors is given as an affine function αi+β′ift

of the factors. It follows that, for the term structure model to make sense, each αi+β′ift

must be non-negative and Σ must be non-singular. An affine term structure model that
satisfies these conditions is called admissible.

An affine term structure model in which the conditional variance ΣtΣ′t is time-invariant
is called a Gaussian affine term structure model (GATSM). In light of the setting
above, GATSMs are special cases of ATSMs in which βi = On×1 and αi = 1 for any
1≤ i≤ n. Thus, a GATSM is admissible if and only if Σ is nonsingular. Most of the time
we take Σ to be the Cholesky factor of the conditional variance, which we assume to be
positive definite.

The objective of a term structure model is to recover bond prices Pt(τ), yields Yt(τ),
and various forward rates and risk premia related to zero-coupon bonds, as functions of
the underlying factors ft. In the sections that follow, we first study how to solve for bond
prices in affine term structure models. This step involves only the risk-neutral measure.
Afterward, we incorporate the physical measure to solve for bond risk premia, and briefly
discuss possible specifications for market prices ofirisk. Finally, we study the various iden-
tification issues that arise from the presence of latent factors, and possible methods to
uniquely identify the model.

4.2 Solving for Bond Prices

Consider an ATSM with short rate dynamics and risk-neutral dynamics given by

rt = δ+β′ft (4.1)

and

ft+1 =KQ +GQft+ Σt ·vQt+1. (4.2)
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The conditional variance is given as

ΣtΣ′t = Σ


α1 +β′1ft · · · 0

... . . . ...
0 · · · αn+β′nft,

Σ′,

and we assume that the ATSM in question is admissible.
In Duffie and Kan (1996), it is shown that, in an affine term structure model, bond

prices Pt(τ) must be given as an exponential-affine function of the factors ft. That is,
Pt(τ) must assume the form

Pt(τ) = exp
(
−a(τ)− b(τ)′ft

)
, (4.3)

where a(·) and b(·) are functions of the time to maturity τ . To solve for bond prices means
to find a(·) and b(·). Note that we already have the initial values for these functions; since
Pt(0) = 1, it must be the case that

a(0) = 0 and b(0) =On×1.

The values of a(·) and b(·) for maturities greater than 0 can be found by means of the
no-arbitrage equation. Specifically, recall that an asset’s prices is equal to its expected
discounted payoff. Since a zero-coupon bond’s time t+1 payoff is simply its price at time
t+ 1, the no-arbitrage equation becomes

Pt(τ) = EQ
t [exp(−rt) ·Pt+1(τ −1)] (4.4)

for a bond with τ period left to maturity at time t. The fact that the complex SDF
is replaced by the much simpler expression exp(−rt) is one of the reasons we use the
risk-neutral version of the no-arbitrage equation.

Substituting the bond price formula (4.3) into the equation (4.4) gives us

exp
(
−a(τ)− b(τ)′ft

)
= ·EQ

t

[
exp

(
−rt−a(τ −1)− b(τ −1)′ft+1

)]
.

Using the short rate and risk-neutral dynamics now gives us

exp
(
−a(τ)− b(τ)′ft

)
= exp

(
−δ−β′ft−a(τ −1)− b(τ −1)′KQ− b(τ −1)′GQft

)
×EQ

t

[
exp

(
−b(τ −1)′Σt ·vQt+1

)]
.

The formula for the MGF of normally distributed variables tells us that

EQ
t

[
exp

(
−b(τ −1)′Σt ·vQt+1

)]
= exp

(1
2b(τ −1)′ΣtΣ′tb(τ −1)

)
,
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so we have the equation

exp
(
−a(τ)− b(τ)′ft

)
= exp

(
−δ−β′ft−a(τ −1)− b(τ −1)′KQ− b(τ −1)′GQft+

1
2b(τ −1)′ΣtΣ′tb(τ −1)

)
.

Taking logs on both sides yields

−a(τ)− b(τ)′ft

=−δ−β′ft−a(τ −1)− b(τ −1)′KQ− b(τ −1)′GQft+
1
2b(τ −1)′ΣtΣ′tb(τ −1)

=−δ−β′ft−a(τ −1)− b(τ −1)′KQ− b(τ −1)′GQft

+ 1
2

n∑
i=1

(b(τ −1)′Σ)2
i ·αi+

1
2

n∑
i=1

(b(τ −1)′Σ)2
i ·β′ift,

where (b(τ −1)′Σ)i denotes the ith element of the n-dimensional row vector b(τ −1)′Σ.
We now match intercepts terms with intercept terms and coefficient terms with coef-

ficient terms to obtain the Ricatti equations

a(τ) = δ+a(τ −1) + b(τ −1)′KQ− 1
2

n∑
i=1

(b(τ −1)′Σ)2
i ·αi (4.5)

b(τ) = β+GQ′b(τ −1)− 1
2

n∑
i=1

(b(τ −1)′Σ)2
i ·βi. (4.6)

These, together with the initial conditions a(0) = 0 and b(0) = On×1, allow us to recur-
sively solve for bond prices.

Note that, in the GATSM case with βi =On×1 and αi = 1 for any 1≤ i≤ n, the Ricatti
equations are reduced to

a(τ) = δ+a(τ −1) + b(τ −1)′KQ− 1
2b(τ −1)′ΣΣ′b(τ −1) (4.7)

b(τ) = β+GQ′b(τ −1). (4.8)

The simplicity of the Ricatti equations in the GATSM case also means that we can obtain
closed-form solutions for a(·) and b(·) through the use of the initial conditions a(0) = 0
and b(0) =On×1; these solutions can also be found in Hamilton and Wu (2012):

b(τ) =
τ−1∑
j=0

(
GQ′

)jβ
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a(τ) = τδ+
τ−1∑
s=1

b(s)
′KQ− 1

2

τ−1∑
s=1

b(s)′ΣΣ′b(s).

Given a(·) and b(·), we can now see that, by definition, the yield on a zero-coupon
bond with τ periods to maturity at time t is

Yt(τ) =−1
τ

log(Pt(τ)) = a(τ)
τ︸ ︷︷ ︸
α(τ)

+ b(τ)′
τ︸ ︷︷ ︸

β(τ)′

ft.

In other words, in our model yields are affine functions of the factors ft.
So far, we have relied only on the short rate dynamics and the risk-neutral dynamics

to derive bond prices and yields as functions of the factors ft. This tells us that, when it
comes to pricing bonds, we can always work under a risk-neutral environment; the risk
aversion of investors plays no part in the derivation of bond prices. However, once we
start talking about risk premia, or the compensation investors demand for taking on risk,
the physical dynamics, and by extension the market price of risk, become indispensable.
This is because, when we talk of expected rates of return, the expectation is with respect
to the physical measure, not the risk-neutral measure.

4.3 Bond Risk Premia

We now express bond risk premia in terms of the market price of risk λt and the model
parameters. The core relationship exploited here is that of vQt+1 and vPt+1, which are related
by a location change

vPt+1 +λt = vQt+1.

4.3.1 One-Period Ahead Risk Premium

Recall that the one-period ahead risk premium is defined as

Et
[
exr

(τ)
t+1

]
= Et [log(Pt+1(τ −1))]− log(Pt(τ))− rt

=−a(τ −1)− b(τ −1)′Et [ft+1] +a(τ) + b(τ)′ft− δ−β′ft.
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The risk-neutral dynamics tell us that

Et [ft+1] =KQ +GQft+ Σt ·Et
[
vQt+1

]
=KQ +GQft+ Σt ·λt,

while the recursive solutions to a(·) and b(·) reveal

a(τ)−a(τ −1) = δ+ b(τ −1)′KQ− 1
2

n∑
i=1

(
b(τ −1)′Σ

)2
i
·αi

b(τ)− b(τ −1)′GQ−β′ =−1
2

n∑
i=1

(
b(τ −1)′Σ

)2
i
·β′i.

Therefore,

Et
[
exr

(τ)
t+1

]
= a(τ)−a(τ −1) + b(τ)′ft− b(τ −1)′Et [ft+1]− δ−β′ft

=−1
2

n∑
i=1

(
b(τ −1)′Σ

)2
i
·
(
αi+β′ift

)
− b(τ −1)′Σt ·λt

=−1
2b(τ −1)′ΣtΣ′tb(τ −1)− b(τ −1)′Σt ·λt.

The term

−1
2b(τ −1)′ΣtΣ′tb(τ −1)

is referred to as the Jensen’s Inequality term, since it originates from the concavity of
the exponential function. As in the case of log-normal returns in the C-CAPM, we tend
to ignore the effect of this term and define the adjusted one-period ahead risk premium
as

RP
(τ)
t,adj := Et

[
exr

(τ)
t+1

]
+ 1

2b(τ −1)′ΣtΣ′tb(τ −1) =−b(τ −1)′Σt ·λt.

The time t covariance of excess returns and the risk factors vPt+1 is given as

Covt
(
exr

(τ)
t+1,v

P
t+1

)
= Covt

(
−b(τ −1)′ft+1,v

P
t+1
)

=−b(τ −1)′Σt ·Vart
(
vPt+1

)
,

where we used the fact that, under the physical measure, ft+1 follows a VAR(1) pro-
cess with conditional variance ΣtΣ′t and innovation process vPt+1. Now, the risk premium
becomes

RP
(τ)
t,adj = Covt

(
exr

(τ)
t+1,v

P
t+1

)(
Vart

(
vPt+1

))−1
·λt.
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As before, this adjusted risk premium is given as the product of two components: the beta
term

Covt
(
exr

(τ)
t+1,v

P
t+1

)(
Vart

(
vPt+1

))−1

and the market price of risk λt.

4.3.2 The Term Premium

Here, we show that the term premium can be expressed as the time average of one-period
expected excess returns across the life of a bond, which enables us to derive a (near) closed
form solution for the term premium in terms of model parameters.

The term premium for a τ -maturity bond at time t is defined as

TPt(τ) = Yt(τ)− 1
τ

τ−1∑
h=0

Et [rt+h]

It is shown in Cochrane and Piazzesi (2008) that the term premium can also be expressed
as the average time t expected excess return over the life of the bond, unadjusted for the
Jensen’s inequality term. To see this, note that

Yt(τ) =−1
τ

log(Pt(τ)) = 1
τ

[log(Pt+τ (0))− log(Pt(τ))]

= 1
τ
Et [log(Pt+τ (0))− log(Pt(τ))] .

This can then be expressed as a telescoping sum as follows:

Yt(τ) = 1
τ

τ−1∑
h=0

Et [log(Pt+h+1(τ −h−1))− log(Pt+h(τ −h))] ,

so that the term premium is written as

TPt(τ) = 1
τ

τ−1∑
h=0

Et [log(Pt+h+1(τ −h−1))− log(Pt+h(τ −h))− rt+h] .

Note that each expression within the brackets on the right is the excess return from time
t+h to t+h+ 1 for a τ −h-period bond, so that

TPt(τ) = 1
τ

τ−1∑
h=0

Et
[
exr

(τ−h)
t+h+1

]
(4.9)
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Note that, by the law of iterated expectations,

Et
[
exr

(τ−h)
t+h+1

]
= Et

[
Et+h

[
exr

(τ−h)
t+h+1

]]

for any 0≤ h≤ τ −1, so that the term premium has the equivalent expression

TPt(τ) = 1
τ

τ−1∑
h=0

Et
[
RP

(τ−h)
t+h

]
,

where each RP
(τ−h)
t+h is the risk premium unadjusted for the Jensen’s inequality term,

derived above as

RP
(τ−h)
t+h =−b(τ −h−1)′Σt+h ·λt+h−

1
2b(τ −h−1)′Σt+hΣ′t+hb(τ −h−1).

4.3.3 The Forward Risk Premium

We can likewise furnish an expression for the forward risk premium in terms of one-
period ahead expected excess returns, using which it is expressed as a function of model
parameters.

The h-period ahead forward risk premium at time t is defined as

FRPt(h) = f
(h)
t −Et [rt+h] .

Cochrane and Piazzesi (2008) also show that the forward risk premium can be expressed
as the sum of the differences in one-period ahead expected excess returns. To derive this
expression, we use the fact that

f
(h)
t = rt+h+ r

(h+1)
t,t+h − r

(h)
t,t+h,

and since f (h)
t is known at time t, taking time t expectations on both sides yields

FRPt(h) = f
(h)
t −Et [rt+h] = Et

[
r

(h+1)
t,t+h − r

(h)
t,t+h

]
.

Using the definition of holding period returns, we can express each as a telescoping sum:

FRPt(h) = Et
[
r

(h+1)
t,t+h

]
−Et

[
r

(h)
t,t+h

]
= Et [log(Pt+h(1))− log(Pt(h+ 1))]−Et [log(Pt+h(0))− log(Pt(h))]

=
h−1∑
i=0

Et [log(Pt+i+1(h− i))− log(Pt+i(h− i+ 1))]
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−
h−1∑
i=0

Et [log(Pt+i+1(h− i−1))− log(Pt+i(h− i))]

=
h−1∑
i=0

Et
[
r

(h−i+1)
t+i+1 − r(h−i)

t+i+1

]

=
h−1∑
i=0

Et
[
exr

(h−i+1)
t+i+1 − exr(h−i)

t+i+1

]
,

where the last equality follows from adding and subtracting rt+i+1 for each 0≤ i≤ h−1.
We have thus obtained the expression

FRPt(h) =
h−1∑
i=0

Et
[
exr

(h−i+1)
t+i+1 − exr(h−i)

t+i+1

]
. (4.10)

As with the term premium, the law of iterated expectations tells us that

Et
[
exr

(h−i+1)
t+i+1 − exr(h−i)

t+i+1

]
= Et

[
Et+i

[
exr

(h−i+1)
t+i+1 − exr(h−i)

t+i+1

]]
= Et

[
RP

(h−i+1)
t+i −RP (h−i)

t+i

]
.

Therefore, the forward term premium is in terms of the risk premium and Jensen’s in-
equality terms as

FRPt(h) =
h−1∑
i=0

Et
[
RP

(h−i+1)
t+i −RP (h−i)

t+i

]
.

4.3.4 Equivalence of Expectation Hypotheses

The expressions

TPt(τ) = 1
τ

τ−1∑
h=0

Et
[
RP

(τ−h)
t+h

]

FRPt(h) =
h−1∑
i=0

Et
[
RP

(h−i+1)
t+i −RP (h−i)

t+i

]
,

also tell us that the three exectations hypotheses studied in section 3.1.2 are all equivalent.
Recall that the EH assumes three forms:

RPt(τ) = 0, TPt(τ) = 0, and FRPt(h) = 0

for any t and τ . We can now show that the RP EH and TP EH imply the others:

• RP EH implies TP EH and FRP EH
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Suppose that the RP EH, namely RPt(τ) = 0, holds. Then, since TPt(τ) and FPt(h)
are functions of the one-period ahead risk premium, both the term premium and
forward risk premium are also 0, so that the TP EH and the FRP EH hold.

• TP EH implies RP EH and FRP EH
Suppose that the TP EH, namely TPt(τ) = 0, holds. Putting τ = 1, we can see that

TPt(1) = Et
[
RP

(1)
t

]
=RP

(1)
t = 0.

Suppose that RP (τ)
t = 0 for any τ ≥ 1 and t. Then, since

TPt(τ + 1) = 1
τ + 1

τ∑
h=0

Et
[
RP

(τ+1−h)
t+h

]
= 1
τ + 1RPt(τ + 1) = 0,

implying that RPt(τ + 1) = 0. Thus, by induction, the RP EH holds, and by the
preceding result, the FRP EH holds as well.

• FRP EH implies RP EH and TP EH
Suppose that the FRP EH, namely FRPt(h) = 0, holds. Putting h = 1, and using
the fact that RPt(1) = 0 (the risk-premium of a risk-free asset is 0), we can see that

FRPt(1) =RPt(2)−RPt(1) =RPt(2) = 0.

Continuing by induction as above shows us that the RP EH holds 4, so that the TP
EH also holds.

By implication, if any one of the expectation hypotheses does not hold, then neither
do the other two. In the presence of risk aversion, it is easy to show that the RP EH does
not hold, so the TP EH and the FRP EH must also be violated.

4.4 Various Specifications for Market Prices of Risk

So far, we have only specified the short rate dynamics and risk-neutral dynamics of the
model. To close out the model, we must either provide a specification for the physical
dynamics of the model, or the market price of risk. Here, we study three popular forms of
specifying λt; the first two specify λt directly, while the third first specifies the physical
dynamics and then derives λt using the risk-neutral and physical dynamics. The last two

4Try this as an exercise.
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approaches will be seen to be equivalent in Gaussian models. The exposition is heavily
based on Duffee (2002) and Cheridito, Filipovic, and Kimmel (2007).

4.4.1 Completely Affine Models

The completely affine model of λt is the preferred specification in many of the earliest
models of the term structure, including the models of Vasicek (1977) and the renowned
CIR model (Cox, Ingersoll, and Ross (1985)), and was formalized in Dai and Singleton
(2000). To understand the implications of this specification, we must first study Dai and
Singleton’s model, a generalization of the CIR model, in more depth.

Consider the short rate and risk-neutral factor dynamics of an admissible ATSM that
belongs to the Am(n) class, which indicates that there are n factors in the model whose
volatility depends on 0≤m≤ n factors:

rt = δ+β′ft

ft+1 =KQ +GQft+ Σt ·vQt+1,

Σt = Σ ·diag
(√

α1 +β′1ft, · · · ,
√
αn+β′nft

)
.

We say that the volatility of the factors depends on m factors in the sense that the rank
of the matrix

B =
(
β1 · · · βn

)
is equal to m.

In a completely affine Am(n) model, the market prices of risk are given as

λt = Σt · λ̃=


√
α1 +β′1ft · λ̃1

...√
αn+β′nft · λ̃n

 ,

where λ̃ is an n-dimensional nonrandom vector. We can easily see that, from the following
identity,

µPt = Σt ·λt+µQt .
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the physical factor dynamics are also affine in the factors ft:

ft+1 =

KQ + Σ ·


α1 · λ̃1

...
αn · λ̃n




︸ ︷︷ ︸
KP

+

GQ + Σ ·


β′1
...
β′n




︸ ︷︷ ︸
GP

·ft+ Σt ·vPt+1.

Furthermore, we can easily see that the product λtλ′t is also affine in the factors. This is
why this model is called “completely affine”.

Affine physical factor dynamics, in particular, are useful because this means that the
factors follow a VAR process under both the risk-netural and physical measures. As we
primarily focus on the parameters pertaining to the physical dynamics of the factors
during estimation, this considerably simplifies the estimation process. Dai and Singleton
impose the following identification restrictions on the short rate and factor dynamics:

i) The elements of β are all non-negative.

ii) The first m factors f1t, · · · ,fmt are non-negative.

iii) We have

αi =

0 if 1≤ i≤m

1 if m+ 1≤ i≤ n
.

iv) For any 1 ≤ i ≤ n, βi is the ith standard basis of Rn, so that β′ift = fit, the ith
factor.

For any m+1≤ i≤ n, the last n−m elements of each βi are equal to 0, and its first
m elements are all non-negative. βi can be denoted

βi =
 β̃i

O(n−m)×1

 .

v) GP is conformably partitioned as

GP =
GP

11 Om×(n−m)

GP
21 GP

22
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when m > 0, and the elements of GP
11 are non-negative. When m = 0, GP is lower

triangular.

vi) The matrix Σ governing the cross correlations of the factors is given as

Σ = In.

vii) The last n−m elements of KP are equal to 0.

First, note that, under this normalization, the factor innovations are independent.
Heuristically, we are assuming that the first m factors Granger cause the latter n−m
factors, but that the converse does not hold. This is one of two ways to impose restrictions
on the correlations between the factors; we will discuss this matter in more detail in the
next section on identification.

Since the first m factors are all non-negative and each β̃i is comprised wholly of non-
negative elements, the model is admissible. Furthermore, as the first m factors approach
0, so does their conditional variance (the conditional variance of the last n−m factors
approach 1). The non-negativity restriction on GP

11 and the zero restriction on GP
12 is also

imposed to keep the first m factors from becoming negative 5. Dai and Singleton claim
that this canonical model is maximal in the sense that they are the minimal possible re-
strictions that ensures admissibility (at least in the continuous time case) and econometric
identification. In the next section, we show that the canonical model is identified against
invariant affine transformations, but underidentified in the econometric sense.

Focusing now on the market price of risk, Duffee (2002) points out that λt has the
following advantages and disadvantages:

i) Advantage: Affine Physical Factor Dynamics
The physical factor dynamics are affine in a completely affine model. The advantage
that this confers was mentioned above.

ii) Advantage: Continuity at 0
In the completely affine model, compensation for risk goes to 0 as risk (=variance
of the factors) goes to 0. This means that, in this model, bond prices are continuous
at 0, which we saw earlier was one of the core assumptions needed for an SDF to

5In fact, in a model of continuous time, the restrictions on GP are sufficient to ensure the non-negativity
of the first m factors. In discrete time, we no longer have this luxury.
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exist.

iii) Disadvantage: Compensation Depends only on Factor Variance
In a completely affine model, since λt is a function only of the factor variances, it
means that the second moments of the factors contain all the necessary information
on risk, which is an unrealistic assumption.

More concretely, Duffee shows that one of the main stylized facts concerning bond
excess returns is that they are low on average but exhibit high volatility. In a com-
pletely affine model, bond excess returns can be kept low (=λt is kept low) if and
only if factor variances are small, which means that bond excess returns must exhibit
low volatility. This represents a failure of the completely affine model to replicate
stylized facts of the yield curve.

iv) Disadvantage: Each Price of Risk has a Fixed Sign
Since the factor standard deviations are always non-negative, the sign of the ith
market price of risk λit depends entirely on the sign of λ̃i. This means that a posi-
tive price of risk must remain positive, and that a negative price of risk must remain
negative, leading to a failure to replicate the stylized fact that bond excess returns
often change signs (due to their low level but high volatility).

4.4.2 Essentially Affine Models

To address the failures of the completely affine model, Duffee proposes in his 2002 paper
the essentially affine model of λt. The specification of the short rate dynamics and the
risk-neutral dynamics are identical to the completely affine model; the only change is with
the specification for the market prices of risk:

λt = Σtλ̃+ Σ−t Λ ·ft,

where λ̃ is an n-dimensional nonrandom vector, Λ is an n×n nonrandom matrix and Σ−t
is an n×n diagonal random matrix such that its ith diagonal element Σ−t,ii is given as

Σ−t,ii =


0 if 1≤ i≤m

1√
1+β′ift

if m+ 1≤ i≤ n
.

The first part of this specification is identical to the completely affine model, but under
the essentially affine specification the market prices of risk also depend on the factors ft
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independent of the conditional variances αi+β′ift. This added flexibility means that the
volatility of λt can be maintained at a high enough level while still keeping its level low,
making up for the disadvantages of the completely affine model.

In addition, the essentially affine model retains the advantages of the completely affine
specification. First, as the volatilities of the factors go to 0 the volatility of λt also goes to
0. The physical factor dynamics are also affine under the essentially affine model, which
motivates the name “essentially” affine: to see this, we once again utilize the identity

µPt = µQt + Σtλt.

Here,

Σtλt = Σ2
t λ̃+

 Om×m Om×(n−m)

O(n−m)×m In−m

Λft,

which is an affine function of the factors, so µPt is also affine in ft. Specifically, the physical
factor dynamics are now given as

ft+1 =

K
Q +


Om×1

λ̃m+1
...
λ̃n



+

G
Q +


diag

(
λ̃1, · · · , λ̃m

)
Om×(n−m)

β̃′m+1 · λ̃m+1
...

β̃′n · λ̃n

 Λ22



ft+ Σt ·vPt+1,

where Λ22 collects the (n−m)× (n−m) block matrix in the (2,2) position of Λ.

4.4.3 Extended Affine Models

The completely affine and essentially affine models choose to specify the market prices of
risk first, and then derive affine physical factor dynamics based on the market price of risk
specification. In contrast, the extended affine model introduced in Cheridito, Filipovic,
and Kimmel (2007) first specifies affine physical factor dynamics, and then derives market
prices of risk as a consequence of the risk-neutral and physical dynamics.

The extended affine model with n factors whose volatility depends on the first 0 ≤
m≤ n factors is given as

rt = δ+β′ft

ft+1 =KQ +GQft+ Σt ·vQt+1

ft+1 =KP +GPft+ Σt ·vQt+1
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Σt = Σ ·diag
(√

f1t, · · · ,
√
fmt,

√
αm+1 +β′m+1ft, · · · ,

√
αn+β′nft

)
,

where once again the elements of αi and βi are all non-negative, and the last n−m
elements of each βi are equal to 0, to render the model admissible. In this model, the
market prices of risk are given as

λt = Σ−1
t

(
µPt −µ

Q
t

)
= Σ−1

t

(
KP−KQ

)
+ Σ−1

t

(
GP−GQ

)
ft.

When m = 0, the essentially affine and extended affine models are identical, since Σt

does not depend on the time subscript t and thus λt is an affine function of the factors
ft under both models. Since the case m = 0 corresponds to Gaussian ATSMs, in Gaus-
sian models specifying affine market prices of risk and affine physical dynamics leads to
the same model. Due to this equivalence, we often choose the essentially/extended affine
specification for market prices of risk when working with GATSMs.

4.5 The Identification Problem

In the models investigated so far, bond prices and yields are determined by latent factors
ft that evolve dynamically according to a VAR specification. We are then faced with the
problem: how do we identify the factors ft? For an illustration, consider a Gaussian ATSM
model with short rate dynamics and factor dynamics given as

rt = δ+β′ft (4.11)

ft+1 =KQ +GQft+ Σ ·vQt+1 (4.12)

ft+1 =KP +GPft+ Σ ·vPt+1.. (4.13)

Recall that the first two equations are sufficient to derive bond prices and yields, and that
the third equation tells us that the factors follow a VAR(1) process; specifically, the time
t yield of a τ -period bond is given as

Yt(τ) = α(τ) +β(τ)′ft (4.14)

Now consider an invariant affine transformation of the factors ft, that is, factors Xt

defined as

Xt = A+B ·ft

118



4.5. MODEL IDENTIFICATION CHAPTER 4. ATSMS

for some A ∈Rn and a non-singular matrix B ∈Rn×n. In terms of Xt, the short rate and
risk-neutral dynamics are given as

rt = δX +β′Xft (4.15)

Xt+1 =KQ
X +GQ

XXt+ ΣX ·vQt+1 (4.16)

Xt+1 =KP
X +GP

XXt+ ΣX ·vPt+1, (4.17)

where the new parameters are given as

δX = δ−β′B−1A

βX =B−1′β

Ki
X =B(In−Gi)B−1 ·A+BKi for any i= P,Q

GiX =BGiB−1 for any i= P,Q

ΣX =B ·Σ

for any 1≤ i≤ n. The bond pricing formula then tells us that there exist functions αX(·)
and βX(·) such that

Yt(τ) = αX(τ) +βX(τ)′Xt. (4.18)

Therefore, given the data on the yields Yt(τ), we have no way to know whether the
yields were generated given the latent factors ft under equations (4.11), (4.12), (4.13) and
(4.14), or if they were generated given the latent factors Xt under the equations (4.15),
(4.16), (4.17) and (4.18). In the presence of such ambiguity, we say that the model is
underidentified.

Our goal is to identify the model against invariant affine transformations, that is, to
impose restrictions on the model parameters so that there are only one set of factors that
generate the yields and simultaneously satisfy these restrictions. Mathematically, we want
to impose restrictions on the model paramters so that, if

Xt = A+Bft

is another set of factors that satisfies the restrictions, then A=On×1 and B = In. Heuris-
tically, identification is the process of reducing the number of free parameters as much as
possible. In general, affine term structure models are identified in two steps:

1) Equivalence of True Model to Canonical Form
Suppose the true short rate and factor dynamics are given as

rt = δ+β′ft
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ft+1 =KQ +GQft+ Σ ·vQt+1

ft+1 =KP +GPft+ Σ ·vPt+1.

Then, there exists an invariant affine transformation

Xt = A+B ·ft

such that the short rate and factor dynamics formulated in terms of Xt satisfies
the given identification restrictions. This form of the model is called the canonical
form of the model.

2) Uniqueness of Canonical Form
We now show that the canonical form is identified against invariant affine transfor-
mations. Specifically, let Xt be factors under which the short rate and risk-neutral
dynamics satisfy the identification restrictions. Then, if

Zt =A+B ·Xt

is an affine transformations of Xt under which the short rate and risk-neutral dy-
namics also satisfy the identification restrictions, then Zt =Xt.

In other words, even though the true factors may be ft, we can only consistently
estimate Xt, an affine rotation of the true factors; the fact that the Xt is a rotation of
the true factors follows from the first step, and the consistent estimation is made possible
by the second step. This is similar to how factor models are identified in works such as
Bai (2003), where the PC estimators of the factors are shown to be consistent only for a
rotation of the true factors.

Below we study two popular methods of identifying Gaussian ATSMs. Since the pa-
rameters δ,β,KQ,GQ and Σ govern how the yields are determined as functions of the
factors6. Thus,during the identification process we impose restrictions on δ,β,KQ,GQ and
Σ. Most practitioners choose to either impose the JSZ restrictions, named as such after
the seminal work by Joslin, Singleton, and Zhu (2011), or the arbitrage-free Nelson-Siegel

6Alternatively, we can impose restrictions on the short rate and P-dynamics of the model. If we
impmose identification restrictions on the risk-neutral dynamics instead of the physical dynamics, then
we can use our factor estimates to estimate GP via unrestricted OLS. However, if we impose these
restrictions on GP instead, we must estimate a restricted version of the VAR equation

ft =KP +GPft+ Σt ·vPt+1,

which is decidedly more difficult than unrestricted OLS. This is one reason Joslin, Singleton, and Zhu
(2011), and indeed many others, choose to impose restrictions on the Q-dynamics over the P-dynamics.
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(AFNS) restrictions, first introduced in Christensen, Diebold, and Rudebusch (2011).

4.5.1 The Dai-Singleton Canonical Model

Before studying the JSZ and AFNS models, we first introduce the Dai-Singleton canonical
model, introduced in Dai and Singleton (2000), which is one of the first models that
attempted to impose identification restrictions on ATSMs. While the version of the model
in Dai and Singleton (2000) imposes restrictions on the physical factor dynamics instead
of the risk-neutral dynamics, to maintain consistency with the JSZ model that follows
we instead study an equivalent version of the model that imposes restrictions on the
risk-netural dynamics, which is studied in Singleton (2006).

Consider a Gaussian ATSM with short rate and risk-neutral dynamics7 given by

rt = δ+β′ft

ft+1 =KQ +GQft+ Σ ·vQt+1.

As studied briefly above, Dai and Singleton impose the identification restrictions

i) The elements of β are all non-negative.

ii) Σ = In.

iii) GQ is lower triangular with no eigenvalues equal to 1, that is, no unit roots. The
diagonal entries of GQ are also distinct and ordered in decreasing order.

iv) KQ =On×1.

It may come to your attention that the conditions that GQ has no eigenvalues equal to 1
and that the diagonal entries of GQ are distinct and ordered in decreasing order are not
part of the original identification restrictions proposed in Singleton (2006). In Hamilton
and Wu (2012), it is pointed out that, without these restrictions, we end up with an
unidentified model. The specific way in which these additional restrictions help identify
the model is shown in the appendix. It is also shown there that any Gaussian ATSM
where GQ has real and distinct eigenvalues withint the unit circle can undergo invariant
affine transformations in a manner that satisfies the above constraints, and that a model
that satisfies the above restrictions is identified against invariant affine transformations.

If the risk-neutral factor dynamics include a unit root, one way to identify the model
may be to impose restrictions on the physical factor dynamics instead of the risk-neutral
factor dynamics, that is, to restrict KP = On×1 and GP lower triangular with no unit

7We only state the risk-neutral dynamics because the physical factor dynamics are left unrestricted
and thus do not play a role in model identification.
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roots and decreasing diagonal entries. However, if both the risk-neutral and physical
factor dynamics contain unit roots, then we must impose additional zero restrictions on
δ or β in order to identify the model. This is what we opt for in the FS-ZLB model.

Another problem that this identification scheme suffers from, also pointed out in
Hamilton and Wu (2012), is that does not encompass ATSMs where GQ or GP have
complex eigenvalues, since in this case there may not exist a decomposition GQ = ULU ′

with real lower triangular L and real orthogonal U . We therefore study the JSZ model,
which provides an alternative means of identifying Gaussian ATSMs that is robust under
both the presence of a (single) unit root and complex eigenvalues in the mean reversion
parameters.

4.5.2 The JSZ Model

Joslin, Singleton, and Zhu (2011) (henceforth JSZ) introduced a seminal identification
scheme for Gaussian ATSMs. The generic GATSM framework consists of the following
short rate and risk neutral dynamics8:

rt = δ+β′ft

ft+1 =KQ +GQft+ Σ ·vQt+1,

where ΣΣ′ is the (positive definite and nonrandom) conditional variance of the factors.
JSZ introduced the following restrictions to the model:

i) Σ is lower triangular; usually, it is taken to be the Cholesky factor of the conditional
variance matrix.

ii) δ = 0 and β = ι, the n-dimensional vector consisting of 1s.

iii) GQ is in ordered Jordan form, that is, it is a block diagonal matrix

GQ = diag
(
JQ

1 , · · · ,JQ
m

)
where each block JQ

i is a Jordan block

JQ
i =



λQi 1 · · · 0 0
0 λQi · · · 0 0
... ... . . . ... ...
0 0 · · · λQi 1
0 0 · · · 0 λQi


8We again only state the risk-neutral dynamics because the physical factor dynamics are left unre-

stricted and thus do not play a role in model identification.
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for some real λQi such that
∣∣∣λQi ∣∣∣≤ 1. The blocks are ordered so that 1≥ λQ1 > · · ·>λQm.

We allow for the existence of at most a single unit root, or an eigenvalue equal to
1, and if a unit root exists, it is ordered as the first eigenvalue.

iv) The last n−1 entries of KQ are equal to 0, so that

KQ =
 kQ∞
O(n−1)×1

 .

JSZ show that, given any Gaussian ATSM with short rate and risk-neutral dynamics

rt = δ+β′ft

ft+1 =KQ +GQft+ Σ ·vQt+1,

where GQ contains eigenvalues on or within the unit circle and at most one unit root,
there exists a unique observationally equivalent ATSM that satisfies the JSZ restrictions
above.

In the appendix, we show that any ATSM where GQ has real and distinct eigenvalues
is observationally equivalent to an ATSM with short rate and risk-netural dynamics

rt = ι′Xt (4.19)

Xt+1 =


kQ∞
0
...
0

+


λQ1 · · · 0
... . . . ...
0 · · · λQn

 ·Xt+ Σ ·vQt+1, (4.20)

where Σ is lower triangular with positive diagonal entries, and that this model is identified
against invariant affine transformations. In other words, the risk-neutral dynamics can be
summarized in terms of the n+ 1 + n(n+1)

2 parameters

θQ = {kQ∞,λ
Q
1 , · · · ,λQn ,Σ}.

Solving for bond prices under the above canonical JSZ form allows us to formulate yields
as affine functions of the factors Xt:

Yt =A(θQ) +B(θQ) ·Xt. (4.21)
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Specifically,

B(θ) =


b(τ1)′
τ1...

b(τm)′
τm

=



1
τ1

1−(λQ1 )τ1
1−λQ1

· · · 1
τ1

1−(λQn)τ1
1−λQn

... . . . ...

1
τm

1−(λQ1 )τm

1−λQ1
· · · 1

τm
1−(λQn)τm

1−λQn


(4.22)

and

A(θ) =


a(τ1)
τ1...

a(τm)
τm

=



∑τ1−1
s=1

[
kQ∞

1−(λQ1 )s

1−λQ1
− 1

2
∑n
i=1

∑n
j=1 (ΣΣ′)ij

1−(λQi )s

1−λQi

1−(λQj )s

1−λQj

]
...

∑τm−1
s=1

[
kQ∞

1−(λQ1 )s

1−λQ1
− 1

2
∑n
i=1

∑n
j=1 (ΣΣ′)ij

1−(λQi )s

1−λQi

1−(λQj )s

1−λQj

]


(4.23)

where we define

1−
(
λQi
)s

1−λQi
= s

for any s≥ 1 if λQi = 1. Below we continue to work with this simpler model.

A Model with Observable Factors

The JSZ canonical factors Xt in the above model are latent factors. One of the main
contributions of the JSZ model is that it allows us to derive an observationally equivalent
model with observable factors. Suppose that the sample consists of yields of m maturities,
collected into them-dimensional random vector Yt, and that there are n<m latent factors.
In general, we assume the existence of measurement errors et that cause the observed
yields, Yot , to deviate from the theoretical yields Yt:

Yot = Yt+ et.

