
Time Series: Linear Processes, Cointegration and Structural
Breaks

Seung Hyun Kim

August 11, 2024

1 Stationary Linear Processes 4
1.1 Asymptotic Theory for Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Martingale Difference Arrays . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Martingale Difference Sequences . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Asymptotic Theory for Stationary Processes . . . . . . . . . . . . . . . . . . . . . 23
1.2.1 Stationary Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.2 m-dependent Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.3 CLT for Stationary and m-dependent Processes . . . . . . . . . . . . . . . 25
1.2.4 Application: GMM Estimation under Serially Correlated Errors . . . . . . 33
1.2.5 Mixing Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.3 Linear Processes and the Wold Representation . . . . . . . . . . . . . . . . . . . 42
1.3.1 Multidimensional Lp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.3.2 Linear Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.3.3 Ergodicity of Linear Processes . . . . . . . . . . . . . . . . . . . . . . . . 54
1.3.4 The Wold Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.4 Asymptotic Theory for Linear Processes . . . . . . . . . . . . . . . . . . . . . . . 72
1.4.1 Vectorization and Kronecker Product . . . . . . . . . . . . . . . . . . . . 72
1.4.2 Linear Processes and the Martingale Difference CLT . . . . . . . . . . . . 78

2 Vector Autoregressions 86
2.1 Conditions for Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.2 Topological Properties of Positive Definite Matrices . . . . . . . . . . . . . . . . . 95

2.2.1 Duplication, Elimination and Commutation Matrices . . . . . . . . . . . . 98
2.3 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.3.1 Deriving the Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2.3.2 The QMLE and its Asymptotic Properties . . . . . . . . . . . . . . . . . . 108
2.3.3 Deriving the Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2.3.4 Asymptotic Variance of θ̂T . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2.4 Asymptotics of Structural VARs . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

1



2.4.1 Recursive Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2.5 Likelihood Ratio Tests under Linear Restrictions . . . . . . . . . . . . . . . . . . 128

2.5.1 Feasible Restricted Estimators of θ . . . . . . . . . . . . . . . . . . . . . . 129
2.5.2 Asymptotic Properties of Restricted Estimators . . . . . . . . . . . . . . . 132
2.5.3 Asymptotic Distribution of LR Test Statistic . . . . . . . . . . . . . . . . 135

2.6 Lag Length Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.6.1 Sequential LR Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
2.6.2 Information Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3 Spectral Analysis 148
3.1 The Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.2 The Spectral Representation of Time Series . . . . . . . . . . . . . . . . . . . . . 154

3.2.1 Orthogonal Increment Processes . . . . . . . . . . . . . . . . . . . . . . . 154
3.2.2 Stochastic Integration of Elementary Functions . . . . . . . . . . . . . . . 158
3.2.3 Stochastic Integration of Square Integrable Functions . . . . . . . . . . . 162
3.2.4 Trigonometric Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.2.5 The Spectral Representation Theorem . . . . . . . . . . . . . . . . . . . . 180

3.3 Time Invariant Linear Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4 Unit Root Asymptotics 195
4.1 The FCLT and its Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4.1.1 Continuous Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.1.2 Random Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.1.3 The FCLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.1.4 Linear Processes and the BN Decomposition . . . . . . . . . . . . . . . . 197
4.1.5 The CLT for Linear Processes . . . . . . . . . . . . . . . . . . . . . . . . . 201
4.1.6 Extending the FCLT to Linear Processes . . . . . . . . . . . . . . . . . . 203

4.2 The Limit of Functions of Trending Processes . . . . . . . . . . . . . . . . . . . . 207
4.2.1 Continuous Functions on C([0,1],Rn) . . . . . . . . . . . . . . . . . . . . . 207
4.2.2 Convergence to Stochastic Integrals . . . . . . . . . . . . . . . . . . . . . 211
4.2.3 Main Limit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

5 Cointegration 236
5.1 I(1) Processes and Cointegrated Time Series . . . . . . . . . . . . . . . . . . . . . 236

5.1.1 I(0) Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
5.1.2 I(1) Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
5.1.3 Cointegrated Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
5.1.4 The Phillips-Ouliaris Test for Cointegration . . . . . . . . . . . . . . . . . 241

5.2 Estimating Cointegrating Relationships . . . . . . . . . . . . . . . . . . . . . . . 252
5.2.1 Phillips’ Triangular Representation . . . . . . . . . . . . . . . . . . . . . . 252
5.2.2 SOLS Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
5.2.3 FM-OLS Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

2



5.3 Vector Error Correction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
5.3.1 VAR Processes with Finite Starting Times . . . . . . . . . . . . . . . . . 267
5.3.2 Error Correction Form and the Granger Representation Theorem . . . . . 271

5.4 Estimation of VECMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
5.4.1 Assumptions and Preliminary Asymptotic Results . . . . . . . . . . . . . 284
5.4.2 The Concentrated Log-Likelihood . . . . . . . . . . . . . . . . . . . . . . 294
5.4.3 Maximum Likelihood Estimates when r > 0 . . . . . . . . . . . . . . . . . 299
5.4.4 Maximum Likelihood Estimates when r = 0 . . . . . . . . . . . . . . . . . 308
5.4.5 Specifying α⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
5.4.6 Consistency of QMLEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
5.4.7 Testing for the Cointegrating Rank . . . . . . . . . . . . . . . . . . . . . . 330
5.4.8 Asymptotic Distribution of QMLEs . . . . . . . . . . . . . . . . . . . . . 336

6 Estimating Structural Break Points 339
6.1 Estimation of the Break Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
6.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
6.3 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
6.4 Consistency of the Break Fraction Estimators . . . . . . . . . . . . . . . . . . . . 357

6.4.1 Step 1: Convergence of the Sum of Squared Differences . . . . . . . . . . . 357
6.4.2 Step 2: Deriving a Contradiction from Inconsistency . . . . . . . . . . . . 365
6.4.3 Step 3: Matching Estimators with True Break Fractions . . . . . . . . . . 370

6.5 The Rate of Convergence of the Break Date Estimators . . . . . . . . . . . . . . 377
6.5.1 Step 1: Obtaining a Probability Bound . . . . . . . . . . . . . . . . . . . . 377
6.5.2 Step 2: Decomposing the Difference of SSRs . . . . . . . . . . . . . . . . . 380
6.5.3 Step 3: Rate of Convergence of the Difference in SSRs . . . . . . . . . . . 385

7 Testing for Multiple Structural Breaks 388
7.1 Testing the Null of No Breaks against the Alternative of m Breaks . . . . . . . . 388

7.1.1 Computation of the Test Statistic . . . . . . . . . . . . . . . . . . . . . . 390
7.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
7.1.3 The Asymptotic Distribution of the Test Statistic . . . . . . . . . . . . . 395
7.1.4 Double Maximum Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

7.2 Sequentially Testing for Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
7.2.1 The Asymptotic Distribution of the Test Statistic . . . . . . . . . . . . . 414

3



Stationary Linear Processes

We start by studying the asymptotic properties of stationary linear processes. After the deriving
more general results, we will study the Vector Autoregressive (VAR) processes. Throughout, we
implicitly let (Ω,H,P) be our probability space.

1.1 Asymptotic Theory for Martingales

We state here some central limit theorems and laws of large numbers involving martingale dif-
ference sequences, which are sequences of dependent variables that are uncorrelated with one
another. They are named this way because their partial sum process defines a martingale.

1.1.1 Martingale Difference Arrays

An array {ZT,t}1≤t≤k(T ),T∈N+ of real random variables is said to be a martingale difference array
with respect to the filtration array {FT,t}1≤t≤k(T ),T∈N+ if

• ZT,t is FT,t measurable and integrable for any T ∈N+ and 1≤ t≤ k(T )

• For any T ∈N+ and 1≤ t≤ k(T ),

E [ZT,t | FT,t−1] = 0,

where FT,0 is taken to be the trivial σ-algebra.

Before presenting a CLT for martingale difference arrays, we state some preliminary results:
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Lemma The following hold true:

i) For any x ∈ R, ∣∣∣∣∣exp(ix)−
(

1 + ix− x
2

2

)∣∣∣∣∣≤min
(
|x|3, |x|2

)
.

ii) For any z ∈ C,

|exp(z)− (1 +z)| ≤ |z|2 exp(|z|).

Proof) i) Choose any x ∈ R, and let n ∈N+. Since

∂

∂s

(
− 1
n+ 1(x−s)n+1 exp(is)

)
= (x−s)n exp(is)− i

n+ 1(x−s)n+1 exp(is)

on R, we can see that∫ x

0
(x−s)n exp(is)ds− i

n+ 1

∫ x

0
(x−s)n+1 exp(is)ds= 1

n+ 1x
n+1,

or equivalently,∫ x

0
(x−s)n exp(is)ds= 1

n+ 1x
n+1 + i

n+ 1

∫ x

0
(x−s)n+1 exp(is)ds.

Putting n= 1 reveals that

i− i · exp(ix) = x+ i ·
∫ x

0
(x−s)exp(is)ds,

or that

exp(ix) = 1 + ix−
∫ x

0
(x−s)exp(is)ds.