This allows us to write the model, together with the physical factor dynamics, as a state-
space model and facilitate estimation. Instead of working with this general setup, suppose
that there exists n portfolios of yields that are observed without error, that is, assume
the existence of an n×m random matrix W and an n-dimensional random vector µ such
that

Pt = µ+WYt
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is observed without error, or

WYot =WYt.

Below are two popular choices for this affine transformation:

1) Principal Components
One way to choose µ,W is in a manner that makes Pt the principal components of
the demeaned yields. Formally, we would have

Pt =W
(
Yot −Y

)
,

where Y is the sample mean of the yields and the rows of W are orthonormal
eigenvectors corresponding to the n largest eigenvalues of the sample covariance
matrix

1
mT

T∑
t=1

(
Yot −Y

)(
Yot −Y

)′
.

Note that this requires the consistency of the sample covariance matrix for the true
covariance matrix, or the weak stationarity and variance ergodicity of the yield
process {Yt}t∈Z. Furthermore, the parameters µ,W do not depend on the model
parameters in this case.

2) Perfectly Priced Yields
An alternative approach is to assume that some yields are perfectly priced, while
others are observed with error. A popular choice is to arrange the yields so that the
first n yields, collected in Y1

t , are priced without error, while the remaining m−n
yields, collected in Y2

t , are not. In this case, we would write
Y1o

t

Y2o
t

=
Y1

t

Y2
t

+
On×1

et

 .
Letting A(θQ)1 and B(θQ)1 collect the first n rows of A(θQ) and B(θQ), it follows
that

Y1o
t = Y1

t =A(θQ)1 +B(θQ)1 ·Xt,

so that

Xt =−B(θQ)−1
1 A(θQ)1︸ ︷︷ ︸
µ

+B(θQ)−1
1︸ ︷︷ ︸

W

·Y1o
t .
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The fact that

Y1o
t = Y1

t

in this setup means that the n portfolios Xt are observed without error, so that
Pt =Xt. Note that here, µ and W are functions of the parameters θQ.

This specification may be more restrictive than the PC one, since it requires some
yields themselves, instead of a portfolio of yields, to be priced without error. On the
other hand, it confers on the model added generality compared to the PC specifica-
tion because the case of non-stationary yields can also be accomodated.

In either case, since

Pt = µ+WYt =
(
µ+WA(θQ)

)
+WB(θQ) ·Xt, (4.24)

Pt is an invariant affine transformation of the JSZ canonical factors Xt (provided that
WB(θQ) is nonsingular). It follows that an observationally equivalent Gaussian ATSM
with factors Pt has short rate and factor dynamics

rt = δP +βP ·Pt (4.25)

Pt+1 =KQ
P +GQ

P ·Pt+ ΣP ·vQt+1. (4.26)

Pt+1 =KP
P +GP

P ·Pt+ ΣP ·vPt+1. (4.27)

where

δP =−ι′
(
µ+WA(θQ)

)
(4.28)

βP =
(
B(θQ)′W ′

)−1
ι (4.29)

GQ
P =

(
WB(θQ)

)
λQ1 · · · 0
... . . . ...
0 · · · λQn

(WB(θQ)
)−1

(4.30)

KQ
P =

[
In−GQ

P
](
µ+WA(θQ)

)
+kQ∞ ·WB(θQ)1 (4.31)

ΣP =
(
WB(θQ)

)
Σ (4.32)

and B(θQ)1 is the first column of B(θQ), while no restrictions are imposed on the param-
eters governing the physical factor dynamics.
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In terms of Pt, yields are given as

Yt =A(θQ)−B(θQ)
[
WB(θQ)

]−1 (
µ+A(θQ)

)
︸ ︷︷ ︸

Intercept

(4.33)

+B(θQ)
[
WB(θQ)

]−1

︸ ︷︷ ︸
Factor Loadings

·Pt

Thus, under the assumption that the portfolios Pt are observed without error, JSZ shows
us how we can formulate a Gaussian ATSM with factors Pt that depends on as few pa-
rameters as possible.

4.5.3 The AFNS Model

The arbitrage-free Nelson-Siegel (AFNS) model, presented in continuous time by
Christensen, Diebold, and Rudebusch (2011) and adapted for discrete time by Niu and
Zeng (2012), is a special case of the JSZ model that introduces no-arbitrage into the
Nelson-Siegel model. Although the N-S model fits the yield curve very well, its main
shortcoming is that it is an empirical model that does not impose the no-arbitrage con-
dition. In its base form, the N-S model allows for arbitrage opportunities to arise, as we
will see below. The AFNS model is an attempt to retain the advantages conferred by the
N-S model, namely its excellent yield curve fit, while establishing a theoretical basis that
the base model sorely lacks.

The AFNS model is a Gaussian ATSM first and foremost. It short rate and factor
dynamics are given, as usual, as

rt = δ+β′ft

ft+1 =KQ +GQft+ Σ ·vQt+1

ft+1 =KP +GPft+ Σ ·vPt+1.

Under this specification, we saw earlier that bond prices are given as exponential-affine
functions of the factors

Pt(τ) = exp
(
−a(τ)− b(τ)′ft

)
and as such that the yields are affine functions of the factors:

Yt(τ) = a(τ)
τ

+ b(τ)′
τ

ft. (4.34)
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Like its namesake, in the AFNS model the factor loadings b(τ)
τ are given as the N-S

loadings, that is,

b(τ)′
τ

=
(
1 1−exp(−τκ)

τκ
1−exp(−τκ)

τκ − exp(−τκ)
)

for some decay parameter κ. This allows us to identify the three factors in ft as the level
Lt, slope St, and curvature Ct, as we did in the base N-S model. Since

b(τ)
τ

= 1
τ

τ−1∑
j=0

(
GQ′

)jβ,
the question now is whether GQ and β can be chosen so that b(τ)

τ actually assumes the N-S
factor loading form above. Fortunately, it is shown in Niu and Zeng (2012) that specifying

β′ =
(
1 1−exp(−κ)

κ
1−exp(−κ)

κ − exp(−κ)
)

and

GQ =


1 0 0
0 exp(−κ) 1
0 0 exp(−κ)


actually does lead to b(τ)

τ being given as the N-S factor loadings.
Choosing to impose no restrictions on the physical factor dynamics on the model

means that KP is not restricted. In other words, given that GP has eigenvalues within the
unit circle (or in other words, that the factors are stationary), the factors ft are allowed
to have non-zero means. This means that we can restrict the intercept term in both the
short rate and risk-neutral dynamics to be zero9. Thus, the short rate and risk-neutral
factor dynamics of the AFNS model are given as

rt =
(
1 1−exp(−κ)

κ
1−exp(−κ)

κ − exp(−κ)
)
ft (4.35)

ft+1 =


1 0 0
0 exp(−κ) 1
0 0 exp(−κ)

ft+ Σ ·vQt+1 (4.36)

In light of the JSZ model above, if Σ is lower triangular, then the AFNS model can be
9In practice, we often choose to instead restrict the intercept KP of the factors under the physical

measure instead of KQ, especially when the factors are non-stationary under the physical measure. This
matter will be dealt in more detail in the next section.
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taken to be a restricted version of the JSZ canonical model with

kQ∞ = 0

λQ = (1,exp(−κ),exp(−κ)).

The AFNS model boasts a different specification for how the factors load on the short
rate; nevertheless, the risk-neutral dynamics depend on fewer parameters compared to the
canonical JSZ model. By implication, since the JSZ canonical model is identified against
invariant affine transformations, so must the AFNS model.

Note how, in equation (4.34), there is an intercept term a(τ)
τ in addition to the factor

loadings and factors found in the base N-S model. This intercept term is a by-product of
introducing no-arbitrage into the mix, and suggests that the base N-S model, which lacks
an intercept, does not satisfy the no-arbitrage condition. Heuristically, the intercept term
can be interpreted as a correction for yields of various maturities that prevents arbitrage
opportunities from arising.

Compared to the identification schemes we studied earlier, the AFNS model takes a
slightly different approach. Instead of starting with an arbitrary Gaussian ATSM and
showing that the true latent factors can be appropriately transformed to obtain an ob-
servationally equivalent but identified ATSM, the AFNS model assumes from the outset
that the true model is the one given by (4.35) and (4.36). In this context, the fact that
the AFNS model is identified against invariant affine transformations indicates that we
can consistently estimate the actual level, slope and curvature factors, instead of just a
rotation of them.

This fact was actually seen in the earlier section on estimating the N-S model. Instead
of the consistency results in works such as Bai and Ng (2002) in which the estimated
factors are consistent only for a rotation of the true factors, it was shown in that section
that the least squares estimator of the N-S factors is consistent for the actual N-S factors.
This ease of identification, as well as the clear role that each N-S factor plays, is one of
the many reasons practitioners use the AFNS model over the more robust JSZ canonical
model.

4.6 Estimating Gaussian ATSMs

Here we introduce some notable approaches to estimating Gaussian ATSMs using linear
regressions. Consider a general Gaussian ATSM with short rate and factor dynamics given
as

rt = δ+β′ft
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ft+1 =KQ +GQft+ Σ ·vQt+1

ft+1 =KP +GPft+ Σ ·vPt+1.

As we will no doubt be familiar with by now, the affine short rate and risk-neutral dy-
namics imply that the yields are given as an affine function of the factors:

Yt =A+B ·ft,

where A and B are functions of the Q-parameters

θQ = {δ,β,KQ,GQ,Σ}.

In general, we assume that there exists a measurement error et for the yields so that the
model can be written in state space form as:

Yt =A+B ·ft+ Σe · et (4.37)

ft =KP +GP ·ft−1 + Σ ·vPt , (4.38)

where ΣeΣ′e is the covariance matrix of the measurement errors. A fully rigorous estimation
of the model parameters would involve Gaussian MLE or Bayesian estimation via the
Metropolis-Hastings algorithm, which uses the Kalman filter and smoother, or Carter
and Kohn’s backward recursion, to recover the factors. Due to the high irregularity of the
likelihood function, as well as the large number of parameters present in the model, this
proves difficult and overly complicated in practice.

Therefore, in practice we take inspirations from estimation methods such as Doz, Gi-
annone, and Reichlin (2011) and assume that the factors are observable functions of the
data. Often, they are given as the principal components of the yields, or as linear com-
binations of the yields based on the absence of measurement errors for yields of some
maturities. Below we introduce three popular methods of estimating Gaussian ATSMs
under the assumption of observable factors. In all three methods, the factors are taken to
be affine transformations of the yields.

4.6.1 Joslin, Singleton and Zhu (JSZ)

We start by studying how the likelihood is derived in the JSZ model, and how it allows for
a clear separation between parameters related to the risk-neutral and physical dynamics
of the model. In particular, it allows for the estimation of some parameters via OLS,
which greatly alleviates the computational burden of maximizing a likelihood function
or sampling via the Metropolis-Hastings algorithm. For this reason, this is the preferred
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method of estimation in works such as Bauer and Rudebusch (2016) and Bauer and
Rudebusch (2020).

Suppose we have a Gaussian ATSM with observable factors Pt that are given as an
affine transformation of Yt as

Pt = µ+WYt.

We assume these are observed without error in the sense that WYt = WYot . Below, we
omit the superscript o and let all yields that appear be the observed values.

Let the short rate and factor dynamics be given as in equations (4.25) to (4.27), under
which the yields are given as an affine function of the factors:

Yt = A
(
θQ
)

+B
(
θQ
)
·Pt, (4.39)

where A(·) and B(·) are functions of the Q-parameters

θQ = {kQ∞,λ
Q
1 , · · · ,λQn ,Σ}

in the manner specified in equations (4.23), (4.29) and (4.21).
Consider the simplest case, where the state-space form of the model is given as

Yt = A
(
θQ
)

+B
(
θQ
)
·ft+ Σe · et

ft =KP +GPft−1 + Σ ·vPt ,

with yield measurement errors et, which have covariance matrix ΣeΣ′e. In addition, assume
the processes {et}t∈Z and {vPt }t∈Z are i.i.d. standard normally distributed. In addition,
suppose that et is independent of all leads and lags of ft, while vPt is independent of all
lags of ft. Letting θ collect all the model parameters, and denoting the yield data by Y ,
the log-likelihood function can then be decomposed as10

l(Y | θ) =
T∑
t=1

logf(Yt | Ft−1, θ),

where Ft−1 is the information up to time t−1 and f(·) denotes densities. Note that the
factors Pt are assumed to be an observable affine transformation of the yields Yt; it follows
that the density of Pt given Yt is just the point mass at Pt, so that

f(Pt | Yt,Ft−1, θ) = 1.
10We are assuming that the initial values of the data and factors are given, so that this log likelihood

function is technically a conditional likelihood function.
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By Bayes’ rule, we can then see that

1 = f(Pt | Yt,Ft−1, θ) = f(Yt | Pt,Ft−1, θ) ·f(Pt | Ft−1, θ)
f(Yt | Ft−1, θ)

.

Furthermore, Pt−1 is contained in the information set Ft−1 and the conditional distribu-
tion of Pt given Ft−1 depends only on Pt−1. Similarly, the conditional distribution of Yt
given Pt,Ft−1 depends only on Pt. As such, we can see that

f(Yt | Ft−1, θ) = f(Yt | Pt, θ) ·f(Pt | Pt−1, θ).

Here, the conditional distribution of Pt given Pt−1 is governed by the P-dynamic param-
eters

KP
P ,G

P
P ,Σ,

while the conditional distribution of Yt given Pt depends only on the Q-dynamic param-
eters

kQ∞,λ
Q,Σ.

The log-likelihood can thus be written as

l(Y | θ) =
T∑
t=1

logf(Yt | Pt;kQ∞,λQ,Σ) (4.40)

+
T∑
t=1

logf(Pt | Pt−1;KP
P ,G

P
P ,Σ)

In other words, if we specify the risk-neutral and factor dynamics, then there is a clean
break in the log-likelihood between the Q-parameters and P-parameters. In particular,
note that KP

P and GP
P only appear in the transition equation log-likelihood, which is

quadratic in these parameters. This suggests that the MLEs of these parameters can be
recovered via OLS, indicating that we need only maximize the log-likelihood with respect
to the parameters kQ∞,λQ and Σ once we concentrate out KP

P and GP
P . JSZ also suggest

using the OLS estimator of ΣΣ′ recovered from the transition equation as an initial value
for numerical optimization.

The model can also be easily estimated via Bayesian methods using the decomposed
likelihood derived above. Since KP

P and GP
P only appear in the log-likelihood of the transi-

tion equation, we can Gibbs sample these parameters as we would a seemingly unrelated
regression (SUR) model. Furthermore, because the log-likelihood of the measurement
equation is linear in kQ∞, it can also be Gibbs sampled. The remaining parameters λQ
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and Σ can now be sampled via the Metropolis-Hastings algorithm; in some cases, we even
Gibbs sample Σ from the log-likelihood of the transition equation under the assumption
that the dependence of the measurement equation on Σ is not too high.

Since the AFNS model is also a special case of the JSZ model with a unit root in the
risk-neutral dynamics and two identical eigenvalues, its estimation can also proceed based
on the log-likelihood derived above.

4.6.2 Hamilton and Wu (HW)

Hamilton and Wu (2012) exploits the fact that Gaussian ATSMs are observationally
equivalent to a restricted Gaussian VAR when some yields are observed without error.
This leads them to propose a two-step method where the reduced form restricted Gaussian
VAR parameters are first estimated, and afterward the structural parameters are backed
out from the reduced form parameters via a GMM-type method.

Suppose that the yields are ordered so that the first n yields are observed without
error. In this case, the model can be written in the state-space form

Yot =A+B ·ft+
On×1

Σe · et


ft+1 =KP +GPft+ Σ ·vPt+1,

where ΣeΣ′e is the covariance matrix associated with the measurement errors for the last
m− n yields. Below, we omit the superscript o and let all yields that appear be the
observed values.

Conformably partition Yt, A and B as

Yt =
Y1

t

Y2
t

 , A=


A1︸︷︷︸
n×1
A2︸︷︷︸

(m−n)×1

 ,

B1︸︷︷︸
n×n
B2︸︷︷︸

(m−n)×n

 .

Then, the factors are affine functions of the observed yields:

ft = B−1
1 (Yt−A1) ,

so that, using the physical factor dynamics, we are able to recover the dynamics of the
first n yields Y1

t :

Y1
t =A1 +B1 ·ft

=A1 +B1K
P +B1G

P ·ft−1 +B1Σ ·vPt
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=
[(
In−B1G

PB−1
1
)
A1 +B1K

P
]
+B1G

PB−1
1 ·Y1

t−1 +B1Σ ·vPt .

Furthermore, the measurement equation tells us that the remaining (m−n) yields are
determined as an affine function of the first n yields:

Y2
t =A2 +B2 ·ft+ Σe · et

=
[
A2−B2B−1

1 A1
]
+B2B−1

1 ·Y1
t + Σe · et.

The log-likelihood function is given as

l(Y | θ) =
T∑
t=1

logf(Yt | Ft−1, θ)

=
T∑
t=1

logf(Y2
t | Y1

t ,Ft−1, θ) +
T∑
t=1

logf(Y1
t | Ft−1, θ).

where Ft−1 is the information contained in the yields up to time t− 1. Under the usual
assumption of i.i.d. Gaussian errors and their backward looking exogeneity, the conditional
distribution of Y2

t given Y1
t and Ft−1 depends only on Y1

t , and likewise, the conditional
distribution of Y1

t given the past yields depends only on Y1
t−1. Thus,

l(Y | θ) =
T∑
t=1

logf(Y2
t | Y1

t , θ) +
T∑
t=1

logf(Y1
t | Yt−1, θ). (4.41)

Hamilton and Wu make the observation that, because the conditional distributions above
are Gaussian, the ATSM is observationally equivalent to the reduced form restricted
Gaussian VAR

Y1
t = A∗1 + Φ∗1 ·Yt−1 +H∗1 ·vPt (4.42)

Y2
t = A∗2 + Φ∗2 ·Y1

t + Σe · et, (4.43)

where

A∗1 =
(
In−B1G

PB−1
1
)
A1 +B1K

P (4.44)

Φ∗1 = B1G
PB−1

1 (4.45)

Ω∗1 :=H∗1H
∗′
1 = B1ΣΣ′B′1 (4.46)

A∗2 =A2−B2B−1
1 A1 (4.47)

Φ∗2 = B2B−1
1 . (4.48)

The model is identified in the econometric sense if and only if we can recover the structural
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parameters

δ,β,KQ,GQ,Σ,KP,GP

as unique functions of the reduced form parameters

A∗1,Φ∗1,A∗2,Φ∗2,H∗1H∗′1 .

To this end, we may impose identifying restrictions on the model; candidates include any
of the identification schemes introduced above (Dai-Singleton, JSZ, AFNS).

Once we have imposed the identification restrictions, Hamilton and Wu propose the
following minimum chi-square estimation (MCSE) approach to estimate the structural
parameters:

Step 1: Estimation of the Reduced-Form Parameters
We first estimate the reduced form parameters A∗1,Φ∗1,Ω∗1,A∗2,Φ∗2,ΣeΣ′e via OLS es-
timation of the restricted VAR system.

Step 2: Recovering the Structural Parameters
Suppose we impose identification constraints that involve KP =On×1. We solve for
the parameters in GQ, β, δ and KQ by minimizing the distance

∥∥∥Φ∗2−B2B−1
1
∥∥∥2

+
∥∥∥Ω∗1−B1ΣΣ′B′1

∥∥∥2
+ |A1− (In−Φ∗1)A∗1|

2 +
∣∣∣A2−A∗2−B2B−1

1 A1
∣∣∣2.

Then, we obtain GP as

GP = B−1
1 Φ∗1B1,

where we evaluate B1 using the estimates obtained in the preceding stage.

Hamilton and Wu claim that this two-step approach to estimation yields consistent esti-
mates of the parameters while alleviating the computational burden of directly maximizing
the log-likelihood, required in, say, the JSZ model.

The method that appears in the second step of the estimation procedure is referred to
as minimum chi-square estimation. In the appendix, its namesake, as well as the reason
it yields consistent estimates of the parameters, is explained. Hamilton and Wu (2012)
also show that under the appropriate choices of weights, the MCSEs of the structural
parameters are as efficient as their full-information MLEs, that is, the MLEs obtained
from maximizing the log-likelihood directly.
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4.6.3 Adrian, Crump and Moench (ACM)

In Adrian, Crump, and Moench (2013) (henceforth ACM), an alternative means of esti-
mating Gaussian ATSMs is proposed, which requires only linear regressions. So far, we
have studied ATSMs in which the risk-neutral dynamics and form of the market price of
risk were first specified (e.g. Dai and Singleton (2000)), and those where the risk-neutral
and physical dynamics were first specified (e.g. Joslin, Singleton, and Zhu (2011)). In
constrast, ACM first specify the phyiscal dynamics and the form of the market price of
risk. Subsequently, they derive linear relationships between bond excess returns on the
one hand and the market price of risk and risk factors on the other. This allows us to
consistently recover the parameters related to the P-dynamics and the market price of
risk via OLS. Finally, the short rate dynamics are estimated via OLS and the bond price
formula is calculated. Below we study how ACM formulate their Gaussian ATSM and how
they estimate the model paramters through a simple three-step estimation procedure.

The starting point is the physical factor dynamics, given as

ft+1 =K+Gft+ Σ ·vt+1, (4.49)

where vt+1 follows an n-dimensional standard normal distribution conditional on past
information under the physical measure. The short rate dynamics are given as

rt = δ0 + δ′1ft+u
(1)
t (4.50)

where δ0 +δ′1ft is the orthogonal projection of rt on the space spanned by {1,f1t, · · · ,fnt}
with respect to the L2 norm. By the definition of projections,

E
[
u

(1)
t

]
= 0,

E
[
ft ·u(1)

t

]
=On×1.

In contrast to the usual short rate dynamics, the one in the ACM model explicitly includes
a measurement error u(1)

t that is uncorrelated with the factors ft.
Under the assumption of no-arbitrage there exists an SDF process {Mt}t∈N with

M0 = 1 such that

Pt(τ) = Et [Mt+1Pt+1(τ −1)] .

As usual, we assume the form of the SDF if given as

Mt+1 = exp
(
−rt−

1
2λ
′
tλt−λ′tvt+1

)
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for an n-dimensional vector λt of market prices of risk. Following the essentially affine
and extended affine models, ACM assume that market prices of risk are affine functions
of the factors:

λt = Σ−1 (λ+ Λft) . (4.51)

By definition, the one-period excess bond return for a τ -maturity bond from time t to
time t+ 1 is given as

exr
(τ)
t+1 = logPt+1(τ −1)− logPt(τ)− rt = log

(
Pt+1(τ −1)
Pt(τ) exp(−rt)

)
,

so that

exp
(
exr

(τ)
t+1

)
= Pt+1(τ −1)

Pt(τ) exp(−rt).

By the no-arbitrage condition,

1 = Et
[
Pt+1(τ −1)
Pt(τ) Mt+1

]

= Et
[
Pt+1(τ −1)
Pt(τ) exp(−rt)exp

(
−1

2λ
′
tλt−λ′tvt+1

)]

= Et
[
exp

(
exr

(τ)
t+1−

1
2λ
′
tλt−λ′tvt+1

)]

= exp
(
−1

2λ
′
tλt

)
·Et

exp
(1 −λ′t

)exr(τ)
t+1

vt+1

 .
Suppose that exr(τ)

t+1 and vt+1 are jointly normally distributed given the information up
to time t. Then, the formula for the MGF of normally distributed random vectors tells us
that

1 = exp

−1
2λ
′
tλt+Et

[
exr

(τ)
t+1

]
+ 1

2
(
1 −λ′t

) Vart
(
exr

(τ)
t+1

)
Covt

(
exr

(τ)
t+1,vt+1

)
Covt

(
vt+1, exr

(τ)
t+1

)
In


 1
−λt




= exp
(
Et
[
exr

(τ)
t+1

]
+ 1

2Vart
(
exr

(τ)
t+1

)
−Covt

(
exr

(τ)
t+1,vt+1

)
·λt
)
.

The affine specification for the market prices of risk tells us that

Et
[
exr

(τ)
t+1

]
= Covt

(
exr

(τ)
t+1,vt+1

)
·λt−

1
2Vart

(
exr

(τ)
t+1

)

= Covt
(
exr

(τ)
t+1,vt+1

)
Σ−1 (λ+ Λft)−

1
2Vart

(
exr

(τ)
t+1

)
.
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In other words, the expected part of the one period ahead excess bond returns is an affine
function of the factors at time t, with an additional convexity term. Defining

β
(τ)′
t = Covt

(
exr

(τ)
t+1,vt+1

)
Σ−1,

we can write

Et
[
exr

(τ)
t+1

]
= β

(τ)′
t (λ+ Λft)−

1
2Vart

(
exr

(τ)
t+1

)
.

Now note that we can decompose the forecasting error as follows:

exr
(τ)
t+1−Et

[
exr

(τ)
t+1

]
= β

(τ)′
t Σ ·vt+1 + e

(τ)
t+1,

where e(τ)
t+1 is defined as the difference between the forecasting error and β

(τ)′
t Σ ·vt+1. Its

time t conditional mean is 0, and since

Et
[
e

(τ)
t+1v

′
t+1Σ′β(τ)

t

]
= Et

[(
exr

(τ)
t+1−Et

[
exr

(τ)
t+1

]
−β(τ)′

t Σ ·vt+1

)
v′t+1

]
·Σ′β(τ)

t

= Covt
(
exr

(τ)
t+1,vt+1

)
Σ′β(τ)

t −β
(τ)′
t ΣΣ′ ·β(τ)

t

= β
(τ)′
t ΣΣ′β(τ)

t −β
(τ)′
t ΣΣ′ ·β(τ)

t = 0,

e
(τ)
t+1 and β

(τ)′
t Σ ·vt+1 are uncorrelated conditional on time t information.

So far, we have shown that bond excess returns can be decomposed as follows:

exr
(τ)
t+1 = β

(τ)′
t (λ+ Λft)︸ ︷︷ ︸

Expected Excess Return

− 1
2Vart

(
exr

(τ)
t+1

)
︸ ︷︷ ︸

Convexity Term

+ β
(τ)′
t Σ ·vt+1︸ ︷︷ ︸

Rate of Return Innovation

+ e
(τ)
t+1︸ ︷︷ ︸

Return Pricing Error

.

The rate of return innovation is the part of the forecasting error that is explained by
the risk factors vt+1, while the return pricing error is the part of the forecasting error
that cannot be explained by vt+1. In particular, since e(τ)

t+1 is uncorrelated with the part
explained by vt+1, it can be treated as an idiosyncratic measurement error.

Suppose {e(τ)
t }t∈Z has constant variance σ2. Under this assumption, we can see that

Vart
(
exr

(τ)
t+1

)
= Vart

(
β

(τ)′
t Σ ·vt+1 + e

(τ)
t+1

)
= β

(τ)′
t ΣΣ′β(τ)

t +σ2
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because vt+1 and e
(τ)
t+1 are uncorrelated. Excess bond returns are given as

exr
(τ)
t+1 = β

(τ)′
t (λ+ Λft)−

1
2

(
β

(τ)′
t ΣΣ′β(τ)

t +σ2
)

+β
(τ)′
t Σ ·vt+1 + e

(τ)
t+1.

A final assumption we make is that the beta term β
(τ)
t is constant over time; in other

words, bond excess returns respond in the same manner to changes in market prices of risk
regardless of the time. This can be seen as part of an attempt to identify the role of the
beta term and the market price of risk, where the former serves as the factor loading and
latter as the factors that explain bond excess returns. The beta term is also time-invariant
in the usual Gaussian ATSM, which indicates that this assumption is not too restrictive.
Under this additional simplification, bond excess returns are finally given as

exr
(τ)
t+1 = β(τ)′ (λ+ Λft)−

1
2
(
β(τ)′ΣΣ′β(τ) +σ2

)
+β(τ)′Σ ·vt+1 + e

(τ)
t+1. (4.52)

Suppose the sample consists of yields of m maturities. For any time t, stacking equation
(4.52) for each of these maturities shows us that

exrt+1 =


exr

(τ1)
t+1
...

exr
(τm)
t+1

=


β(τ1)′

...
β(τm)′

(λ+ Λft)−
1
2


vec

(
β(τ1)β(τ1)′

)′
...

vec
(
β(τm)β(τm)′

)′
 ·vec

(
ΣΣ′

)

− 1
2σ

2 · ιm+


β(τ1)′

...
β(τm)′

Σ ·vt+1 +


e

(τ1)
t+1
...

e
(τm)
t+1


︸ ︷︷ ︸

et+1

,

where we used the fact that

β(τ)′ΣΣ′β(τ) = vec
(
β(τ)′ΣΣ′β(τ)

)
=
(
β(τ)⊗β(τ)

)′
·vec

(
ΣΣ′

)
= vec

(
β(τ)β(τ)′

)′
·vec

(
ΣΣ′

)
.

Define

β =


β(τ1)′

...
β(τm)′

 ∈ Rm×n and B =


vec

(
β(τ1)β(τ1)′

)′
...

vec
(
β(τm)β(τm)′

)′
 ∈ Rm×n

2
.
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Then, we can see that

exrt+1 =
[
β ·λ− 1

2
(
B ·vec

(
ΣΣ′

)
+σ2 · ιm

)]
+βΛ ·ft+βΣ ·vt+1 + et+1,

and collecting all the observations into the matrix

exr =


exr′1

...
exr′T

= ιT ·
[
λ′ ·β′− 1

2

(
vec

(
ΣΣ′

)′
B′+σ2ι′m

)]
︸ ︷︷ ︸

a′

+F−1 ·Λ′β′︸ ︷︷ ︸
b′

+V ·Σ′β′︸ ︷︷ ︸
c′

+E

=
(
ιT F−1 V

)
a′

b′

c′

+E,

where

F =


f ′1
...
f ′T

 , F−1 =


f ′0
...

f ′T−1

 , V =


v′1
...
v′T

 and E =


e′1
...
e′T

 .

The excess bond return regression

exr
(τ)
t+1 = β(τ)′ (λ+ Λft)−

1
2
(
β(τ)′ΣΣ′β(τ) +σ2

)
+β(τ)′Σ ·vt+1 + e

(τ)
t+1

allows us to price bonds in the ACM model. Since the Q-dynamics are affine under affine
market prices of risk and VAR(1) physical dynamics, and the short rate dynamics are also
affine with an added pricing error term u

(1)
t , bond prices are determined as

Pt(τ) = exp
(
a(τ) + b(τ)′ft+ τ ·u(τ)

t

)
,

which is exactly the exponential-affine form found in usual ATSMs, except for the added
error term u

(τ)
t . Thus, in the ACM model, the yield pricing errors are baked into the

foundations of the model.
From the definition of excess bond returns, we can see that

exr
(τ)
t+1 = a(τ −1) + b(τ −1)′ft+1 + (τ −1)u(τ−1)

t+1 −a(τ)− b(τ)′ft− τ ·u(τ)
t − δ0− δ′1ft−u

(1)
t

=
(
a(τ −1)−a(τ) + b(τ −1)′K− δ0

)
+
(
b(τ −1)′G− b(τ)′− δ′1

)
ft

+ b(τ −1)′Σ ·vt+1 +
(

(τ −1)u(τ−1)
t+1 − τ ·u(τ)

t −u
(1)
t

)
.
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Matching terms between the above equation and equation (4.52) shows us that β(τ) =
b(τ −1), and thus that

a(τ) = a(τ −1) + b(τ −1)′ (K−λ) + 1
2
(
b(τ −1)′ΣΣ′b(τ −1) +σ2

)
− δ0 (4.53)

b(τ)′ = b(τ −1)′ (G−Λ)− δ′1 (4.54)

with initial values a(0) = 0 and b(0) =On×1. The additional term σ2 contained in the first
equation comes from the presence of the yield pricing errors in the bond pricing formula.

In addition, the following relationship must hold between yield pricing errors and
return pricing errors:

(τ −1)u(τ−1)
t+1 − τ ·u(τ)

t −u
(1)
t = e

(τ)
t+1.

In other words, if the yield pricing errors are serially uncorrelated, then the return pricing
errors must be serially correlated. ACM point out that this is an undesriable implication,
so they assume serially uncorrelated return pricing errors instead.

As in the usual Gaussian ATSM, yields are given as affine functions of the factors:

Yt(τ) =−a(τ)
τ
− b(τ)′

τ
ft+u

(τ)
t , (4.55)

and our measurement equation can be derived by stacking these for various maturities.
The excess bond formula (4.52) also allows for the following three-step estimation

procedure. Recall that the parameters we must estimate are

{δ0, δ1}︸ ︷︷ ︸
Short Rate Dynamics

{K,G,ΣΣ′}︸ ︷︷ ︸
Physical Dynamics

{λ,Λ}︸ ︷︷ ︸
Market Prices of Risk

141



4.6. ESTIMATING GAUSSIAN ATSMS CHAPTER 4. ATSMS

Step 1: Estimating P-Dynamic and Short Rate Parameters
As in JSZ or HW, the ACM model assumes observable factors ft, constructed ei-
ther through principal components or the use of macroeconomic variables. Given
these observable factors, the first step of the ACM method involves estimating the
parameters K,G and Ω := ΣΣ′ via OLS. Specifically, the estimates are given as

(
K̂ Ĝ

)
= F ′

(
ιT F−1

) ι′T
F ′−1

(ιT F−1
)−1

(4.56)

and

Ω̂ = 1
T

(
F − ιT · K̂ ′−F−1Ĝ

′
)′ (

F − ιT · K̂ ′−F−1Ĝ
′
)
. (4.57)

with Σ̂ being the Cholesky factor of Ω̂.

In addition, we can estimate the short rate parameters δ0, δ1 via OLS:

δ̂0

δ̂1

=
ι′T

F ′

(ιT F
)−1ι′T

F ′

r, (4.58)

where we define r = (r1, · · · , rT )′.

Step 2: Estimating the Excess Bond Return Regression
Using the estimates K̂ and Ĝ procured above, we can estimate the factor innovations
as

v̂t = Σ̂−1
(
ft− K̂− Ĝft−1

)
,

and thus

V̂ =


v̂′1
...
v̂′T

=
(
F − ιT · K̂ ′−F−1Ĝ

′
)

Σ̂−1′. (4.59)

Now we turn to the excess bond return regression

exr =
(
ιT F−1 V

)
a′

b′

c′

+E.

While the regressors in V are unobservable, we can use the generated regressors V̂ in
their stead. Therefore, we can estimate the parameters a,b,c via OLS by regressing
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excess bond returns on a constant, ft−1 and v̂t:

(
â b̂ ĉ

)
= exr′

(
ιT F−1 V̂

)

ι′T
F ′−1
V̂ ′

(ιT F−1 V̂
)
−1

. (4.60)

The return pricing error variance is then estimated as

σ̂2 = 1
mT

tr
(
Ê′Ê

)
, (4.61)

where

Ê = exr− ιT · â′−F−1b̂′+ V̂ · ĉ′.

Step 3: Estimating the Market Price of Risk Parameters
Using the estimates obtained so far, we now back out the market price of risk
parameters. Note that a and b are related to the market price of risk parameters λ
and Λ as

λ=
(
β′β

)−1
β′
[
a + 1

2
(
B ·vec(Ω) +σ2 · ιm

)]
Λ =

(
β′β

)−1
β′b,

where β′β is nonsingular because it has full rank with n < m. Furthermore, β can
be recovered from c via the relationship

β = cΣ−1.

Therefore, we estimate β as

β̂ = ĉΣ̂−1, (4.62)

using which we can procure our estimate of B as

B̂ =


vec

(
β̂1β̂1

)′
...

vec
(
β̂mβ̂m

)′
 , (4.63)

where β̂′i is the ith row of β̂. Then, we estimate the market price of risk parameters
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as

λ̂=
(
β̂′β̂

)−1
β̂′
[
â + 1

2
(
B̂ ·vec

(
Ω̂
)

+ σ̂2 · ιm
)]

(4.64)

Λ̂ =
(
β̂′β̂

)−1
β̂′b̂. (4.65)

ACM derive the joint asymptotic distribution of β̂, λ̂ and Λ̂ under assumptions A1 to
A3 above, along with the ergodicity of the factors and the independence of the short rate
pricing errors {u(1)

t }t∈Z and factor innovations {vt}t∈Z. The consistency of the estimators,
which is much easier to show, is proved in the appendix.

The difference between the ACM model on the one hand and the JSZ and HW models
on the other is that the ACM model uses the relationship between excess bond returns
and factors as the basic building block of the estimation process, while the latter models
use the relationship between yields and factors. Therefore, while consistent estimation in
the ACM model requires independent return pricing errors, consistent estimation in the
JSZ and HW models require independent yield pricing errors. The independence of each
type of pricing error is mutually exclusive, so that the choice of which model to use in esti-
mation boils down to the assumption one makes about the properties of the pricing errors.

4.6.4 Simple Self-Consistent (SSC) Estimator

While the ACM estimator studied in the previous section allows us to estimate ATSMs
via OLS by taking advantage of excess return equations, a recent finding in Goliński and
Spencer (2021) casts doubt as to the self-consistency of the estimator. Recall that the
ACM model starts by specifying the short rate dynamics, physical factor dynamics, and
market prices of risk:

rt = δ+β′ft

ft+1 =KP +GPft+ Σ ·vPt+1

λt = λ+ Λft,

where vPt+1 follows the standard normal distribution under the physical measure. By im-
plication, the risk-neutral dynamics are given in the VAR(1) form

ft+1 =KQ +GQft+ Σ ·vQt+1,

where vQt+1 = vPt+1 + λt follows the standard normal distribution under the risk-neutral
measure.
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ACM procures the estimates K̂P, ĜP and Σ̂ via OLS estimation of the physical factor
dynamics and, using the factor structure of excess bond returns, uses excess bond return
equations to obtain estimators λ̂ and Λ̂ of the market price of risk parameters, again by
OLS. The estimators of the Q-dynamic parameters can then given as

K̂Q = K̂P + Σ̂λ̂

ĜQ = ĜP + Σ̂Λ̂,

using the well-known relationship between market prices of risk and the factor dynamics.
During the estimation process, they assume that a certain portfolio Pt =WYt of yields is
observed without error, using Pt as the observed yield factors.

Goliński and Spencer (2021) point out that, while the ACM estimators above may
be consistent in the statistical sense, they are not self consistent in the following sense.
Recall that, in the ACM model, yields are given as affine functions of the factors, as in
usual ATSMs; together with measurement errors, we can express the observed yields Yot
at time t as affine functions of the observed factors Pt:

Yot =A+B ·Pt+ Σe · et,

whereA and B are functions of the Q-parametersKQ,GQ,Σ and the short-rate parameters
δ,β. That Pt =WYt is observed without error means that WΣe · et =On×1, so that

Pt =WYot =WA+WB ·Pt.

By implication, the following identities must hold:

WA=On×1, WB = In.

These identities are referred to in Goliński and Spencer (2021) as the self-consistency
conditions. For the ACM estimators of the model parameters, the above identities need
only hold at the limit due to the consistency of the estimators; this is indicative that the
ACM model is not self-consistent. An example of a self-consistent model is the JSZ model,
as we will see below.

Taking inspiration from the JSZ identification scheme, Goliński and Spencer (2021)
propose a refinement of the ACM estimators of the model parameters. In other words, they
introduce a method of estimating the JSZ model via the ACM estimator; the resulting
estimators of the model parameters are referred to as the simple self-consistent (SSC)
estimators. The main advanatage of SSC estimation is that it allows for the JSZ model
to be estimated without having to rely on numerical maximization of the log likelihood
function.
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Specifically, consider the basic JSZ model, in which the short rate dynamics and factor
dynamics are given in the canonical form

rt = ι′ft

ft+1 =
 kQ∞
O(n−1)×1

+JQft+ Σ ·vQt+1

ft+1 =KP +GPft+ Σ ·vPt+1

in terms of the n latent factors ft. We know that yields are then affine in the factors;
letting Yt collect the m sample yields of maturities τ1 < · · ·< τm,

Yt =A+Bft,

where

A=


a(τ1)
τ1...

a(τm)
τm

 and B =


b(τ1)′
τ1...

b(τm)′
τm

 .

The functions a(·) and b(·) satisfy the usual Ricatti equations

a(τ) = a(τ −1) + b(τ −1)′
 kQ∞
O(n−1)×1

− 1
2b(τ −1)′ΣΣ′b(τ −1)

b(τ)′ = b(τ −1)′JQ + ι

with initial conditions a(0) = 0, b(0) = On×1. We saw above that solving these equations
yields

b(τ) =
τ−1∑
s=0

(
JQ′

)s ι (4.66)

a(τ) =
τ−1∑
s=1

b1(s)
kQ∞− 1

2

τ−1∑
s=1

b(s)′ΣΣ′b(s) (4.67)

for any τ > 0, where b1(s) is the first element of any b(s). By implication, B depends only
on JQ.

As in JSZ, we also assume that the n-dimensional portfolio Pt =WYt of sample yields
is observed without error. This allows us to express Pt as an affine function of the latent
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factors:

Pt =WA+WB ·ft,

and since this makes Pt an invariant affine transformation of ft, the model can be expressed
in terms of Pt as the observed factors:

rt = δP +β′PPt

Pt+1 =Ki
P +GiPPt+ ΣP ·vit+1 for any i= P,Q,

so that the parameters are related to one another as

δP =−ι′ [WB] (4.68)

βP = [WB]−1′ ι (4.69)

KQ
P = [WB]

(
In−JQ

)
[WB]−1 ·WA+ [WB]−1

 kQ∞
O(n−1)×1

 (4.70)

GQ
P = [WB]JQ [WB]−1 (4.71)

ΣP = [WB]Σ. (4.72)

It follows that the sample yields are also affine functions of the observed factors Pt:

Yt =AP +BP ·Pt,

where

AP =A−B [WB]−1WA (4.73)

BP = B [WB]−1 . (4.74)

Clearly, the JSZ model satisfies the self-consistency conditions

WAP =On×1 and WBP = In.

Our goal is to estimate the parameters of the model formulated in terms of the observed
factors, that is,

θ = {δP , βP , Ki
P , G

i
P , ΣP}
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for i = P,Q. The SSC estimator exploits equation (4.71), which shows us that JQ is the
ordered Jordan form of GQ, and thus is determined by the eigenvalues of GQ. In light of
this discovery, SSC estimation proceeds stepwise as follows:

Step 1: Consistent Estimation of Model Parameters via ACM
First, we procure (statistically) consistent estimators of the model parameters via
ACM, which are denoted

δACMP , βACMP , Ki,ACM
P , Gi,ACMP , ΣACM

P

for i= P,Q. We retain KP,ACM
P , GP,ACM

P , ΣACM
P , which are the OLS estimators of

the VAR(1) system

Pt+1 =KP
P +GP

PPt+ ΣP ·vPt+1,

as our estimators of the P-parameters of the model.

Using these estimators, we are further able to consistently estimate the factor load-
ings and intercept BP and AP of the yields on the observed factors. We denote these
estimators by BACMP and AACMP .

Step 2: Recovering Parameters of the Latent Factor Model
We now use the estimators above to recover consistent estimators of the parameters
of the latent factor model, that is,

kQ∞, J
Q, Σ.

First, we let the estimator ĴQ of JQ be given as the ordered Jordan form of GQ,ACM
P ,

which is consistent because of the consistency of the ordered eigenvalues of GQ,ACM
P

for the ordered eigenvalues of GQ
P .

Given ĴQ, we can consistently estimate the loadings B of the yields on the latent
factors, since it is a continuous function of the eigenvalues contained in JQ. Denoting
this consistent estimator by B̂, we are able to consistently estimate Σ as

Σ̂ =
[
W B̂

]−1
ΣACM
P .
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Finally, equation (4.67) shows us that

A=


1
τ1

∑τ1−1
s=1 b1(s)

...
1
τm

∑τm−1
s=1 b1(s)


︸ ︷︷ ︸

c0

kQ∞−
1
2


1
τ1

∑τ1−1
s=1 b(s)′ΣΣ′b(s)

...
1
τm

∑τm−1
s=1 b(s)′ΣΣ′b(s)


︸ ︷︷ ︸

c1

. (4.75)

Substituting equation (4.75) into equation (4.73) shows us that

AP =
(
Im−B [WB]−1W

)(
c0 ·kQ∞− c1

)
=Hc0 ·kQ∞−Hc1,

where H = Im−B [WB]−1W . If Hc0 is nonzero, then

kQ∞ =
(
c′0H

′Hc0
)−1

(AP +Hc1) .

Since c0 and c1 are continuous functions of the parameters contained in B and Σ,
we can obtain consistent estimators ĉ0 and ĉ1 of c0 and c1 by using B̂ and Σ̂. The
equation above suggests that we can estimate kQ∞ as

k̂Q∞ =
(
ĉ′0Ĥ

′Ĥĉ0
)−1 (

AACMP + Ĥĉ1
)
,

where Ĥ = Im−B̂
[
W B̂

]−1
W . Using the consistent estimators k̂Q∞, ĴQ and Σ̂ of the

Q-parameters under the latent factors, we can now procure a consistent estimator
Â of A.

Step 3: Refining ACM Estimators
Now that we have obtained consistent estimators of A,B,kQ∞,JQ and Σ, the model
parameters δP ,βP ,KQ

P and GQ
P can be estimated as continuous functions of these

estimators, where the functional forms are given in equations (4.68) to (4.71).

In summary, the SSC estimators of the model parameters are given as follows, where e1

is the first standard basis vector in Rn:

K̂P
P =KP,ACM

P (4.76)

ĜP
P =GP,ACM

P (4.77)

Σ̂P = ΣACM
P (4.78)
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ĴQ = Ordered Jordan Form of GQ,ACM
P

b̂(τ) =
τ−1∑
s=0

(
ĴQ
)s ι for any τ > 0

B̂ =
(
b̂(τ1)
τ1

· · · b̂(τm)
τm

)′
Σ̂ =

[
W B̂

]−1
ΣACM
P

Ĥ = Im− B̂
[
WB̂

]−1
W

ĉ0 =


1
τ1

∑τ1−1
s=1 b̂(s)

...
1
τm

∑τm−1
s=1 b̂(s)

e1

ĉ1 = 1
2


1
τ1

∑τ1−1
s=1 b̂(s)′Σ̂Σ̂′b̂(s)

...
1
τm

∑τm−1
s=1 b̂(s)′Σ̂Σ̂′b̂(s)



k̂Q∞ =
(
ĉ′0Ĥ

′Ĥĉ0
)−1 (

AACMP + Ĥĉ1
)

â(τ) =
τ−1∑
s=1

b̂(s)
e1 · k̂Q∞−

1
2

τ−1∑
s=1

b̂(s)′Σ̂Σ̂′b̂(s) for any τ > 0

Â=
(
â(τ1)
τ1

· · · â(τm)
τm

)′
δ̂P =−ι′

[
W B̂

]
(4.79)

β̂P =
[
W B̂

]−1′
ι (4.80)

K̂Q
P =

[
W B̂

](
In− ĴQ

)[
W B̂

]−1
·W Â+

[
W B̂

]−1
 k̂Q∞
O(n−1)×1

 (4.81)

ĜQ
P =

[
W B̂

]
ĴQ

[
W B̂

]−1
(4.82)
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Chapter 5

Special Topics in the Term Structure
Literature

Having introduced and studied the standard ATSM in the previous chapter, here we turn
to some of its extensions that have gained popularity in the literature. First, we study
macro-finance ATSMs, in which macroeconomic variables or factors are included alongside
latent factors when formulating the model. This adds a level of realism to the model, since
macroeconomic variables are likely to be closely related to the term structure of interest
rates, It also confers on the model desirable features such as better yield forecasts and
the ability to derive impulse responses of yields to macro shocks, or vice versa.

Next, we move onto ATSMs with regime-switching parameters. This is a tractable
way of accounting for structural breaks in the data, most notably during crises such as
the Great Financial Crisis (GFC) and the COVID pandemic, or alternatively between
recessions and expansions in general. The regime-switching approach has also proven to
be a tractable way of accounting for the zero lower bound (ZLB).

The third topic we will discuss stems from Bauer and Rudebusch (2020), where it is
shown that including macroeconomic trends, or falling stars, into ATSMs greatly improves
its forecasts, yields more plausible bond risk premia, and helps alleviate small sample bias
during estimation. This type of model represents a departure from the usual stationary
factor dynamics found in Gaussian ATSMs, and we will discuss some of the complications
that arise from the assumption of non-stationary factors.

Finally, we conclude by studying the shadow-rate model for ZLB modeling. This type
of model, which imposes the ZLB restriction on the usual ATSM with minimal alterations,
has proven to be a powerful means of accounting for the ZLB, and it also allows practi-
tioners to obtain a measure, in the shadow rate, for the stance of monetary policy during
ZLB episodes. Imposing the ZLB restriction leads to a non-linear relationship between
the factors and yields, however, so we discuss how this relationship is derived and how it
affects estimation.
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5.1 Macro-Finance Term Structure Models

Here, we first study the baseline macro-finance ATSM introduced in Ang and Piazzesi
(2003). Then, we move onto the spanning hypothesis, which is an ongoing debate as to
whether macro variables contain information about bond returns unspanned by, or not
contained in, the yield curve. Whether macro variables are spanned or unspanned has
significant implications for the formulation of macro-finance ATSMs, so we conclude by
briefly discussing these implications.

5.1.1 The Baseline Macro-Finance ATSM

Our exposition on macro-finance ATSMs starts from Ang and Piazzesi (2003). The inclu-
sion of macroeconomic factors in that model is motivated by the Taylor rule, which posits
that how the central bank determines the short rate rt is dependent on macroeconomic
variables. Specifically, under the basic Taylor rule rt is determined as

rt = δ+β′mMt+ut, (5.1)

where Mt contains measures of the output gap and inflation, and ut is an interest rate
shock orthogonal to Mt. In contrast, in the classical ATSM the short rate is determined
as an affine function of latent factors ft as

rt = δ+β′ft. (5.2)

The core idea of Ang and Piazzesi (2003) is to combine these two expressions, so that the
short rate is determined as

rt = δ+β′mMt+β′fft, (5.3)

where ft are latent factors that are orthogonal to the macro variables contained in Mt.
This suggests that the factors in ATSMs should contain not only latent factors but also
macroeconomic variables.

As such, Ang and Piazzesi (2003) propose a Gaussian ATSM with the following short
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rate and factor dynamics1:

rt = δ+
(
β′f β′m

)
︸ ︷︷ ︸

β

 ft

Mt


︸ ︷︷ ︸
Xt

, (5.4)

 ft+1

Mt+1

=
Ki

f

Ki
m


︸ ︷︷ ︸

Ki

+
Giff Gifm
Gimf Gimm


︸ ︷︷ ︸

Gi

 ft

Mt

+
Σff On×k

Σmf Σmm


︸ ︷︷ ︸

Σ

·

vif,t+1
vim,t+1


︸ ︷︷ ︸

vit+1

, for i= P,Q

(5.5)

where there are n latent factors ft and k observable macro variables Mt included in the
model. vQt+1 is conditionally standard normal under the risk-neutral measure, and vPt+1
under the physical measure. As usual, the SDF process {Mt}t∈N is given byM0 = 1 and

Mt+1 = exp
(
−rt−

1
2λ
′
tλt−λ′tvPt+1

)
, (5.6)

where λt = (λ′ft,λ′mt)′ is an n+ k-dimensional random vectors representing the market
price of risk. Note that, in contrast to the classic ATSM, the innovations associated with
the latent factors vQf,t+1, as well as those associated to the macro variables vPm,t+1, affect
the SDF. This indicates that, in this model, macro uncertainty is explicitly considered as a
source of systematic risk. Finally, recall that, under the above empirical SDF specification,
vQt+1 and vPt+1 are related by

vQt+1 = λt+vPt+1.

It will already be clear that this model is just the usual Gaussian ATSM with factors
Xt, since its short rate and risk-neutral dynamics can be written as

rt = δ+β′ft

Xt+1 =KQ +GQXt+ Σ ·vQt+1.

Therefore, bond prices are given in the usual exponential affine form

Pt(τ) = exp
(
−a(τ)− b(τ)′Xt

)
1In the original paper, the short rate, physical dynamics and market price of risk are specified first.

The affine specification for the market prices of risk imply the that risk-neutral dynamics are also affine,
so specifying the short rate and factor dynamics first is an equivalent way to specify the ATSM.
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where the functions a(·) and b(·) satisfy the Ricatti equations

a(τ) = δ+a(τ −1) + b(τ −1)′KQ− 1
2b(τ −1)′ΣΣ′b(τ −1)

b(τ) = β+GQ′b(τ −1)

and the initial conditions a(0) = 0, b(0) =O(n+k)×1. Yields are then determined as affine
functions of Xt, that is, of both macro variables and latent factors:

Yt(τ) = a(τ)
τ︸ ︷︷ ︸
α(τ)

+ bf (τ)′
τ︸ ︷︷ ︸

βf (τ)′

·ft+
bm(τ)′
τ︸ ︷︷ ︸

βm(τ)′

·Mt, (5.7)

where bf (τ) and bm(τ) collect the first n and last k entries of b(τ), respectively. Ang and
Piazzesi (2003) identify the latent factors by imposing the restrictions of Dai and Singleton
(2000) on the physical factor dynamics. It is shown in Hamilton and Wu (2012) that this
does not fully identify the model, similarly to the Dai and Singleton (2000) model.

To estimate the model, we can formulate it in state space form

Yt =A+Bf ·ft+Bm ·Mt+ Σe · et

Xt =KP +GPXt−1 + Σ ·vPt ,

where et are a set of standard normal yield pricing errors. Usually, we take the first three
(or four) principal components f̂t of the yields as proxies for the latent factors ft, and then
estimate the above model with X̂t = (f̂ ′t,M ′t)′ in place of Xt = (f ′t,M ′t)′. This is similar to
the two-step procedure used to estimate factor-augmented VARs (FAVARs) in Bernanke,
Boivin, and Eliasz (2005), and various works in the term structure literature have also
shown that it is an econometrically sound approach to estimation.

5.1.2 The Spanning Hypothesis

The model in Ang and Piazzesi (2003) is a simple and intuitive way to incorporate macro
variables into an ATSM, but in some ways it yields counterintuitive conclusions. Of them,
the hypothesis of spanned macro variables is the most hotly debated. Stacking equation
(5.7) for a sample of n+k yields with maturity τ1, · · · , τn+k shows us that


Yt(τ1)

...
Yt(τn+k)


︸ ︷︷ ︸

Yt

=


α(τ1)

...
α(τn+k)


︸ ︷︷ ︸

A

+


βf (τ1)′

...
βf (τn+k)′


︸ ︷︷ ︸

Bf

·ft+


βm(τ1)′

...
βm(τn+k)′


︸ ︷︷ ︸

Bm

·Mt.
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If the (n+ k)× (n+ k) matrix B = (Bf ,Bm) is nonsingular, then the latent factors and
macro variables can be written as ft

Mt

= B−1 (Yt−A) ,

or as an affine function of the cross-section of yields. Thsi shows us that the macro vari-
ables Mt that are relevant for bond pricing and determination of bond risk premia can
be recovered as an affine function of the yields. In other words, there is no information
contained in macro variables concerning the yield curve that is not also contained in the
yields themselves. We say that the Ang and Piazzesi (2003) model implies that the infor-
mation in macro variables are spanned by the yield curve.

However, there is empirical evidence that rejects the spanning hypothesis; these works
show that macro variables actually do help predict bond excess returns even when the
yield curve has been controlled for. That is, they show that some macro variables contain
information on bond risk premia beyond that contained in the yield curve, which is the
direct opposite of what is claimed by the spanning hypothesis. To understand how such
conclusions are reached, we first give an overview of the expansive literature on bond
return predictability.

Some of the earliest efforts made to identify the factors that helps predict excess bond
returns are found in Fama and Bliss (1987) and Campbell and Shiller (1991). In Fama
and Bliss (1987), it is found that one-period ahead excess bond returns are predicted by
the forward rate spread, that is, the difference in the forward rate and the short rate.
Specifically, they run a regression of the form

exr
(τ)
t+1 = a+ b

(
f

(τ)
t − rt

)
+ut+1, (5.8)

where f (τ)
t is the τ -period forward rate, that is, an estimate of the short rate at tiem t+τ ,

and find that b is significantly larger than 0. Likewise, Campbell and Shiller (1991) finds
that the yield spread, or the difference between long and short yields, help predict excess
bond returns by running regressions of the form

exr
(τ)
t+1 = a+ b(Yt(τ)− rt) +ut+1 (5.9)

and conducting significance tests on b 2 3.
2In the original paper, the h-period ahead excess return for a τ -period bond, exr(τ)

t,t+h, is regressed on
the corresponding yield spread Yt(τ)−h ·Yt(h). For notational simplicity, we introduce only the version
with h= 1.

3These excess bond return regressions can actually be used to compare different ATSMs. In Dai and
Singleton (2002), the excess bond return predictability criteria that ATSMs must satisfy are referred to
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Based on these findings, Cochrane and Piazzesi (2005) regress bond excess returns
on all available forward spreads, using the forward rate data provided in Fama and Bliss
(1987). They find that the coefficients on these forward spreads maintain a hump-shaped
pattern for excess returns of bonds of different maturities, which leads them to hypothesize
that a single linear combination of these forward spreads might be able to predict excess
returns of bonds of all maturities. This is indeed what they find; this linear combination
is referred to as the Cochrane-Piazzesi (CP) factor, and it is shown that it is distinct from
the first three yield curve PCs – the level, slope and curvature factors. Since the CP factor
does not correspond to any of the traditional yield factors in the literature, in Cochrane
and Piazzesi (2008) a four-factor Gaussian ATSM is estimated, where the CP factor is
included as the fourth factor alongside the usual level, slope and curvature factors.

It is using precisely this CP factor that Ludvigson and Ng (2009) tests whether macro
variables contain information on excess bond returns beyond that contained in the yield
curve. The finding in Cochrane and Piazzesi (2005) suggests the CP factor is the distilla-
tion of all the information on excess bond returns contained in the yield curve. As such,
Ludvigson and Ng (2009) run the regression

exr
(τ)
t+1 = a+ b′ ·Ft+γ′CPt+ut+1, (5.10)

where Ft contains the principal components extracted from a large panel of macro vari-
ables. They find that the macro factors Ft have predictive power for excess bond returns
even when the CP factor has been controlled for via CPt, and as such that macro variables
contain information about bond returns not contained in the yield curve. In this sense,
their finding supports the hypothesis that macro variables are unspanned, or contain
information unspanned by the yield curve.

Many other works support the finding in Ludvigson and Ng (2009) that macro vari-
ables have predictive power for excess returns even when the information in the yield
curve has been controlled for. However, Bauer and Hamilton (2018) warn against hastily
concluding that macro factors contain unspanned information. Specifically, they point out
that traditional tests for the null H0 : b = 0 based on equation (5.10) can be misleading
in the following ways:

• Since the regressor controlling for the yield curve, CPt, is necessarily correlated
with the time t forecast error ut, strict exogeneity does not hold. This may lead to
significant bias in parameter estimates under small samples (similarly to how the
estimates from an autoregressive model are consistent but biased).

collectively as LPY, and they evaluate different ATSMs on the basis of LPY. The Dai-Singleton canonical
model with square root processes fail to pass the LPY test; this is one reason why Gaussian ATSMs,
which handily pass the LPY test, are preferred.
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• The regressors CPt and Ft may be highly persistent. This can give rise to spuri-
ous regressions, since the asymptotics of unit root processes are very different from
those of stationary processes. In particular, under a local-to-unity specification, it
is shown that the standard Wald statistic used to test for significance is not asymp-
totic chi-squared.

• The lack of strict exogeneity, as well as persistent regressors, leads to the underes-
timation of standard errors and thus spurious rejections of the null hypothesis.

For this reason, a new bootstrapping method for testing H0 : b = 0 is developed in
Bauer and Hamilton (2018). It is found that traditional tests reject the spanning hypoth-
esis way too often. In other words, the bootstrapping method reveals the evidence against
the spanning hypothesis is much weaker than previously thought.

5.1.3 A Model of Unspanned Macro Risks

The evidence contained in Ludvigson and Ng (2009), as well as other works, suggests
that the macro-finance ATSM in Ang and Piazzesi (2003), which implies that macro vari-
ables are spanned, must be modified to reflect the finding that macro variables contain
unspanned information. To this end, Joslin, Priebsch, and Singleton (2014) propose im-
posing a knife-edge restriction. This restriction, which we will study in more depth below,
allows for macro variables contained in the ATSM to affect excess bond returns even when
yield factors have been controlled for, while no longer being an affine function of yields.

Formally, recall that the short rate dynamics and risk-neutral factor dynamics are
given as

rt = δ+β′fft+β′mMt ft+1

Mt+1

=
Ki

f

Ki
m

+
Giff Gifm
Gimf Gimm

 ft

Mt

+
Σff On×k

Σmf Σmm

 ·
vif,t+1
vim,t+1

 for i= P,Q

in the baseline macro-finance model of Ang and Piazzesi (2003). Under affine risk-neutral
and physical factor dynamics, the market prices of risk are also determined as an affine
function of the latent and macro factors ft and Mt:λf,t

λm,t


︸ ︷︷ ︸

λt

=
λf
λm

+
Λff Λfm

Λmf Λmm


︸ ︷︷ ︸

Λ

 ft

Mt

 ,
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where

λ= Σ−1
(
KP−KQ

)
Λ = Σ−1

(
GP−GQ

)
.

Our analysis of the standard Gaussian ATSM shows us that yields are affine in the latent
and macro factors:

Yt(τ) = a(τ)
τ

+ bf (τ)′
τ
·ft+

bm(τ)′
τ

Mt (5.11)

and that the one-period ahead expected excess bond return is given as

Et
[
exr

(τ)
t+1

]
=−b(τ −1)′Σλ− b(τ −1)′ΣΛf ·ft− b(τ −1)′ΣΛm ·Mt (5.12)

Joslin, Priebsch, and Singleton (2014) seek to impose restrictions on the model parameters
so as to replicate the following stylized facts:

SF1: The Number of Risk Factors is Small
As documented in Joslin, Le, and Singleton (2013) and others, the number of risk
factors that affect the yield curve is quite small, usually around three or four.
Formally, this means that, in the SDF

Mt+1 = exp
(
−rt−

1
2λ
′
tλt−λ′tvPt+1

)
,

the (n+k)-dimensional random vector λt contains a number of zero elements, so
that only a few risk factors contained in vPt+1 actually affect agents’ assessment
of risk.

SF2: Macro Risks are Unspanned by the Yield Curve
Equation (5.11) cannot be inverted so that Mt can be expressed as an affine func-
tion of the sample yields. This can be ensured by making it so that time t yields
are not determined by time t macro factors, that is, by letting bm(τ) =Ok×1 for
any maturity τ .

SF3: Macro Factors Help Predict Excess Bond Returns
The loading of the macro factors on expected excess bond returns in equation
(5.12) must not be zero. This is equivalent to replicating the finding in Ludvigson
and Ng (2009) and others that macro variables have predictive power for excess
bond returns even when the information in the latent yield factors have been
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controlled for.

Joslin, Priebsch, and Singleton (2014) replicate the three stylized facts above in the fol-
lowing manner. First, to replicate SF2, it must be the case that yields are affine functions
of only the latent factors, that is, it must be the case that

Yt(τ) = a(τ)
τ

+ bf (τ)′
τ
·ft.

In the previous chapter, we showed that, if the short rate is an affine function of the latent
factors ft and ft follows a VAR(1) process under the risk-neutral measure, then the yields
are also affine in ft. Therefore, a sufficient condition to obtain the above representation
is for the short rate and risk-neutral dynamics to be given as

rt = δ+βf ·ft
ft+1 =KQ

f +GQ
ff ·ft+ Σff ·vQf,t+1,

or in other words, for the following restrictions to be imposed:

βm =Ok×1 (5.13)

GQ
fm =On×k. (5.14)

These (n+ 1)k zero restrictions are called knife-edge restrictions, and ensure that the
information contained in the macro factors are left unspanned by the yield curve.

To replicate SF1, Joslin, Priebsch, and Singleton (2014) choose to put the last k entries
of λt equal to 0, so that only the first n entries remain non-zero. By implication, only the
risk factors vPf,t+1, or the innovations to the latent factors, determine agents’ assessment
of risk. Formally, the SDF is now given as

Mt+1 = exp
(
−rt−

1
2λ
′
f,tλf,t−λ′f,tvPf,t+1

)
.

The choice of λm,t =Ok×1 is ensured by letting

KQ
m =KP

m (5.15)(
GQ
mf GQ

mm

)
=
(
GP
mf GP

mm

)
. (5.16)

In other words, the macro factors follow the same dynamics under both the risk-neutral
and physical measures.

159



5.1. MACRO-FINANCE ATSMS CHAPTER 5. SPECIAL TOPICS

Under the above restrictions, the market prices of risk are given as

λt =
 λf,t

Ok×1

 ,
where

λf,t = Σ−1
ff

(
KP
f −K

Q
f

)
+ Σ−1

ff

(
GP
ff −G

Q
ff

)
·ft+ Σ−1

ffG
P
fm ·Mt.

Therefore, to replicate SF3, it suffices for

GP
fm 6=On×k. (5.17)

Joslin, Priebsch, and Singleton (2014) choose to identify the model via the JSZ re-
strictions, and assume that the first three principal components Pt are observed without
error as in Joslin, Singleton, and Zhu (2011), so that the model can be formulated with
the PCs Pt in place of the latent factors ft. Naturally, the short rate and risk-neutral
parameters are specified as in equations (4.28) to (4.32).

Bringing all these restrictions together, the short rate dynamics, risk-neutral dynamics,
physical dynamics and market price of risk specification in Joslin, Priebsch, and Singleton
(2014) are given as follows:

rt = δP +β′PPt (5.18)

Pt+1 =KQ
P +GQ

PPPt+ ΣPP ·vPP,t+1 (5.19)
Pt+1

Mt+1

=
KP

P
KP
m


︸ ︷︷ ︸
KP

+
GP
PP GP

Pm
GP
mP GP

mm


︸ ︷︷ ︸

GP

Pt
Mt

+
ΣPP On×k

ΣmP Σmm


︸ ︷︷ ︸

Σ

·

vPP,t+1
vPm,t+1

 (5.20)

λt =
 λP,t

Ok×1

 (5.21)

λP,t = Σ−1
PP

(
KP
P −K

Q
P
)

+ Σ−1
PP

(
GP
PP −G

Q
PP
)
·Pt+ Σ−1

PPG
P
Pm ·Mt. (5.22)

The log-likelihood function can again be decomposed as

l(Y | θ) =
T∑
t=1

logf(Yt |Xt;θQ) +
T∑
t+1

logf(Xt |Xt−1;KP,GP,Σ),

where θQ contains the risk-neutral dynamic parameters that determine parameters δP ,βP ,KQ
P ,G

Q
PP

and ΣPP .
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5.2 Term Structure Models with Regime-Switching

It is often the case that the dynamics of time series undergo structural changes. A simple
way to capture these structural changes is to divide the sample into sub-samples based
on predetermined, or known, structural break dates and separately estimate the model
in these sub-samples. However, this is only applicable when structural break dates are
known and fixed.

One way to model structural breaks in time series when structural break dates are
unknown is through Markov-switching regimes. In these models, we assume that there
are N separate regimes in the economy, and that the model parameters undergo changes
whenever the economy shifts from one regime to another. Because we do not know a
prior which regime the economy is in, the regime at time t, denoted by st, is treated as a
discrete random variable that takes values in the set {1, · · · ,N}. The defining property of
a Markov-switching model is that the regime st at time t is determined exogenously and
only on the basis of the preceding regime st−1. In this sense, the regime process {st}t∈Z
is a Markov chain with discrete state space {1, · · · ,N}, hence the name of the model.

We first study some basic results concerning discrete Markov chains, including their
stationary distribution, before investigating how they can be incorporated into the ATSM
framework. Our exposition is based on Bansal and Zhou (2002), Dai, Singleton, and Yang
(2007), and Chib and Kang (2013), among many other regime-switching ATSMs in the
literature.

5.2.1 Discrete Markov Chains

Let {st}t∈Z be a regime process that is modeled as a time-homogeneous Markov chain tak-
ing values in the discrete state space {1, · · · ,N}. As with all discrete time-homoegeneous
Markov chains, there exists a transition probability P for the regime process {st}t∈Z.
Here, P is an N ×N matrix whose (i, j)th element Pij is defined as

Pij := Pt (st+1 = j | st = i) = P(st+1 = j | st = i) ,

that is, Pij is the probability of the economy being in the jth regime at time t+ 1 given
that the economy is in the ith regime at time t. The second equality follows from the
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definition of a Markov process. By definition,

N∑
j=1

Pij = 1,

so that the rows of P all sum to 1.
Transition probabilities can be used to evaluate future probabilities of the economy

being in each regime. For instance, suppose that the (unconditional) probabilities of the
economy being at each regime at time t is collected in the N -dimensional vector

µ=


P(st = 1)

...
P(st =N)

 .

Then, the probability that the economy is at regime 1≤ j ≤N at time t+ 1 is

P(st+1 = j) =
N∑
i=1

P(st+1 = j | st = i) ·P(st = i)

=
N∑
i=1

Pij ·µi = µ′Pj ,

where Pj is the jth column of P . Therefore, the probabilities of the economy being at
each regime at time t+ 1 is collected in the N -dimensional vector


P(st+1 = 1)

...
P(st+1 =N)

= P ′µ.

Iterating this process shows us that the probability of being at each regime at time t+h

is 
P(st+h = 1)

...
P(st+h =N)

= (P ′)hµ.

In the case that

µ= P ′µ,

then we say that µ is a stationary distribution of P . Heuristically, this means that, once
the probabilities of the economy being in each regime at time t are given as µ, then the
probabilities of the economy being in each regime at any time t+h is also given as µ,
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since

µ=
(
P ′
)h
µ

for any h > 04.

Stationary Distribution when N = 2

An especially useful result concerns the stationary distribution of the regime process when
there are 2 regimes, that is, when N = 2. In this case, the transition probability can be
written as

P =
 P11 1−P11

1−P22 P22

 .
Assume that P11 < 1, P22 < 1 (irreducibility); in this case, this implies that P has exactly
one unit root (ergodicity). Let µ= (µ1,µ2)′ be the stationary distribution of P . Since

P ′µ= µ,

this suggests that µ is an eigenvector of P ′ corresponding to the eigenvalue 1, whose
elements sum to 1. This eigenvector µ is found as the solution to the equation

O2×1 =
(
P ′− I2

)
µ=

P11−1 1−P22

1−P11 P22−1

µ1

µ2

=
µ1P11−µ1 +µ2−µ2P22

µ1−µ1P11 +µ2P22−µ2.

 ,
subject to the constraint µ1 +µ2 = 1. Substituting 1−µ1 for µ2, µ1 solves the equation

0 = µ1P11−µ1 + (1−µ1)− (1−µ1)P22

= µ1 (P11 +P22−2) + 1−P22,

so that

µ1 = 1−P22
2−P11−P22

and µ2 = 1−P11
2−P11−P22

.

4Sufficient conditions, such as irreducibility and ergodicity, for a stationary distribution to exist will
be covered in Professor Kang’s class.
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5.2.2 ATSMs with Markov-Switching Regimes

Let there be a Markov-switching regime process {st}t∈Z with state space {1, · · · ,N} and
transition probability P . Consider a standard yields-only ATSM framework where yields
are determined by n latent factors ft, and let Ft be the information available at time t.

We start by specifying the physical dynamics of the factors ft. Since the economy
depends on N regimes, the parameters of the physical dynamics must also depend on
these regimes; formally, we assume that the factors follow the regime-switching VAR(1)
process

ft+1 =KP
st+1 +GP

st+1ft+ Σst+1 ·vPt+1,

where

vPt+1 | Ft, st+1 ∼N [On×1, In]

under the physical measure. The only difference here lies with how the parameters are
dependent on the regime at time t+ 1. This bleeds over to the specification of the dis-
tribution of the factor innovation vPt+1 as well; now, it is standard normal conditional on
both the information up to time t and the regime at time t+ 1.

We retain the no-arbitrage assumption. As a result, the first fundamental theorem of
asset pricing furnishes us with a risk-neutral measure Q such that

Pt(τ) = EQ
t [exp(−rt) ·Pt+1(τ −1)] , (5.23)

where Pt(τ) remains the time t price of a zero-coupon bond with τ periods to maturity.
As in a classical Gaussian ATSM, the errors vPt+1 will serve as our risk factors, in the

sense that the SDF governing the perception of time t+ 1 risk at time t is specified as

Mt+1,st+1 = exp
(
−rt−

1
2λ
′
t,st+1λt,st+1−λ′t,st+1v

P
t+1

)
.

Here, note that the market price of risk λt,st+1 depends on both time t information and
the regime st+1 at time t+1. By definition of the risk-netural measure and the SDF, the
following equality holds:

Et
[
Mt+1,st+1 ·Xt+1

]
= EQ

t [exp(−rt) ·Xt+1] (5.24)

for any Xt+1 in the payoff space. An important feature to note is that the conditioning
information does not contain the time t+1 regime st+1, since investors do not know what
st+1 is at time t.
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A version of Girsanov’s theorem holds here as well. Defining

vQt+1 = vPt+1 +λt,st+1 ,

we have

vQt+1 | Ft, st+1 ∼N [On×1, In]

under the risk-neutral measure. Here, the proof of Girsanov’s theorem is complicated by
the fact that vQt+1 is conditioned on both Ft and st+1, whereas the relationship (5.24)
involves conditional expectations given Ft only. For a formal proof, refer to appendix D
of my paper.