The result for n= 2 now shows us that∫ x

0
(x−s)exp(is)ds= x2

2 + i

2

∫ x

0
(x−s)2 exp(is)ds,

or that

exp(ix) = 1 + ix− x
2

2 −
i

2

∫ x

0
(x−s)2 exp(is)ds

We therefore have the upper bound∣∣∣∣∣exp(ix)−
(

1 + ix− x
2

2

)∣∣∣∣∣≤ 1
2

∣∣∣∣∫ x

0
(x−s)2 exp(is)ds

∣∣∣∣.
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To obtain the first bound, note that, if x≥ 0, then
∣∣∣∣∫ x

0
(x−s)2 exp(is)ds

∣∣∣∣≤ ∫ x

0
(x−s)2ds= x3

3 .

On the other hand, if x < 0, then
∣∣∣∣∫ x

0
(x−s)2 exp(is)ds

∣∣∣∣≤ ∫ 0

x
(x−s)2ds=−x

3

3 ,

so that ∣∣∣∣∣exp(ix)−
(

1 + ix− x
2

2

)∣∣∣∣∣≤ |x|
3

6 ≤ |x|3.

It is slightly trickier to obtain the second bound. From the relationship

∫ x

0
(x−s)exp(is)ds= x2

2 + i

2

∫ x

0
(x−s)2 exp(is)ds,

we can see that

1
2

∣∣∣∣∫ x

0
(x−s)2 exp(is)ds

∣∣∣∣= ∣∣∣∣ i2
∫ x

0
(x−s)2 exp(is)ds

∣∣∣∣≤ ∣∣∣∣∫ x

0
(x−s)exp(is)ds

∣∣∣∣+ x2

2 .

If x≥ 0, then
∣∣∣∣∫ x

0
(x−s)exp(is)ds

∣∣∣∣≤ ∫ x

0
|x−s|ds=

∫ x

0
(x−s)ds= x2

2 ,

while if x < 0, then
∣∣∣∣∫ x

0
(x−s)exp(is)ds

∣∣∣∣≤ ∫ 0

x
|x−s|ds=

∫ 0

x
(s−x)ds= x2

2 .

Therefore,

1
2

∣∣∣∣∫ x

0
(x−s)2 exp(is)ds

∣∣∣∣≤ x2

2 ≤ x
2,

and we have ∣∣∣∣∣exp(ix)−
(

1 + ix− x
2

2

)∣∣∣∣∣≤min(|x|3, |x|2).
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ii) Choose any z ∈ C. Then,

exp(z) =
∞∑
n=0

zn

n! = 1 +z+
∞∑
n=2

zn

n!

= 1 +z+ z2

·

( ∞∑
n=2

zn−2

n!

)
,

so that

|exp(z)− (1 +z)| ≤ |z|2 ·
( ∞∑
n=2

|z|n−2

n!

)
≤ |z|2 ·

( ∞∑
n=0

|z|n

n!

)
= |z|2 exp(|z|).

Q.E.D.
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We are now ready to present a CLT for martingale difference arrays:

Theorem (CLT for Martingale Difference Arrays)
Let {ZT,t}T∈N+,1≤t≤k(T ) be a square integrable (or L2) martingale difference array with respect
to the filtration array F = {FT,t}1≤t≤k(T ),T∈N+ . Define σ2

T,t = E
[
Z2
T,t | FT,t−1

]
for any T ∈ N+

and 1≤ t≤ k(T ), and let

VT =
k(T )∑
t=1

σ2
T,t

for any T ∈N+. Assume that:

i) VT
p→ 1 as T →∞.

ii) (The Lindeberg Condition) For any ε > 0,

lim
T→∞

k(T )∑
t=1

E
[∣∣∣Z2

T,t

∣∣∣ · I{|ZT,t|>ε}]= 0.

Then, we have

k(T )∑
t=1

ZT,t
d→N(0,1).

Proof) We proceed in small steps.

Part 1: Bounding VT

We first modify the array {ZT,t}T∈N+,1≤t≤k(T ) so that the sum of conditional variances
VT is bounded. Define {VT,t}T∈N+,1≤t≤k(T ) as

VT,t =
t∑

s=1
σ2
T,s

for any T ∈N+, 1≤ t≤ k(T ), so that VT,T = VT , and let {YT,t}T∈N+,1≤t≤k(T ) be defined
as

YT,t = ZT,t · I{VT,t≤2}

for any T ∈N+ and 1≤ t≤ k(T ). We now establish some properties of {YT,t}T∈N+,1≤t≤k(T ):

– Martingale Difference Array
It is clear that {YT,t}T∈N+,1≤t≤k(T ) is a martingale difference array with respect
to F ; for any T ∈ N+ and 1 ≤ t ≤ k(T ), since VT,t is FT,t−1-measurable, YT,t is

8



clearly FT,t measurable, integrable due to the integrability of ZT,t, and

E [YT,t | FT,t−1] = E [ZT,t | FT,t−1] · I{VT,t≤2} = 0.

– Square Integrable
By the square integrability of ZT,t, each YT,t is also square integrable. Furthermore,
defining

ΓT =
T∑
t=1

E
[
Y 2
T,t | FT,t−1

]
︸ ︷︷ ︸

ρ2
T,t

,

since

E
[
Y 2
T,t | FT,t−1

]
= E

[
Z2
T,t | FT,t−1

]
· I{VT,t≤2} = σ2

T,t · I{VT,t≤2},

we can see that

ΓT =
T∑
t=1

σ2
T,t · I{VT,t≤2}.

This implies that ΓT ≤ 2 on Ω.
Analgously to VT,t, we define

ΓT,t =
t∑

s=1
ρ2
T,s

for any T ∈N+ and 1≤ t≤ k(T ).

– Convergence of ΓT
Moreover,

|VT −ΓT |= VT −ΓT =
T∑
t=1

σ2
T,t · I{VT,t>2}

≤
(

T∑
t=1

σ2
T,t

)
· I{VT>2} = VT · I{VT>2}.

By assumption, VT
p→ 1, and for any δ > 0,

P
(
VT · I{VT>2} > δ

)
≤ P(VT > 2)≤ P(|VT −1|> 1) ,

so that

lim
T→∞

P
(
VT · I{VT>2} > δ

)
= 0.
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This holds for any δ > 0, so

VT · I{VT>2}
p→ 0

and we have

ΓT −VT
p→ 0

as T →∞ as well. Therefore, we can conclude that

ΓT
p→ 1.

– The Lindeberg Condition
For any T ∈N+ and ε > 0,

YT,t ≤ ZT,t

and thus

E
[
Y 2
T,t · I{|YT,t|>ε}

]
≤ E

[
Z2
T,t · I{|ZT,t|>ε}

]
for 1≤ t≤ k(T ), so that

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε}

]
≤
k(T )∑
t=1

E
[
Z2
T,t · I{|ZT,t|>ε}

]
.

The right hand side goes to 0 as T →∞, so {YT,t}T∈N+,1≤t≤k(T ) satisfies the
Lindeberg condition

lim
T→∞

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε}

]
= 0.

We have thus shown that {YT,t}T∈N+,1≤t≤k(T ) possesses all the same properties as
{ZT,t}T∈N+,1≤t≤k(T ), with the added property that

T∑
t=1

E
[
Y 2
T,t | FT,t−1

]
≤ 2

for any T ∈N+. Furthermore, since∣∣∣∣∣∣
k(T )∑
t=1

ZT,t−
k(T )∑
t=1

YT,t

∣∣∣∣∣∣=
∣∣∣∣∣∣
k(T )∑
t=1

ZT,t · I{VT,t>2}

∣∣∣∣∣∣
10



≤

k(T )∑
t=1
|ZT,t|

 · I{VT>2},

and

P

k(T )∑
t=1
|ZT,t|

 · I{VT>2} > δ

≤ P(VT > 2)

for any δ > 0, we can see that

k(T )∑
t=1

ZT,t−
k(T )∑
t=1

YT,t
p→ 0.

Therefore, if we can show that

k(T )∑
t=1

YT,t
d→N(0,1),

then by Slutsky’s theorem, we can prove the claim of the theorem.

Part 2: The Characteristic Function of ∑k(T )
t=1 YT,t

To show that the partial sums ∑k(T )
t=1 YT,t converge in distribution to the standard

normal distribution, we make use of the continuity theorem and show that their char-
acteristic functions converge to that of the desired distribution. To that end, denote by
ϕT the characteristic function of

ST =
k(T )∑
t=1

YT,t

For any r ∈ R,∣∣∣∣∣ϕT (r)− exp
(
−r

2

2

)∣∣∣∣∣=
∣∣∣∣∣E [exp(ir ·ST )]− exp

(
−r

2

2

)∣∣∣∣∣
≤
∣∣∣∣∣E [exp(ir ·ST )]−E

[
exp(ir ·ST )exp

(
r2ΓT

2

)
exp

(
−r

2

2

)]∣∣∣∣∣
+
∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)
exp

(
−r

2

2

)]
− exp

(
−r

2

2

)∣∣∣∣∣
≤ E

∣∣∣∣∣1− exp
(
r2ΓT

2

)
exp

(
−r

2

2

)∣∣∣∣∣+
∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)
−1
]∣∣∣∣∣.
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Because ΓT
p→ 1, by the continuous mapping theorem

1− exp
(
r2ΓT

2

)
exp

(
−r

2

2

)
p→ 0.