Given vQt+1, we now assume that the factors follow a regime-switching VAR(1)

ft+1 =KQ
st+1 +GQ

st+1ft+ Σst+1 ·v
Q
t+1

under the risk-neutral measure. By implication, the market prices of risk are given as

λt,st+1 = Σ−1
st+1

(
KP
st+1−K

Q
st+1

)
+ Σ−1

st+1

(
GP
st+1−G

Q
st+1

)
·ft. (5.25)

To complete the model, we specify the following short rate dynamics:

rt = δst +β′stft,

where the parameters are once again regime-dependent.
To summarize, the short rate dynamics and factor dynamics of the model are given as

rt = δst +β′stft (5.26)

ft+1 =KQ
st+1 +GQ

st+1ft+ Σst+1 ·v
Q
t+1 (5.27)

ft+1 =KP
st+1 +GP

st+1ft+ Σst+1 ·vPt+1 (5.28)

where

vPt+1 | Ft, st+1 ∼N [On×1, In]

vQt+1 = vPt+1 +λt,st+1

Pij = P(st+1 = j | st = i) = Q(st+1 = j | st = i) for any 1≤ i, j ≤N.

The last condition requires the regime process to be identically distributed under both the
physical and risk-neutral measures. A model in which this is not the case will be discussed
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in the next section.
Bond prices are found by solving (5.23). They can be derived approximately or exactly

depending on how the model parameters depend on the regime; we investigate each case
in turn.

M1: Mean Reversion Parameters are Regime-Independent
This is the specification chosen in Dai, Singleton, and Yang (2007). Suppose that β
and GQ are regime-independent, so that the short rate and risk-neutral dynamics
are given as

rt = δst +β′ft

ft+1 =KQ
st+1 +GQft+ Σst+1 ·v

Q
t+1.

In this case, bond prices are given in the familiar exponential-affine form

Pt(τ) = exp
(
−ast(τ)− b(τ)′ft

)
,

where ast(0) = 0 and b(0) = On×1. Note that the factor loadings b(τ) are regime-
independent, whereas the intercept term ast(τ) is regime-dependent.

To find ast(·) and b(·), we use the no-arbitrage equation to first find that

exp
(
−ast(τ)− b(τ)′ft

)
= Pt(τ)

= EQ
t [exp(−rt) ·Pt+1(τ −1)]

= EQ
t

[
exp

(
−rt−ast+1(τ −1)− b(τ −1)′ft+1

)]
= EQ

t

[
EQ
t

[
exp

(
−rt−ast+1(τ −1)− b(τ −1)′ft+1

)
| st+1

]]
where the final equality follows from the law of iterated expectations. Using the
risk-neutral dynamics, we can write

EQ
t

[
exp

(
−rt−ast+1(τ −1)− b(τ −1)′ft+1

)
| st+1

]
= exp

(
−rt−ast+1(τ −1)− b(τ −1)′KQ

st+1− b(τ −1)′GQft
)

×EQ
t

[
exp

(
−b(τ −1)′Σst+1 ·v

Q
t+1
)
| st+1

]
= exp

(
−δst−β′ft−ast+1(τ −1)− b(τ −1)′KQ

st+1− b(τ −1)′GQft
)

× exp
(1

2b(τ −1)′Σst+1Σ′st+1b(τ −1)
)

since vQt+1 | Ft, st+1 is standard normally distributed. Therefore,
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EQ
t

[
EQ
t

[
exp

(
−rt−ast+1(τ −1)− b(τ −1)′ft+1

)
| st+1

]]
= exp

(
−δst−β′ft− b(τ −1)′GQft

)
×EQ

t

[
exp

(
−ast+1(τ −1)− b(τ −1)′KQ

st+1−
1
2b(τ −1)′Σst+1Σ′st+1b(τ −1)

)]

= exp
(
−δst−β′ft− b(τ −1)′GQft

)
×

 N∑
j=1

exp
(
−aj(τ −1)− b(τ −1)′KQ

j + 1
2b(τ −1)′ΣjΣ′jb(τ −1)

)
·Pt (st+1 = j)

 .
By the Markov property of the regime process,

Pt (st+1 = j) = P(st+1 = j | st) = Pst,j ,

so we can see that

EQ
t

[
EQ
t

[
exp

(
−rt−ast+1(τ −1)− b(τ −1)′ft+1

)
| st+1

]]
= exp

(
−δst−β′ft− b(τ −1)′GQft

)
×

 N∑
j=1

exp
(
−aj(τ −1)− b(τ −1)′KQ

j + 1
2b(τ −1)′ΣjΣ′jb(τ −1)

)
·Pst,j

 .
Returning to the original equation, taking logs on both sides reveals that

−ast(τ)− b(τ)′ft

= logEQ
t

[
EQ
t

[
exp

(
−rt−ast+1(τ −1)− b(τ −1)′ft+1

)
| st+1

]]
=−δst−β′ft− b(τ −1)′GQft

+ log
 N∑
j=1

exp
(
−aj(τ −1)− b(τ −1)′KQ

j + 1
2b(τ −1)′ΣjΣ′jb(τ −1)

)
·Pst,j

 .
Matching intercept terms and coefficient terms, we can now see that

b(τ) =GQ′b(τ −1) +β (5.29)

ast(τ) = δst− log
 N∑
j=1

exp
(
−aj(τ −1)− b(τ −1)′KQ

j + 1
2b(τ −1)′ΣjΣ′jb(τ −1)

)
·Pst,j

 .
(5.30)

The regime-independence of GQ and β mean that the solution for b(·) is given identi-
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cally to the classical Gaussian ATSM. At first glance, the expression for ast(·) seems
intractable, but a first-order Taylor expansion shows us that we can interchange logs
and expectations to approximate ast(τ) as

ast(τ) =
N∑
j=1

(
δst +aj(τ −1) + b(τ −1)′KQ

j −
1
2b(τ −1)′ΣjΣ′jb(τ −1)

)
·Pst,j . (5.31)

The jth term in the summation on the right hand side is the solution for a(·) if
the economy is known to be in the jth regime at time t+1. Therefore, ast(τ) is the
weighted average of the intercept term for each regime, where the weights are given
as the transition probabilities.

M2: Mean Reversion Parameters are Regime-Dependent
This is the specification chosen in Bansal and Zhou (2002) and Chib and Kang
(2013). Suppose that β and GQ are regime-dependent, so that the short rate and
risk-neutral dynamics are given as in equations (5.26) and (5.27). In this case, bond
prices are given in the exponential-affine form

Pt(τ) = exp
(
−ast(τ)− bst(τ)′ft

)
,

where ast(0) = 0 and bst(0) =On×1; note that this time, the factor loadings are also
regime-dependent. As in the preceding case, we use the no-arbitrage equation to
derive the equation

exp
(
−ast(τ)− bst(τ)′ft

)
= Pt(τ) = EQ

t

[
EQ
t

[
exp

(
−rt−ast+1(τ −1)− bst+1(τ −1)′ft+1

)
| st+1

]]
,

where

EQ
t

[
exp

(
−rt−ast+1(τ −1)− bst+1(τ −1)′ft+1

)
| st+1

]
= exp

(
−δst−β′stft−ast+1(τ −1)− bst+1(τ −1)′KQ

st+1− bst+1(τ −1)′GQ
st+1ft

)
× exp

(1
2bst+1(τ −1)′Σst+1Σ′st+1bst+1(τ −1)′

)
.

Taking time t expectations on both sides, we are left with

exp
(
−ast(τ)− b(τ)′ft

)
= EQ

t

[
EQ
t

[
exp

(
−rt−ast+1(τ −1)− b(τ −1)′ft+1

)
| st+1

]]
=
 N∑
j=1

EQ
t

[
exp

(
−rt−ast+1(τ −1)− bst+1(τ −1)′ft+1

)
| st+1 = j

]
·Pst,j

 .

168



5.2. REGIME-SWITCHING ATSMS CHAPTER 5. SPECIAL TOPICS

The difference between the preceding model and the current model is that the right
hand side depends on both ft and st+1 in a non-linear way. This makes it impossible
for us to express the expression on the right hand side as an exponential-affine
function of ft.

Therefore, in this case we must employ a first-order approximation; specifically, we
use the approximation

exp(x)≈ 1 +x

for small values of x to rewrite the above equation as

−ast(τ)− bst(τ)′ft+ 1

≈
N∑
j=1

(
−δst −β′st

ft−aj(τ −1)− bj(τ −1)′KQ
j − bj(τ −1)′GQ

j ft+ 1
2bj(τ −1)′ΣjΣ′jbj(τ −1) + 1

)
·Pst,j

=
N∑
j=1

(
−δst −β′st

ft−aj(τ −1)− bj(τ −1)′KQ
j − bj(τ −1)′GQ

j ft+ 1
2bj(τ −1)′ΣjΣ′jbj(τ −1)

)
·Pst,j+1.

Matching intercept and coefficient terms now yields

ast(τ) =
N∑
j=1

(
δst +aj(τ −1) + bj(τ −1)′KQ

j −
1
2bj(τ −1)′ΣjΣ′jb(τ −1)

)
·Pst,j

(5.32)

bst(τ) =
N∑
j=1

(
GQ′
j bj(τ −1) +βst

)
·Pst,j . (5.33)

These solutions have the same interpretation as weighted averages of the solutions
of classical Gaussian ATSMs, as in the prceding case.

Despite the first model leading to exact bond prices and the second to approximate bond
prices, in practice it is convenient to use the approximation (5.31) for the first model
when deriving bond excess returns. Therefore, going forward we assume that the solution
to the bond pricing formula are given as in (5.32) and (5.33).

Given the solutions above, yields are given as affine functions of the factors, conditioned
on regime:

Yt(τ) = ast(τ)
τ︸ ︷︷ ︸

αst(τ)

+ bst(τ)′
τ︸ ︷︷ ︸

β′st(τ)

ft. (5.34)
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It remains to derive closed-form solutions for bond excess returns. By definition,

exr
(τ)
t+1 = log(Pt+1(τ −1))− log(Pt(τ))− rt

=−ast+1(τ −1)− bst+1(τ −1)′ft+1 +ast(τ) + bst(τ)′ft− δst−β′stft

=−ast+1(τ −1)− bst+1(τ −1)′KQ
st+1− bst+1(τ −1)′GQ

st+1ft− bst+1(τ −1)′Σst+1 ·v
Q
t+1

+ast(τ) + bst(τ)′ft− δst−β′stft,

and taking expectations on both sides yields

RP
(τ)
t = Et

[
exr

(τ)
t+1

]

=−
N∑
j=1

[
aj(τ −1)− bj(τ −1)′KQ

j − bj(τ −1)′GQ
j ft

]
·Pst,j−Et

[
bst+1(τ −1)′Σst+1 ·v

Q
t+1
]

+ast(τ) + bst(τ)′ft− δst−β′stft.

Since

Et
[
bst+1(τ −1)′Σst+1 ·v

Q
t+1 | st+1

]
= bst+1(τ −1)′Σst+1 ·λt,st+1

= bst+1(τ −1)′
(
KP
st+1−K

Q
st+1

)
+ bst+1(τ −1)′

(
GP
st+1−G

Q
st+1

)
·ft,

using equations (5.32) and (5.33) we can see that

RP
(τ)
t = Et

[
exr

(τ)
t+1

]
= Et

[
bst+1(τ −1)′

(
KP
st+1−K

Q
st+1

)]
+Et

[
bst+1(τ −1)′

(
GP
st+1−G

Q
st+1

)]
ft

− 1
2

N∑
j=1

bj(τ −1)′ΣjΣjbj(τ −1) ·Pst,j

=
N∑
j=1

bj(τ −1)′
(
KP
j −K

Q
j

)
− 1

2

N∑
j=1

bj(τ −1)′ΣjΣjbj(τ −1)
 ·Pst,j︸ ︷︷ ︸

Constant Part

+
 N∑
j=1

bj(τ −1)′
(
GP
j −G

Q
j

)
·Pst,j

ft︸ ︷︷ ︸
Factor Part

.

Once again, the one-period ahead bond risk premium is given as an affine function of the
time t factors.

Recall from equation (4.9) that we can express the term premium of a long term bond
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as the average expected one-period ahead excess return across the life of the bond:

TPt(τ) = 1
τ

τ−1∑
h=0

Et
[
exr

(τ−h)
t+h+1

]
.

Using the formula for the one-period ahead risk premium and the law of iterated expec-
tations, we can see that

TPt(τ) = 1
τ

τ−1∑
h=0

Et
[
bst+h(τ −h−1)′

(
KP
st+h−K

Q
st+h

)
− 1

2bst+h(τ −h−1)′Σst+hΣst+hbst+h(τ −h−1)
]

+ 1
τ

τ−1∑
h=0

Et
[
bst+h(τ −h−1)′

(
GP
st+h−G

Q
st+h

)
ft+h

]
.

The constant part is easy to compute due to the Markovian property of the regime pro-
cess. The factor part, however, is more difficult, since it is the time t expectation of the
product of a regime-dependent variable and ft+h. Refer to appendix J of my paper for
a simple algorithm for the computation of the factor part when b(·) is regime-independent.

5.2.3 Time-Varying Transition Probabilities

In the regime-switching ATSM studied in the preceding section, we assumed that the
regime process {st}t∈Z is a time-homogeneous Markov chain under both the risk-neutral
and physical measures, with the same transition probabilityP . However, in many cases
we want the transition probability

Pt (st+1 = j | st = i)

to be dependent on the factors ft at time t. For example, suppose we are modeling the zero
lower bound via regime-switching, so that the economy shifts between a normal regime
and a lower bound regime. Realistically, the probability of the economy being in the lower
bound regime in the future depends on how close the short term interest rate is to 0 now,
so in this case, Pt (st+1 = j | st = i) likely depends on the factor corresponding to the short
end of the yield curve. This is the approach taken in works such as Hördahl and Tristani
(2019).

Dai, Singleton, and Yang (2007) furnishes a framework in which the transition proba-
bility Pt (st+1 = j | st = i) can depend on the time t factors while making minimal changes
to the basic Markov-switching ATSM framework. The only change made to the model in
the previous section concerns the SDF and the transition probability under the physi-
cal measure. Formally, the short-rate, risk-neutral and physical dynamics are given as in
equations (5.26) to (5.28). The regime process remains a time-homogeneous Markov chain
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with (time-invariant) transition probability PQ under the risk-neutral measure, that is,

PQ
ij = Q(st+1 = j | st = i)

for any 1 ≤ i, j ≤ n. Since the short rate and risk-neutral dynamics, along with the dis-
tribution of the regime process under the risk-neutral measure, determine bond prices, it
follows that bond prices are again given as

Pt(τ) = exp
(
−ast(τ)− bst(τ)′ft

)
,

with the recursive solutions to ast(·) and bst(·) given by equations (5.32) and (5.33).
Meanwhile, we denote the transition probability under the physical measure as

PP
ij,t = Pt (st+1 = j | st = i) (5.35)

for any 1≤ i, j ≤N . The SDF is then modified as follows:

Mt+1,st+1 = exp
(
−rt−Γt,st,st+1−

1
2λ
′
t,st+1λt,st+1−λ′t,st+1v

P
t+1

)
. (5.36)

Note the inclusion of an additional term Γt,st,st+1 . We define this term as

Γt,i,j = log
PP

ij,t

PQ
ij

 (5.37)

for any 1≤ i, j ≤N . Then, we can show that, as before, the distribution of

vQt+1 = λt,st+1 +vPt+1,

under the risk-neutral measure is given as

vQt+1 | Ft, st+1 ∼N [On×1, In] .

The term Γt,st,st+1 is called the market price of regime-shifting (MPRS). This is because

Γt,i,j ≈
Et
[
I{st+1=j} | st = i

]
−PQ

ij

PQ
ij

;

this is essentially the expected excess return from investing in an asset with a payoff of 1
when the economy is in regime j at time t+ 1 and 0 otherwise, given that the economy
is in regime i at time t. In other words, the higher Γt,i,j , then the greater agents perceive
the risk of going from regime i to regime j; Γt,i,j thus represents agents’ perception of the
risk associated with changes in regime, hence its name.
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In the case that there are two regimes, N = 2, Dai, Singleton, and Yang (2007) suggest
the following parameterization for PP

ij,t:

PP
ii,t =

exp
(
ηi0 +ηi′1 ·ft

)
1 + exp

(
ηi0 +ηi′1 ·ft

) , PP
ij,t = 1−PP

ii,t

for any 1≤ i, j ≤ 2. Thus, the model parameters to be estimated now include η1
0,η

1
1,η

2
0,η

2
1

in addition to the usual ATSM parameters.

5.2.4 Estimating Markov-Switching ATSMs

Returning to the case of time-invariant transition probabilities, suppose there are yields
of m maturities τ1, · · · , τm contained in the sample, collected in the vector Yt. Defining

Ast =


αst(τ1)

...
αst(τm)

 and Bst =


βst(τ1)′

...
βst(τm)′

 ,

the model can be written in state-space form as

Yt =Ast +Bstft+ Σe · et (5.38)

ft =KP
st +GP

stft−1 + Σst ·vPt , (5.39)

where et represents a vector of standard normally distributed measurement errors. Collect
the parameters in the vector

θ = {δst ,βst ,KQ
st ,G

Q
st ,K

P
st ,G

P
st ,Σst ,P,Σe}.

Assume that the factors are linear combinations of the yields observed without error, as
assumed in JSZ and others; formally, if the linear combination

Pt = µ+WYt

of the yields are observed without error, we can formulate the model in terms of Pt as
the latent factors, as shown in JSZ.

The (conditional) log-likelihood can once again be recovered via the prediction error
decomposition:

l(YT , · · · ,Y1 | θ) =
T∑
t=1

logf(Yt | Gt−1, θ)
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where Gt−1 = σ{Y1, · · · ,Yt−1}. For any 1≤ t≤ T , we can see that

f(Yt | Gt−1, θ) =
N∑
i=1

f(Yt | st = i,Gt−1, θ) ·P(st = i | Gt−1, θ)

=
N∑
i=1

f(Yt | st = i,Pt, θ) ·f(Pt | Pt−1, st = i,θ) ·P(st = i | Gt−1, θ) ,

where we used Bayes’ rule and the fact that information on Pt−1 is contained in Gt−1 to
justify the second equality.

Here, the first two densities are normal, so that we can write

f(Yt | Gt−1, θ) =
N∑
i=1
N
(
Yt | Ai+BiPt, ΣeΣ′e

)
·N

(
Pt |KP

i +GP
i Pt−1, ΣiΣ′i

)
·P(st = i | Gt−1, θ) .

To finish computing the likelihood, we must find the predictive probability

P(st = i | Gt−1, θ) .

To this end, we rely on the Hamilton filter. First, assume that the regime process is at its
stationary distribution µ0 at time 0, and define the following:

αt|t−1 =


P(st = 1 | Gt−1, θ)

...
P(st =N | Gt−1, θ)



αt|t =


P(st = 1 | Gt, θ)

...
P(st =N | Gt, θ)


for any 1≤ t≤ T . Since G0 is just the trivial σ-algebra, we have

α0|0 =


P(st = 1 | θ)

...
P(st =N | θ)

= µ0.

Suppose now that we have found αt−1|t−1 for some 1≤ t≤ T . Then, for any 1≤ j ≤N ,

αt|t−1,j = P(st = j | Gt−1, θ) =
N∑
i=1

P(st = j | st−1 = i,Gt−1, θ) ·P(st−1 = i | Gt−1, θ)

=
N∑
i=1

αt−1|t−1,i ·Pij = P ′jαt−1|t−1,
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where the second equality follows from the Markovian property of the regime process and
Pj is the jth column of P . Therefore,

αt|t−1 = P ′ ·αt−1|t−1.

Now we must find the time t filtered probabilities αt|t. By Bayes’ rule,

P(st = i | Gt, θ)∝ f(Yt | st = i,Gt−1, θ) ·P(st = i | Gt−1, θ)

= f(Yt | Pt, st = i,θQ) ·f(Pt | Pt−1, st = i,θP) ·αt|t−1,i

for any 1≤ i≤N . Furthermore, note that

N∑
i=1
N
(
Yt | Ai+BiPt, ΣeΣ′e

)
·N

(
Pt |KP

i +GP
i Pt−1, ΣiΣ′i

)
·αt|t−1,i = f(Yt | Gt−1, θ),

as per our derivation earlier. As such,

αt|t = 1
f(Yt | Gt−1, θ)


N (Yt | A1 +B1Pt, ΣeΣ′e) ·N

(
Pt |KP

1 +GP
1Pt−1, Σ1Σ′1

)
...

N (Yt | AN +BNPt, ΣeΣ′e) ·N
(
Pt |KP

N +GP
NPt−1, ΣNΣ′N

)
⊙αt|t−1.

We have thus shown that the log-likelihood can be computed recursively as follows:

Step 0: Initialization
We compute the initial stationary distribution of the regime process, µ0, using
the transition probability P , and put α0|0 = µ0. We also specify the initial factor
value P0.

Step 1: Computing Predictive Probabilities
Given αt−1|t−1, we construct the predictive probabilities as

αt|t−1 = P ′ ·αt−1|t−1,

and obtain the conditional density as

f(Yt | Gt−1, θ) =
N∑
i=1
N
(
Yt | Ai+BiPt, ΣeΣ′e

)
·N

(
ft |KP

i +GP
i ft−1, ΣiΣ′i

)
·αt|t−1,i.

Step 2: Computing Filtered Probabilities
Given the predictive probability and the log-likelihood, obtain the filtered prob-
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abilities as

αt|t = 1
f(Yt | Gt−1, θ)


N (Yt | A1 +B1Pt, ΣeΣ′e) ·N

(
Pt |KP

1 +GP
1Pt−1, Σ1Σ′1

)
...

N (Yt | AN +BNPt, ΣeΣ′e) ·N
(
Pt |KP

N +GP
NPt−1, ΣNΣ′N

)
⊙αt|t−1.

Step 3: Computing Log-likelihood
If t < T , then return to step 1. Otherwise, we compute the log-likelihood as

l(YT , · · · ,Y1 | θ) =
T∑
t=1

logf(Yt | Gt−1, θ).

The log-likelihood is a complex function of the model parameters, which makes it diffi-
cult to numerically find its global maximum. Therefore, in practice, we rely on the EM
algorithm to obtain estimates of the model parameters.

5.3 The Zero Lower Bound and Term Structure Mod-
els

In recent years, short term interest rates have been repeatedly bound by the ZLB, first
during the GFC and also over the COVID pandemic years. Many works have pointed out
that Gaussian ATSMs are ill-equipped to accomodate the lower bound restriction.Most
notably, since the factor innovation variances are constant in Gaussian ATSMs, the prob-
ability of the short rate becoming negtaive is almost the same as the probability that it
remains positive when the short rate is near 0. In other words, Gaussian ATSMs fail to
capture the inherent asymmetry in the yield curve when the short rate is near 0, where
the short rate is more likely to move upward rather than downward. Moreover, structural
changes that may take place during the ZLB, such as the compression of yields docu-
mented in Swanson and John C Williams (2014) and others, are not reflected in Gaussian
ATSMs.

For this reason, practitioners felt a need for a new type of ATSM that takes the
ZLB into account. Early attempts to impose the ZLB restriction include the square-root
processes of the CIR model and the Dai and Singleton (2000) model, where the factor
innovations are square roots of the current factors, and the quadratic term structure
model of D.-H. Ahn, Dittmar, and Gallant (2002). These models prove inadequate for our
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purposes, however, because they model the lower bound as a reflecting barrier. That is,
in the Dai and Singleton (2000) model and the quadratic model, the short rate bounces
off of the lower bound, so that the economy remains at the lower bound for only a limited
period of time. This is counterfactual to what actually happens when the economy is at
the lower bound; during the GFC and the COVID pandemic, the short rate remained
near 0 for years on end.

As such, two main approaches to lower bound modeling have taken root in the lit-
erature. The first is a regime-switching approach, adopted in works such as Christensen
(2013), Hördahl and Tristani (2019), and the paper I co-authored with Professor Kang. In
these models, the economy is assumed to shift between two regimes: the normal regime,
where the economy is not bound by the lower bound, and the lower bound regime, where
the economy is subject to the lower bound restriction. The advantage of this approach
is that it allows us to embed in the model structural changes that may occur during the
ZLB, such as the aforementioned compression of yields. Indeed, in my paper we show that
incorporating such structural changes is integral to studying the way investors’ attitude
to risk changes when the short rate is stuck at the lower bound, and therefore to the
estimation of term premia.

The main weakness of the regime-switching approach is that it does not explicitly
impose the lower bound restriction. As noted in Hördahl and Tristani (2019), in regime-
switching models of the ZLB, it is possible for the short rate to become negative; it is
only that the probability of doing so is negligible. Therefore, in practice, by far the most
preferred method of accounting for the ZLB is the shadow-rate approach, pioneered by
Black (1995) and developed in works such as Krippner (2013) (for continuous time models)
and Wu and Xia (2016) (for discrete time models). Shadow-rate models are based on an
overwhelmingly simple intuition. As in Black (1995), consider an investor that holds a
hypothetical short term bond whose rate of return, st, can be negative. If st actually falls
below 0, then the investor would have to pay the bank to hold onto this bond, and as such,
she would choose to liquidate the bond and hold cash instead. Since cash has a rate of
return of 0, the rate of return the investor sees in this case would be equal to 0. Therefore,
the short rate rt, which is the actual rate of return an investor faces from holding a short
term bond, must be given as

rt = max(st,0). (5.40)

Here, the rate of return st on the hypothetical short term bond is called the shadow rate,
and the above equation shows us that the short rate rt is equal to the shadow rate when
it is positive, and equal to 0 otherwise. The shadow rate st thus represents what the short
rate would have been if the lower bound restriction were not present, hence its name.

In this section, we mainly focus on the models of Ichiue and Ueno (2013) and Wu and

177



5.3. THE ZLB AND ATSMS CHAPTER 5. SPECIAL TOPICS

Xia (2016), where the above shadow-rate representation of the short rate is incorporated
into the classical Gaussian ATSM framework in discrete time. Due to the non-linearity
introduced by equation (5.40), deriving the yield formula requires us to make use of the
forward rate representation of yields, that is,

Yt(τ) = 1
τ

τ−1∑
h=0

f
(h)
t ,

where f (h)
t is the h-period ahead forward rate evaluated at time t, and is defined as

f
(h)
t = (h+ 1)Yt(h+ 1)−h ·Yt(h).

Ichiue and Ueno (2013) and Wu and Xia (2016) each use different approximations to
recover a tractable closed form expression for f (h)

t , using which Yt(τ) can be computed.
The formal shadow rate term structure model is introduced below.

5.3.1 Shadow Rate Term Structure Models

As in classical Gaussian ATSMs, shadow rate term structure models (SRTSMs) are spec-
ified via their short rate dynamics and factor dynamics. As usual, we assume that the
no-arbitrage condition holds, so that the no-arbitrage equation can be expressed in terms
of the risk-netural measure. In addition, the SDFMt+1 is given in the usual exponential-
affine form with n market prices of risk λt and n risk factors vPt+1.

Starting with the factor dynamics, letting there be n latent or macro factors ft, it
is assumed that ft follow a VAR(1) process under both the risk-neutral and physical
dynamics:

ft+1 =Ki+Gift+ Σ ·vit+1 for i= P,Q,

where vit+1 is standard normally distributed under measure i and

vQt+1 = λt+vPt+1.

The main difference between Gaussian ATSMs and SRTSMs is in the specification of the
short rate dynamics. While Gaussian ATSMs assume that the short rate itself is an affine
function of the factors, in SRTSMs we assume that the shadow rate st is affine in the
factors:

st = δ+β′ft.
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Afterward, the short rate follows equation (5.40) and is given as the maximum of the
shadow rate st and an effective lower bound r5. Finally, the market prices of risk λt

are given as affine functions of the factors, following the extended affine specification of
Cheridito, Filipovic, and Kimmel (2007).

In summary, the basic SRTSM is specified by the following equations:

rt = max(st,0) (Short-Rate Dynamics)

st = δ+β′ft (Shadow Rate Dynamics)

ft+1 =KQ +GQft+ Σ ·vQt+1 (Risk-Neutral Dynamics)

ft+1 =KP +GPft+ Σ ·vPt+1. (Physical Dynamics)

To derive the formula for the h-period ahead forward rate f (h)
t , we first make use of

the no-arbitrage equation. Since, for any maturity τ ,

Pt(τ) = EQ
t [exp(−rt)Pt+1(τ −1)]

holds and the initial condition is Pt(0) = 1, iterating ahead we can find that

Pt(1) = EQ
t [exp(−rt)]

Pt(2) = EQ
t

[
exp(−rt) ·EQ

t+1 [exp(−rt+1)]
]

= EQ
t [exp(−rt− rt+1)]

...

Pt(τ) = EQ
t

exp
− τ−1∑

h=0
rt+h

 .
The forward rate f (h)

t is now given as

f
(h)
t = log(Pt(h))− log(Pt(h+ 1))

= log
EQ

t

exp
−h−1∑

j=0
rt+j

− log
EQ

t

exp
− h∑

j=0
rt+j

 .
Due to the non-linearity of the log and exponential functions, the SRTSM does not admit
a closed-form solution of the forward rate. Obtaining a closed-form solution thus requires
approximations, and it is in the choice of approximation that the models of Ichiue and

5While we may put r equal to 0, as in Black (1995), the presence of negative interest rates in Japan
and the Euro area, as well as evidence that yields are bound at a level slightly higher than 0 in the U.S.,
suggests that it would improve model fit to let r be a free parameter. This is the approach chosen in both
Ichiue and Ueno (2013) and Wu and Xia (2016), while Christensen and Rudebusch (2016) compares a
model where r is left as a free parameter against a model where it is fixed at 0.
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Ueno (2013) and Wu and Xia (2016) diverge. For later use, we define the terms

ā(h) = δ+β′

h−1∑
j=0

(
GQ

)jKQ (5.41)

a(h) = ā(h)− 1
2β
′

h−1∑
j=0

(
GQ

)jΣΣ′
h−1∑
j=0

(
GQ′

)jβ (5.42)

b(h) =
(
GQ′

)h
β (5.43)

σQ(h) =

√√√√√h−1∑
j=0

β′
(
GQ

)j
ΣΣ′

(
GQ′

)j
β. (5.44)

The Ichiue-Ueno Model

The SRTSM introduced in Ichiue and Ueno (2013) was designed to study the movement
of Japanese yields, which had been bound by the lower bound ever since the early 2000s.
To derive a closed-form solution for the forward rate f (h)

t , Ichiue and Ueno (2013) assume
that the Jensen’s inequality term that follows from interchanging logs and expectations
is small 6. This allows the forward rate to be approximated as follows:

f
(h)
t ≈ EQ

t

 h∑
j=0

rt+j

−EQ
t

h−1∑
j=0

rt+j

= EQ
t [rt+h] . (5.45)

Recall that, under the expectations hypothesis, the forward rate f (h)
t equals the expected

h-period ahead short rate Et [rt+h]. The above approximation simply states that, when
agents’ risk aversion is taken into account, f (h)

t must equal the Q-expected value of rt+h
instead of its P-expected value.

It remains to compute the expected value EQ
t [rt+h]. Since the h-period ahead short

rate rt+h is a function of the h-period ahead shadow rate st+h, we first calculate the
moments of the shadow rate. For any h > 0, the shadow rate dynamics and risk-neutral
dynamics imply that

st+h = δ+β′ft+h

= δ+β′KQ +β′Σ ·vQt+h+β′GQft+h−1

6They acknowledge that, since the Jensen’s inequality term increases exponentially as the yield matu-
rity increases, their approximation may be inappropriate when studying yields of longer maturities, such
as 30-year bonds. They nevertheless claim that the approximation error from ignoring Jensen’s inequality
is small for yields of maturities 10 years or less.
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= · · ·= δ+β′

h−1∑
j=0

(
GQ

)jKQ +β′

h−1∑
j=0

(
GQ

)j
Σ ·vQt+h−j

+β′
(
GQ

)h
ft.

Since {vQt }t∈Z is pairwise uncorrelated under the risk-neutral measure, it follows that

EQ
t [st+h] = δ+β′

h−1∑
j=0

(
GQ

)jKQ

︸ ︷︷ ︸
ā(h)

+β′
(
GQ

)h
︸ ︷︷ ︸

b(h)′

ft

VarQt (st+h) =
h−1∑
j=0

β′
(
GQ

)j
ΣΣ′

(
GQ′

)j
β

︸ ︷︷ ︸
(σQ(h))2

.

We must now express EQ
t [rt+h] in terms of the Q-moments of the shadow rate. Since

rt+h = max(st+h, r), we have

EQ
t [rt+h] = EQ

t

[
st+h · I{st+h≥r}

]
+ r ·Qt (st+h < r) .

Since vQt+1, · · · ,v
Q
t+h are jointly Gaussian and mutually independent under the risk-neutral

measure, we can see that

st+h | Ft ∼N
[
ā(h) + b(h)′ft,

(
σQ(h)

)2]
,

under the risk-neutral measure, and therefore

Qt (st+h < r) = Φ
(
r− ā(h)− b(h)′ft

σQ(h)

)

EQ
t [rt+h] = 1

σQ(h)

∫ ∞
r

z ·φ
(
z− ā(h)− b(h)′ft

σQ(h)

)
dz,

where φ : R→ (0,+∞) is the standard normal density and Φ : R→ [0,1] is the cdf of the
standard normal distribution. A simple change of variables tells us that

EQ
t

[
st+h · I{st+h≥r}

]
= 1
σQ(h)

∫ ∞
r

z ·φ
(
z− ā(h)− b(h)′ft

σQ(h)

)
dz

=
∫ ∞
r−ā(h)−b(h)′ft

σQ(h)

(
σQ(h)x+ ā(h) + b(h)′ft

)
·φ(x)dx

= σQ(h) ·
∫ ∞
r−ā(h)−b(h)′ft

σQ(h)

x ·φ(x)dx+
[
ā(h) + b(h)′ft

][
1−Φ

(
r− ā(h)− b(h)′ft

σQ(h)

)]
.
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Through the fundamental theorem of calculus, we have

∫ ∞
r−ā(h)−b(h)′ft

σQ(h)

x ·φ(x)dx=− [φ(x)]∞r−ā(h)−b(h)′ft
σQ(h)

= φ

(
r− ā(h)− b(h)′ft

σQ(h)

)
,

so it follows that

EQ
t [rt+h] = EQ

t

[
st+h · I{st+h≥r}

]
+ r ·Qt (st+h < r)

= σQ(h) ·φ
(
r− ā(h)− b(h)′ft

σQ(h)

)
+
[
ā(h) + b(h)′ft

][
1−Φ

(
r− ā(h)− b(h)′ft

σQ(h)

)]
+ r ·Φ

(
r− ā(h)− b(h)′ft

σQ(h)

)

= σQ(h) ·φ
(
ā(h) + b(h)′ft− r

σQ(h)

)
+
[
ā(h) + b(h)′ft− r

]
Φ
(
ā(h) + b(h)′ft− r

σQ(h)

)
+ r

= r+σQ(h)
[
φ

(
ā(h) + b(h)′ft− r

σQ(h)

)
+ ā(h) + b(h)′ft− r

σQ(h) ·Φ
(
ā(h) + b(h)′ft− r

σQ(h)

)]
,

where the third equality follows from the symmetry of φ and the fact that 1−Φ(x) =
Φ(−x) for any x ∈ R. Defining the function g : R→ R as

g(x) = x ·Φ(x) +φ(x), (5.46)

the conditional expectation EQ
t [rt+h] and thus the forward rate f (h)

t can be written as

f
(h)
t ≈ EQ

t [rt+h] = r+σQ(h) ·g
(
ā(h) + b(h)′ft− r

σQ(h)

)
. (5.47)

It follows that the τ -period yield is given as

Yt(τ)≈ r+ 1
τ

τ−1∑
h=1

σQ(h) ·g
(
ā(h) + b(h)′ft− r

σQ(h)

)
+ rt− r

 . (5.48)

The Wu-Xia Model

Wu and Xia (2016) use a more precise second-order approximation instead of ignoring the
Jensen’s inequality term outright. Specifically, they use the approximation

log(E [exp(Z)])≈ E [Z] + 1
2Var(Z)
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for any square integrable random variable Z7. Now, the forward rate is approximated as
follows:

f
(h)
t = log

EQ
t

exp
−h−1∑

j=0
rt+j

− log
EQ

t

exp
− h∑

j=0
rt+j



≈ EQ
t

 h∑
j=0

rt+j

−EQ
t

h−1∑
j=0

rt+j

+ 1
2VarQt

h−1∑
j=0

rt+j

− 1
2VarQt

 h∑
j=0

rt+j



= EQ
t [rt+h] + 1

2VarQt

h−1∑
j=1

rt+j

− 1
2VarQt

 h∑
j=1

rt+j

 ,
This approximation is more precise than that employed in Ichiue and Ueno (2013), since
it is based on a second-order approximation instead of a first-order one. Using further
approximations to the variances and covariances of truncated normal random vectors, Wu
and Xia show in their paper (and us in the appendix) that the h-period ahead forward
rate can be approximated as

f
(h)
t ≈ r+σQ(h) ·g

(
a(h) + b(h)′ft− r

σQ(h)

)
. (5.49)

Therefore, the τ -period yield at time t is approximated as

Yt(τ)≈ r+ 1
τ

τ−1∑
h=1

σQ(h) ·g
(
a(h) + b(h)′ft− r

σQ(h)

)
+ rt− r

 . (5.50)

Note that the only difference between the formulas in equations (5.48) and (5.50) lies in
the use of a(h) instead of ā(h) in the latter. Furthermore, the only difference between the

7To derive this approximation, we employ two Taylor approximations. First, a second degree Taylor
approxmiation of the exponential function around E [Z] yields the formula

exp(Z)≈ exp(E [Z]) + exp(E [Z]) · (Z−E [Z]) + 1
2 exp(E [Z]) · (Z−E [Z])2 .