Furthermore, for any T ∈N+, 0≤ ΓT ≤ 2 on Ω, so that the sequence

{
1− exp

(
r2ΓT

2

)
exp

(
−r

2

2

)}
T∈N+

is Lp-bounded for any p∈ [1,+∞). By implication, the sequence is uniformly integrable,
which, together with the convergence in probability result above, implies that

1− exp
(
r2ΓT

2

)
exp

(
−r

2

2

)
L1
→ 0,

or equivalently,

E
∣∣∣∣∣1− exp

(
r2ΓT

2

)
exp

(
−r

2

2

)∣∣∣∣∣→ 0

as T →∞.

Therefore, it remains to show that∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)
−1
]∣∣∣∣∣→ 0

as T →∞ for the characteristic function of ST to converge to that of the standard
normal distribution as T →∞.

Part 3: Decomposing the Second Term

We first express the term ∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)
−1
]∣∣∣∣∣

as a telescoping sum, that is,

E
[
exp(ir ·ST )exp

(
r2ΓT

2

)]
−1

=
k(T )∑
t=1

E
[
exp(ir ·ST,t)exp

(
r2ΓT,t

2

)
− exp(ir ·ST,t−1)exp

(
r2ΓT,t−1

2

)]
,

12



where we define

ST,t =
t∑

s=1
YT,s

for 1 ≤ t ≤ k(T ). For any 1 ≤ t ≤ k(T ), using the law of iterated expectations, we can
see that

E
[
exp(ir ·ST,t)exp

(
r2ΓT,t

2

)
− exp(ir ·ST,t−1)exp

(
r2ΓT,t−1

2

)]

= E
[
exp(ir ·ST,t−1)exp

(
r2ΓT,t

2

)
E
[
exp(ir ·YT,t)− exp

(
−
r2ρ2

T,t

2

)∣∣∣FT,t−1

]]
.

Therefore, using the fact that ΓT,t is bounded above by 2 on Ω, we have

∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)]
−1
∣∣∣∣∣

≤ exp
(
r2
)
·
k(T )∑
t=1

E
∣∣∣∣∣E [exp(ir ·YT,t) | FT,t−1]− exp

(
−
r2ρ2

T,t

2

)∣∣∣∣∣.

Part 4: Finding an Upper Bound for the Second Term

For any 1≤ t≤ k(T ), the previous lemma tells us that∣∣∣∣∣E [exp(ir ·YT,t) | FT,t−1]−
(

1−
r2ρ2

T,t

2

)∣∣∣∣∣≤ E
[∣∣∣∣∣exp(ir ·YT,t)−

(
1 + ir ·YT,t−

r2Y 2
T,t

2

)∣∣∣∣∣∣∣∣FT,t−1

]

≤ E
[
min(|rYT,t|3, |rYT,t|2) | FT,t−1

]
.

It can now be seen that, for any ε > 0,

∣∣∣∣∣E [exp(ir ·YT,t) | FT,t−1]−
(

1−
r2σ2

T,t

2

)∣∣∣∣∣
≤ E

[
|rYT,t|3 · I{|YT,t|≤ε} | FT,t−1

]
+E

[
|rYT,t|2 · I{|YT,t|>ε} | FT,t−1

]
≤ ε|r|3 ·E

[
Y 2
T,t · I{|YT,t|≤ε} | FT,t−1

]
+ r2 ·E

[
Y 2
T,t · I{|YT,t|>ε} | FT,t−1

]
≤ ε|r|3 ·ρ2

T,t+ r2 ·E
[
Y 2
T,t · I{|YT,t|>ε} | FT,t−1

]
.

13



Similarly, the second result in the previous lemma implies
∣∣∣∣∣exp

(
−
r2ρ2

T,t

2

)
−
(

1−
r2ρ2

T,t

2

)∣∣∣∣∣≤
∣∣∣∣∣r

2ρ2
T,t

2

∣∣∣∣∣
2

· exp
(
r2ρ2

T,t

2

)

≤ r4

4 exp
(
r2
)
ρ2
T,t ·

(
max

1≤s≤k(T )
ρ2
T,s

)
,

where we used the fact that

ρ2
T,t ≤ ΓT ≤ 2.

By implication,

∣∣∣∣∣E [exp(ir ·YT,t) | FT,t−1]− exp
(
−
r2ρ2

T,t

2

)∣∣∣∣∣
≤ ε|r|3 ·ρ2

T,t+ r2 ·E
[
Y 2
T,t · I{|YT,t|>ε} | FT,t−1

]
+ r4

4 exp
(
r2
)
·ρ2
T,t ·

(
max

1≤s≤k(T )
ρ2
T,s

)
,

and as such∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)]
−1
∣∣∣∣∣

≤ exp
(
r2
)
ε|r|3 ·E [ΓT ]+exp

(
r2
)
r2 ·

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε}

]
+exp

(
2r2
)r4

4 E
[
ΓT · max

1≤s≤k(T )
ρ2
T,s

]

≤ 2exp
(
r2
)
|r|3 · ε︸ ︷︷ ︸

I

+exp
(
r2
)
r2 ·

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε}

]
︸ ︷︷ ︸

II

+exp
(
2r2
)r4

2 E
[

max
1≤s≤k(T )

ρ2
T,s

]
︸ ︷︷ ︸

III

.

Part 5: The Convergence of the Second Term

The Lindeberg condition ensures that II converges to 0.

As for III, note that

ρ2
T,s = E

[
Y 2
T,s · I{|YT,s|≤ε} | FT,s−1

]
+E

[
Y 2
Tst · I{|YT,s|>ε} | FT,s−1

]
≤ ε2 +E

[
Y 2
T,s · I{|YT,s|>ε} | FT,s−1

]
≤ ε2 +

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε} | FT,t−1

]

14



for any 1≤ s≤ k(T ), so

max
1≤s≤k(T )

ρ2
T,s ≤ ε2 +

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε} | FT,t−1

]
.

It follows that

E
[

max
1≤s≤k(T )

ρ2
T,s

]
≤ ε2 +

k(T )∑
t=1

E
[
Y 2
T,t · I{|YT,t|>ε}

]
,

and by the Lindeberg condition,

limsup
T→∞

E
[

max
1≤s≤k(T )

ρ2
T,s

]
≤ ε2.

Therefore, the limit supremum of the term III is bounded above by exp
(
2r2) r4

2 · ε
2, so

that

limsup
T→∞

∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)]
−1
∣∣∣∣∣≤

[
2exp

(
r2
)
|r|3 · ε+ exp

(
2r2
)r4

2 · ε
2
]
.

Since this holds for any ε > 0, it follows that

lim
T→∞

∣∣∣∣∣E
[
exp(ir ·ST )exp

(
r2ΓT

2

)]
−1
∣∣∣∣∣= 0.

We have shown that

lim
T→∞

∣∣∣∣∣ϕT (r)− exp
(
−r

2

2

)∣∣∣∣∣= 0,

and because r ∈ R was chosen arbitrarily, by the continuity theorem we may conclude
that

ST
d→N(0,1).

Q.E.D.
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1.1.2 Martingale Difference Sequences

We now turn our attention to martingale difference sequences instead of arrays. A sequence
{Yt}t∈Z of n-dimensional random vectors is said to be an n-dimensional martingale difference
sequence (MDS) with respect to the filtration F = {Ft | t ∈ Z} if:

• Yt is Ft-measurable and integrable for any t ∈ Z

• E [Yt] = 0 for any t ∈ Z

• For any t ∈ Z,

E [Yt | Ft−1] = 0.

Given an n-dimensional MDS {Yt}t∈Z, it can easily be seen that {α′Yt}t∈Z is a univariate
MDS for any α∈Rn. Furthermore, given an univariate MDS {yt}t∈Z with respect to the filtration
F = {Ft | t ∈ Z}, we can always define a martingale difference array by defining

ZT,t = yt and FT,t = Ft

for any T ∈N+ and 1≤ t≤ T = k(T ).

To obtain a workable version of the martingale difference array CLT for martingale difference
sequences, we require the following law of large numbers, adapted from Andrews (1988).

Theorem (A Martingale WLLN)
Let {Yt}t∈Z be an n-dimensional martingale difference sequence with respect to the filtration
F = {Ft}t∈Z such that {|Yt|p | t ∈ Z} is uniformly integrable for some 1≤ p≤ 2. Then,

1
T

T∑
t=1

Yt
Lp→ 0.

Proof) Choose any ε > 0. By uniform integrability,

lim
b→∞

sup
t∈Z

E
[
|Yt|p · I{|Yt|p>b}

]
= 0,

so there exists a B > 0 such that

sup
t∈Z

E
[
|Yt|p · I{|Yt|p>B}

]
<

(
ε

4

)p
.

For any t ∈ Z, define

et = Yt · I{|Yt|p≤B} and

ut = Yt · I{|Yt|p>B}.
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Then, Yt = et+ut, and we have

E [Yt | Ft−1] = 0 = E [et | Ft−1] +E [ut | Ft−1] .

Furthermore, the sequence {et−E [et | Ft−1]}t∈Z defines an n-dimensional MDS with
respect to F , since both et and E [et | Ft−1] are integrable random vectors and

E [et−E [et | Ft−1] | Ft−1] = 0.

For any T ∈N+, we now have
∥∥∥∥∥ 1
T

T∑
t=1

Yt

∥∥∥∥∥
p

≤
∥∥∥∥∥ 1
T

T∑
t=1

(et−E [et | Ft−1])
∥∥∥∥∥
p

+ 1
T

T∑
t=1
‖ut−E [ut | Ft−1]‖p

≤
∥∥∥∥∥ 1
T

T∑
t=1

(et−E [et | Ft−1])
∥∥∥∥∥
p

+ 1
T

T∑
t=1

(
‖ut‖p+‖E [ut | Ft−1]‖p

)

by Minkowski’s inequality. Note that, for any random vector X ∈ Lp(H,P), Jensen’s
inequality implies that

(E|X|p)
2
p ≤ E|X|2,

so that ‖X‖p ≤ ‖X‖2. Likewise, the conditional version of Jensen’s inequality tells us
that, for any t ∈ Z,

‖E [ut | Ft−1]‖p = (E|E [ut | Ft−1]|p)
1
p

≤ (E|ut|p)
1
p = ‖ut‖p.

It follows that ∥∥∥∥∥ 1
T

T∑
t=1

Yt

∥∥∥∥∥
p

≤
∥∥∥∥∥ 1
T

T∑
t=1

(et−E [et | Ft−1])
∥∥∥∥∥

2
+ 2
T

T∑
t=1
‖ut‖p.

Since

ut = Yt · I{|Yt|p>B},

by assumption we have

E|ut|p = E
[
|Yt|p · I{|Yt|p>B}

]
,
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and as such

sup
t∈Z
‖ut‖p ≤

(
sup
t∈Z

E
[
|Yt|p · I{|Yt|p>B}

]) 1
p

<
ε

4 ,

which implies ∥∥∥∥∥ 1
T

T∑
t=1

Yt

∥∥∥∥∥
p

≤
∥∥∥∥∥ 1
T

T∑
t=1

(et−E [et | Ft−1])
∥∥∥∥∥

2
+ ε

2 .

On the other hand, since martingale difference sequences are pairwise uncorrelated,

E
∣∣∣∣∣ 1T

T∑
t=1

(et−E [et | Ft−1])
∣∣∣∣∣
2

= 1
T 2

T∑
t=1

E|et−E [et | Ft−1]|2

≤ 1
T 2

T∑
t=1

E
[
(|et|+ |E [et | Ft−1]|)2

]

≤ 1
T 2

T∑
t=1

(‖et‖2 +‖E [et | Ft−1]‖2)2

(Minkowski’s inequality)

≤ 4
T 2

T∑
t=1

E|et|2.

(Conditional version of Jensen’s inequality)

By definition,

E|et|2 = E
[
|Yt|2 · I{|Yt|p≤B}

]
≤B

2
pP(|Yt|p ≤B)≤B

2
p ,

so we have ∥∥∥∥∥ 1
T

T∑
t=1

Yt

∥∥∥∥∥
p

≤ 2B
1
p

√
T

+ ε

2 .

Choose N ∈ N+ so that 2B
1
p√
T
< ε

2 for any T ≥ N ; this N depends on B and ε, and
because our choice of B depends only on ε, so does N . We can now see that, for any
T ≥N , ∥∥∥∥∥ 1

T

T∑
t=1

Yt

∥∥∥∥∥
p

< ε.

This holds for any ε > 0, so by definition

lim
T→∞

∥∥∥∥∥ 1
T

T∑
t=1

Yt

∥∥∥∥∥
p

= 0.
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Q.E.D.

We now state and prove a CLT for (possibly multivariate) martingale difference sequences:

Theorem (CLT for Martingale Difference Sequences)
Let {Yt}t∈Z be an n-dimensional martingale difference sequence with respect to the filtration
F = {Ft}t∈Z. Suppose {Yt}t∈Z satisfies the following properties:

i) {|Yt| | t ∈ Z} is Lp-bounded for some p > 2.

ii) There exists a positive definite matrix Q ∈ Rn×n such that

1
T

T∑
t=1

YtY
′
t
p→Q.

Then, as T →∞,

1√
T

T∑
t=1

Yt
p→N [0,Q] .

Proof) We make use of the Cramer-Wold device to show this result. Choose any non-zero
α ∈ Rn, and define Zt = α′Yt for any t ∈ Z. As stated earlier, {Zt}t∈Z is a univariate
MDS with respect to F satisfying

σ2
T = 1

T

T∑
t=1

Z2
t = α′

(
1
T

T∑
t=1

YtY
′
t

)
α

p→ α′Qα= σ2.

Here, σ2 > 0 becausae Q is positive definite and α is non-zero. Furthermore, {Zt}t∈Z is
Lp-bounded, since

E|Zt|p ≤ |α|p ·E|Yt|p

for any t ∈ Z by the Cauchy-Schwarz inequality.

Defining

ZT,t = Zt

σ
√
T

and FT,t = Ft

for any T ∈ N+ and 1 ≤ t ≤ T = k(T ), we obtain the martingale difference array
{ZT,t}T∈N+,1≤t≤k(T ) with respect to the filtration array {FT,t | T ∈N+,1 ≤ t ≤ k(T )}.
This martingale difference array is clearly square integrable, due to the Lp-boundedness
of {Zt}t∈Z and the fact that p > 2. We now verify the conditions of the CLT for mar-
tingale difference arrays:
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– Convergence of Sum of Variances
For any T ∈N+, define

VT =
T∑
t=1

E
[
Z2
T,t | FT,t−1

]
= 1
σ2 ·T

T∑
t=1

E
[
Z2
t | Ft−1

]
.

We saw earlier that

σ2
T = 1

T

T∑
t=1

Z2
t

p→ σ2.

If we can show that σ2
T
σ2 −VT

p→ 0, then we will obtain the desired result VT
p→ 1.

To this end, define

xt = Z2
t −E

[
Z2
t | Ft−1

]
for any t ∈ Z. {xt}t∈Z defines a martingale difference sequence with respect to the
filtration F , since each xt is clearly Ft-measurable, integrable with mean 0, and

E [xt | Ft−1] = E
[
Z2
t | Ft−1

]
−E

[
Z2
t | Ft−1

]
= 0.

We noted above that {Zt}t∈Z was Lp-bounded; because p > 2, we can see that

E|Zt|p = E
∣∣∣Z2
t

∣∣∣ p2
for any t ∈ Z, which tells us that {Z2

t }t∈Z is L
p
2 -bounded, where p

2 > 1. By impli-
cation, it is uniformly integrable, which implies that {xt}t∈Z is also a uniformly
integrable martingale difference sequence. By the martingale WLLN proved ear-
lier,

1
T

T∑
t=1

xt
L1
→ 0,

from which it can be inferred that

σ2
T −σ2VT = 1

T

T∑
t=1

(
Zt−E

[
Z2
t | Ft−1

])
= 1
T

T∑
t=1

xt
p→ 0.

Therefore,

VT
p→ 1.

– The Lindeberg Condition
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We can also show that {ZT,t}T∈N+,1≤t≤k(T ) satisfies the Lindeberg condition. By
the Lp-boundedness of {Zt}t∈Z, there exists an M <+∞ such that

E|Zt|p <M

for any t ∈ Z, which implies that

k(T )∑
t=1

E|ZT,t|p = 1
σpT

p
2

k(T )∑
t=1

E|Zt|p ≤ σ−pT 1− p2 .

Since p
2 > 1, taking T →∞ on both sides yields

lim
T→∞

k(T )∑
t=1

E|ZT,t|p = 0,

which is actually equivalent to Lyapunov’s condition.

It now remains to show that Lyapunov’s condition implies Lindeberg’s. For any
ε > 0, if |ZT,t|> ε, then

|ZT,t|p = |ZT,t|2 · |ZT,t|p−2 > |ZT,t|2 · εp−2,

since p−2> 0; this means that

εp−2 · |ZT,t|2 · I{|ZT,t|>ε} ≤ |ZT,t|
p · I{|ZT,t|>ε} ≤ |ZT,t|

p.

Therefore,

k(T )∑
t=1

E
[
|ZT,t|2 · I{|ZT,t|>ε}

]
≤ ε2−p ·

k(T )∑
t=1

E|ZT,t|p,

so taking T →∞ on both sides yields

lim
T→∞

k(T )∑
t=1

E
[
|ZT,t|2 · I{|ZT,t|>ε}

]
= 0.

We have thus seen that the two conditions in the CLT for martingale difference arrays
are satisfied. As per that theorem, then, we can conclude that

1
σ
√
T

T∑
t=1

Zt =
k(T )∑
t=1

ZT,t
d→N(0,1).
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By Slutsky’s theorem, this then implies that

1√
T

T∑
t=1

Zt
d→N(0,σ2),

or equivalently, for some n-dimensional normally distributed random vector Z with
variance Q,

α′
(

1√
T

T∑
t=1

Yt

)
= 1√

T

T∑
t=1

Zt
d→ α′Z.

Thish holds for any non-zero α ∈ Rn, so by the Cramer-Wold device,

1√
T

T∑
t=1

Yt
d→ Z ∼N [0,Q] .