Taking expectations on both sides now yields

E [exp(Z)]≈ exp(E [Z])
[
1 + 1

2Var(Z)
]
.

Finally, taking logs on both sides and using the first degree Taylor approxmiation log(1 +x)≈ x for small
values of x shows us that

log(E [exp(Z)])≈ E [Z] + log
(

1 + 1
2Var(Z)

)
≈ E [Z] + 1

2Var(Z) .

The accuracy of the two approximations rely on small second moments of the random variable Z.
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two terms, as seen in equation (5.42), is in the Jensen’s inequality term

1
2β
′

h−1∑
j=0

(
GQ

)jΣΣ′
h−1∑
j=0

(
GQ′

)jβ.
Therefore, we can interpret the formula in equation (5.50) as a version of equation (5.48)
that does not completely disregard Jensen’s inequality. Nevertheless, because the Wu-Xia
SRTSM also involves approximations to the variance and covariance terms of the current
and future short rates, it is unclear which model yields more precise approximations of
the forward rate.

The Term Premium in SRTSMs

The term premium of a τ -maturity bond is given as the difference between a τ -maturity
yield and its expectation hypothesis component:

TPt(τ) = Yt(τ)− 1
τ

τ−1∑
h=0

Et [rt+h] .

In classical ATSMs, we use the formula in Cochrane and Piazzesi (2008) to formulate the
term premium as an affine function of the factors directly from formula for one-period
ahead bond excess returns. In this case, because there is no simple analytical formula for
bond prices, we instead compute the expectations component first.

Mirroring the process through which we derived EQ
t [rt+h] for h > 1, we can see that

Et [rt+h] = r+σP(h) ·g
(
ᾱ(h) +β(h)′ft− r

σP(h)

)
, (5.51)

where

ᾱ(h) = δ+β′

h−1∑
j=0

(
GP
)jKP

β(h) =
(
GP′

)h
β

σP(h) =

√√√√√h−1∑
j=0

β′
(
GP
)j

ΣΣ′
(
GP′

)j
β.

Therefore,

TPt(τ) = 1
τ

τ−1∑
h=1

[
σQ(h) ·g

(
ā(h) + b(h)′ft− r

σQ(h)

)
−σP(h) ·g

(
ᾱ(h) +β(h)′ft− r

σP(h)

)]
(5.52)
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in the Ichiue-Ueno model, and

TPt(τ) = 1
τ

τ−1∑
h=1

[
σQ(h) ·g

(
a(h) + b(h)′ft− r

σQ(h)

)
−σP(h) ·g

(
ᾱ(h) +β(h)′ft− r

σP(h)

)]
(5.53)

in the Wu-Xia model.

5.3.2 Estimating Shadow Rate Models

For estimation, both Ichiue and Ueno (2013) and Wu and Xia (2016) choose the identify
the model via the JSZ canonical restrictions, so that δ = 0, β = ιn, KQ is the zero vector
except for its first element kQ∞, and GQ is a matrix in Jordan form, with eigenvalues
collected in the vector λQ. Both models estimate a 3-factor model, and Wu and Xia
(2016) assume the existence of a repeated eigenvalue in GQ. However, these two models
do not assume the existence of a set of observable portfolios of yields, choosing to retain
the latent factor specification.

The workhorse estimation method for SRTSMs is maximum likelihood/Bayesian es-
timation via the extended Kalman filter. To motivate the use of the extended Kalman
filter, suppose we have a sample of monthly yields of maturities 1 to m+1 months. Then,
we can construct m forward rates

Yt =


f

(1)
t
...

f
(m)
t

=


2Yt(2)−Yt(1)

...
(m+ 1)Yt(m+ 1)−mYt(m)

 .

As with classical ATSMs, we can now express SRTSMs in the following state-space form:

Yt = L(ft;θQ) + Ση ·ηt (5.54)

ft =KP +GPft−1 + Σ ·vPt , (5.55)

where θQ collects the Q-parameters

{kQ∞,λQ,Σ}

and

L(ft;θQ) =


r+σQ(1) ·g

(
ā(1)+b(1)′ft

σQ(1)

)
...

r+σQ(m) ·g
(
ā(m)+b(m)′ft

σQ(m)

)
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under the model of Ichiue and Ueno (2013); replacing ā(h) with a(h) yields the model of
Wu and Xia (2016). Ση ·ηt is a vector of forward rate measurement errors, with ηt being
standard normally distributed.

Clearly, L(·;θQ) is a non-linear function, so we cannot apply the Kalman filter for linear
models directly. Therefore, we use the extended Kalman filter, which is the workhorse for
estimating non-linear state space models. The non-linearity of the measurement equation
means that the resulting filtered values are not optimal, but in practice they turn out to
be good enough approximations to the true optimal values.

To start the extended Kalman filter iterations, we define the quantities

ft|t−1 = E [ft | Gt−1]

ft|t = E [ft | Gt]

Pt|t−1 = Var(ft | Gt−1)

Pt|t = Var(ft | Gt)

Yt|t−1 = E [Yt | Gt−1]

Vt|t−1 = E [Yt | Gt−1] ,

where Gt is the information contained in the sample {Y1, · · · ,Yt}. The algorithm is ini-
tialized with

f0 ∼N
[
f0|0, P0|0

]
,

where f0|0 and P0|0 are chosen as in the usual Kalman filter for the stationary and non-
stationary cases.

Suppose that we have obtained ft−1|t−1 and Pt−1|t−1, and that ft−1,ηt and vPt are
approximately jointly normal given Gt−1:


ft−1

ηt

vPt

 | Gt−1
approx∼ N

 ft−1|t−1

O(n+m)×1

 , diag
(
Pt−1|t−1, In+m

) .

Then,

ft|t−1 =KP +GP ·ft−1|t−1

Pt|t−1 =GPPt−1|t−1G
P′+ ΣΣ′
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and ft
ηt

 | Gt−1
approx∼ N

ft|t−1

Om×1

 ,
Pt|t−1 On×m

Om×n Im

 ,
which is the same as in the linear Kalman filter because the transition equation is linear.
Now note that

∂L(x;θQ)
∂x′

=



∂L1(x;θQ)
∂x1

· · · ∂L1(x;θQ)
∂xn

... . . . ...

∂Lm(x;θQ)
∂x1

· · · ∂Lm(x;θQ)
∂xn

=



Φ
(
ā(1)+b(1)′x

σQ(1)

)
· b(1)′

...

Φ
(
ā(m)+b(m)′x

σQ(m)

)
· b(m)′


for any x∈Rn, so that a first order Taylor approximation of L(ft;θQ) around ft|t−1 yields

L(ft;θQ)≈ L(ft|t−1;θQ) + ∂L(x;θQ)
∂x′

|x=ft|t−1

(
ft−ft|t−1

)
.

This approximation is precise if ft ≈ ft|t−1. Defining

Lt|t−1 := ∂L(x;θQ)
∂x′

|x=ft|t−1=



Φ
(
ā(1)+b(1)′ft|t−1

σQ(1)

)
· b(1)′

...

Φ
(
ā(m)+b(m)′ft|t−1

σQ(m)

)
· b(m)′


,

we have the linearization

Yt ≈ L(ft|t−1;θQ) +Lt|t−1
(
ft−ft|t−1

)
+ Ση ·ηt. (5.56)

Therefore, we end up with the approximations

Yt|t−1 ≈ L(ft|t−1;θQ)

Vt|t−1 ≈ Lt|t−1Pt|t−1L′t|t−1 + ΣηΣ′η.

We can further see from equation (5.56) that ft and Yt are approximately jointly normal
conditional on Gt−1:

ft
Yt

 | Gt−1
approx∼ N

ft|t−1

Yt|t−1

 ,
 Pt|t−1 Pt|t−1L′t|t−1
Lt|t−1Pt|t−1 Vt|t−1

 .
The usual updating formula for jointly normally distributed variables tells us that ft is
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approximately normal given Gt, with mean and variance given as

ft|t ≈ ft|t−1 +Kt|t−1
(
Yt−Yt|t−1

)
Pt|t ≈

[
In−Kt|t−1Lt|t−1

]
Pt|t−1,

where

Kt|t−1 = Pt|t−1L′t|t−1V
−1
t|t−1

is the near-optimal Kalman gain; it is optimal when Yt and ft are actually jointly normally
distributed.

Finally, we can see that, because Gt and ft are independent of ηt+1 and vPt+1, ft is
conditionally independent of the two error terms. The approximate normality of ft given
Gt and the normality of the errors now imply


ft

ηt+1

vPt+1

 | Gt approx∼ N

 ft|t

O(n+m)×1

 , diag
(
Pt|t, In+m

) .

Thus, we can recursively recover the approximate filtered and predictive values from the
extended Kalman filter as follows:

ft|t−1 =KP +GP ·ft−1|t−1 (5.57)

Pt|t−1 =GPPt−1|t−1G
P′+ ΣΣ′ (5.58)

Lt|t−1 =



Φ
(
ā(1)+b(1)′ft|t−1

σQ(1)

)
· b(1)′

...

Φ
(
ā(m)+b(m)′ft|t−1

σQ(m)

)
· b(m)′


(5.59)

Yt|t−1 ≈ L(ft|t−1;θQ) (5.60)

Vt|t−1 = Lt|t−1Pt|t−1L′t|t−1 + ΣηΣ′η (5.61)

Kt|t−1 = Pt|t−1L′t|t−1V
−1
t|t−1 (5.62)

ft|t ≈ ft|t−1 +Kt|t−1
(
Yt−Yt|t−1

)
(5.63)

Pt|t ≈
[
In−Kt|t−1Lt|t−1

]
Pt|t−1 (5.64)
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Yt | Gt−1
approx∼ N

[
Yt|t−1, Vt|t−1

]
. (5.65)

with a(h) in place of ā(h) if we use the Wu-Xia model over the Ichiue-Ueno model. The
approximate conditional log-likelihood is now given as

l(YT , · · · ,Y1 | θ) =
T∑
t=1

logf(Yt | Gt−1;θ)

≈−mT2 log(2π)− 1
2

 T∑
t=1

(
log

∣∣∣Vt|t−1
∣∣∣+(
Yt−Yt|t−1

)′
V −1
t|t−1

(
Yt−Yt|t−1

)) .

5.4 Term Structure Models with Falling Stars

Most of the term structure models developed in the 2000s and early 2010s assumed sta-
tionary physical factor dynamics; examples include Dai and Singleton (2000) and Joslin,
Singleton, and Zhu (2011). A subset of the literature, however, had consistently pointed
out that, because yield factors actually exhibit near-unit root behavior, modeling their
physical dynamics as stationary likely incurs severe small-sample bias during estimation.
Bauer, Rudebusch, and Wu (2012) was one of the first papers to address this issue, demon-
strating that standard Gaussian ATSMs suffer from high degress of small sample bias, in
particular predicting unrealistically fast rates of mean reversion for the short rate. In the
SRTSM of Christensen and Rudebusch (2016), the physical factor dynamics contain a unit
root, not because the authors believe that the factor dynamics are truly non-stationary,
but because they claim it helps alleviate estimation bias when the yield factors are close
to non-stationary. Bauer and Hamilton (2018) developed a bootstrapping algorithm to
obtain more robust standard errors in the presence of precisely this small sample bias.

Bauer and Rudebusch (2020) is the natural culmination of this trend, in which is
developed a Gaussian ATSM that explicitly accounts for the non-stationarity and coin-
tegration properties of bond yields. They first establish further stylized facts concerning
the role of the real interest rate trend r∗t , the inflation trend π∗t , and the nominal interest
rate trend i∗t pertaining to the term structure of interest rates. Subsequently, a Gaussian
ATSM that is able to replicate these facts is formulated.

5.4.1 Definition of and Proxies for Macroeconomic Trends

In Bauer and Rudebusch (2020), the long run trend of a macroeconomic variable Xt is
defined as its Beveridge-Nelson trend. Formally, suppose that Xt is an I(1) process whose
first difference ∆Xt is a weakly stationary causal linear process with MA(∞) representa-

189



5.4. ATSMS WITH FALLING STARS CHAPTER 5. SPECIAL TOPICS

tion

∆Xt = δ+ Ψ(L)εt.

Here, εt is an i.i.d. white noise process, and Ψ(L) is an MA(∞) lag polynomial with
one-summable coefficients. It follows from the Beveridge-Nelson decomposition that there
exists a sequence of absolutely summable coefficients {αj}j∈N and a mean zero weakly
stationary causal linear process ηt = α(L)εt such that

Xt = δt+ Ψ(1)
(

t∑
s=1

εs

)
+ηt+ (X0−η0)

for any t > 0. Suppose that the initial values are chosen so thatX0−η0 equals a nonrandom
constant µ. Then,

X∗t = µ+ δt+ Ψ(1)
(

t∑
s=1

εs

)

is defined as the Beveridge-Nelson trend of the variable Xt. Similarly, ηt represents the
cyclical component of Xt.

When δ = 0, and the initial values are chosen so that there exists a very convenient
expression of the Beveridge-Nelson trend as the current forecast of future values of Xt

as the forecast horizon goes to infinity. Indeed, this is how Bauer and Rudebusch (2020)
define the trend of an I(1) macroeconomic variable. From the above decomposition, we
can see that, for any t > 0 and h > 0,

Xt+h = µ+ Ψ(1)
t+h∑
s=1

εs

+ηt+h,

so that

Et [Xt+h] = µ+ Ψ(1)
t+h∑
s=1

Et [εs]
+Et [ηt+h]

= µ+ Ψ(1)
(

t∑
s=1

εs

)
+Et [ηt+h] ,

where the second equality follows because εt is an i.i.d. white noise process. Note also
that

Et [ηt+h] =
∞∑
j=0

αj ·Et
[
εt+h−j

]

=
∞∑
j=h

αj · εt+h−j .
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Since

∥∥∥∥∥∥
∞∑
j=h

αj · εt+h−j

∥∥∥∥∥∥
2

=

E
∣∣∣∣∣∣
∞∑
j=h

αj · εt+h−j

∣∣∣∣∣∣
2

1
2

≤
∞∑
j=h

α2
j ·
∥∥∥εt+h−j∥∥∥2

= ‖ε0‖2 ·

 ∞∑
j=h

α2
j


for any h > 0, the absolute summability of {αj}j∈N implies its square summability and

Et [ηt+h] =
∞∑
j=h

αj · εt+h−j
L2
→ 0

as h→∞. In other words,

Et [Xt+h] =X∗t +Et [ηt+h] L
2
→X∗t

as h→∞, so that the Beveridge-Nelson trend X∗t is the L2-limit of the forecast Et [Xt+h]
as the forecast horizion goes to infinity. We write this relationship as

X∗t = lim
h→∞

Et [Xt+h] .

For this reason, the long run trend X∗t is sometimes referred to as the “endpoint” of the
process Xt. If Xt does not contain any stochastic trend, that is, if Ψ(1) = 0, then X∗t is
equal to µ, its (constant) long run mean. On the other hand, a non-zero Ψ(1) implies
that X∗t is stochastic. Therefore, I(1) processes without deterministic time trends are
sometimes referred to as processes with shifting endpoints, in contrast to I(0) processes,
which have constant endpoints equal to their constant long run means.

Using the above definition and formulation of the long run trend of I(1) macroeconomic
variables, the following relationship holds if we assume that the real interest rate, nominal
interest rate and inflation are I(1) variables with no deterministic time trend:

i∗t = lim
h→∞

Et [it+h] = lim
h→∞

(Et [rt+h] +Et [Et+h [πt+h+1]])

= lim
h→∞

(Et [rt+h] +Et [πt+h+1]) = r∗t +π∗t ,

where the second equality follows from the Fisher equation and the third from the law of
iterated expectations. This shows us that the nominal interest rate trend is just the sum
of the real interest rate trend and trend inflation.

We can also study the role of the nominal interest rate trend when it comes to the EH
and TP components of long term yields. Recall that τ -maturity yield can be decomposed
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as

Yt(τ) = 1
τ

τ−1∑
h=0

Et [it+h] +TPt(τ),

where the first term on the right hand side represents the EH component. The EH com-
ponent can be further decomposed as

1
τ

τ−1∑
h=0

Et [it+h] = i∗t + 1
τ

τ−1∑
h=0

Et
[
ict+h

]
,

where ict+h is the cyclical component of it+h, and we used the martingale property of the
nominal interest rate trend. In other words, i∗t loads on the EH component with unity,
indicating that the EH component must possess a stochastic trend. This is a feature ne-
glected in many stationary Gaussian ATSMs, leading to the trend in long term yields to
be imputed to the term premium instead.

To establish stylized facts about the role of r∗t ,π∗t and i∗t in the term structure of
interest rates, Bauer and Rudebusch (2020) first procure some empirical proxies of the
originally unobservable quantities r∗t and π∗t . Exploiting the fact that trend inflation π∗t
can be interpreted macroeconomically as the central bank’s inflation target, Bauer and
Rudebusch (2020) use the perceived target rate (PTR) from the FRB/US model as their
proxy for π∗t .

On the other hand, the estimation of the real interest rate trend r∗t is a hotly debated
topic in the empirical macroeconomic literature, as r∗t proves to be very model-sensitive.
To avoid relying on one specific model, Bauer and Rudebusch (2020) choose to take as
their proxy for r∗t the average estimates obtained from three different types of models.
The first are empirical time-series model estimated via Bayesian methods, exemplified by
Del Negro et al. (2017) 8. A second class of models collects those that extract r∗t from
formal DSGE models, or at least semi-structural models, as in Laubach and John C.
Williams (2003). Finally, Bauer and Rudebusch (2020) also provide their own estimates

8This model, referred to as DGGT, is important in its own right, so we provide here a brief summary
of its contents.

In DGGT, the natural rate of interest, which is defined as the real interest rate in the absence of
monetary policy, is extracted from a multivariate unobserved components model containing variables
such as short/long term nominal interest rates, inflation, survey expectations, and the rate of return on
corporate bonds. The results are found to be comparable to those of a formal DSGE model.

The authors find that the marked secular decline in the natural rate since the Great Recession can be
attributed to the rise in convenience yields, which are the premia investors pay in exchange for safety
and liquidity. Specifically, in exchange for the greater safety and liquidity provided by treasury bonds,
investors accept a lower rate of return compared to corporate bonds with the same return structure,
which explains why the trend of the real return to treasury bonds have plummeted in response to the
savings glut following the onset of the Great Recession. This has proven to be one of the most influential
explanations for the secular decline in the real interest rate trend. Indeed, macro trends in Bauer and
Rudebusch (2020) are called “falling stars” precisely because of the marked decline in r∗t .
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of r∗t , obtained from simple trend-cycle decompositions of the real interest rate.

5.4.2 Stylized Facts about Macroeconomic Trends and the Yield
Curve

Using the empirical proxies for r∗t and π∗t , Bauer and Rudebusch (2020) establish the
following stylized facts:

Fact 1: The Nominal Interest Rate Trend is the Common Trend among Yields

First, Bauer and Rudebusch (2020) find that the nominal interest rate trend is precisely
the common trend affecting yields. As far back as Campbell and Shiller (1987), it has been
known that yields are best modeled as cointegrated with a single common component,
while yield spreads are largely stationary. The contribution in Bauer and Rudebusch
(2020) is that they provide evidence pointing to i∗t being this common component.

To show this, Bauer and Rudebusch (2020) run regressions of the form

Yt(τ) = β0 +β′1Xt+ εt,

where τ represents the maturity corresponding to 10 years and Xt contains the macroeco-
nomic trends of interest. If the trends in Xt are truly the common trends driving the yields,
then the stochastic trend of Yt(τ) would be given as a linear combination of Xt, meaning
that there exist values of β0,β1 such that Yt(τ)−β0−β′1Xt is stationary9. Based on this
intuition, Bauer and Rudebusch (2020) estimate β0,β1 by the Dynamic OLS method of
Saikkonen (1992), and test whether the resulting residuals are stationary10.

The combinations of Xt used in Bauer and Rudebusch (2020) are

Xt = {π∗t }, {r∗t ,π∗t }, {i∗t}.

Trend inflation is always included as part of the regressors, since many works in the
literature document the predictive power of trend inflation π∗t for excess bond returns.
In particular, Cieslak and Povala (2015) take inspiration from the Fisher equation and

9This is all predicated on the assumption that yields do not contain a deterministic time trend.
10OLS estimates of β0,β1 are also consistent for the true parameter values, albeit with an asymptotic

distribution that contains nuisance parameters, and Phillips and Ouliaris (1990) derives the asymptotic
distribution of the Dickey-Fuller test statistic of the OLS residuals (this test is referred to as the Phillips-
Ouliaris test).

The reason the authors in Bauer and Rudebusch (2020) opt for Dynamic OLS instead of standard
OLS is probably to obtain estimates of β0,β1 with pivotal asymptotic distributions, which allows them
to conduct hypothesis tests concerning β0 and β1.
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decompose nominal yields into a trend inflation component and a component that affects
the real part of the yields. Bauer and Rudebusch (2020) find that, if only π∗t is included in
Xt, then there is insufficient evidence to conclude that the residuals are stationary, based
on unit root tests such as the ADF and PP tests, as well as more general stationarity tests
like the low-frequency cointegration test of Müller and Watson (2013). On the other hand,
if both r∗t and π∗t are included as regressors, we can conclude on the basis of the above
tests that the residual process is stationary. Finally, including i∗t as the sole regressor
yields similar results, so that i∗t can serve as the single common component among yields
of various maturities.

In addition, the Dynamic OLS estimate of β1 from putting Xt = i∗t reveals that the
loading of i∗t on the 10 year yield is significantly greater than 1. This suggests that the
common component i∗t loads on yields with a loading greater than unity, that is, a unit
increase in the common trend i∗t results in a larger than unit increase in the yields. Since
i∗t loads on the EH component with unity, this implies that i∗t loads positively on the
term premium. In other words, even though the EH and TP components now share the
common trend in long term yields, the term premium remains non-stationary to some
degree.

Fact 2: The Nominal Interest Rate Trend helps predict Excess Bond Returns

To investigate the relationship between the common yield trend i∗t and excess bond re-
turns, Bauer and Rudebusch (2020) test whether β2 is equal to 0 in the regression

exr
(τ)
t+1 = β0 +β′1Pt+β2 · ·i∗t +ut+1, (5.66)

where exr(τ)
t+1 is the one-period ahead excess bond return for the τ -maturity bond defined

as

exr
(τ)
t+1 = (τ −1)Yt+1(τ −1)− τ ·Yt(τ)− rt,

and Pt contain the first three principal components of the yield curve. Essentially, Bauer
and Rudebusch (2020) test whether the information in i∗t is spanned by the yield curve by
running a regression similar to that in equation (5.10), where the information contained
in the yield curve is controlled for using the PCs rather than the CP factor. Equation
(5.66) is estimated using the bootstrap method of Bauer and Hamilton (2018), which
helps control for small sample bias in the presence of trending regressors and errors that
are not strictly exogenous.

Results show that β2 is significantly lower than 0, indicating that an increase in the
common trend i∗t lowers excess bond returns, even when the information in the yield curve
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has been controlled for. This suggests that i∗t contains information about excess bond re-
turns that is unspanned by the yield curve. Another interesting finding is that, unlike the
results in Campbell and Shiller (1991) and Cochrane and Piazzesi (2005), which find that
the yield spread or the CP factor contain relevant information about excess bond returns,
the level factor becomes a strong predictor for excess bond returns once i∗t is included in
the regression (5.66).

5.4.3 No-Arbitrage under Falling Stars

We have seen how Bauer and Rudebusch (2020) established stylized facts indicating that
i∗t is not only the common trend moving all yields, but also that i∗t contains unspanned
information about the yield curve. This motivates them to formulate a Gaussian ATSM
with i∗t . This ATSM, called the falling stars (FS) model, is formally almost identical to a
macro-finance ATSM with i∗t assuming the role of the unspanned macro factor.

As with the usual Gaussian ATSM, the FS model is a model of no-arbitrage. Under the
no-arbitrage condition, there exists an SDF process {Mt+1}t∈N and a risk-neutral measure
Q under which the price of each asset is its expected one-period ahead payoff discounted
by the (nominal) short rate it. We assume that the SDF is given in the exponential-affine
form

Mt+1 = exp
(
−rt−

1
2λ
′
tλt−λ′tvPt+1

)
,

where vPt+1 is an n-dimensional random vector of risk factors, which we assume to be
standard normally distributed. Defining vQt+1 as

vQt+1 = vPt+1 +λt,

vQt+1 is standard normally distributed under the risk-neutral measure.
Bauer and Rudebusch (2020) choose the JSZ identification scheme, so that, in terms

of the n latent factors ft, the short rate and risk-neutral factor dynamics of the model are
given as

it = ι′ft

ft+1 =
 kQ∞
O(n−1)×1

+JQft+ Σ ·vQt+1,

where λQ contains the n distinct real eigenvalues that determine the Jordan matrix JQ11.
11Bauer and Rudebusch (2020) assume that the eigenvalues collected in λQ are all less than unity, in

order to prevent the counterfactual implication of bond prices and forward rates diverging to infinity as
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The sample of m yields, Yt, is then given as an affine function of the latent factors, where
the factor loadings and intercept are functions of the Q-parameters kQ∞,JQ and Σ:

Yt =A+B ·ft.

Bauer and Rudebusch (2020) further assume that there exists an n-dimensional port-
folio Pt = WYt of yields that is observed without error. This indicates that Pt is an
invariant affine transformation of ft:

Pt =WA+WB ·ft.

This allows the short rate and risk-neutral dynamics can be written in terms of Pt as the
factors:

it = δ0,P + δ′1,Pft

Pt+1 =KQ
P +GQ

PPt+ ΣP ·vQt+1,

where

δP =−ι′ [WB] (5.67)

βP = [WB]−1′ ι (5.68)

KQ
P = [WB]

(
In−JQ

)
[WB]−1 ·WA+ [WB]−1

 kQ∞
O(n−1)×1

 (5.69)

GQ
P = [WB]JQ [WB]−1 (5.70)

ΣP = [WB]Σ. (5.71)

The sample yields are now given as affine functions of the observed factors Pt:

Yt =AP +BP ·Pt,

where

AP =A−B [WB]−1WA

the maturity increases.
This is in contrast to the AFNS model, in which GQ does contain a unit root. However, the tradeoff

for the unfortunate implications is the ability to easily interpret the factors and a superb fit for the yield
curve.

196



5.4. ATSMS WITH FALLING STARS CHAPTER 5. SPECIAL TOPICS

BP = B [WB]−1 .

So far, the FS model has closely followed the JSZ model. The main difference between
the two models comes with the physical factor dynamics. In the FS model, we assume
that the factors Pt are non-stationary; specifically, the trend-cycle representation of Pt is
given as

Pt = µ+γ · τt︸ ︷︷ ︸
P∗t

+P̃t, (5.72)

where µ,γ ∈ Rn×1. τt represents the single trend that drives the n factors and therefore
the yields, and it follows a random walk:

τt = τt−1 +ση ·ηt.

Meanwhile, the cyclical component P̃t of Pt is assumed to follow a mean zero weakly
stationary VAR(1) process:

P̃t = Φ · P̃t−1 + Σu ·ut,

where the eigenvalues of Φ are all contained in the unit circle. The error processes ηt and
ut are i.i.d. standard normal, and assumed to be mutually independent. In this context,
equation (5.72) specifies the factors Pt as following a trend-cycle VAR(1).

Note that P∗t is the Beveridge-Nelson trend of the model, since τt, being a random walk,
is a martingale and P̃t has an absolutely summable causal linear process representation:

Et [Pt+h] L
2
→ µ+γ · τt = P∗t

as h→∞.
It remains to match the two stylized facts established above. First, we must ensure

that the common trend τt equals the nominal interest rate trend i∗t . From the short rate
dynamics, we can see that

i∗t = δP +β′PP∗t .

Substituting equation (5.72) into the above equation, we end up with

i∗t = δP +β′Pµ+β′Pγ · τt.

197



5.4. ATSMS WITH FALLING STARS CHAPTER 5. SPECIAL TOPICS

To match the stylized facts, we must thus impose the identification restrictions

δP +β′Pµ= 0 (5.73)

β′Pγ = 1. (5.74)

To match the second stylized fact, we direct our focus to the market prices of risk in
the FS model:

λt = Σ−1
P
[
Et [Pt+1]−EQ

t [Pt+1]
]

= Σ−1
P
[
P∗t + Φ · P̃t−KQ

P −G
Q
PPt

]
=−Σ−1

P KQ
P + Σ−1

P (In−Φ)P∗t + Σ−1
P
[
Φ−GQ

P
]
Pt.

Since In−Φ is non-zero, even when the factors Pt are controlled for, the trend component
P∗t , and by extension i∗t , still loads on the market prices of risk λt. Since excess bond
returns are linear in λt, this indicates that, in the FS model, i∗t remains unspanned, which
is precisely the content of the second stylized fact.

In contrast, the model-implied yields Yt are affine functions of Pt only. In other words,
we cannot recover the trend P∗t and by extension i∗t separately from the cyclical compo-
nent P̃t by inverting the current yields. This demonstrates that the FS model satisfies
the knife-edge condition of unspanned macro-finance ATSMs, and that i∗t serves the same
role here as an unspanned macro factor.

5.4.4 Estimating the Falling Stars Model

For the purposes of estimation, the FS model can be written as a state-space model with
(i∗t ,P ′t)′ serving as the factors:

Yt =AP +BPPt+ Σe · et i∗t
Pt

=
 0

(In−Φ)µ

+
 1 O1×n

(In−Φ)γ Φ

 i∗t−1
Pt−1

+
 ση O1×n

γ ·ση Σu

ηt
ut

 ,
where et is an i.i.d. yield pricing error process that is standard normally distributed.
Estimation of the model should now proceed via ML or Bayesian methods that make use
of the Kalman filter, but the famous “pile-up” problem makes the estimation of the trend
component difficult. Del Negro et al. (2017), for instance, circumvents this problem by
imposing a very tight prior on ση around 0, but in general, estimation using the Kalman
filter proves challenging. For this reason, Bauer and Rudebusch (2020) suggest using the
proxy for i∗t discussed earlier in place of i∗t in the above state space model. This means that
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the factors (i∗t ,P ′t)′ are now all observed, which greatly facilitates estimation. The model
estimated in this manner is referred to as the observed shifting endpoint (OSE) model.
Bauer and Rudebusch (2020) also estimate the model through the traditional Kalman
filter method, which they call the estimated shifting endpoint (ESE) model.
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Appendices

A Consistency of Non-Parametric Estimator of Nelson-
Siegel Model

Here we show that the non-parametric estimators κ and F of the Nelson-Siegel decay
parameter and factors, obtained as

κ= argmin
κ∈[ε,1−ε]

1
mT

tr
(
YMΛ(κ)Y ′

)
F = YΛ(κ)

(
Λ(κ)′Λ(κ)

)−1

are consistent for the true values κ0 and F 0 of the decay parameter and factors under
certain assumptions, where

MΛ(κ) = Im−Λ(κ)
(
Λ(κ)′Λ(κ)

)−1
Λ(κ)′.

First, we need to specify how we determine the maturities to be included in the sample as
the cross-sectional dimension m goes to infinity. Given the context of the yield curve, it is
unrealistic to assume that the sample contains yields of maturities 1 to m. A solution is
to let τmax be, in months, the longest possible sample maturity (often 120 or 360 months)
and assume that we have a sample on yields of maturities τ1, · · · , τm, where

τi = τmax
m

i

for any 1≤ i≤m. Thus, a cross sectional size of τmax indicates that the sample contains
yields of maturities 1 to τmax months, and a higher cross-sectional dimension means that
the sample contains yields that mature in the middle of the month. This normalization
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ensures that the limit

Λ(κ)′Λ(κ)
m

=


1 1

m

∑m
i=1β2(τi;κ) 1

m

∑m
i=1β3(τi;κ)

1
m

∑m
i=1β2(τi;κ) 1

m

∑m
i=1β2(τi;κ)2 1

m

∑m
i=1β2(τi;κ)β3(τi;κ)

1
m

∑m
i=1β3(τi;κ) 1

m

∑m
i=1β2(τi;κ)β3(τi;κ) 1

m

∑m
i=1β3(τi;κ)2


converges to a positive definite matrix Ω(κ) for any κ ∈ [ε,1− ε]. The positive definiteness
of Ω(κ), as well as the uniformity of the convergence, is confirmed numerically.

We can now make the following assumptions:

A1. Stationarity of Factors
The true factor process {f0

t }t∈Z is assumed to be be weakly stationary as well as
mean and variance ergodic, so that

F 0′ιT
T

= 1
T

T∑
t=1

f0
t

p→ µF

F 0′F

T
= 1
T

T∑
t=1

f0
t f

0′
t

p→ ΩF

as T →∞ for some vector µF ∈ R3×1 and positive definite 3×3 matrix ΩF , where
ιT is the T -dimensional vector comprised of 1s.

A2. Stationarity and Cross-Sectional Independence of Errors
The measurement error process {eit}t∈Z associated with yields of maturity i is
weakly stationary. Furthermore, {eit}t∈Z and {ejt}t∈Z are independent processes
for any i 6= j, and

sup
i∈N+, t∈Z

E|eit|4 <+∞.

We also assume that the error processes are homoskedastic, that is, E|eit|2 = σ2 > 0
for any i, t.

A3. Uniform Convergence of Factor Loadings
For any κ ∈ [ε,1− ε],

Λ(κ)′Λ(κ)
m

→ Ω(κ)

Λ(κ)′Λ0

m
→ Ω0(κ).
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as m→∞. Furthermore, this convergence is uniform on [ε,1−ε], which implies that
the suprema

sup
κ∈[ε,1−ε]

∥∥∥∥∥Λ(κ)′Λ(κ)
m

∥∥∥∥∥
sup

κ∈[ε,1−ε]

∥∥∥∥∥Λ(κ)′Λ0

m

∥∥∥∥∥
are bounded.

We first show that κ is consistent for κ0. To this end, we rely on the general consistency
result in Newey and MacFadden (1994). Denote the parameter space by

Θ = [ε,1− ε],

which is a compact set, and define

Vm,T (κ) = 1
mT

tr
(
YMΛ(κ)Y ′

)
for any m,T and κ ∈ [ε,1− ε]. In Newey and MacFadden (1994), it is shown that, if:

i) Θ is compact,

ii) Vm,T (κ) converges in probability to some continuous function V0 : Θ→R uniformly
on Θ as m,T →∞, that is,

sup
κ∈Θ

∣∣∣Vm,T (κ)−V0(κ)
∣∣∣ p→ 0

as m,T →∞, and

iii) V0 is uniquely minimized at κ0,

then the minimizer κ of Vm,T (κ) converges in probability to the true value κ0 of the decay
parameter. Here we construct the function V0 that satisfies the two conditions above,
which will conclude the proof.

First note that

Y = F 0Λ0′+ e,
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and as such that, for any fixed κ ∈Θ,

Vm,T (κ) = 1
mT

tr
(
YMΛ(κ)Y ′

)
= 1
mT

tr
(
MΛ(κ)Y ′Y

)
= 1
mT

tr
[
MΛ(κ)

(
Λ0F 0′+ e′

)(
F 0Λ0′+ e

)]

= tr
[(

Λ0′Λ0

m

)(
F 0′F 0

T

)]

− tr
(Λ(κ)′Λ(κ)

m

)−1(Λ(κ)′Λ0

m

)(
F 0′F 0

T

)(
Λ(κ)′Λ0

m

)′

+ 2 1
mT

tr
(
MΛ(κ)Λ0F 0′e

)
+ 1
mT

tr
(
MΛ(κ)e

′e
)
.

We now derive the probability limits of each of the three terms.