Q.E.D.
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1.2 Asymptotic Theory for Stationary Processes

The previous section derived asymptotic results for martingale difference sequences, which are
fundamentally dependent but uncorrelated sequences. In time series analysis, we must also often
deal with processes that are correlated, so we present here some asymptotic results for stationary
processes that are possibly serially correlated.

1.2.1 Stationary Processes

An n-dimensional process {Yt}t∈Z is said to be a strictly stationary process if, for any t ∈ Z and
0≤ τ1 < · · ·< τk, the distribution of

(Yt+τ1 , · · · ,Yt+τk)

does not depend on t. This implies that any strictly stationary process {Yt}t∈Z is identically dis-
tributed, since we can take τ1 = 0 and see that the distribution of Yt = Yt+τ1 is the same across
all t. Compared to an i.i.d. process, we are strengthening the identical distribution condition to
compensate for relaxing the independence condition.

There is a weaker form of stationarity that is frequently observed. Let {Yt}t∈Z be an n-
dimensional process. We say that it is weakly stationary if:

• Mean Stationarity
{Yt}t∈Z is an L1 process, and there exists a µ ∈ Rn such that E [Yt] = µ for any t ∈ Z

• Covariance Stationarity
{Yt}t∈Z is an L2 process, and there exists a function Γ : Z→ Rn×n such that, for any
t,τ ∈ Z, we have

Cov[Yt,Yt−τ ] = E
[
(Yt−E [Yt]) (Yt−τ −E [Yt−τ ])′

]
= Γ(τ).

The function Γ is called the autocovariance function of {Yt}t∈Z, and each Γ(τ) the autoco-
variances of the process. Note that, for any τ ∈ Z,

Γ(τ) = E
[
(Yt−µ)(Yt−τ −µ)′

]
=
(
E
[
(Yt−τ −µ)(Yt−µ)′

])′ = Γ(−τ)′,

that is, Γ(−τ) = Γ(τ)′. We usually assume that the variance, Γ(0), of {Yt}t∈Z is positive definite.
A weakly stationary process that we often encounter are white noise processes, which are

essentially pairwise uncorrelated processes with mean zero. An n-dimensional process {εt}t∈Z is
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said to be an n-dimensional white noise process if it has mean 0 and

E
[
εtε
′
t−τ
]

=

Σ if τ = 0

O otherwise

for any t,τ ∈ Z and some Σ ∈ Rn×n. It is trivially weakly stationary.

1.2.2 m-dependent Processes

Given a dependent process {Yt}t∈Z, we want to find conditions under which it satisfies a form of
the CLT. One such condition is stationarity; even though it is not independent, {Yt}t∈Z should
retain some form of the identical distribution property. A second is limited dependence, that is,
the degree to which any two entries in {Yt}t∈Z are dependent must fall to 0 as the number of
observatitons between the entries increases. We will investigate one form of limited dependence,
m-dependence, in this section.

An n-dimensional process {Yt}t∈Z is said to be m-dependent for some m ∈ N+ if, for any
t ∈ Z, the collections {Ys | s≤ t} and {Ys | s > t+m} are independent. In other words, if {Yt}t∈Z
is an m-dependent process, then any set of variables in {Yt}t∈Z that are more than m periods
apart are independent.

In most applications, we wish to relax the assumption that observations more than m periods
apart are independent, and just assume uncorrelatedness. One way to do this is through the
concept of weak m-dependence, which is a generalization of martingale difference sequences. An
n-dimensional process {Yt}t∈Z is said to be weakly m-dependent if

• {Yt}t∈Z is integrable with mean zero

• Letting F be the filtration generated by {Yt}t∈Z,

E [Yt | Ft−m] = 0

for any t ∈ Z.

This is a weaker form of m-dependence because any two observations of a weakly m-
dependent process that are at least m periods apart are uncorrelated; to see this, note that,
for any k ≥m,

E
[
YtY

′
t−k
]

= E
[
E [Yt | Ft−m] ·Y ′t−k

]
= 0,

where the first equality follows because Yt−k is Ft−m-measurable. Note that any m-dependent
process {Yt}t∈Z is also weakly m-dependent.
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We say that the n-dimensional process {Yt}t∈Z is second-order weakly m-dependent if

• {Yt}t∈Z is square integrable

• For any τ ∈N+, the elements of {YtYt−τ −E
[
YtY

′
t−τ
]
}t∈Z that are more than m+τ -periods

apart are uncorrelated.

Again, m-dependence implies second order weak m-dependence. To see this, let {Yt}t∈Z be
a square integrable and m-dependent process. Then the elements of the sequence {YtY ′t−τ −
E
[
YtY

′
t−τ
]
}t∈Z are m+τ -dependent for any τ ∈N; this is because, for any t ∈ Z, the elements of

Yt,Yt−τ are independent of those of Yt+k,Yt+k by m-dependence for any k ≥m+ τ .
We refer to weak m-dependence as first order weak m-dependence, to differentiate it from

second-order m-dependence.

1.2.3 CLT for Stationary and m-dependent Processes

The main goal in this section is to show that any weakly stationary process {Yt}t∈Z that is
weakly m-dependent in both the first and second orders satisfies a version of the CLT. Note
that this includes, as a special case, the CLT for weakly stationary and m-dependent processes.

We first require a lemma before continuing. The setting is given as follows: we have a double
sequence {YTk}T,k∈N+ such that {YTk}T∈N+ converges weakly to some Yk for any k ∈N+. We
also know that {Yk}k∈N+ converges weakly to some Y . Graphically, we have

Y11 Y12 Y13 · · ·
Y21 Y22 Y23 · · ·
Y31 Y32 Y33 · · ·

...
...

... . . .
↓ ↓ ↓ · · ·
Y1 Y2 Y3 → Y

Intuitively, a diagonal argument of sorts would seem to suggest that {Ykk}k∈N+ converges weakly
to Y . The lemma confirms this intuition by stating that, if there exists a process {XT }T∈N+

that is diagonal to {YTk}T∈N+ at the limit, then {XT }T∈N+ should converge weakly to Y . The
specific definition of ”diagonal at the limit” is given as

lim
k→∞

(
limsup
T→∞

P(|XT −YTk|> ε)
)

= 0

for any ε > 0. Heuristically, this tells us that XT −YTk
p→ 0 when the limits on T and k are taken

sequentially, so that, for large T , XT represents an element of the sequence {YTk}k∈N+ .
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The formal statement and proof are given below:

Lemma (Diagonal Argument for Weak Convergence)
Let {YTk}T,k∈N+ be a sequence of n-dimensional random vectors such that:

i) For any k ∈N+, there exists a random vector Yk such that YTk
d→ Yk as T →∞.

ii) There exists a random vector Y such that Yk
d→ Y as k→∞.

iii) There exists a process {XT }T∈N+ of n-dimensional random vectors such that, for any ε > 0,

lim
k→∞

(
limsup
T→∞

P(|XT −YTk|> ε)
)

= 0.

Then, XT
d→ Y as T →∞.

Proof) By the continuity theorem, we can reduce weak convergence to the pointwise con-
vergence of the corresponding characteristic functions. For any n-dimensional random
vector X, we denote by ϕX : Rn→C the characteristic function of X. The assumptions
above then tell us that, for any r ∈ Rn,

lim
T→∞

ϕYTk(r) = ϕYk(r) for any k ∈N+

lim
k→∞

εYk(r) = εY (r).

Note that, for any r ∈ Rn,

|ϕXT (r)−ϕY (r)| ≤ |ϕXT (r)−ϕYTk(r)|+ |ϕYTk(r)−ϕYk(r)|+ |ϕYk(r)−ϕY (r)|.

Thus, if we can show that

lim
k→∞

(
limsup
T→∞

|ϕXT (r)−ϕYTk(r)|
)

= 0,

then taking T →∞ and k→∞ successively to the above inequality implies that

limsup
T→∞

|ϕXT (r)−ϕY (r)|= 0,

which would imply that ϕXT (r)→ ϕY (r) and thus complete the proof.

We now use the third assumption above to show that limk→∞ (limsupT→∞ |ϕXT (r)−ϕYTk(r)|) =
0. By definition, for any r ∈ Rn and T,k ∈N+,

|ϕXT (r)−ϕYTk(r)|=
∣∣E[exp

(
i · r′XT

)]
−E

[
exp

(
i · r′YTk

)]∣∣
≤ E

∣∣exp
(
i · r′XT

)
− exp

(
i · r′YTk

)∣∣.
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Choose any ε > 0. By the uniform continuity of the mapping x 7→ exp(i · r′x) on Rn,
there exists a δ > 0 such that

∣∣exp
(
i · r′x

)
− exp

(
i · r′y

)∣∣< ε

for any x,y ∈ Rn such that |x−y| ≤ δ. Therefore,

∣∣exp
(
i · r′XT

)
− exp

(
i · r′YTk

)∣∣= ∣∣exp
(
i · r′XT

)
− exp

(
i · r′YTk

)∣∣ · I{|XT−YTk|>δ}
+
∣∣exp

(
i · r′XT

)
− exp

(
i · r′YTk

)∣∣ · I{|XT−YTk|≤δ}
≤
∣∣exp

(
i · r′XT

)
− exp

(
i · r′YTk

)∣∣ · I{|XT−YTk|>δ}+ ε · I{|XT−YTk|≤δ}

≤ 2 · I{|XT−YTk|>δ}+ ε · I{|XT−YTk|≤δ},

which implies that

E
∣∣exp

(
i · r′XT

)
− exp

(
i · r′YTk

)∣∣≤ 2 ·P(|XT −YTk|> δ) + ε ·P(|XT −YTk| ≤ δ)

≤ 2 ·P(|XT −YTk|> δ) + ε.

Due to the assumption that

lim
k→∞

(
limsup
T→∞

P(|XT −YTk|> δ)
)

= 0,

taking T →∞ and k→∞ successively yields

limsup
k→∞

(
limsup
T→∞

|ϕXT (r)−ϕYTk(r)|
)
≤ ε.

This holds for any ε > 0, so we have

lim
k→∞

(
limsup
T→∞

|ϕXT (r)−ϕYTk(r)|
)

= 0,

which completes the proof.

Q.E.D.

We can now present the CLT for stationary m-dependent processes. The basic idea of the
proof is simple. Given a stationary m-dependent process {Yt}t∈Z, we can divide the partial sum∑T
t=1Yt into two blocks. The first block is the sum of the collections of k >m consecutive elements

of {Yt}t∈Z separated by m observations, while the second collects the sum of the observations
that separate the entries in the first block. Since the entries of the first blocks are independent,
we can apply the CLT for iid processes to show that it converges to a normal distribution, while
the entries in the second block comprise m observations each and are also independent (k >m),
so that we can show that it converges to 0 using Chebyshev’s inequality.
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The formal statement and proof are given below:

Theorem (CLT for Stationary m-dependent Processes)
Let {Yt}t∈Z be a mean zero L4-bounded n-dimensional process that is weakly stationary and
weakly m-dependent in both the first and second orders. Let {Yt}t∈Z have the autocovariance
function Γ : Z→ Rn×n, and assume that the sum of the autocovariances is positive definite.
Then,

√
T · ȲT := 1√

T

T∑
t=1

Yt
d→N

0,
m∑

j=−m
Γ(j)

 .

Proof) Define V =∑m
j=−mΓ(j). For any k ∈N+ such that k >m, define the process {Ak,i}i∈Z

and {Bk,i}i∈Z as

Ak,i = Y(i−1)(k+m)+1 + · · ·+Yik+(i−1)m

Bk,i = Yik+(i−1)m+1 + · · ·+Yi(k+m).

for any i ∈ Z. Note that the entries comprising {Ak,i}i∈N+ are separated by m obser-
vations, which are collected in {Bk,i}i∈N+ .

We will decompose the partial sum of the Yt into two blocks, the first one being the
partial sum of the Ak,i and the second of Bk,i. Afterward, we show that the first block
converges in distribution while the second one converges in probability to 0. We now
proceed in steps:

Step 1: Asymptotic Results for the First Block
Let G be the filtration generated by {Yt}t∈Z and F that generated by {Ak,i}i∈Z. By
first order weak m-dependence, we have

E [Yt | Ft−m] = 0

for any t∈Z. We now show that {Ak,i}i∈Z is an MDS with respect to G. The integrability
of {Ak,i}i∈Z follows from that of {Yt}t∈Z, and it is G-adapted by definition. Furthermore,
it has mean 0 for any i ∈ Z since each Yt has mean zero. Finally, for any i ∈ Z, since
Gi ⊂Fi(k+m)j−m for any j ∈ N, we can see that

E [Ak,i+1 | Gi] =
m∑
j=1

E
[
Yi(k+m)+j | Gi

]

=
m∑
j=1

E
[
E
[
Yi(k+m)+j | Fi(k+m)+j−m

]
| Gi
]

= 0.

Thus, by definition, {Ak,i}i∈Z is an MDS with respect to G.
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The assumption that {Yt}t∈Z has bounded fourth moments implies that {Ak,i}i∈Z does
as well. In addition, since {Yt}t∈Z is second-order weak m-dependent, for any τ ∈ N
elements of the sequence {YtY ′t−τ −Γ(τ)}t∈Z that are more than m+ τ periods apart
are uncorrelated. Thus, for any 1≤ j≤ k and τ ∈N chosen so that j−τ ≥ 0, the sequence
{Y(i−1)(k+m)+jY(i−1)(k+m)+j−τ −Γ(τ)}i∈Z is pairwise uncorrelated; each adjacent pair
of entries in the sequence are k+m periods apart, where k+m≥m+ τ .

Since {Y(i−1)(k+m)+jY(i−1)(k+m)+j−τ −Γ(τ)}i∈Z also has bounded second moments due
to the boundedness of the fourth moments of {Yt}t∈Z, by the WLLN for uncorrelated
sequences with finite second moments, we have

1
r

r∑
i=1

Y(i−1)(k+m)+jY
′

(i−1)(k+m)+j−τ
p→ Γ(τ)

as r→∞.

From the additivity of convergence in probability, it now follows that

1
r

r∑
i=1

Ak,iA
′
k,i

=
k∑
j=0

1
r

r∑
i=1

Y(i−1)(k+m)+jY
′

(i−1)(k+m)+j

+
k∑
j=1

[
1
r

r∑
i=1

Y(i−1)(k+m)+jY
′

(i−1)(k+m)+j−1 + 1
r

r∑
i=1

Y(i−1)(k+m)+j−1Y
′

(i−1)(k+m)+j

]

+ · · ·+
[

1
r

r∑
i=1

Y(i−1)(k+m)+kY
′

(i−1)(k+m)+1 + 1
r

r∑
i=1

Y(i−1)(k+m)+1Y
′

(i−1)(k+m)+k

]

p→ kΓ(0) +
m∑

j=−m
(k−|j|)Γ(j),

where we used the fact that Γ(τ) =O for any τ >m. Here, the right hand side is a posi-
tive semidefinite matrix because it equals the positive semidefinite matrix E

[
Ak,iA

′
k,i

]
.

Defining Vk ∈ Rn×n as

Vk = k

k+m
Γ(0) +

m∑
j=1

k−|j|
k+m

(
Γ(j) + Γ(j)′

)
,

Since Vk → V as k→∞, Vk is a positive definite function, and the determinant is a
continuous function on the space of n×n matrices, for large enough k the determinant
of Vk is positive. This indicates, by the positive semidefiniteness of Vk, that Vk is pos-
itive definite, and by extension that the probability limit of 1

r

∑r
i=1Ak,iA

′
k,i is positive

definite.

So far, for large enough k >m, we have shown that {Ak,i}i∈Z is an MDS with respect
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to G that:

– Has bounded fouth moments

– Satsifies

1
r

r∑
i=1

Ak,iA
′
k,i

p→ kΓ(0) +
m∑

j=−m
(k−|j|)Γ(j)

where kΓ(0) +∑m
j=−m(k−|j|)Γ(j) is a positive definite n×n matrix.

Therefore, by the MDS CLT, we have

1√
r

r∑
i=1

Ak,i
d→Xk,

as r→∞, where

Xk ∼N

0, kΓ(0) +
m∑

j=−m
(k−|j|)Γ(j)

 .

Step 2: Partitioning the Partial Sum of Yt
Now choose any T ∈N+ such that T ≥ k+m. Denoting r = b T

k+mc ∈N+, define XTk

and ZTk as

XTk = 1√
T

r∑
i=1

Ak,i

ZTk = 1√
T

r∑
i=1

Bk,i

CTk = 1√
T

(
Yr(k+m)+1 + · · ·+YT

)
.

Since r ≤ T
k+m < r+ 1, we have r(k+m) ≤ T and T < r(k+m) + (k+m), so that

T − r(k+m)< k+m. This indicates that CTk comprises at most k+m−1 entries.

By construction,

√
T · ȲT = 1√

T

T∑
t=1

Yt =XTk +ZTk +CTk.

r→∞ as T →∞, so as T →∞,

1√
T

r∑
i=1

Ak,i =
√
r√
T

(
1√
r

r∑
i=1

Ak,i

)
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d→ 1√
k+m

Xk ∼N [0,Vk] .

We already showed above that Vk→ V as k→∞. Defining X as a random vector such
that X ∼ N [0,V ], the characteristic function of 1√

k+mXk converges to that of X as

k→∞, which implies, by the continuity theorem, that 1√
k+mXk

d→X as k→∞.

Step 3: Convergence of the Second Block
We have so far shown that

XTk
d→ 1√

k+m
Xk as T →∞

1√
k+m

Xk
d→X as k→∞.

It remains to show that

lim
k→∞

(
limsup
T→∞

P
(∣∣∣√T · ȲT −XTk

∣∣∣> ε
))

= 0

for any ε > 0 to be able to apply the previous lemma and conclude that
√
T · ȲT

d→X.

To this end, note that

√
T · ȲT −XTk = ZTk +CTk.