Term 2 We start with the sole term that converges in probability to 0. We can decompose
the second term as

1
mT

tr
(
MΛ(κ)Λ0F 0′e

)
= 1
mT

tr
(
F 0′eΛ0

)
︸ ︷︷ ︸

I

− 1
mT

tr
((

Λ(κ)′Λ(κ)
)−1

Λ(κ)′Λ0F 0′eΛ(κ)
)

︸ ︷︷ ︸
II

We study term II first.

II = 1
mT

tr
((

Λ(κ)′Λ(κ)
)−1

Λ(κ)′Λ0F 0′eΛ(κ)
)

= tr
(Λ(κ)′Λ(κ)

m

)−1(Λ(κ)′Λ0

m

)( 1
mT

F 0′eΛ(κ)
) .

Here,
(

Λ(κ)′Λ(κ)
m

)−1
and Λ(κ)′Λ0

m are all O(1) r× r matrices, so we need only show
that

1
mT

F 0′eΛ(κ) = op(1).

To this end, note that

eΛ(κ) =
m∑
i=1

ẽiβ(τi;κ)′ =


∑m
i=1 ei1β(τi;κ)′

...∑m
i=1 eiTβ(τi;κ)′

 ,
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so that

‖eΛ(κ)‖2 =
T∑
t=1

∣∣∣∣∣
m∑
i=1

eitβ(τi;κ)′
∣∣∣∣∣
2

=
T∑
t=1

m∑
i=1

m∑
j=1

eitejtβ(τi;κ)′β(τj ;κ).

Taking expectations on both sides implies, by the independence of the measurement
errors across maturities,

E‖eΛ(κ)‖2 =
T∑
t=1

m∑
i=1

E
[
e2
it

]
|β(τi;κ)|2

= Tσ2
(
m∑
i=1
|β(τi;κ)|2

)
= Tσ2 · ‖Λ(κ)‖2.

Thus,

E
∥∥∥∥∥ 1
m
√
T
eΛ(κ)

∥∥∥∥∥
2
≤ σ2

m
tr
(

Λ(κ)′Λ(κ)
m

)
,

where the right hand side is O(1/m), indicating that
∥∥∥∥∥ 1
m
√
T
eΛ(κ)

∥∥∥∥∥=Op

(
1√
m

)
.

Since

∥∥∥∥ 1
mT

F 0′eΛ(κ)
∥∥∥∥≤

∥∥∥∥∥∥
√
T

F

0∥∥∥∥∥∥ ·
∥∥∥∥ 1
mT

eΛ(κ)
∥∥∥∥,

where
∥∥∥∥√TF 0∥∥∥∥=Op(1), it follows that

1
mT

F 0′eΛ(κ) =Op

(
1√
m

)
,

which implies that it is op(1).

Moving onto the first term, we have

I = 1
mT

tr
(
F 0′eΛ0

)
= tr

( 1
mT

F 0′eΛ(κ0)
)

We just showed that 1
mT F

0′eΛ(κ0) = op(1), so it follows that both I and II are
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op(1). This allows us to conclude that

1
mT

tr
(
MΛ(κ)Λ0F 0′e

)
= op(1).

Term 3 This term pertains to the variances of the error terms eit. We will consider the
difference

1
mT

tr
(
MΛ(κ)e

′e
)
−σ2.

Since

σ2 = 1
m−3σ

2 tr
(
MΛ(κ)

)
,

the difference above can be rewritten as

1
mT

tr
(
MΛ(κ)e

′e
)
−σ2 = 1

m
tr
[
MΛ(κ)

( 1
T
e′e− m

m−3σ
2Im

)]

= 1
m

tr
( 1
T
e′e−σ2Im

)
︸ ︷︷ ︸

I

− 1
m

tr
[
Λ(κ)

(
Λ(κ)′Λ(κ)

)−1
Λ(κ)′

( 1
T
e′e−σ2Im

)]
︸ ︷︷ ︸

II

+ 1
m

tr
(
MΛ(κ)

) 3
m−3σ

2︸ ︷︷ ︸
III

.

Clearly,

III = 1
m

tr
(
MΛ(κ)

) 3
m−3σ

2 = 3σ2

m
√
m−3

goes to 0 as m,T →∞. On the other hand, we have

II = 1
m

tr
[
Λ(κ)

(
Λ(κ)′Λ(κ)

)−1
Λ(κ)′

( 1
T
e′e−σ2Im

)]

= 1
m

tr
(Λ(κ)′Λ(κ)

m

)−1( 1√
m

Λ(κ)′
)( 1

T
e′e−σ2Im

)( 1√
m

Λ(κ)
)
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≤ 1
m

∥∥∥∥∥∥
(

Λ(κ)′Λ(κ)
m

)−1∥∥∥∥∥∥ ·
∥∥∥∥∥
(

1√
m

Λ(κ)′
)( 1

T
e′e−σ2Im

)( 1√
m

Λ(κ)
)∥∥∥∥∥

≤

∥∥∥∥∥∥
(

Λ(κ)′Λ(κ)
m

)−1∥∥∥∥∥∥ ·
∥∥∥∥∥ 1√

m
Λ(κ)

∥∥∥∥∥ ·
∥∥∥∥ 1
m3/2 Λ(κ)′

( 1
T
e′e−σ2Im

)∥∥∥∥,
where the first inequality used the Cauchy-Schwarz inequality for the trace in-

ner product.
∥∥∥∥∥
(

Λ(κ)′Λ(κ)
m

)−1∥∥∥∥∥ and
∥∥∥ 1√

m
Λ(κ)

∥∥∥ are O(1), so we need only show that∥∥∥ 1
m3/2 Λ(κ)′

(
1
T e
′e−σ2Im

)∥∥∥ converges in probability to 0.

Define σij =

σ
2 if i= j

0 if i 6= j
. Letting {v(m)

1 , · · · ,v(m)
m } be the standard basis of Rm, we

can see that

Λ(κ)′
( 1
T
e′e−σ2Im

)
=
(

Λ(κ)′
(

1
T e
′ẽ1−σ2v

(m)
1

)
· · · Λ(κ)′

(
1
T e
′ẽm−σ2v

(m)
m

))
,

so that
∥∥∥∥Λ(κ)′

( 1
T
e′e−σ2Im

)∥∥∥∥2
=

m∑
i=1

∣∣∣∣Λ(κ)′
( 1
T
e′ẽi−σ2v

(m)
i

)∣∣∣∣2.
For any 1≤ i≤m,

Λ(κ)′
( 1
T
e′ẽi−σ2v

(m)
i

)
= 1
T

(
β(τ1;κ) · · · β(τm;κ)

)
ẽ′1
...
ẽ′m

 ẽi
−
(
β(τ1;κ) · · · β(τm;κ)

)
σ2v

(m)
i

=
m∑
j=1

β(τj ;κ)
( 1
T
ẽ′j ẽi

)
−β(τi;κ)σ2

=
m∑
j=1

β(τj ;κ)
( 1
T
ẽ′j ẽi−σij

)
.

Defining

ζij,t = ejteit−σij

for any i, j, t ∈N+, we have

1
T
ẽ′j ẽi−σij = 1

T

T∑
t=1

(ejteit−σij) = 1
T

T∑
t=1

ζij,t,
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so that

E
∥∥∥∥ 1
m3/2 Λ(κ)′

( 1
T
e′e−σ2Im

)∥∥∥∥2
= 1
m3

m∑
i=1

E

∣∣∣∣∣∣
m∑
j=1

β(τj ;κ)
 1
T

T∑
t=1

ζij,t

∣∣∣∣∣∣
2

= 1
m3

m∑
j=1

m∑
k=1

(
β(τj ;κ)′β(τk;κ)

) 1
T 2

m∑
i=1

T∑
t=1

T∑
s=1

E
[
ζij,tζik,s

] .
The independence of measurement errors for different maturities indicates that

E
[
ζij,tζik,s

]
= 0

whenever j 6= k. Letting

sup
i,j∈N+, t,s∈Z

E [ζij,tζij,s] = µ4 <+∞,

where the supremum is bounded due to the stationarity of the errors and the as-
sumption of finite fourth moments, we can see that

E
∥∥∥∥ 1
m3/2 Λ(κ)′

( 1
T
e′e−σ2Im

)∥∥∥∥2
= 1
m3

m∑
j=1
|β(τj ;κ)|2

 1
T 2

m∑
i=1

T∑
t=1

T∑
s=1

E [ζij,tζij,s]


≤ µ4
m
· tr
(

Λ(κ)′Λ(κ)
m

)
.

Since tr
(

Λ(κ)′Λ(κ)
m

)
=O(1), we can see that

∥∥∥∥ 1
m3/2 Λ(κ)′

( 1
T
e′e−σ2Im

)∥∥∥∥2
=Op

( 1
m

)
.

By implication,

II =Op

(
1√
m

)

and thus converges in probability to 0.

Finally, looking at the first term I shows us that

I = 1
m

tr
( 1
T
e′e−σ2Im

)
= 1
m

m∑
i=1

( 1
T
ẽ′iẽi−σ2

)
= 1
mT

m∑
i=1

T∑
t=1

(
e2
it−σ2

)
.
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We now have

E
∣∣∣∣ 1
m

tr
( 1
T
e′e−σ2Im

)∣∣∣∣2 = 1
m2T 2

m∑
i=1

m∑
j=1

T∑
t=1

T∑
s=1

E
[(
e2
it−σ2

)(
e2
js−σ2

)]

= 1
m2T 2

m∑
i=1

m∑
j=1

T∑
t=1

T∑
s=1

E
[(
e2
it−σ2

)(
e2
is−σ2

)]
≤ µ4
m
,

where the second inequality follows from the independence of measurement errors
for different maturities. By implication, I =Op

(
1√
m

)
as well, so that

1
mT

tr
(
MΛ(κ)e

′e
)
−σ2 =Op

(
1√
m

)
.

Term 1 This is the easiest term to deal with. By assumption,

tr
[(

Λ0′Λ0

m

)(
F 0′F 0

T

)]
− tr

[(
Λ(κ)′Λ(κ)

m

)−1(Λ(κ)′Λ0

m

)(
F 0′F 0

T

)(
Λ(κ)′Λ0

m

)′]

p→ tr(Ω0ΩF )− tr
(
Ω(κ)−1Ω0(κ)ΩFΩ0(κ)′

)
= tr

[(
Ω0−Ω0(κ)′Ω(κ)−1Ω0(κ)

)
·ΩF

]
as m,T →∞.

Now define the function V0 : Θ→ R as

V0(κ) = tr
[(

Ω0−Ω0(κ)′Ω(κ)−1Ω0(κ)
)
·ΩF

]
+σ2

for any κ ∈Θ. We saw above that

∣∣∣Vm,T (κ)−V0(κ)
∣∣∣= op(1),

and since the convergence of the terms involving κ are uniform with respect to κ on Θ,

sup
κ∈Θ

∣∣∣Vm,T (κ)−V0(κ)
∣∣∣= op(1).

Finally, we need to show that V0 is uniquely minimized at κ0. To this end, note that

Ω0−Ω0(κ)′Ω(κ)−1Ω0(κ)
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is positive semidefinite, so that

tr
[(

Ω0−Ω0(κ)′Ω(κ)−1Ω0(κ)
)
·ΩF

]
= tr

[
Ω

1
2 ′
F

(
Ω0−Ω0(κ)′Ω(κ)−1Ω0(κ)

)
Ω

1
2
F

]
≥ 0

for any κ. The trace of a positive semidefinite matrix is equal to the sum of its eigenvalues,
which are non-negative, so equality holds in this case if and only if

Ω
1
2 ′
F

(
Ω0−Ω0(κ)′Ω(κ)−1Ω0(κ)

)
Ω

1
2
F =O3×3,

or equivalently,

Ω0−Ω0(κ)′Ω(κ)−1Ω0(κ) =O3×3.

This is only the case when κ= κ0, so it follows that

V0(κ0) = σ2 < σ2 + tr
[(

Ω0−Ω0(κ)′Ω(κ)−1Ω0(κ)
)
·ΩF

]
= V0(κ)

for any κ 6= κ0. As such, V0 is uniquely minimized at κ0, and κ is consistent for κ0.

Using the consistency of κ, we can prove the consistency of F for the true factors F 0.
The time t factor estimator is given by

f t =
(
Λ(κ)′Λ(κ)

)−1
Λ(κ)′Yt

=
(

Λ(κ)′Λ(κ)
m

)−1(Λ(κ)′Λ0

m

)
f0
t +

(
Λ(κ)′Λ(κ)

m

)−1( 1
m

Λ(κ)′et
)
.

Starting with the error term,

1
m

Λ(κ)′et = 1
m

m∑
i=1

β(τi;κ)eit,

so that

E
∣∣∣∣ 1
m

Λ(κ)′et
∣∣∣∣2 = 1

m2

m∑
i=1

m∑
j=1

β(τi;κ)′β(τj ;κ)E [eitejt]

= σ2 1
m2

m∑
i=1
|β(τi;κ)|2

= σ2 1
m

tr
(

Λ(κ)′Λ(κ)
m

)
.
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Since the last term on the right is Op(1), this shows us that

1
m

Λ(κ)′et = op(1).

Now we study the asymptotic behavior of Λ(κ). We work with the following norm:

∥∥∥∥∥ 1√
m

(
Λ(κ)−Λ0

)∥∥∥∥∥
2

= 1
m

m∑
i=1
|β2(τi;κ)−β2(τi;κ0)|2 + 1

m

m∑
i=1
|β3(τi;κ)−β3(τi;κ0)|2.

By the mean value theorem,

β2(τi;κ)−β2(τi;κ0) = 1
k2τi

((τik+ 1)exp(−τik)−1)(κ−κ0)

for some k between κ and κ0. Since∣∣∣∣ 1
k2τi

((τik+ 1)exp(−τik)−1)
∣∣∣∣= 1

k2τi
(1− (τik+ 1)exp(−τik))

≤ 1
ε

(
1− exp(−τiε)

τiε

)
= 1
ε
β2(τi;ε),

we have

|β2(τi;κ)−β2(τi;κ0)|2 ≤ 1
ε2
β2(τi;ε)2|κ−κ0|2.

By implication,

1
m

m∑
i=1
|β2(τi;κ)−β2(τi;κ0)|2 = 1

ε2
|κ−κ0|2

(
1
m

m∑
i=1

β2(τi;ε)2
)
,

where the average in the rightmost term converges to the (2,2) element of Ω(ε) be as-
sumption. The consistency of κ for κ0 now reveals that

1
m

m∑
i=1
|β2(τi;κ)−β2(τi;κ0)|2 = op(1).

In a similar manner, the mean value theorem reveals that

|exp(−τiκ)− exp(−τiκ0)|2 ≤ τ2
max exp(−τiε)2|κ−κ0|2,

where we can numerically check that the sequence

{ 1
m

m∑
i=1

exp(−τiε)2
}
m∈N+
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converges. Therefore,

1
m

m∑
i=1
|β3(τi;κ)−β3(τi;κ0)|2 ≤ 2

m

m∑
i=1
|β2(τi;κ)−β2(τi;κ0)|2 + 2

m

m∑
i=1
|exp(−τiκ)− exp(−τiκ0)|2

≤ 2
m

m∑
i=1
|β2(τi;κ)−β2(τi;κ0)|2 + 2τ2

max

(
1
m

m∑
i=1

exp(−τiε)2
)
|κ−κ0|2,

where both terms on the right are op(1). We have shown that

∥∥∥∥∥ 1√
m

(
Λ(κ)−Λ0

)∥∥∥∥∥
2

= op(1).

By implication,∥∥∥∥∥Λ(κ)′Λ0

m
− Λ0′Λ0

m

∥∥∥∥∥≤
∥∥∥∥∥ 1√

m

(
Λ(κ)−Λ0

)∥∥∥∥∥ ·
∥∥∥∥∥ 1√

m
Λ0
∥∥∥∥∥= op(1),

so that

Λ(κ)′Λ0

m

p→ Ω0.

Similarly, ∥∥∥∥∥Λ(κ)′Λ(κ)
m

− Λ(κ)′Λ0

m

∥∥∥∥∥≤
∥∥∥∥∥ 1√

m
Λ(κ)

∥∥∥∥∥ ·
∥∥∥∥∥ 1√

m

(
Λ(κ)−Λ0

)∥∥∥∥∥= op(1),

implying that

Λ(κ)′Λ(κ)
m

p→ Ω0.

Putting these results together, it now follows easily that

f t
p→ f0

t .

To see consistency for the mean of the entire factors, note that

1√
T
F = YΛ(κ)

(
Λ(κ)′Λ(κ)

)−1

= 1√
T
F 0
(

Λ0′Λ(κ)
m

)(
Λ(κ)′Λ(κ)

m

)−1
+
(

1
m
√
T
eΛ(κ)

)(
Λ(κ)′Λ(κ)

m

)−1
.
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Since

Λ(κ)′e′ =
(
Λ(κ)′e1 · · · Λ(κ)′eT

)
,

we have

‖eΛ(κ)‖2 =
T∑
t=1

∣∣∣Λ(κ)′et
∣∣∣2.

Therefore,

E
∥∥∥∥∥ 1
m
√
T
eΛ(κ)

∥∥∥∥∥
2

= 1
mT

T∑
t=1

E
∣∣∣Λ(κ)′et

∣∣∣2
= 1
m2T

T∑
t=1

m∑
i=1

m∑
j=1

β(τi;κ)′β(τj ;κ)E [eitejt]

= σ2 1
m2

m∑
i=1
|β(τi;κ)|2

= σ2 1
mT

tr
(

Λ(κ)′Λ(κ)
m

)
.

It follows that

1
m
√
T
eΛ(κ) = op(1).

Therefore,

1√
T

(
F −F 0

)
= 1√

T
F 0

(Λ0′Λ(κ)
m

)(
Λ(κ)′Λ(κ)

m

)−1
− Ir


+
(

1
m
√
T
eΛ(κ)

)(
Λ(κ)′Λ(κ)

m

)−1
,

where the terms on the right hand side are all op(1). It follows that

1√
T

(
F −F 0

)
= op(1),

and by implication,

1
T

∥∥∥F −F 0
∥∥∥= op(1).

This tells us that

1
T
F
′
ιT

p→ µF ,
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1
T
F
′
F ,

1
T
F
′
F 0 p→ ΩF ,

among other things.
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B Kalman Smoother for the Singular Case

The exposition in this appendix follows Durbin and Koopman (2012) almost verbatim,
only filling in the necessary details. The smoothed factors and factor variances derived
below can also be found in Barigozzi and Luciani (2019).

In this section, we use innovations to derive an equivalent formulation of the Kalman
smoother that holds even when q < r and Pt+1|t(θ) is singular. For the sake of notational
brevity, we omit the dependence of the quantities below on the model parameters θ.
As in the main text, we assume Gaussianity and independent idiosyncratic errors/factor
innovations.

We must first define what is meant by “innovations”. The time t innovation vt is defined
as

vt = xt−xt|t−1 = Λ(ft−ft|t−1) + Σet.

In other words, vt is the part of xt that is not predicted at time t−1. In light of the inter-
pretation of the conditional expectation xt|t−1 = E [xt | Ft−1] as the orthogonal projection
of xt onto the closed linear subspace Ft−1, vt represents the orthogonal projection of xt
onto the orthogonal complement of Ft−1.

A related concept is the state estimation error

εt = ft−ft|t−1 =G(ft−1−ft−1|t−1) +Hut,

which is the part of the factors ft that is not predicted at time t−1. The innovations and
state estimation errors have the following relationship:

vt = Λεt+ Σet.

Note that Pt|t−1 is the variance of state estimation error, or the mean squared state
estimation error:

Pt|t−1 = E
[
(ft−ft|t−1)(ft−ft|t−1)′ | Ft−1

]
= Var(εt | Ft−1) .

We can also obtain a recursive relationship for the state estimation error:

εt+1 = ft+1−ft+1|t

=G
(
ft−ft|t

)
+Hut+1

=G
(
ft−ft|t−1

)
−GKt|t−1vt+Hut+1

=G
(
Ir−Kt|t−1Λ

)
εt+

(
Hut+1−GKt|t−1Σet

)
.
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Therefore, the DFM can be written as a state space model of the innovations and state
estimation errors as follows:

vt = Λεt+ Σet
εt+1 = Ltεt+

(
Hut+1−GKt|t−1Σet

)
,

where we define

Lt =G
(
Ir−Kt|t−1Λ

)
.

These relationships will prove invaluable later on.

We first show that the innovations {v1, · · · ,vT} are mutually independent and follow
a jointly Gaussian distribution. Note initially that the random vector (v′1, · · · ,v′T )′ is a
non-random linear transformation of the data (x′1, · · · ,x′T )′, so that the joint density of
v1, · · · ,vT is exactly that of x1, · · · ,xT . Furthermore, for any 1 ≤ t ≤ T , the likelihood of
xt given Ft−1 can be written as

f(xt | Ft−1) =
( 1

2π

)N ∣∣∣Vt|t−1
∣∣∣− 1

2 exp
(
−1

2v
′
tV
−1
t|t−1vt

)
.

The recursive formulas for Vt|t−1 indicates that it depends only on the (non-random)
initial value P0|0, so that the distribution on the right hand side of

vt | Ft−1 ∼N
[
ON×1,Vt|t−1

]
does not depend on Ft−1. It follows that vt is independent of Ft−1 with unconditional
distribution N

[
ON×1,Vt|t−1

]
, so that f(xt | Ft−1) is simply the unconditional density of

vt, denoted f(vt). Putting these results together, we have

f(v1, · · · ,vT ) = f(x1, · · · ,xT ) =
T∏
t=1

f(xt | Ft−1) =
T∏
t=1

f(vt).

The joint density of v1, · · · ,vT can be expressed as the product of their marginal den-
sities, so they are mutually independent. Furthermore, for any 1 ≤ t < T , vt, · · · ,vT are
independent of Ft−1, so that


vt
...
vT

 | Ft−1 ∼N
[
ON(T−t)×1, diag

(
Vt|t−1, · · · ,VT |T−1

)]
.
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Now we are ready to derive the Kalman smoother. Note that, given Ft−1 and vt, we
can construct xt as xt = vt+xt|t−1, where xt|t−1 ∈Ft−1. Conversely, vt and Ft−1 are known
quantities when Ft is known. In other words,

Ft = σ{Ft−1,vt}.

By implication,

FT = σ{Ft−1,vt, · · · ,vT},

so that the information contained in the data can be partitioned into Ft−1, the information
up to time t−1, and {vt, · · · ,vT}, the information on the innovations from time t onward.
Note that 

ft

vt
...
vT


can be represented as a linear transformation of ft,vt and the errors et+1, · · · , eT ,ut+1, · · · ,uT ,
which are jointly normal given Ft−1. For instance,

vt+1 = xt+1−xt+1|t = Λft+1 + Σet+1−Λ(c+Gft|t)

= ΛGft+ ΛHut+1 + Σet+1−ΛGft|t−1 +GKt|t−1vt.

Therefore, the random vector above is a mean zero jointly normally distributed random
vector conditional on Ft−1, and we can use the updating formula for jointly normally
distributed random variables to see that

ft|T = E [ft | FT ]

= E [ft | Ft−1,vt, · · · ,vT ]

= ft|t−1 +
T−t∑
h=0

E
[
ftv
′
t+h | Ft−1

]
V −1
t+h|t+h−1vt+h,

where we used the fact that vt, · · · ,vT are conditionally independent given Ft−1 to justify
the last equality.

For any 0≤ h≤ T − t,

E
[
ftv
′
t+h | Ft−1

]
= E

[
εtv
′
t+h | Ft−1

]
= E

[
εt (Λεt+h+ Σet+h)′ | Ft−1

]
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= E
[
εtε
′
t+h | Ft−1

]
Λ′ = Pt|t−1

h−1∏
i=0

L′t+h−i

Λ′,

where we used the fact that εt is independent of et, et+1, · · · , eT ,ut+1, · · · ,uT and the
recursive formula for the state estimation error. It follows that

ft|T = ft|t−1 +Pt|t−1

T−t∑
h=0

h−1∏
i=0

L′t+h−i

Λ′V −1
t+h|t+h−1vt+h


︸ ︷︷ ︸

rt−1

.

This must hold for any 1≤ t≤ T , so

rt−1 =
T−t∑
h=0

h−1∏
i=0

L′t+h−i

Λ′V −1
t+h|t+h−1vt+h

= Λ′V −1
t|t−1vt+L′t

T−t−1∑
h=0

h−1∏
i=0

L′t+1+h−i

Λ′V −1
t+1+h|t+1+h−1vt+1+h

= Λ′V −1
t|t−1vt+L′trt.

As for the smoothed factor variance, by the same updating formula as above we have

Pt|T = Var(ft | FT )

= Var(ft | Ft−1,vt, · · · ,vT )

= Pt|t−1−
T−t∑
h=0

E
[
ftv
′
t+h | Ft−1

]
V −1
t+h|t+h−1E

[
vt+hf

′
t | Ft−1

]

= Pt|t−1−Pt|t−1

T−t∑
h=0

h−1∏
i=0

L′t+h−i

Λ′V −1
t+h|t+h−1Λ

h−1∏
i=0

Lt+h−i


︸ ︷︷ ︸

Nt−1

Pt|t−1.

Again, we can see that

Nt−1 =
T−t∑
h=0

h−1∏
i=0

L′t+h−i

Λ′V −1
t+h|t+h−1Λ

h−1∏
i=0

Lt+h−i


= Λ′V −1

t|t−1Λ +L′tNtLt.

In summary, the smoothed factors and factor variances are given recursively by the
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formulas

ft|T = ft|t−1 +Pt|t−1rt−1

Pt|T =
(
Ir−Pt|t−1Nt−1

)
Pt|t−1

rt−1 = Λ′V −1
t|t−1vt+L′trt

Nt−1 = Λ′V −1
t|t−1Λ +L′tNtLt

rT =Or×1

NT =Or×r

Lt =G
(
Ir−Kt|t−1Λ

)
for any 1≤ t≤ T .
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C Why the EM Algorithm Works

We prove here that, under certain regularity conditions, the algorithm above yields a
sequence of estimates {θ(i)}i∈N that converges to some stationary point θ̂ of the log-
likelihood function L(·) := L(· | YT ). First we introduce some notations.

Throughout, we assume the outcome ω ∈ Ω is fixed, so that the likelihoods below can
be treated as non-random. Let Θ be the parameter space, and define the correspondence
M : Θ→Θ as

M(θ) = argmax
φ∈Θ

E(φ | θ)

for any θ ∈Θ. Likewise, for any θ ∈Θ and 1≤ t≤ T , define the function H(· | θ) on Θ is
defined as

H(φ | θ) =
∫

log(l(F | Y,φ)) · l(F | Y,θ)dF

for any φ ∈Θ.
Finally, assume that {θ(i)}i∈N is a sequence of EM iterates given the outcome ω. Our

objective is to show that this sequence converges to a stationary point of the log likelihood
under certain regularity assumptions.

Assumptions

We make the following assumptions:

1) The parameter space Θ is a compact subset of Rd.

2) The log-likelihood L(·) is continuous on Θ and differentiable on the interior of Θ.

3) For any θ ∈Θ, the mapping E(· | θ) is differentiable on the interior of Θ.

4) For any 1≤ t≤ T and θ ∈Θ, H(· | θ) is differentiable on the interior of Θ.

5) Integration and differentiation can be interchanged.

6) {θ(i)}i∈N is contained in the interior Θo of Θ.

7) Defining Q : Θo×Θ→ R as

Q(θ0, θ) = ∂E(φ | θ)
∂φ

|φ=θ0

for any θ0 ∈Θo and θ ∈Θ, Q is continuous on Θo×Θ.
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We briefly mention some implications of the above assumptions. For one, note that,
for any θ ∈Θo, the interior of Θ,

∂H(φ | θ)
∂φ

|φ=θ =
∫ ∂ log(l(F | Y,φ))

∂φ
|φ=θ·l(F | Y,θ)dF

=
∫ ∂l(F | Y,φ)

∂φ
|φ=θ dF

=
[
∂

∂φ

∫
l(F | Y,φ)dF

]
|φ=θ= 0,

where the last equality follows because l(F | Y,φ) integrates to 1 for any φ ∈Θo.
In addition, the Kullback-Leibler inequality holds: for any φ,θ ∈Θ,

H(φ | θ)−H(θ | θ) = E [log(l(F | Y,φ)) | Y,θ]−E [log(l(F | Y,θ)) | Y,θ]

= E
[
log

(
l(F | Y,φ)
l(F | Y,θ)

)
|Y,θ

]

≤ log
(
E
[
l(F | Y,φ)
l(F | Y,θ) |Y,θ

])

= log
(∫

l(F | Y,φ)F
)

= log(1) = 0,

where the inequality is justified by Jensen’s inequality.
Furthermore, for any i ∈ N+, since θ(i+1) ∈ M(θ(i)), θ(i+1) ∈ Θo, and E(· | θ(i)) is

differentiable on Θo, it follows from the first order necessary condition of maximization
that

Q(θ(i+1), θ(i)) := ∂E(θ | θ(i))
∂θ

|θ=θ(i+1)= 0.

Monotonicity of the Log-Likelihood

First, we show that every step of the algorithm updates the parameter estimates in a
manner that increases the value of the log likelihood. Since

l(F | Y,θ) = l(Y | F,θ) · l(F | θ)
l(Y | θ) = l(Y,F | θ)

l(Y | θ)

by Bayes’ rule, we have

L(θ) = log(l(Y | θ))

= log(l(Y,F | θ))− log(l(F | Y,θ)).
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Since l(F | Y,θ(i−1)) is a density, it integrates to 1 and thus

L(θ) =
∫
L(θ)l(F | Y,θ(i−1))dF

=
∫

log(l(Y,F | θ))l(F | Y,θ(i−1))dF −
∫

log(l(F | Y,θ))l(F | Y,θ(i−1))dF

= E(θ | θ(i−1))−H(θ | θ(i−1)).

By the Kullback-Leibler inequality,

H(θ | θ(i−1))≤Ht(θ(i−1) | θ(i−1))

for any θ ∈Θ.

It follows that

L(θ)−L(θ(i−1)) = E(θ | θ(i−1))−E(θ(i−1) | θ(i−1))

+H(θ(i−1) | θ(i−1))−H(θ | θ(i−1))

≥ E(θ | θ(i−1))−E(θ(i−1) | θ(i−1))

for any θ in the parameter space. Since θ(i) is chosen as the maximizer of E(θ | θ(i−1)), we
have

E(θ(i) | θ(i−1))−E(θ(i−1) | θ(i−1))≥ 0,

and therefore

L(θ(i))−L(θ(i−1))≥ 0.

Convergence of the Algorithm

The preceding result tells us that {L(θ(i))}i∈N is a monotonically increasing sequence, and
therefore it has a limit L∗ ∈ [−∞,+∞]. We can further see that L∗ must be real-valued,
since asumption (2), along with the compactness of Θ, implies that the image L(Θ) is
compact. Under an additional assumption, we can easily show that {θ(i)}i∈N converges to
some θ̂:

The inverse image L−1(L∗) is a singleton.

As this assumption states, suppose that θ∗ ∈Θ is the only point in Θ such that L(θ∗) =L∗,
and choose any convergent subsequence {θ(ik)}k∈N+ of {θ(i)}i∈N with limit θ0. Then, by
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the continuity of L on Θ,

L(θ0) = lim
k→∞

L(θ(ik)) = L∗,

which implies that θ0 = θ∗. Therefore, any convergent subsequence of {θ(i)}i∈N converges
to θ∗. Finally, since {θ(i)}i∈N is a sequence in the compact set Θ, every subsequence of
{θ(i)}i∈N has a convergent subsequence (by sequential compactness). These two results
together reveal that {θ(i)}i∈N converges to θ∗. We denote θ̂ = θ∗.

Now we show that θ̂ is a stationary point of L. To this end, note that the equality

L(θ) = E(θ | θ̂)−H(θ | θ̂)

implies that

∂L(θ)
∂θ
|θ=θ̂ = ∂E(θ | θ̂)

∂θ
|θ=θ̂−

∂H(θ | θ̂)
∂θ

|θ=θ̂

= ∂E(θ | θ̂)
∂θ

|θ=θ̂=Q(θ̂, θ̂).

By the assumed continuity of Q in both arguments, we can see that

∂L(θ)
∂θ
|θ=θ̂ = lim

i→∞
Q(θ(i+1), θ(i)) = 0.

Therefore, θ̂ is a stationary point of L.
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D Consistency of Two-Step Estimation Method

We work with the basic model of appendix A, with an added VAR(1) specification for the
factors. To prove the consistency result of interest, we make the following assumptions in
addition to assumptions A1 to A3 of appendix A:

A4. Factor Innovations as an MDS
We assume that the factor innovation process {ut}t∈Z is an r-dimensional martin-
gale difference sequence (MDS) with respect to the filtration that it generates. We
also assume that E [utu′t] = Ir for any t ∈ Z, so that {ut}t∈Z is L2-bounded. By
implication, the martingale WLLN tells us that

1
T

T∑
t=1

ut
p→Or×1.

Finally, we assume variance ergodicity for {ut}t∈Z, that is,

1
T

T∑
t=1

utu
′
t
p→ Ir.

A5. Stationarity of VAR(1) Representation
We assume that the eigenvalues of G are all within the unit circle. This, in addition
to the L2-boundedness of {ft}t∈Z implied by assumption A1, implies that {ft}t∈Z
is an absolutely summable causal linear process with innovation process {ut}t∈Z.

By implication, letting G = {Gt | t∈Z} be the filtration generated by {ut}t∈Z, ft−1 is
Gt−1-measurable and each entry of the matrix process {ft−1u′t}t∈Z is an L2-bounded
MDS with respect to G. It follows that the following martingale difference WLLN
holds:

1
T

T∑
t=1

ft−1u
′
t
p→Or×r.

First, denote

F+1 =


f
′
2
...
f
′
T

 , F−1 =


f
′
1
...

f
′
T−1

 ,

and analogously define F 0
+1 and F 0

−1. The results on the least square estimators of the
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N-S model tell us that

1√
T

∥∥∥F+1−F 0
+1
∥∥∥, 1√

T

∥∥∥F−1−F 0
−1
∥∥∥= op(1),

so that

1
T
F
′
−1ιT−1

p→ µF

1
T
F
′
−1F−1,

1
T
F
′
−1F

0
−1

p→ ΩF

∥∥∥∥ 1
T
F
′
−1F+1−

1
T
F 0′
−1F

0
+1

∥∥∥∥= op(1).

Define

Π =
 c′
G′

 , Γf =HH ′,

so that the true values of c,G and HH ′ are contained in the parameters Π0 and Γf0.
Recall that the two-step estimator of Π and Γf are denoted

Π =
 c′
G
′

=

 1 1
T−1ι

′
T−1F−1

1
T−1F

′
−1ιT−1

1
T−1F

′
−1F−1


−1 1

T−1ι
′
T−1F+1

1
T−1F

′
−1F+1



Γf = 1
T

[
F+1−

(
ιT−1 F−1

)
Π
]′ [
F+1−

(
ιT−1 F−1

)
Π
]
.

Defining

QT =

 1 1
T−1ι

′
T−1F−1

1
T−1F

′
−1ιT−1

1
T−1F

′
−1F−1



QT =

 1 1
T−1ι

′
T−1F

0
−1

1
T−1F

0′
−1ιT−1

1
T−1F

0′
−1F

0
−1



Q=
 1 µ′F
µF ΩF

 ,
Q is a positive definite (r+ 1)× (r+ 1) matrix such that

QT , QT
p→Q.
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Thsi implies that (QT )−1 =Op(1) with probability limit equal to Q−1. In addition,

 1
T−1ι

′
T−1F+1

1
T−1F

′
−1F+1

−
 1
T−1ι

′
T−1F

0
+1

1
T−1F

0′
−1F

0
+1

= op(1),

so that

Π = (QT )−1

 1
T−1ι

′
T−1F

0
+1

1
T−1F

0′
−1F

0
+1

+op(1).

Since

f0′
t = c0′+f0′

t−1G
0′+u′tH

0′,

for any t ∈ Z, we have

F 0
+1 =

(
ιT−1 F 0

−1
)

Π0 +U ·H0′,

where we define U = (u2, · · · ,uT )′. Therefore,

 1
T−1ι

′
T−1F

0
+1

1
T−1F

0′
−1F

0
+1

= 1
T −1

ι′T−1
F 0′
−1

F 0
+1

= 1
T −1

ι′T−1
F 0′
−1

(ιT−1 F 0
−1
)

Π0 + 1
T −1

ι′T−1
F 0′
−1

U ·H0′

=QT ·Π0 +

 1
T−1

∑T
t=2u

′
t

1
T−1

∑T
t=2 f

0
t−1u

′
t

H0′.

We showed above that, due to our assumptions,

1
T −1

T∑
t=2

ut
p→Or×1

1
T −1

T∑
t=2

f0
t−1u

′
t
p→Or×r.

As such,

Π = (QT )−1QTΠ0 +op(1),
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and as N,T →∞,

Π p→ Π0,

which proves the consistency of c and G.