ZTk is the sum of mean zero random vectors, so it also has mean zero. Furthermore, the
entries in the process {Bk,i}i∈Z are separated by k > m observations, so by the weak
m-dependence of {Yt}t∈Z, {Bk,i}i∈Z is pairwise uncorrelated. This implies that

E|ZTk|2 = E
∣∣∣∣∣ 1√
T

r∑
i=1

Bk,i

∣∣∣∣∣
2

= 1
T

r∑
i=1

tr(Var[Bk,i]) .

The variance of each Bk,i is identical due to weak stationarity, and equal to

Var[Bk,i] =mΓ(0) +
m−1∑
j=1

(m−|j|)
[
Γ(j) + Γ(j)′

]
.

It follows that, for any ε > 0,

P
(
|ZTk|>

ε

2

)
≤ 4
ε2
E|ZTk|2
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= r

T
tr

mΓ(0) +
m−1∑
j=1

(m−|j|)
[
Γ(j) + Γ(j)′

] ,
so taking T →∞ on both sides yields

limsup
T→∞

P
(
|ZTk|>

ε

2

)
≤ 4
ε2
· 1
k+m

tr

mΓ(0) +
m−1∑
j=1

(m−|j|)
[
Γ(j) + Γ(j)′

] .
By a similar line of reasoning, since there are never more than k+m entries comprising
CTk, taking T →∞ on both sides of

E|CTk|2 = 1
T

tr
(
Var

[
Yr(k+m)+1 + · · ·+YT

])
,

yields CTk
p→ 0. Putting the results together, we have

limsup
T→∞

P
(∣∣∣√T · ȲT −XTk

∣∣∣> ε
)
≤ limsup

T→∞
P
(
|ZTk|>

ε

2

)
+ limsup

T→∞
P
(
|CTk|>

ε

2

)

≤ 4
ε2
· 1
k+m

tr

mΓ(0) +
m−1∑
j=1

(m−|j|)
[
Γ(j) + Γ(j)′

] .
Therefore, taking k→∞ on both sides gives us the result

lim
k→∞

(
limsup
T→∞

P
(∣∣∣√T · ȲT −XTk

∣∣∣> ε
))

= 0.

This holds for any ε > 0, so by the previous lemma,

√
T · ȲT

d→X ∼N [0,V ] .

Q.E.D.

32



1.2.4 Application: GMM Estimation under Serially Correlated Errors

The CLT for m-dependent processes derived above is quite useful when studying GMM esti-
mation under limited serial correlation. The exposition in this section is based on Cumby et al
(1983).

The General Model

We consider the following general model. Let {Yt}t∈Z be an n-dimensional process and Θ a
convex and open subset of Rk. For L≥ k, let g : Rn×Θ→ RL be a function such that, for any
x ∈ Rn, g(x, ·) is differentiable. Letting θ0 denote the true parameter value, suppose that the
moment condition

E [g(Yt,θ0)] = 0

holds for any t ∈ Z. Then, the GMM estimator of θ is found as the minimizer of the objective
function

QT (θ) =
(

T∑
t=1

g(Yt,θ)
)′
WT

(
T∑
t=1

g(Yt,θ)
)
,

where {WT }T∈N+ is a sequence of L×L random matrices that converge in probability to some
positive definite W ∈ RL×L.

Suppose θ̂T is the GMM estimator of θ. Then, the first order condition for minimization tells
us that

1
2
∂QT (θ̂T )

∂θ
=
(

T∑
t=1

∂g(Yt, θ̂T )
∂θ′

)′
WT

(
T∑
t=1

g(Yt, θ̂T )
)

= 0.

The asymptotic distribution of the GMM estimator (assuming that it exists in Θ) is derived
on the basis of the following assumptions:

1) Population Moment Condition
There exists a continuous function g :Rn×Θ→RL, continuously differentiable with respect
to its second argument, such that, for any t ∈ Z,

E [g(Yt,θ0)] = 0.

2) Weighting Matrix
There exists a sequence {WT }T∈N+ of positive definite L×L matrices that converges in
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probability to the positive definite L×L matrix W .

3) Consistency of GMM Estimator
Assume that the GMM estimator is consistent for θ0, that is, θ̂T

p→ θ0.

4) Consistency of First Derivative
There exists a full rank matrix G ∈RL×k such that, for any consistent estimator θ̃T of θ0,

1
T

T∑
t=1

∂g(Yt, θ̃T )
∂θ′

p→G.

5) CLT for Sample Moment Condition
The process {g(Yt,θ0)}t∈Z satisfies the CLT

1√
T

T∑
t=1

g(Yt,θ0) d→N [0,V ]

for some positive definite L×L matrix V .

Under these assumptions, we know that the GMM estimator has the following asymptotic
distribution:

√
T (θ̂T −θ0) d→N

[
0,(G′WG)−1G′WVWG(G′WG)−1

]
,

where V = ∑m
j=−mΓ(j). This result utilizes the stochastic mean value theorem; for details,

consult the document on that topic.
We also showed that the optimal weighting matrix is W ∗= V −1, in which case the asymptotic

variance becomes

plim
[√
T (θ̂T −θ0)

]
= (G′V −1G)−1.
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2SLS Estimation

The preceding result can be applied to an instrumental variables regression framework as follows.
Let {yt}t∈Z and {Xt}t∈Z be a univariate and k-dimensional process, respectively, such that

yt =X ′tβ0 +ut

for any t∈Z and some β0 ∈Rk, where the error process {ut}t∈Z is a mean zero weakly stationary
m-dependent process with bounded fourth moments and autocovariance function γ : Z→R. We
let Θ =Rk be the open and convex parameter space. Suppose that, whileXt and ut are correlated,
we instead have the moment conditions

E [Ztut] = 0

for some L-dimensional process {Zt}t∈Z where L≥ k.
To derive the 2SLS estimator of β̂T , we cast this regression model into a GMM framework.

Define the n= 1 +k+L -dimensional process {Yt}t∈Z as

Yt = (yt,X ′t,Z ′t)′

for any t ∈ Z, and the function g : Rn×Θ→ RL as

g((y,x,z),β) = z(y−x′β)

for any (y,x,z) ∈ Rn and β ∈Θ. g is a continuous function on Rn×Θ with derivative

∂g((y,x,z),β)
∂β′

=−zx′

with respect to β. Note that each entry in ∂g
∂β′ is continuous on Rn×Θ, so that g is continuously

differentiable with respect to β. The moment conditions can now be written as

E [g(Yt,β0)] = 0.

Given a sequence {WT }T∈N+ of L×L matrices that converges to some postive definite weight
matrix W , the GMM objective function is defined as

QT (β) =
(

T∑
t=1

g(Yt,β)
)′
WT

(
T∑
t=1

g(Yt,β)
)

=
(

T∑
t=1

Zt(yt−X ′tβ)
)′
WT

(
T∑
t=1

Zt(yt−X ′tβ)
)
.
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Letting β̂T be the GMM estimator of β, the first order condition for minimization tells us that

1
2
∂QT (β̂T )

∂β
=
(

T∑
t=1

XtZ
′
t

)
WT

(
T∑
t=1

Zt(yt−X ′tβ̂T )
)

= 0,

or that

β̂T =
[(

T∑
t=1

XtZ
′
t

)
WT

(
T∑
t=1

ZtX
′
t

)]−1( T∑
t=1

XtZ
′
t

)
WT

(
T∑
t=1

Ztyt

)

= β0 +
[(

T∑
t=1

XtZ
′
t

)
WT

(
T∑
t=1

ZtX
′
t

)]−1( T∑
t=1

XtZ
′
t

)
WT

(
T∑
t=1

Ztut

)
.

To derive the asymptotic properties of β̂T , we make the following assumptions:

1) Backward-Looking Exogeneity
We strengthen the identification condition by assuming that ut is independent of the cur-
rent and past values of the instrument, that is, of Zt,Zt−1, · · · .

2) Relevance Condition
There exists a full rank matrix Qzx ∈ RL×k such that

1
T

T∑
t=1

ZtX
′
t
p→Qzx.

Similarly, there exists a positive definite matrix Qzz ∈ RL×L such that

1
T

T∑
t=1

ZtZ
′
t
p→Qzz.

3) Stationarity and Limited Dependence of Errors
The process {Ztut}t∈Z is a weakly stationary L4-bounded and m-dependent process with
autocovariance function Γ : Z→ RL×L.

The first two conditions are standard for GMM models. The third assumption is unique to
a model with serially correlated errors. We take a brief moment to justify its inclusion.

Initially, the assumption that {Ztut}t∈Z is stationary is standard in the literature. Andrews
(1991) points out that, if it is non-stationary, then the standard asymptotic results do not hold
and we must make use of the asymptotic theory of unit root processes, which is detailed in
a later section. Even heuristically, both the error process {ut}t∈Z and the instrument process
{Zt}t∈Z are likely to be stationary if yt is stationary and we use lagged values of stationary time
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series as our instruments. It follows naturally that their product, {Ztut}t∈Z, should reasonably
be stationary as well.

The more troublesome assumption is that of m-dependence. Realistically, a weaker form of
limited dependence could be used, such as the strong mixing or mixingale assumption to be
introduced below. However, m-dependence can be justified in a number of situations that arise
naturally in economics; here we present a few.