The consistency of Γf now follows easily. Note that

Γf = 1
T

[
F+1−

(
ιT−1 F−1

)
Π
]′ [
F+1−

(
ιT−1 F−1

)
Π
]

= 1
T
F
′
+1F+1−Π′ 1

T

ι′T−1
F
′
−1

F+1

− 1
T
F
′
+1
(
ιT−1 F−1

)
Π + Π′QTΠ.

Using the fact that Π =Op(1) and the results proven above, we can see that

Γf = 1
T
F 0′

+1F
0
+1−Π′ 1

T

ι′T−1
F 0′
−1

F 0
+1

− 1
T
F 0′

+1
(
ιT−1 F 0

−1
)

Π + Π′QTΠ +op(1)

= 1
T

[
F 0

+1−
(
ιT−1 F 0

−1
)

Π
]′ [
F 0

+1−
(
ιT−1 F 0

−1
)

Π
]
+op(1).

Now we proceed as in the usual OLS case: since

F 0
+1 =

(
ιT−1 F 0

−1
)

Π0 +U ·H0′,

we can see that

Γf = 1
T

[(
ιT−1 F 0

−1
)(

Π0−Π
)

+U ·H0′
]′ [(

ιT−1 F 0
−1
)(

Π0−Π
)

+U ·H0′
]
+op(1)

=
(
Π0−Π

)′
QT

(
Π0−Π

)
+H0 ·

[ 1
T
U ′
(
ιT−1 F 0

−1
)](

Π0−Π
)

+
(
Π0−Π

)′ 1
T

ι′T−1
F 0′
−1

U
 ·H0′+H0

( 1
T
U ′U

)
H0′+op(1).

We have already shown that

Π0−Π = op(1),

QT =Op(1)
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1
T

ι′T−1
F 0′
−1

U =
 1

T

∑T
t=2u

′
t

1
T

∑T
t=2 f

0
t−1u

′
t

= op(1),

and by assumption,

1
T
U ′U = 1

T

T∑
t=2

utu
′
t
p→ Ir.

Therefore,

Γf p→H0H0′ = Γf0,

establishing the consistency of Γf .
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E Proof of Dai-Singleton Canonical Model Identifi-
cation

Consider a Gaussian ATSM with short rate and risk-neutral dynamics specified as

rt = δ+β′ft

ft+1 =KQ +GQft+ Σ ·vQt+1,

where we assumeGQ has real and distinct eigenvalues within the unit circle. No restrictions
are imposed on the physical factor dynamics of the model.

Below we show that this ATSM is observationally equivalent to a Gaussian ATSM
satisfying the restrictions of the canonical Dai-Singleton model, and that this canonical
model is identified against invariant affine transformations.

1) Equivalence of True Model to Canonical Form
We proceed in steps. First, define

f
(1)
t = Σ−1 ·ft.

Under this rotation, the short rate and risk-neutral dynamics are given as

rt = δ+β(1)′ft

f
(1)
t+1 =KQ(1) +GQ(1)f

(1)
t +vQt+1,

where

β(1) = Σ′β

KQ(1) = Σ−1KQ

GQ(1) = Σ−1GQΣ.

This has the effect of normalizing the scale and cross-correlation of the factor inno-
vations to 1 and 0, respectively. GQ and GQ(1) share the same eigenvalues, so the
eigenvalues of the latter are real and within the unit circle as well.

Now consider the Schur decomposition

GQ(1)′ = ULQ′U∗

of GQ(1)′, where U is a complex Hermitian matrix and LQ′ is an upper triangular
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matrix with diagonals equal to the eigenvalues of GQ′. Since the eigenvalues of GQ(1)

are real-valued, LQ′ and U are both real-valued matrices; by implication, U is an
orthogonal matrix. Otherwise, if there exists a complex eigenvalue of GQ and thus
GQ(1), then the Schur decomposition involves complex matrices, so that we must
amend our approach. This is the reason for requiring GQ to have real eigenvalues.

We can further choose LQ so that its diagonal entries are decreasing. This results
in the equality

LQ = U ′GQ(1)U,

where LQ is a lower triangular matrix.

Define the rotation

f
(2)
t = U ′ ·f (1)

t

of the factors. Under f (2)
t , the short rate and risk-neutral dynamics become

rt = δ+β(2)′ ·f (2)
t

f
(2)
t+1 =KQ(2) +LQ ·f (2)

t + Σ(2) ·vQt+1,

where

β(2)′ = U ′ ·β(1)

KQ(2) = U ′ ·KQ(1)

Σ(2) = U ′.

Since Σ(2)Σ(2)′ = U ′U = In due to the orthogonality of U , the factor innovation
variance remains unchanged under f (2)

t compared to f (1)
t . This means that the short

rate and risk-netural dynamics can be written as

rt = δ+β(2)′ ·f (2)
t

f
(2)
t+1 =KQ(2) +LQ ·f (2)

t +vQt+1.

Finally, consider the translation

f
(3)
t =−

(
In−LQ

)−1
KQ(2) +f

(2)
t .

Note that the inverse
(
In−LQ

)−1
is well-defined because none of the eigenvalues of
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LQ, which are equal to its diagonal elements, are equal to 1. Under f (3)
t , the short

rate and risk-neutral dynamics become

rt =
[
δ(2) +β(2)′

(
In−LQ

)−1
KQ(2)

]
+β(2)′ ·f (3)

t

fQt+1 = LQ ·f (3)
t +vQt+1.

To set all the signs of β(2) to be non-negative, we need only rotate the factors one
last time so that, if β(2)

i is negative, then f
(2)
it is multiplied by -1. The resulting

model satisfies the restrictions of the canonical Dai-Singleton model.

2) Uniqueness of Canonical Form
Now we show that an ATSM in the Dai-Singleton canonical form is identified against
invariant affine transformations. Suppose the short rate and risk-neutral dynamics
are given in the Dai-Singleton canonical form under the factors ft:

rt = δ+β′ft

ft+1 =GQft+vQt+1,

where GQ is a real lower triangular matrix. Let Xt be an invariant affine transfor-
mation of ft:

Xt = A+Bft,

and supose the short rate and risk-neutral dynamics

rt = δX +β′Xft

Xt+1 =KQ
X +GQ

X ·Xt+ ΣX ·vQt+1

under Xt also satisfy the restrictions placed on the canonical Dai-Singleton model.

First, we show that B = In. The factor innovation variance, mean reversion coeffi-
cient, and factor loadings on the short rate are given as

ΣXΣ′X = In =BB′

GQ
X =BGQB−1

βX =B−1′β.
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The first equation tells us that B is an orthogonal matrix, and the second equation
shows us that BGQB−1 is a Schur decomposition of GQ

X , which is also a lower
triangular matrix with ordered diagonals. Furthermore, the last equation tells us
that the signs of B−1′β =Bβ must all be non-negative.

In Hamilton and Wu (2012), it is shown that there exist orthogonal matrices B that
are not equal to the identity matrix but nonetheless make BGQB′ lower triangular
and Bβ a vector with non-negative entries. The resulting lower triangular matrix
shares diagonal entries with GQ, albeit with their order switched around. The only
value of B that makes BGQB′ lower triangular and Bβ a vector with non-negative
entries, while simultaneously preserving the order of the diagonal entries, is In. It is
for this reason that we impose the condition that the diagonal entries of GQ must
be ordered, and that the eigenvalues comprising the diagonals are distinct.

We have shown that B = In. It remains to show that A=On×1. This can be shown
by studying the equation

KQ
X =On×1 =

(
In−BGQB′

)
A.

Since GQ and BGQB′ =GQ
X share the same eigenvalues, which are all contained in

the unit circle, the matrix In−BGQB′ is nonsingular, which allows us to conclude
that A=On×1.

If GQ contains even a single unit root, then the matrix In−BGQB′ is singular
and we cannot conclude that A equals the zero vector. This is the local identifica-
tion issue pointed out in Hamilton and Wu (2012), and the reason we require GQ

to have eigenvalues within the unit circle. A similar issue arises when we impose
identification restrictions on KP instead of KQ and GP has a unit root.
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F Proof of Canonical JSZ Model Identification

Consider a Gaussian ATSM with short rate and risk-neutral dynamics specified as

rt = δ+β′ft

ft+1 =KQ +GQft+ Σ ·vQt+1.

We assume that the eigenvalues of GQ all lie on or within the unit circle. In addition, we
assume, for the sake of simplicity, that the eigenvalues of GQ are all real and distinct12.

Below we show that this ATSM is observationally equivalent to a Gaussian ATSM
satisfying the restrictions of the JSZ canonical model, and that this canonical model is
identified against invariant affine transformations.

1) Equivalence of True Model to Canonical Form
Since GQ has real and distinct eigenvalues, it has eigendecomposition

GQ = P ·JQ ·P−1

for some nonsingular matrix P and diagonal matrix JQ whose diagonal elements,
collected in the n-dimensional vector

λQ = (λQ1 , · · · ,λQn ),

are the ordered eigenvalues of GQ, that is,

λQ1 > · · ·> λQn .

If there exists an eigenvalue on the unit circle, we order it first. As in the Dai-
Singleton model, we proceed step by step.

Using P , we first define the rotation

f
(1)
t = P−1ft

of the true model. Under f (1)
t , the short rate and risk-neutral dynamics are given

12The case of complex and possibly non-distinct eigenvalues is studied in Joslin, Singleton, and Zhu
(2011). Despite the added generality of complex and non-distinct eignevalues, the case of real and distinct
eigenvalues is a useful simplification, used most notably in Bauer and Rudebusch (2020).
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by

rt = δ+β(1)′f
(1)
t

f
(1)
t+1 =KQ(1) +JQ ·f (1)

t + Σ(1) ·vQt+1,

where

β(1) = P ′β

KQ(1) = P−1KQ

Σ(1) = P−1Σ.

Since a diagonal matrix is technically in Jordan form, it remains to normalize the
loadings β and the intercept δ.

Suppose that the ith element of β(1) is equal to 0. Then, due to the diagonal nature
of JQ, we can remove the factor f (1)

it and reformulate the short rate and risk-neutral
factor dynamics. Therefore, we may assume without loss of generality that every
element of β(1) is non-zero. Now define the rotation

f
(2)
t =


β

(1)
1 · · · 0
... . . . ...
0 · · · β

(1)
n

f (1)
t =


β

(1)
1 f

(1)
1t

...
β

(1)
n f

(1)
1t

 .

Then,

rt = δ+β(1)′


1
β

(1)
1
· · · 0

... . . . ...
0 · · · 1

β
(1)
n

 ·f
(2)
t = δ+ ι′f

(2)
t

f
(2)
t+1 =KQ(2) +JQ ·f (2)

t + Σ(2) ·vQt+1,

where

KQ(2) =


β

(1)
1 · · · 0
... . . . ...
0 · · · β

(1)
n

 ·KQ(1), Σ(2) =


β

(1)
1 · · · 0
... . . . ...
0 · · · β

(1)
n

 ·Σ(1).
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Finally, define

A=



−δ+∑n
i=2

(
1−λQi

)−1
K

Q(2)
i

−
(
1−λQ2

)−1
K

Q(2)
2

...
−
(
1−λQn

)−1
K

Q(2)
n

 ,

where the reciprocal of 1−λQi is well-defined for any 2≤ i≤ n due to the assumption
of distinct eigenvalues. Now consider the translation

f
(3)
t = A+f

(2)
t .

Note that

δ+ ι′A= δ+
(
−δ+

n∑
i=2

(
1−λQi

)−1
K

Q(2)
i

)
−

n∑
i=2

(
1−λQi

)−1
K

Q(2)
i = 0,

and

(
In−JQ

)
A+KQ(2) =


(
1−λQ1

)
A1 +K

Q(2)
1

...(
1−λQn

)
An+K

Q(2)
n



=



K
Q(2)
1 −

(
1−λQ1

)
δ+∑n

i=2
1−λQ1
1−λQi

K
Q(2)
i

0
...
0

 .

Defining

kQ∞ =K
Q(2)
1 −

(
1−λQ1

)
δ+

n∑
i=2

1−λQ1
1−λQi

K
Q(2)
i ,

it follows that

rt = ι′f
(3)
t

f
(3)
t+1 =


kQ∞
0
...
0

+


λQ1 · · · 0
... . . . ...
0 · · · λQn

 ·f (3)
t + ΣQ ·vQt+1,
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where ΣQ is the Cholesky factor of Σ(2)Σ(2)′. This model satisfies the constraints of
the canonical JSZ model, so that the risk-netural dynamics are summarized by the
n+ 1 + n(n+1)

2 parameters contained in

kQ∞,λ
Q,ΣQ.

2) Uniqueness of Canonical Form
Now we will show that the JSZ canonical form derived above is identified against
invariant affine transformations. Suppose the short rate and risk-neutral dynamics
are given in the JSZ canonical form under the factors ft:

rt = ι′ft

ft+1 =


kQ∞
0
...
0


︸ ︷︷ ︸
KQ

+


λQ1 · · · 0
... . . . ...
0 · · · λQn


︸ ︷︷ ︸

GQ

·ft+ Σ ·vQt+1.

Let Xt be an invariant affine transformation of ft:

Xt = A+Bft,

and suppose the short rate and risk neutral dynamics

rt = δX +β′Xft

Xt+1 =KQ
X +GQ

XXt+ ΣX ·vQt+1

under Xt also satisfy the JSZ restrictions.

First, we show that B = In. From our derivation above

GQ
X =BGQB−1,

and GQ is a diagonal matrix, so this tells us that the right hand side is the eigende-
composition, which is a special case of the Jordan decomposition, of GQ

X . However,
since GQ

X is in Jordan form, we can see that

GQ
X = In ·GQ

X · I
−1
n
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is also a Jordan decomposition of GQ
X . Furthermore, because the Jordan blocks are

ordered in both GQ and GQ
X , this decomposition is unique even against the ordering

of the blocks. It follows that GQ
X =GQ, so that

GQ ·B =B ·GQ.

Let the (i, j)th element of B be denoted Bij . Then, the above equation implies that

λQi Bij =Bijλ
Q
j

for any 1 ≤ i, j ≤ m. If i 6= j, then because λQi 6= λQj , Bij must be equal to 0. By
implication, B is a diagonal matrix with diagonal entries equal to B11, · · · ,Bmm.

In addition, the condition that

ι′ = β′ = β′XB = ι′B

also tells us that each Bii = 1. Therefore, B = In.

It remains to show that A=On×1. Note first that

0 = δX =−ι′A,

so that the elements of A must sum to 0. Let Ai be the ith element of A. Since

KQ
X =

(
In−GQ

)
A+KQ

and the last n−1 elements of KQ
X and KQ are all equal to 0, we can see that

(
1−λQi

)
Ai = 0

for any 2 ≤ i ≤ n. Since the second eigenvalue onward lies within the unit circle,
1− λQi 6= 0 and Ai = 0. Since the elements of A must sum to 0, A1 = 0 as well.
Therefore, A=On×1.
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G Why Minimum Chi-Square Estimation Works

Suppose that there exist a set of reduced form parameters π and the corresponding struc-
tural parameters θ. Suppose the reduced form parameters and structural parameters are
mapped via the function g(·) on the structural parameter space Θ; that is, given the
structural parameters θ, the reduced form parameters are given as

π = g(θ).

Since the log likelihood depends only on the reduced form parameters π, we can formulate
the sample log likelihood VT (·) as a function on the reduced form parameter space Π. We
can now make the standard assumption that VT (·) converges uniformly in probability
to a population log likelihood V (·) that is uniquely minimized at the true reduced form
parameters π0. If Π is compact, then by Newey and MacFadden (1994), the MLE π̂ of
the reduced form parameters is consistent for π0.

Under a fully identified model, it must be the case that

π0 = g(θ) if and only if θ = θ0.

In other words, the true reduced form parameters, which determine the value of the likeli-
hood, are observed under only one set of structural parameters, namely the true structural
parameters. Note that this requires the number of reduced form parameters, k, to be at
least as large as the number of structural parameters, m. This is the order condition of
identification.

The MSCE θ̂ of θ can be found by solving the following minimization problem, where
W is some weighting matrix that is positive definite-valued:

min
θ∈Θ

ST (θ) = (π̂−g(θ))′W (π̂−g(θ)) .

Note that this reduces to solving the equation π̂ = g(θ) when m= k, so that the model is
just identified. The first order condition for minimization implies that θ̂ satisfies

Dg(θ̂)′W
[
π̂−g(θ̂)

]
=Om×1,

where Dg(·) is the k×m matrix-valued Jacobian of g(·).
In the case that g(·) is continuous and Θ is compact, the MSCE θ̂ is consistent for

the true structural parameters θ0. This can be seen easily from Newey and MacFadden
(1994)’s result on extremum estimators: the parameter space Θ is compact, and by the
continuity of g(·) and the consistency of π̂, ST (·) converges uniformly in probability to
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S(·) defined as

S(θ) = (π0−g(θ))′W (π0−g(θ)) .

Finally, since θ0 is the unique solution to the equation π0 = g(θ), S(θ) = 0 if and only if
θ = θ0, meaning that S(·) is uniquely minimized at θ0. Therefore,

θ̂
p→ θ0

for any choice of weights W .

Hamilton and Wu (2012) also show that, if W is chosen appropriately, the MSCE esti-
mator of the structural parameters is as efficient as directly maximizing the log-likelihood
VT ◦ g with respect to θ. This follows from a standard stochastic MVT expansion. First,
assuming that the MLE π̂ satisfies the usual regularity conditions, it is asymptotically
normal with asymptotic variance equal to the inverse information matrix:

√
T (π̂−π0) d→N

[
Ok×1, I(π0)−1

]
,

where the information matrix at π is given as

I(π) =DV (π)′DV (π).

Define the function QT (·) on Θ as

QT (θ) =Dg(θ̂)′W [π̂−g(θ)] .

Then, the stochastic MVT tells us that

QT (θ̂) =QT (θ0) +DQT (θ0)′
(
θ̂− θ0

)
+op(1),

where DQT (·) is the m×m matrix-valued Jacobian defined as

DQT (θ) =−Dg(θ̂)′WDg(θ).

The left hand side is equal to the zero vector as per the f.o.c. for minimization, so

√
T
(
θ̂− θ0

)
=−

[
DQT (θ0)′

]−1√
TQT (θ0).

Since

QT (θ0) =Dg(θ̂)′W [π̂−g(θ0)] =Dg(θ̂)′W [π̂−π0] ,

242



we can see that

√
T
(
θ̂− θ0

)
=
(
Dg(θ̂)′WDg(θ0)

)−1
Dg(θ̂)′W ·

√
T (π̂−π0) .

Let the sample weight matrix W converge in probability to its population value W0. Under
standard continuous differentiability and boundedness assumptions,

(
Dg(θ̂)′WDg(θ0)

)−1
Dg(θ̂)′W p→

(
Dg(θ0)′W0Dg(θ0)

)−1
Dg(θ0)′W0

by the continuous mapping theorem. Therefore, by Slutsky’s theorem,
√
T
(
θ̂−θ0

)
p→N

[
Om×1,

[
Dg(θ0)′W0Dg(θ0)

]−1
Dg(θ0)′W0I(π0)−1W0Dg(θ0)

[
Dg(θ0)′W0Dg(θ0)

]−1
]
.

Note that the full-information MLE θ̃ of the structural parameters maximizes the log-
likelihood

ṼT (θ) = VT (g(θ)).

with respect to θ. Therefore, defining the population full-information log-likelihood as

Ṽ (θ) = V (g(θ)),

the asymptotic variance of θ̃ is the inverse information matrix Ĩ(θ) evaluated at the true
value θ0, where

Ĩ(θ) =DṼ (θ)′DṼ (θ)

=Dg(θ)′DV (g(θ))′DV (g(θ))Dg(θ).

Therefore, the asymptotic variance of θ̃ is

Ĩ(θ0)−1 =
[
Dg(θ0)′I(π0)Dg(θ0)

]−1
,

where we used the fact that g(θ0) = π0. It follows that, if we choose

W = I(π̂),

then

√
T
(
θ̂− θ0

)
d→N

[
Om×1,

[
Dg(θ0)′I(π0)Dg(θ0)

]−1]
.

This means that θ̂ is asymptotically as efficient as θ̃ under the choice W = I(π̂) of weights.
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By the information matrix equality,

I(π̂) =−∂V (π̂)
∂π∂π′

.
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H Consistency of ACM Estimators

Let F = {Ft | t ∈ Z} be the filtration representing the flow of information in the economy.
Here we show that the estimators of the model parameters obtained via the ACM three-
step method are consistent under the following assumptions:

A1. Joint Normality of Excess Bond Returns and Risk Factors
The random vector (exr(τ)

t+1,v
′
t+1)′ is normally distributed conditional on informa-

tion up to time t.

A2. Homoskedastic Return Pricing Errors
The return pricing error has constant variance and no cross-sectional correlation, so
that the variance of et is given as σ2 · Im. We assume variance ergodicity, so that

1
T

T∑
t=1

ete
′
t
p→ σ2 · Im.

A3. Idiosyncraticity of Short Rate Pricing Errors
u

(1)
t is independent of Ft−1 and ft.

A4. Time-Invariance of Beta Term
The beta term β

(τ)
t defined as

β
(τ)′
t = Covt

(
exr

(τ)
t+1,vt+1

)
Σ−1

is time-invariant.

A5. Stationarity and Ergodicity of Factors
At any time t, the conditional distribution of vt given Ft−1 is

vt | Ft−1 ∼N [On×1, In] .

We assume variance ergodicity for the innovation process:

1
T

T∑
t=1

vtv
′
t
p→ In.

The eigenvalues of G are all contained within the unit circle, and the factor process
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is L2-bounded. By implication, the factors ft are weakly stationary with a causal
linear process representation with innovation process {vt}t∈Z.

It is also assumed that {ft}t∈Z is mean and variance ergodic, so that

1
T

T∑
t=1

ft
p→ µF := (In−G)−1K

1
T

T∑
t=1

ftf
′
t
p→ ΩF ,

where µF is the unconditional mean of ft and ΩF a positive definite matrix defined
as the sum of the unconditional variance of ft and µFµ

′
F .

We denote true parameters with 0 subscripts. Below we assume that the factors ft are
perfectly observable, so that we do not have to worry about the generated regressor prob-
lem. If consistent estimates of the factors are used instead of the true latent factors, then
we need only refer back to appendix D.

First, we study some properties of the factor innovation process {vt}t∈Z, the short rate
pricing error process {u(1)

t }t∈Z, and the return pricing error process {et}t∈Z. Since

E [vt | Ft−1] =On×1

E
[
ft−1v

′
t | Ft−1

]
= ft−1 ·E

[
v′t | Ft−1

]
=On×n,

the elements of {vt}t∈Z and {ft−1v′t}t∈Z are martingale difference sequences with respect
to the filtration F . They are also L2-bounded by the variance stationarity of both the
factors and innovation variances, so by the MDS WLLN,

1
T

T∑
t=1

vt
p→On×1

1
T

T∑
t=1

ft−1v
′
t
p→On×n.

On the other hand, by design,

E [et | Ft−1] =Om×1

and

β
(τ)′
0 Σ0 ·E

[
vte

(τ)
t | Ft−1

]
=On×1.
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Stacking these observations by maturity shows us that

β0Σ0 ·E
[
vte
′
t | Ft−1

]
=On×m.

Premultiplying both sides by β′0 and then Σ−1
0 (β′0β0)−1 now shows us that

E
[
vte
′
t | Ft−1

]
=On×m.

By implication, the elements of {et}t∈Z and {vte′t}t∈Z are martingale difference sequences
with respect to the filtration F . Since ft−1 ∈ Ft−1,

E
[
ft−1e

′
t | Ft−1

]
= ft−1 ·E

[
e′t | Ft−1

]
=On×m,

which shows us that the elements of {ft−1et}t∈Z are also martingale difference sequences
with respect to the filtration F . These three processes are also L2-bounded, so by the
MDS WLLN,

1
T

T∑
t=1

et
p→Om×1

1
T

T∑
t=1

vte
′
t
p→On×m

1
T

T∑
t=1

ft−1e
′
t
p→On×m.

Finally, we can also see that

E
[
u

(1)
t | ft,Ft−1

]
= E

[
u

(1)
t

]
= 0

E
[
ftu

(1)
t | ft,Ft−1

]
= ft ·E

[
u

(1)
t | ft,Ft−1

]
= ft ·E

[
u

(1)
t

]
=On×1.

This implies that both {u(1)
t }t∈Z and {ftu(1)

t }t∈Z are martingale difference sequences with
respect to

Fe = {Ft
∨
σft+1 | t ∈ Z}.

The two processes are clearly L2-bounded, so by the MDS WLLN,

1
T

T∑
t=1

u
(1)
t

p→ 0

1
T

T∑
t=1

ftu
(1)
t

p→On×1.
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We now deal with the estimators of the parameters governing the P-dynamics and
short rate dynamics. Since

F =
(
ιT F−1

)K ′0
G′0

+V ·Σ′0,

we have

(
K̂ Ĝ

)
=
(
K0 G0

)
+ 1
T

Σ0 ·V ′
(
ιT F−1

) 1 1
T

∑T
t=1 f

′
t−1

1
T

∑T
t=1 ft−1

1
T

∑T
t=1 ft−1f ′t−1

−1

=
(
K0 G0

)
+ Σ0 ·

(
1
T

∑T
t=1 vt

1
T

∑T
t=1 vtf

′
t−1
) 1 1

T

∑T
t=1 f

′
t−1

1
T

∑T
t=1 ft−1

1
T

∑T
t=1 ft−1f ′t−1

−1

.

By the assumption of men and variance ergodicity,
 1 1

T

∑T
t=1 f

′
t−1

1
T

∑T
t=1 ft−1

1
T

∑T
t=1 ft−1f ′t−1

 p→Q :=
 1 µ′F
µF ΩF

 ,
where Q is a positive definite matrix. Furthermore, we saw above that

1
T

T∑
t=1

vt,
1
T

T∑
t=1

vtf
′
t−1 = op(1).

It follows that

(
K̂ Ĝ

) p→
(
K0 G0

)
.

Define

Ṽ = F − ιT · K̂ ′−F−1Ĝ
′.

Then,

Ṽ = ιT
(
K0− K̂

)′
+F−1

(
G0− Ĝ

)′
+V ·Σ′0,

which implies that

1
T

∥∥∥Ṽ −V ·Σ′0∥∥∥2
≤ 2

∣∣∣K0− K̂
∣∣∣2 + 2 1√

T
·
∥∥∥∥∥ 1√

T
F−1

∥∥∥∥∥
2
·
∥∥∥G0− Ĝ

∥∥∥2
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Since
∥∥∥ 1√

T
F−1

∥∥∥2
is Op(1) and the rest of the terms are op(1), we can see that

1
T

∥∥∥Ṽ −V ·Σ′0∥∥∥2
= op(1),

or equivalently,

1√
T

(
Ṽ −V ·Σ′0

)
= op(1).

It follows that

1
T
Ṽ ′Ṽ −Σ0

( 1
T
V ′V

)
Σ′0 = op(1)

as well, and since 1
T V
′V

p→ In, it follows that

Ω̂ = 1
T
Ṽ ′Ṽ

p→ Σ0Σ′0 = Ω0.

It follows that, defining

V̂ = Ṽ · Σ̂−1′
0

we have

1√
T

(
V̂ −V

)
= 1√

T

(
Ṽ −V ·Σ′0

)
Σ̂−1′

0 + 1√
T
V
(
Σ0− Σ̂0

)′
Σ̂−1′

0 = op(1).

The generated factor innovations are consistent for the true innovations. By implication,

1
T
V̂ ′ιT

p→On×1,

1
T
V̂ ′V,

1
T
V̂ ′V̂

p→ In

and

1
T
F ′−1V̂ −

1
T
F ′−1V =

(
1√
T
F−1

)′ [ 1√
T

(
V̂ −V

)]
= op(1).

As for the short rate parameters, since

r =
(
ιT F

)δ00

δ10

+u(1)
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where u(1) = (u(1)
1 , · · · ,u(1)

T )′, we have

δ̂0

δ̂1

=
δ00

δ10

+
 1
T

ι′T
F ′

(ιT F
)−1

1
T

ι′T
F ′

u(1).

Here,

1
T

ι′T
F ′

(ιT F
)

=
 1 1

T

∑T
t=1 f

′
t

1
T

∑T
t=1 ft

1
T

∑T
t=1 ftf

′
t

 p→Q=
 1 µ′F
µF ΩF

 ,
and

1
T

ι′T
F ′

u(1) =
 1

T

∑T
t=1u

(1)
t

1
T

∑T
t=1 ftu

(1)
t

= op(1),

so it follows that δ̂0

δ̂1

 p→

δ00

δ10

 .

Now we move onto the second step. Recall that the OLS estimator of (a,b,c) is defined
as

(
â b̂ ĉ

)
= exr′

(
ιT F−1 V̂

)

ι′T
F ′−1
V̂ ′

(ιT F−1 V̂
)
−1

.

Using the fact that

exr′ =
(
a0 b0 c0

)
ι′T
F ′−1
V ′

+E′,

we can see that

(
â b̂ ĉ

)
=
(
a0 b0 c0

)

ι′T
F ′−1
V ′

(ιT F−1 V̂
) ·



ι′T
F ′−1
V̂ ′

(ιT F−1 V̂
)
−1
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+E′
(
ιT F−1 V̂

)

ι′T
F ′−1
V̂ ′

(ιT F−1 V̂
)
−1

.

From the results we derived above concerning V̂ , we can see that

Q̂eT := 1
T


ι′T
F ′−1
V̂ ′

(ιT F−1 V̂
)

=


1 1

T ι
′
TF−1

1
T ι
′
T V̂

1
T F
′
−1ιT

1
T F
′
−1F−1

1
T F
′
−1V̂

1
T V̂
′ιT

1
T V̂
′F−1

1
T V̂
′V̂


p→Qe :=


1 µ′F O1×n

µF ΩF On×n

On×1 On×n In

 ,

where Qe is positive definite. Similarly, defining

QeT = 1
T


ι′T
F ′−1
V ′

(ιT F−1 V̂
)
,

we have

QeT
p→Qe.

Finally, we showed above that

1
T
E′ιT = 1

T

T∑
t=1

et
p→Om×1

1
T
F ′−1E = 1

T

T∑
t=1

ft−1e
′
t
p→On×m

1
T
E′V = 1

T

T∑
t=1

etv
′
t
p→Om×n

1
T
E′E = 1

T

T∑
t=1

ete
′
t
p→ σ2

0 · Im.

Additionally, we have

1
T
E′V̂ − 1

T
E′V =

(
1√
T
E

)′ [ 1√
T

(
V̂ −V

)]
.
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Here, 1√
T
E =Op(1), so

1
T
E′V̂ − 1

T
E′V = op(1),

which implies that

1
T
E′V̂

p→On×n.

Putting all these results together, we have

1
T
E′
(
ιT F−1 V̂

)
= op(1).

Therefore,

(
â b̂ ĉ

)
=
(
a0 b0 c0

)
QeT

(
Q̂eT

)−1
+ 1
T
E′
(
ιT F−1 V̂

)(
Q̂eT

)−1

p→
(
a0 b0 c0

)
.

Our estimator of the return pricing error variance is defined as

σ̂2 = 1
mT

tr
(
Ê′Ê

)

A process similar to the proof of the consistency of Ω̂ shows us that

σ̂2 p→ 1
m

tr
(
σ2

0 · Im
)

= σ2
0.

This proves the consistency of the second-step estimators.

The third step now involves recovering the structural paramters from the reduced-form
parameters a,b and c. In this sense, it is similar to the MCSE step of the HW model. We
can immediately see that our estimate of β is consistent:

β̂ = ĉΣ̂−1 p→ c0Σ−1
0 = β0 =


β

(τ1)′
0
...

β
(τm)′
0

 .
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By implication, our estimate of B is also consistent:

B̂ =


vec

(
β̂1β̂′1

)
...

vec
(
β̂mβ̂

′
m

)
 p→


vec

(
β

(τ1)
0 β

(τ1)′
0

)
...

vec
(
β

(τm)
0 β

(τm)′
0

)
=B0.

Finally, our estimators of the market price of risk parameters are consistent:

λ̂=
(
β̂′β̂

)−1
β̂′
[
â + 1

2
(
B̂ ·vec

(
Ω̂
)

+ σ̂2 · ιm
)]

p→
(
β′0β0

)−1
β′0

[
a0 + 1

2
(
B0 ·vec(Ω0) +σ2

0 · ιm
)]

= λ0

Λ̂ =
(
β̂′β̂

)−1
β̂′b̂

p→
(
β′0β0

)−1
β′0b0 = Λ0

by the continuous mapping theorem and the consistency of all parameters involved.
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I Derivation of Approximate Forward Rate Formula
in the Wu-Xia SRTSM

Recall that, for any h > 0, the shadow rate dynamics and risk-neutral dynamics imply
that

st+h = δ+β′

h−1∑
j=0

(
GQ

)jKQ +β′

h−1∑
j=0

(
GQ

)j
Σ ·vQt+h−j

+β′
(
GQ

)h
ft.

We already saw that

EQ
t [st+h] = ā(h) + b(h)′ft

VarQt (st+h) =
(
σQ(h)

)2
.

Define

a(h) = ā(h)− 1
2β
′

h−1∑
j=0

(
GQ

)jΣΣ′
h−1∑
j=0

(
GQ

)j′β,
and note that

1
2

VarQt

 h∑
j=1

st+j

−VarQt

h−1∑
j=1

st+j

= 1
2

VarQt (st+h) + 2 ·
h−1∑
j=1

CovQt (st+h, st+j)
 .

For any 1≤ j ≤ h,

CovQt (st+h, st+j) =
h−1∑
i=0

j−1∑
k=0

β′
(
GQ

)i
Σ ·CovQt

(
vQt+h−i,v

Q
t+j−k

)
·Σ′

(
GQ′

)k
β

=
j−1∑
i=0

β′
(
GQ

)h−j+i
ΣΣ′

(
GQ′

)i
β,

so we have

2 ·
h−1∑
j=1

CovQt (st+h, st+j) = 2 ·
h−1∑
j=1

j−1∑
i=0

β′
(
GQ

)h−j+i
ΣΣ′

(
GQ′

)i
β

= 2β′
(
GQ

)h−1
ΣΣ′

(
GQ′

)0
β

+ 2β′
(
GQ

)h−2
ΣΣ′

(
GQ′

)0
β+ 2β′

(
GQ

)h−1
ΣΣ′

(
GQ′

)1
β

+ · · ·+ 2β′
(
GQ

)1
ΣΣ′

(
GQ′

)0
β+ · · ·+ 2β′

(
GQ

)h−1
ΣΣ′

(
GQ′

)h−2
β
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= β′
(
GQ

)h−1
ΣΣ′

h−2∑
j=0

(
GQ′

)jβ+ · · ·+β′
(
GQ

)0
ΣΣ′

h−1∑
j=1

(
GQ′

)jβ

= β′

h−1∑
j=0

(
GQ

)jΣΣ′
h−1∑
j=0

(
GQ′

)jβ− h−1∑
j=0

β′
(
GQ

)j
ΣΣ′

(
GQ′

)j
β

= β′

h−1∑
j=0

(
GQ

)jΣΣ′
h−1∑
j=0

(
GQ′

)jβ−VarQt (st+h) .

It follows that

1
2

VarQt

 h∑
j=1

st+j

−VarQt

h−1∑
j=1

st+j

= 1
2β
′

h−1∑
j=0

(
GQ

)jΣΣ′
h−1∑
j=0

(
GQ

)j′β
= ā(h)−a(h).

In the Wu-Xia model, the h-period ahead forward rate is given as

f
(h)
t = EQ

t [rt+h]− 1
2

VarQt

 h∑
j=1

rt+j

−VarQt

h−1∑
j=1

rt+j

 .
To compute the forward rate, we must now express the expectation and variances above
in terms of the moments of the shadow rate. We proceed in steps:

Expectations

We already saw when approximating the forward rate for the Ichiue and Ueno (2013)
SRTSM that

EQ
t [rt+h] = r+σQ(h) ·g

(
ā(h) + b(h)′ft− r

σQ(h)

)
,

where the function g : R→ R is defined as

g(x) = x ·Φ(x) +φ(x)

for any x ∈ R. For notational brevity, denote

zt(j) = ā(j) + b(j)′ft− r
σQ(j)

for any 1≤ j ≤ h.
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Variances

Moving onto the variance terms, as before we have

EQ
t

[
r2
t+j
]

= EQ
t

[
s2
t+j · I{st+j≥r}

]
+ r2 ·Qt (st+j < r) .

As above,

EQ
t

[
s2
t+j · I{st+j≥r}

]
=
∫ ∞
−zt(j)

(
σQ(j)x+ ā(j) + b(j)′ft

)2
·φ(x)dx

=
(
σQ(j)

)2
·
∫ ∞
−zt(j)

x2 ·φ(x)dx+
(
ā(j) + b(j)′ft

)2
·Φ(zt(j))

+ 2 ·
(
ā(j) + b(j)′ft

)
σQ(j) ·

∫ ∞
−zt(j)

x ·φ(x)dx

=
(
σQ(j)

)2
[Φ(zt(j))− zt(j) ·φ(zt(j))] +

(
ā(j) + b(j)′ft

)2
·Φ(zt(j))

+ 2 ·
(
ā(j) + b(j)′ft

)
σQ(j) ·φ(zt(j)),

so that

EQ
t

[
r2
t+j
]

=
(
σQ(j)

)2
[Φ(zt(j))− zt(j) ·φ(zt(j))] +

(
ā(j) + b(j)′ft

)2
·Φ(zt(j))

+ 2 ·
(
ā(j) + b(j)′ft

)
σQ(j) ·φ(zt(j)) + r2 · [1−Φ(zt(j))]

=
(
σQ(j)

)2
Φ(zt(j)) +

(
zt(j) + r

σQ(j)

)2
·Φ(zt(j)) + 2 r

σQ(j) ·φ(zt(j)) + zt(j) ·φ(zt(j))


+ r2 [1−Φ(zt(j))]

=
(
σQ(j)

)2
[
Φ(zt(j)) +

(
zt(j) + 2 · r

σQ(j)

)
·g(zt(j))

]
+ r2.

It follows that

VarQt (rt+j) = EQ
t

[
r2
t+j
]
−
(
EQ
t [rt+j ]

)2

=
(
σQ(j)

)2
[
Φ(zt(j)) +

(
zt(j) + 2 · r

σQ(j)

)
·g(zt(j))

]
+ r2−

[
r+σQ(j) ·g(zt(j))

]2

=
(
σQ(j)

)2 [
Φ(zt(j)) + zt(j) ·g(zt(j))−g(zt(j))2

]
.

Wu and Xia choose to approximate the above variance as

VarQt (rt+j)≈
(
σQ(j)

)2
·Φ(zt(j)) = VarQt (st+j) ·Qt (st+j ≥ r) .
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They show that the absolute approximation error∣∣∣∣(σQ(j)
)2 [

zt(j) ·g(zt(j))−g(zt(j))2
]∣∣∣∣

is bounded above by
(
σQ(j)

)2
φ(0)2, a small value.

Covariances

It remains to study the covariance terms. Choose any 1≤ j 6= k ≤ h, and note that

CovQt (rt+j , rt+k) = EQ
t [rt+jrt+k]−EQ

t [rt+j ] ·EQ
t [rt+k] .

To compute the joint moment EQ
t [rt+jrt+k], define

s̃t+j = st+j− ā(j)− b(j)′ft
σQ(j) and

r̃t+j = rt+j− ā(j)− b(j)′ft
σQ(j) = max(s̃t+j , −zt(j)) ,

and likewise for s̃t+k and r̃t+k. Here,
s̃t+j
s̃t+k

 | Ft ∼N
O2×1,

 1 ρt(j,k)
ρt(j,k) 1

 ,
under the risk-neutral measure, where ρt(j,k) is the correlation coefficient between st+j

and st+k, so the result on truncated bivariate normally distributed random vectors in the
appendix shows us that

EQ
t [r̃t+j r̃t+k] = ρt(j,k) ·F (zt(j), zt(k);ρt(j,k))

+ (1−ρt(j,k)2) ·f(zt(j), zt(k);ρt(j,k)) + zt(j)zt(k) ·F (−zt(j),−zt(k);ρt(j,k))

− zt(k) ·h(zt(j), zt(k);ρt(j,k))− zt(j) ·h(zt(k), zt(j);ρt(j,k)),

where we define

f(x1,x2;ρ) = 1
2π
(
1−ρ2

)− 1
2 exp

(
− 1

2(1−ρ2)
(
x2

1 +x2
2−2ρx1x2

))

h(x1,x2;ρ) = φ(x1) ·Φ
ρx1−x2√

1−ρ2



F (x1,x2;ρ) =
∫ α1

−∞

∫ α2

−∞
f(x1,x2;ρ)dx2dx1
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for any x1,x2 ∈ R and ρ ∈ (−1,1).
On the other hand,

EQ
t [r̃t+j ] = 1

σQ(j)
[
EQ
t [rt+j ]− ā(j)− b(j)′ft

]
= 1
σQ(j)

[
r− ā(j)− b(j)′ft+σQ(j) ·g(zt(j))

]
= g(zt(j))− zt(j)

= φ(zt(j))− zt(j) · (1−Φ(zt(j))) = g(−zt(j)),

and likewise for EQ
t [r̃t+k]. It follows that

CovQt (rt+j , rt+k) = σQ(j)σQ(k)
[
EQ
t [r̃t+j r̃t+k]−EQ

t [r̃t+j ] ·EQ
t [r̃t+k]

]
= σQ(j)σQ(k)ρt(j,k) ·F (zt(j),zt(k);ρt(j,k))

+σQ(j)σQ(k)
[
(1−ρt(j,k)2) ·f(zt(j),zt(k);ρt(j,k)) +zt(j)zt(k) ·F (−zt(j),−zt(k);ρt(j,k))

]
−σQ(j)σQ(k) [zt(k) ·h(zt(j),zt(k);ρt(j,k)) +zt(j) ·h(zt(k),zt(j);ρt(j,k))]

−σQ(j)σQ(k)g(−zt(j))g(−zt(k)).

Wu and Xia choose to approximate the above covariance as

CovQt (rt+j , rt+k)≈ σQ(j)σQ(k)ρt(j,k) ·F (zt(j), zt(k);ρt(j,k))

= CovQt (st+j , st+k) ·Qt (st+j ≥ r, st+k ≥ r) .

Defining

D(α1,α2;ρ) =
(
1−ρ2

)
·f(α1,α2;ρ) +α1α2 ·F (−α1,−α2;ρ)

−α1 ·h(α1,α2;ρ)−α2 ·h(α2,α1;ρ)

−g(−α1)g(−α2),

the absolute approximation error can be written as

∣∣∣σQ(j)σQ(k) ·D(−zt(j),−zt(k);ρt(j,k))
∣∣∣.

Wu and Xia show that the absolute value of this quantity is bounded above by σQ(j)σQ(k)(1−
ρt(j,k)2) ·φ(0)2, a very small amount.

They also claim that, given the persistence of the shadow rate, we can approximate
the conditional probability

Qt (st+j ≥ r | st+k ≥ r) = 1.
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It follows that

CovQt (rt+h, rt+h−i)≈ CovQt (st+h, st+h−i) ·Qt (st+h ≥ r)

for any 0≤ i≤ h−1.

Approximation to the Foward Rate

Putting all these results together,

1
2

VarQt

 h∑
j=1

rt+j

−VarQt

h−1∑
j=1

rt+j

= 1
2

VarQt (rt+h) + 2 ·
h−1∑
i=0

CovQt (rt+h, rt+h−i)


≈ 1
2

VarQt (st+h) + 2 ·
h−1∑
i=0

CovQt (st+h, st+h−i)
 ·Qt (st+h ≥ r)

= 1
2

VarQt

 h∑
j=1

st+j

−VarQt

h−1∑
j=1

st+j

 ·Qt (st+h ≥ r)

= Φ
(
ā(h) + b(h)′ft− r

σQ(h)

)
· (ā(h)−a(h)) ,

and we have

f
(h)
t = EQ

t [rt+h]− 1
2

VarQt

 h∑
j=1

rt+j

−VarQt

h−1∑
j=1

rt+j



≈ r+σQ(h) ·g
(
ā(h) + b(h)′ft− r

σQ(h)

)
+ Φ

(
ā(h) + b(h)′ft− r

σQ(h)

)
· (a(h)− ā(h)) .

Finally, defining the function ḡ : R→ R as

ḡ(a) = σQ(h) ·g
(
a+ b(h)′ft− r

σQ(h)

)

for any a ∈ R, a first order Taylor approximation of ḡ(a(h)) around ā(h) tells us that

ḡ(a(h))≈ ḡ(ā(h)) + ∂ḡ(ā(h))
∂a

· (a(h)− ā(h))

= ḡ(ā(h)) + Φ
(
ā(h) + b(h)′ft− r

σQ(h)

)
· (a(h)− ā(h)) = f

(h)
t − r.
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We are thus left with the approximation

f
(h)
t ≈ ḡ(a(h))

= r+σQ(h) ·g
(
a(h) + b(h)′ft− r

σQ(h)

)
.

260



J Moments of Bivariate Truncated Normal Random
Vectors

Consider a bivariate random vector (X1,X2) with the following distribution:
X1

X2

∼N
O2×1,

1 ρ

ρ 1

 ,
so that ρ∈ (−1,1) is the correlation coefficient ofX1 andX2. We want to find the truncated
moments

E
[
X1X2 · I{X1≥α1, X2≥α2}

]
, E

[
X1 · I{X1≥α1, X2<α2}

]
, and P(X1 < α1, X2 < α2) .

First, note that the density of (X1,X2) with respect to the Lebesgue measure is given as

f(x1,x2;ρ) = 1
2π

∣∣∣∣∣∣
1 ρ

ρ 1

∣∣∣∣∣∣
− 1

2

exp

−1
2
(
x1 x2

)1 ρ

ρ 1

−1x1

x2




= 1
2π
(
1−ρ2

)− 1
2 exp

(
− 1

2(1−ρ2)
(
x2

1 +x2
2−2ρx1x2

))
.

Note that, letting φ : R→ (0,+∞) be the standard normal density, we can rewrite the
joint density in terms of the product of two standard normal densities:

f(x1,x2;ρ) = 1
2π
(
1−ρ2

)− 1
2 exp

(
− 1

2(1−ρ2)(x2
1 +x2

2−2ρx1x2)
)

=
(
1−ρ2

)− 1
2 1√

2π
exp

(
−1

2x
2
1

)
· 1√

2π
exp

(
− 1

2(1−ρ2) (x2−ρx1)2
)

=
(
1−ρ2

)− 1
2 φ(x1) ·φ

x2−ρx1√
1−ρ2

 .
Due to the symmetry of the above operation, we also have

f(x1,x2;ρ) =
(
1−ρ2

)− 1
2 φ(x2) ·φ

x1−ρx2√
1−ρ2

 .
The following derivative will prove useful later on:

∂f(x1,x2;ρ)
∂x1

=
[
−x1 + ρ(x2−ρx1)

1−ρ2

]
·f(x1,x2;ρ)
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= ρx2−x1
1−ρ2 ·f(x1,x2;ρ).

By implication,

x1 ·f(x1,x2;ρ) = ρx2 ·f(x1,x2;ρ)− (1−ρ2) · ∂f(x1,x2;ρ)
∂x1

.

For later use, we define

h(x1,x2;ρ) = φ(x1) ·Φ
ρx1−x2√

1−ρ2

 ,
where Φ : R→ [0,1] is the standard normal cdf. Note that

∫ ∞
α1

f(x1,α2;ρ)dx1 = φ(α2) ·
∫ ∞
α1

1√
1−ρ2

φ

x1−ρα2√
1−ρ2

dx1;

because 1√
1−ρ2φ

(
x1−ρα2√

1−ρ2

)
is the density of a normally distributed variable with mean ρα2

and variance (1−ρ2) evaluated at x1, the integral above can be written as

∫ ∞
α1

f(x1,α2;ρ)dx1 = φ(α2) ·Φ
ρα2−α1√

1−ρ2

= h(α2,α1;ρ).

By symmetry, we also have
∫ ∞
α2

f(α1,x2;ρ)dx2 = h(α1,α2;ρ).

Finally, we define the cdf F (·, ·;ρ) of (X1,X2) as

F (α1,α2;ρ) = P(X1 ≤ α1, X2 ≤ α2) =
∫ α1

−∞

∫ α2

−∞
f(x1,x2;ρ)dx2dx1.

We first compute the joint moment E
[
X1X2 · I{X1≥α1, X2≥α2}

]
. By definition,

E
[
X1X2 · I{X1≥α1, X2≥α2}

]
=
∫ ∞
α1

∫ ∞
α2

x1x2 ·f(x1,x2;ρ)dx2dx1

=
(
1−ρ2

)− 1
2 ·
∫ ∞
α1

x1 ·φ(x1)
∫ ∞

α2
x2 ·φ

x2−ρx1√
1−ρ2

dx2

dx1.

262



For any fixed x1 ∈ R, by a change of variables we have

∫ ∞
α2

x2 ·φ

x2−ρx1√
1−ρ2

dx2 =
√

1−ρ2 ·
∫ ∞
α2−ρx1√

1−ρ2

(√
1−ρ2 · z+ρx1

)
·φ(z)dz

= (1−ρ2) ·
∫ ∞
α2−ρx1√

1−ρ2

z ·φ(z)dz+ρ
(
1−ρ2

) 1
2 x1 ·

∫ ∞
α2−ρx1√

1−ρ2

φ(z)dz

=
(
1−ρ2

)
·φ

ρx1−α2√
1−ρ2

+ρ
(
1−ρ2

) 1
2 x1 ·Φ

ρx1−α2√
1−ρ2

 .
It follows that

E
[
X1X2 · I{X1≥α1, X2≥α2}

]

=
(
1−ρ2

) 1
2 ·
∫ ∞
α1

x1 ·φ(x1)φ
ρx1−α2√

1−ρ2

dx1 +ρ ·
∫ ∞
α1

x2
1 ·φ(x1)Φ

ρx1−α2√
1−ρ2

dx1

=
(
1−ρ2

)
·
∫ ∞
α1

x1 ·f(x1,α2;ρ)dx1 +ρ ·
∫ ∞
α1

x2
1 ·φ(x1)Φ

ρx1−α2√
1−ρ2

dx1.

Inspecting the first term, we have
∫ ∞
α1

x1 ·f(x1,x2;ρ)dx1 = ρα2 ·
∫ ∞
α1

f(x1,α2;ρ)dx1− (1−ρ2) · [f(x1,α2;ρ)]∞α1

= ρα2 ·h(α2,α1;ρ) + (1−ρ2) ·f(α1,α2;ρ).

On the other hand, because

∂

∂x1

−x1φ(x1) ·Φ
ρx1−α2√

1−ρ2

=−φ(x1) ·Φ
ρx1−α2√

1−ρ2


+x2

1φ(x1) ·Φ
ρx1−α2√

1−ρ2

− ρ√
1−ρ2

·x1φ(x1) ·φ
ρx1−α2√

1−ρ2

 ,
integration by parts shows us that the second term becomes

∫ ∞
α1

x2
1 ·φ(x1)Φ

ρx1−α2√
1−ρ2

dx1

= α1 ·h(α1,α2;ρ) +
∫ ∞
α1

h(x1,α2;ρ)dx1 +ρ ·
∫ ∞
α1

x1 ·f(x1,α2;ρ)dx1.
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It follows that

E
[
X1X2 · I{X1≥α1, X2≥α2}

]
=
∫ ∞
α1

x1 ·f(x1,α2;ρ)dx1 +ρα1 ·h(α1,α2;ρ) +ρ ·
∫ ∞
α1

h(x1,α2;ρ)dx1

= ρα2 ·h(α2,α1;ρ) + (1−ρ2) ·f(α1,α2;ρ) +ρα1 ·h(α1,α2;ρ) +ρ ·
∫ ∞
α1

h(x1,α2;ρ)dx1.

Finally, by a linear change of variables,
∫ ∞
α1

h(x1,α2;ρ)dx1 =
∫ ∞
α1

∫ ∞
α2

f(x1,x2;ρ)dx2dx1

=
∫ −α1

−∞

∫ −α2

−∞
f(−x1,−x2;ρ)dx2dx1

=
∫ −α1

−∞

∫ −α2

−∞
f(x1,x2;ρ)dx2dx1 = F (−α1,−α2;ρ),

so we have

E
[
X1X2 · I{X1≥α1, X2≥α2}

]
= ρ [α2 ·h(α2,α1;ρ) +α1 ·h(α1,α2;ρ) +F (−α1,−α2;ρ)] + (1−ρ2) ·f(α1,α2;ρ).

We now move onto the moment E
[
X1 · I{X1≥α1, X2<α2}

]
. By definition,

E
[
X1 · I{X1≥α1, X2<α2}

]
=
∫ ∞
α1

∫ α2

−∞
x1 ·f(x1,x2;ρ)dx2dx1

=
∫ ∞
α1

x1 ·φ(x1)
∫ α2

−∞

1√
1−ρ2

φ

x2−ρx1√
1−ρ2

dx2

dx1.

For any given x1 ∈ R,

∫ α2

−∞

1√
1−ρ2

φ

x2−ρx1√
1−ρ2

dx2

is equivalent to P(Z ≤ α2), where Z ∼N
[
ρx1, 1−ρ2

]
, so it follows that

E
[
X1 · I{X1≥α1, X2<α2}

]
=
∫ ∞
α1

x1 ·φ(x1)Φ
α2−ρx1√

1−ρ2

dx1.
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Integration by parts now reveals that

E
[
X1 · I{X1≥α1, X2<α2}

]
= φ(α1) ·Φ

α2−ρα1√
1−ρ2

− ρ√
1−ρ2

·
∫ ∞
α1

φ(x1)φ
α2−ρx1√

1−ρ2

dx1

= h(−α1,−α2;ρ)−ρ ·
∫ ∞
α1

f(x1,α2;ρ)dx1

= h(−α1,−α2;ρ)−ρ ·h(α2,α1;ρ).

By symmetry,

E
[
X2 · I{X1<α1, X2≥α2}

]
= h(−α2,−α1;ρ)−ρ ·h(α1,α2;ρ).

Therefore, defining the truncated normal variables

Y1 = max(X1,α1) and Y2 = max(X2,α2),

we have

E [Y1Y2] = E
[
X1X2 · I{X1≥α1, X2≥α2}

]
+α2 ·E

[
X1 · I{X1≥α1, X2<α2}

]
+α1 ·E

[
X2 · I{X1<α1, X2≥α2}

]
+α1α2 ·P(X1 < α1, X2 < α2)

= ρ [α2 ·h(α2,α1;ρ) +α1 ·h(α1,α2;ρ) +F (−α1,−α2;ρ)] + (1−ρ2) ·f(α1,α2;ρ)

+α2 · [h(−α1,−α2;ρ)−ρ ·h(α2,α1;ρ)] +α1 · [h(−α2,−α1;ρ)−ρ ·h(α1,α2;ρ)]

+α1α2 ·F (α1,α2;ρ)

= ρ ·F (−α1,−α2;ρ) + (1−ρ2) ·f(α1,α2;ρ) +α2 ·h(−α1,−α2;ρ)

+α1 ·h(−α2,−α1;ρ) +α1α2 ·F (α1,α2;ρ).
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K Gibbs Sampling Algorithm for FS-ZLB Model

The measurement and transition equations of our model are given as follows:

rt = β′srft+σu ·ut

Yt =Ast +Bft+σe · et

ft =GP
stft−1 + Ωst ·vPt .

We follow Hamilton and Wu (2012) and the RY specification of case P in Joslin, Singleton,
and Zhu (2011) and assume that yields of three maturities, namely the federal funds rate,
the 2 year and the 10 year yields, are observed without error. These three yields are now
related to the factors as

rt

Yt(24)
Yt(120)

=


0

ast(24)/24
ast(120)/120

+


β′sr

b(24)′/24
b(120)′/120

ft.

Here, since the federal funds rate, being an overnight rate, is close to a zero maturity
yield, we approximate the factor loadings βsr as (1,0,0)′. We essentially identify the level
factor with the short rate. The first element in b(τ)′/τ equals 1 for any maturity τ , so the
above equation can be reformulated in terms of yield spreads as

 Yt(24)− rt
Yt(120)− rt


︸ ︷︷ ︸

YS(1)
t

=
 ast(24)/24
ast(120)/120


︸ ︷︷ ︸

A(1)
st

+
 b(24)′/24
b(120)′/120


︸ ︷︷ ︸

B(1)

fSCt ,

where fSCt collects the slope and curvature factors St,Ct. Inverting this expression shows
us that the slope and curvature factors are given as affine functions of the yield spreads
YS(1)

t :

fSCt =−B(1)−1A(1)
st +B(1)−1YS(1)

t .

The rest of the yield spreads are collected as

Yt(τ3)− rt

...
Yt(τm)− rt


︸ ︷︷ ︸

YS(2)
t

=


ast(τ3)/τ3

...
ast(τm)/τm


︸ ︷︷ ︸

A(2)
st

+


b(τ3)′/τ3

...
b(τm)′/τm


︸ ︷︷ ︸

B(2)

fSCt +σe · et,
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where et is now an (m− 3)-dimensional random vector of standard normally distribued
measurement errors.

Following Hamilton and Wu (2012), we can reexpress the state-space model as a re-
stricted Gaussian VAR. First, note that the factor dynamics are comprised of the regime-
dependent level factor dynamics, and the regime-independent dynamics of the rest of the
factors:

Lt = r̄st +ρstLt−1 +gP′stf
SC
t−1 +ωst ·vP1t

fSCt = G̃fSCt−1 + Ω
1
2
22 ·vPSC,t,

where vPSCt collects the last two elements of the vector of risk factors vPSC,t. Since fSCt is
an affine function of the yield spreads YS(1)

t , we can see that

YS(1)
t =A(1)

st +B(1)
(
G̃fSCt−1 + Ω

1
2
22 ·vPSC,t

)

=A(1)
st +B(1)G̃

(
−B(1)−1A(1)

st−1 +B(1)−1YS(1)
t−1

)
+B(1)Ω

1
2
22 ·vPSC,t

=
(
A(1)
st −B

(1)G̃B(1)−1 ·A(1)
st−1

)
+B(1)G̃B(1)−1 ·YS(1)

t−1 +B(1)Ω
1
2
22 ·vPSC,t

and

YS(2)
t =A(2)

st +B(2)fSCt +σe · et

=
(
A(2)
st −B

(2)B(1)−1A(1)
st

)
+B(2)B(1)−1 ·YS(1)

t +σe · et.

Furthermore, identifying the level factor with the short rate and replacing fSCt−1 with the
affine function of YS(1)

t−1 allows us to reformulate the level factor dynamics as

rt =
(
r̄st−gP′stB

(1)−1A(1)
st−1

)
+ρstrt−1 +gP′stB

(1)−1 ·YS(1)
t−1 +ωst ·vP1t.

The three equations that characterize the model can be written as

rt =
(
r̄st−gP′stB

(1)−1A(1)
st−1

)
+ρstrt−1 +gP′stB

(1)−1 ·YS(1)
t−1 +ωst ·vP1t (5.75)

YS(1)
t =

(
A(1)
st −B

(1)G̃B(1)−1 ·A(1)
st−1

)
+B(1)G̃B(1)−1 ·YS(1)

t−1 +B(1)Ω
1
2
22 ·vPSC,t (5.76)

YS(2)
t =

(
A(2)
st −B

(2)B(1)−1A(1)
st

)
+B(2)B(1)−1 ·YS(1)

t +σe · et. (5.77)
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The parameters to be estimated are

θ = {gPst ,ωst , G̃
P,Ω22,κ

Q,KQ
st ,σe,P}

and the regime process S = {st}1≤t≤T .
Estimating the Q-parameter KQ

st has traditionally proven difficult, not least because
the separate estimation of KQ

st and Ωst ,P means that the latter enter into the model in a
non-linear fashion. To circumvent this difficulty, we use the identity

Ast =−1
2



1
τ1

∑τ1−1
i=1 b(τ1− i)′

(∑N
j=1 Ωj ·Pst,j

)
b(τ1− i)

...

1
τm

∑τm−1
i=1 b(τm− i)′

(∑N
j=1 Ωj ·Pst,j

)
b(τm− i)


︸ ︷︷ ︸

c0,st

+



1
τ1

∑τ1−1
i=1 b(τ1− i)

...

1
τm

∑τm−1
i=1 b(τm− i)


︸ ︷︷ ︸

c1

KQ.

KQ
st is a function of the intercept term Ast and the paramters κQ,Ωst and P :

KQ
st =

(
c′1c1

)−1
c′1

(
Ast + 1

2c0,st
)

In other words, an equivalent form of estimation is to estimate the parameters

θ = {gPst ,ωst , G̃
P,Ω22,κ

Q,Ast ,σe,P}.

This proves much easier, because, as we will see below, Ast serves as the intercept term
of the reduced form version of the model.

Collect the observed variables as

Xt =


rt

YS(1)
t

YS(2)
t

 .

We first discuss how to sample the parameters aside from κQ,Ast and the regime S. The
joint likelihood of the data X and the regime S is given as

l(X,S | θ) =
T∏
t=1

l(Xt, st | Ft−1, θ)

=
T∏
t=1

l(Xt | st,Ft−1, θ) · l(st | Ft−1, θ)

=
T∏
t=1

l(Xt | st,Ft−1, θ) ·Pst−1,st ,
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where Ft is the σ-algebra generated by the history of Xt and st up to time t. We can
further decompose each l(Xt | st,Ft−1, θ) as

l(Xt | st,Ft−1, θ) = l(rt,YS(1)
t ,YS(2)

t | st,Ft−1, θ)

= l(rt | YSt, st,Ft−1, θ) · l(YS(2)
t | YS

(1)
t , st,Ft−1, θ) · l(YS(1)

t | st,Ft−1, θ)

= l(rt | st, rt−1,YS(1)
t−1;{κQ,A(1)

st , r̄st ,ρst ,g
P
st ,ω

2
st})

× l(YS(2)
t | st,YS

(1)
t ;{κQ,Ast ,σe})

× l(YS(1)
t | st,YS

(1)
t−1;{κQ,A(1)

st , G̃,Ω22}).

Aside from κQ and KQ, each of the parameters appears only in one likelihood term, and
thus only in one of the equations from (5.75) to (5.77). Since each of them are Gaussian
regressions, we can either use the Normal-Normal or Inverse Gamma- Inverse Gamma
(alternatively, Inverse Wishart- Inverse Wishart) update to recover the full conditional
distribution of every one of them. We detail each step below:

Block 1: Sampling ρst ,g
P
st ,ω

2
st

The full conditional distribution of ρ2 under the prior

ρ2 ∼N [ρ̄0,Vρ,0]

is given as

ρ2 |X,S,θ \{ρ2} ∼ N [ρ̄1,Vρ,1]

by the Normal-Normal update, where

Vρ,1 =
 1
Vρ,0

+ 1
ω2

2

∑
1≤t≤T,st=2

r2
t−1

−1

ρ̄1 = Vρ,1

 1
ω2

2

∑
1≤t≤T,st=2

(rt− r̄2)rt−1 + ρ̄0
Vρ,0

 .

The full conditional distribution of gP1 under the prior

gP1 ∼N [ḡ0,Vg,0]
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is given as

gP1 | Y,S,θ \{gP1 } ∼ N [ḡ1,Vg,1]

by the Normal-Normal update, where

Vg,1 =
V −1

g,0 + 1
ω2

1

∑
1≤t≤T,st=1

fSCt−1f
SC′
t−1

−1

ḡ1 = Vg,1

 1
ω2

1

∑
1≤t≤T,st=1

fSCt−1∆rt+V −1
g,0 ḡ0

 .

For any i= 1,2, the full conditional distribution of ω2
i under the prior

ω2
i ∼ IG

[
ai,0
2 ,

di,0
2

]

is given as

ω2
i |X,S,θ \{ω2

i } ∼ IG
[
ai,1
2 ,

di,1
2

]

by the Inverse Gamma- Inverse Gamma update, where

ai,1 = ai,0 + #{1≤ t≤ T | st = i}

di,1 = di,0 +
∑

1≤t≤T,st=i

(
rt− r̄i−ρirt−1−gP′i fSCt−1

)2
.

Block 2: Sampling G̃,Ω22

Define γ = vec
(
G̃P′

)
. The likelihood represented by equation (5.76) is equivalent

to the likelihood of the equation

fSCt = G̃fSCt−1 + Ω
1
2
22 ·vPSC,t.
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Thus, the full conditional distribution of γ under the prior

γ ∼N [γ̄0,Vγ,0]

is given as

γ |X,S,θ \{γ} ∼ N [γ̄1,Vγ,1]

by the Normal-Normal update, where

Vγ,1 =
V −1

γ,0 +
Ω−1

22
⊗ T∑

t=1
fSCt−1f

SC′
t−1

−1

γ̄1 = Vγ,1

(Ω−1
22
⊗

I2
)
·vec

 T∑
t=1

fSCt−1f
SC′
t

+V −1
γ,0 γ̄0

 .

The full conditional distribution of Ω22 under the prior

Ω22 ∼ IW [v0,Ψ0]

is given as

Ω22 |X,S,θ \{Ω22} ∼ IW [v1,Ψ1]

by the Inverse Wishart- Inverse Wishart update, where

v1 = v0 +T

Ψ1 = Ψ0 +
T∑
t=1

(
fSCt − G̃PfSCt−1

)(
fSCt − G̃PfSCt−1

)′
.

Block 3: Sampling σe

The likelihood represented by equation (5.77) is equivalent to that represented
by

YS(2)
t =A(2)

st +B(2)fSCt +σe · et.
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Therefore, the full conditional distribution for σ2
e under its prior

σ2
e ∼ IG

[
a0
2 ,

d0
2

]

is given as

σ2
e |X,S,θ \{σ2

e} ∼ IG
[
a1
2 ,

d1
2

]

under the Inverse Gamma- Inverse Gamme update, where

a1 = a0 +T (m−2)

d1 = d0 +
T∑
t=1

∣∣∣∣YS(2)
t −A(2)

st −B
(2)fSCt

∣∣∣∣2.

Block 4: Sampling P

For any i= 1,2, letting j denote the regime that is not regime i, full conditional
distribution of Pii under the prior

Pii ∼ beta [αi,0,βi,0]

is given as

Pii |X,S,θ \{Pii} ∼ beta [αi,0 +nii,βi,0 +nij ] ,

where nii is the number of times the regime changes from regime i to regime i
and nij is the number of times the regime changes from regime i to regime j.

To estimate κQ and the regime process S, it is necessary to obtain a tractable expres-
sion for the likelihood of the data X. In addition, to estimate Ast , we must collect the
three equations characterizing the system together, since A(1)

st appears in all three. To this
end, we collect the three equations as
 1 O1×2 O1×(m−2)

O2×1 I2 O2×(m−2)

O(m−2)×1 −B(2)B(1)−1 Im−2

Xt
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=
(

r̄st

Om×1

)
︸ ︷︷ ︸

R̄st

+

 −gP′st
B(1)−1 O1×(m−2)

−B(1)G̃B(1)−1 O2×(m−2)

O(m−2)×2 O(m−2)×(m−2)

(A(1)
st−1

A(2)
st−1

)
︸ ︷︷ ︸
Ast−1

+

 O1×2 O1×(m−2)

I2 O2×(m−2)

−B(2)B(1)−1 Im−2

(A(1)
st

A(2)
st

)
︸ ︷︷ ︸
Ast

+

 ρst gP′st
B(1)−1 O1×(m−2)

O2×1 B(1)G̃B(1)−1 O2×(m−2)

O(m−2)×1 O(m−2)×2 O(m−2)×(m−2)

Xt−1 +


ωst O1×2 O1×(m−2)

O2×1 B(1)Ω
1
2
22 O2×(m−2)

O(m−2)×1 O(m−2)×2 σe · Im−2


 vP1t
vPSC,t
et

 .

Since


1 O1×2 O1×(m−2)

O2×1 I2 O2×(m−2)

O(m−2)×1 −B(2)B(1)−1 Im−2


−1

=


1 O1×2 O1×(m−2)

O2×1 I2 O2×(m−2)

O(m−2)×1 B(2)B(1)−1 Im−2

 ,

defining

D1,st =


−gP′stB

(1)−1 O1×(m−2)

−B(1)G̃B(1)−1 O2×(m−2)

−B(2)G̃B(1)−1 O(m−2)×(m−2)



E =
O1×m

Im


C1,st,st−1 =

(
D1,st · (2− st−1) D1,st · (st−1−1)

)
+
(
E · (2− st) E · (st−1)

)
the reduced form of this system is

Xt = R̄st +C1,st,st−1 ·

A1

A2


︸ ︷︷ ︸
A

+


ρst gP′stB

(1)−1 O1×(m−2)

O2×1 B(1)G̃B(1)−1 O2×(m−2)

O(m−2)×1 B(2)G̃B(1)−1 O(m−2)×(m−2)


︸ ︷︷ ︸

Φst

Xt−1 +


ωst O1×2 O1×(m−2)

O2×1 B(1)Ω
1
2
22 O2×(m−2)

O(m−2)×1 B(2)Ω
1
2
22 σe · Im−2


︸ ︷︷ ︸

Σ
1
2
st


vP1t
vPSC,t
et


︸ ︷︷ ︸

ut

.

The time t likelihood given the time t and t−1 regimes now becomes

l(Xt | st, st−1,Xt−1, θ) =
( 1

2π

)m+1
2
|Σst|

− 1
2
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×exp
(
−1

2
(
Xt− R̄st−C1,st,st−1A−ΦstXt−1

)′
Σ−1
st

(
Xt− R̄st−C1,st,st−1A−ΦstXt−1

))
,

and

l(X,S | θ) =
T∏
t=1

l(Xt | st, st−1,Xt−1, θ) ·Pst−1,st

=
( 1

2π

)T (m+1)
2

∣∣∣∣∣∣
T∏
t=1

Σst

∣∣∣∣∣∣
− 1

2

·

 T∏
t=1

Pst−1,st


× exp

−1
2

T∑
t=1

(
Xt− R̄st−C1,st,st−1A−ΦstXt−1

)′
Σ−1
st

(
Xt− R̄st−C1,st,st−1A−ΦstXt−1

).
It follows that κQ,Ast and the regime process S can be sampled as follows:

Block 5: Sampling κQ and A

Since κQ is assumed to take finitely many values, we can just take the probability
that κQ equals a certain value as proportional to the likelihood value under this
value.

As for A, we can use the fact that it serves as the intercept term in the regression

Xt = R̄st +C1,st,st−1A+ ΦstXt−1 + Σ
1
2
st ·ut.

It follows that the full conditional distribution of A under the prior

A∼N
[
Ā0,VA,0

]
is given as

A |X,S,θ \{A} ∼N
[
Ā1,VA,1

]
by the Normal-Normal update, where

VA,1 =
 T∑
t=1

C ′1,st,st−1Σ−1
st C1,st,st−1 +V −1

A,0

−1

Āi,1 = VA,1

 T∑
t=1

C ′1,st,st−1Σ−1
st

(
Xt− R̄st−ΦstXt−1

)
+V −1
A,0Ā0

 .
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Block 6: Sample S

It now remains to sample the regime process. This is done through the standard
Hamilton filter combined with the Carter-Kohn backward recursion. By assump-
tion, information on whether the economy is at the zero lower bound at a certain
point in time is conveyed through the factors,

Let Xt be the σ-algebra generated by the history of rt and STt up to time t, and
define the quantities

αt|s =


P(st = 1 |Xs)

...
P(st =N |Xs)


for any 0 ≤ t,s ≤ T . Then, the predictive and filtered probabilities can be com-
puted recursively, and the regime process sampled, as follows:

1) Step 0: Loading Initial Values
Prepare initial values by setting

α0|0 =


1−P22

2−P11−P22

1−P11
2−P11−P22

 ,
the stationary distribution of the Markov chain.

2) Step 1: Predictive Probabilities
Given αt−1|t−1, we can compute

αt|t−1 = P ′ ·αt−1|t−1.

3) Step 2: Filtered Probabilities
For any 1≤ i≤N ,

P(st = i,st−1 = j |Xt)∝ l(Xt | st = i,st−1 = j,Xt−1) ·P(st = i,st−1 = j |Xt−1)

= l(Xt | st = i,st−1 = j,Xt−1) ·P(st = i | st−1 = j) ·P(st−1 = j |Xt−1)

= l(Xt | st = i,st−1 = j,Xt−1) ·Pji ·αt−1|t−1,j .
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Since

P(st = i |Xt) =
N∑
j=1

P(st = i,st−1 = j |Xt) ,

it follows that the kernels of the filtered probabilities in αt|t are given as

kt|t =


∑N
j=1 l(Xt | st = 1, st−1 = j,Xt−1) ·Pj1 ·αt−1|t−1,j

...∑N
j=1 l(Xt | st =N,st−1 = j,Xt−1) ·PjN ·αt−1|t−1,j

 ,

and the filtered probabilities as

αt|t = 1
ι′kt|t

kt|t.

4) Step 3: Sampling Regimes
Sample sT according to the filtered probabilities αT |T . Having sampled st+1,
calculate the probabilities αt|T as

αt|T = 1∑N
i=1Pi,st+1 ·αt|t,i


P1,st+1 ·αt|t,1

...
PN,st+1 ·αt|t,N .


st is then sampled according to the probabilities αt|T .
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