• Non-Serially Correlated Errors
Suppose initially that the errors are not serially correlated. In this case, assumption 3) can
be relaxed, since we can show that {Ztut}t∈Z is a MDS when the error process is iid and
the instruments have bounded fourth moments (this is similar to the line of reasoning we
use to study VAR models; consult the section on Vector autoregressions for details). Since
martingale difference sequences are pairwise uncorrelated, we can slightly strengthen this
result and assume that {Ztut}t∈Z is independent, then we are essentially assuming that
{Ztut}t∈Z is 0-dependent.

• m-dependent Errors
Suppose now that the errors are serially correlated but exhibit limited dependence, namely
m-dependence. This situation arises frequently in the literature, for instance, when model-
ing rational expectations models (as in Cumby et al. (1983)), or more generally when the
error process follows a finite order MA process.

To see how the m-dependence of the errors can be extended to the m-dependence of
{Ztut}t∈Z, we show that {Ztut}t∈Z is in fact weakly m-dependent when the errors are
m-dependent.

Note initially that {Ztut}t∈Z is a mean zero process by the identification assumption.
Define the filtration F = {Ft | t ∈ Z} as

Ft = σ{Zt+m, · · · ,ut, · · ·}

for any t ∈ Z. Then, {Ztut}t∈Z is an F-adapted process with mean zero such that

E [Ztut | Ft−m] = Zt ·E [ut | Ft−m] = 0

where the first equality follows because Zt is Ft-measurable, and the second equality be-
cause ut is independent of Ft−m due to the backward looking exogeneity and m-dependence
assumptions. The filtration generated by {Ztut}t∈Z is contained in F due to the F-
adaptedness of {Ztut}t∈Z, so by definition it is weakly m-dependent in the first order.

Thus, it is not too much of a stretch, in this case, to assume the stronger condition that
{Ztut}t∈Z is m-dependent.

In any case, the assumption that {Ztut}t∈Z is a stationary m-dependent process is not too

37



unreasonable when modeling serially correlated errors. In light of the content in the previous
section, assumption 3 implies that

1√
T

T∑
t=1

Ztut
d→N

0,
m∑

j=−m
Γ(j)

 .

Now we show that, under the above assumptions, the GMM estimator of β is consistent and
asymptotically normal.

We already saw that the first assumption in the general model is satisfied. In addition, since

1
T

T∑
t=1

∂g(Yt,β)
∂β′

= 1
T

T∑
t=1

ZtX
′
t

for any β ∈Θ, for any sequence {β̃T }T∈N+ such thatβ̃T
p→ β0, we have

1
T

T∑
t=1

∂g(Yt, β̃T )
∂β′

= 1
T

T∑
t=1

ZtX
′
t
p→Qzx

as T →∞. This shows us that the fourth assumption in the general model is satisfied.

We also showed above that

1√
T

T∑
t=1

g(Yt,β0) = 1√
T

T∑
t=1

Zt(yt−X ′tβ0) = 1√
T

T∑
t=1

Ztut

d→N

0,
m∑

j=−m
Γ(j)

 .
Thus, the final assumption in the general model is also satisfied. This actually implies that

1
T

T∑
t=1

Ztut
p→ 0,

which in turn tells us that

β̂T −β0 =
[(

1
T

T∑
t=1

XtZ
′
t

)
WT

(
1
T

T∑
t=1

ZtX
′
t

)]−1(
1
T

T∑
t=1

XtZ
′
t

)
WT

(
1
T

T∑
t=1

Ztut

)
p→
(
Q′zxWQzx

)−1
Q′zxW0 = 0.

The GMM estimator of β is consistent, so that the third assumption in the general model is also
satisfied.

Since all 5 assumptions in the general model are satisfied, we can see that, as per the
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conclusion of the general model,

√
T
(
β̂T −β0

)
d→N

0,
(
Q′zxWQzx

)−1
Q′zxW

 m∑
j=−m

Γ(j)

WQzx
(
Q′zxWQzx

)−1

 .
The optimal weighting matrix is now seen to be

W =

 m∑
j=−m

Γ(j)

−1

,

under which the asymptotic distribution of the 2SLS estimator becomes

√
T
(
β̂T −β0

)
d→N

0,

Q′zx
 m∑
j=−m

Γ(j)

−1

Qzx


−1 .

To obtain the asymptotic variance and, indeed, to compute β̂T , we require a consistent estimator
WT of

(∑m
j=−mΓ(j)

)−1
. This can be achieved by defining W−1

T as a consistent estimator of the
long run variance ∑m

j=−mΓ(j) using the HAC method laid out in Andrews (1991).
However, we run into another problem at this point. The construction of W−1

T requires the
2SLS residuals, which themselves depend on WT . To resolve this issue, β̂T and WT can be com-
puted iteratively according to the following algorithm:

Step 0: Loading initial value
Put

WT = IL or 1
T

T∑
t=1

ZtZ
′
t.

This becomes our weighting matrix for the 0th iteration.

Step 1: Computing 2SLS Estimator
For any i ∈N+, given the weighting matrix W (i−1)

T at the i−1th iteration, we compute
the ith 2SLS estimator

β̂
(i)
T =

[(
T∑
t=1

XtZ
′
t

)
W

(i−1)
T

(
T∑
t=1

ZtX
′
t

)]−1( T∑
t=1

XtZ
′
t

)
W

(i−1)
T

(
T∑
t=1

Ztyt

)

and procure the ith residual process

û
(i)
t = yt−X ′tβ̂

(i)
T

Step 2: Computing Weighting Matrix
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Compute the ith weighting matrix as the consistent estimator of ∑m
j=−mΓ(j) given the

residuals obtained above; one possible candidate is

(W (i)
T )−1 = Γ̂(0) +

ST∑
j=1

k

(
j

ST

)(
Γ̂(j) + Γ̂(j)′

)

where k(·) is an appropriate chosen kernel, ST is the truncation lag window and

Γ̂(j) = 1
T

T∑
t=j+1

Ztû
(i)
t û

(i)
t−jZ

′
t−j

for 0≤ j ≤ T −1.

Step 3: Convergence Criterion
If some convergence criterion is met (usually conerning the distance between the iterates
of the 2SLS estimator or the weighting matrix) then terminate the process. Otherwise,
return to step 1.
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1.2.5 Mixing Processes

So far, we have shown that, if a weakly stationary process satisfies certain moment conditions
and its entries are independent with observations that are sufficiently far away, then it satisfies
a form of the CLT. However, the assumption that the dependence between the entries peters
out so rapidly is unrealistic; indeed, it is not even by satisfied the most basic AR processes. In
this section, we introduce a weaker form of limited dependence; simply put, it allows entries in
the process to be independent ”at the limit”.

Let {Yt}t∈Z be an n-dimensional process. For any sub σ-algebra F and G of H, define α(F ,G)
as

α(F ,G) = sup
A∈F ,B∈G

|P(A∩B)−P(A)P(B)| ∈ [0,+∞].

Defining Fk−∞ = σ{Yk,Yk−1, · · ·} and F∞k+τ = σ{Yk+τ ,Yk+τ+1, · · ·} for any k ∈ Z and τ ∈ N+,
define

α(τ) = sup
k∈Z

α
(
Fk−∞,F∞k+τ

)
∈ [0,+∞].

We say that {Yt}t∈Z is α-mixing, or strong mixing, if

lim
τ→∞

α(τ) = 0.

That is, the dependence of any two groups of entries in {Yt}t∈Z that are τ periods apart uniformly
decreases to 0 as τ →∞. If {Yt}t∈Z is strictly stationary, then we can equivalently define

α(τ) = α
(
F0
−∞,F∞τ

)
.

41



1.3 Linear Processes and the Wold Representation

In this section we study (possibly multivariate) weakly stationary time series, with a focus on
causal linear processes and the Wold representation theorem. Throughout, we let the matrix
norm ‖·‖ be the trace norm (for more on trace norms, refer to the notes on factor models).

1.3.1 Multidimensional Lp Spaces

For any p ∈ [1,+∞) and a measure space (E,E ,µ), we define the n-dimensional Lp-norm of
a measurable function f : E → Rn as the Lp-norm of the non-negative measurable function
|f | : E→ R+, that is,

‖f‖n,p := ‖|f |‖p =
(∫

E
|f |pdµ

) 1
p

.

‖·‖n,p satifies Hölder’s and Minkowski’s inequalities because ‖·‖p does: for any p,q ∈ (1,+∞)
such that 1 = 1

p + 1
q , and measurable f,g : E→ Rn,

∥∥f ′g∥∥1 =
∫
E

∣∣f ′g∣∣dµ≤ ∫
E
|f ||g|dµ≤ ‖|f |‖p · ‖|g|‖q = ‖f‖n,p · ‖g‖n,q

by the Cauchy-Schwarz inequality and the univariate version of Hölder’s inequality.
Similarly, for any p ∈ [1,+∞) and measurable f,g : E→ Rn,

‖f +g‖n,p ≤ ‖|f |+ |g|‖p ≤ ‖|f |‖p+‖|g|‖p = ‖f‖n,p+‖g‖n,p.

Let Lpn(E ,µ) be the collection of all E-measurable function f :E→Rn such that ‖f‖n,p<+∞.
Lpn(E ,µ) is clearly a vector space over the real field.

Multidimensional Lp Norms are Norms

We can also see that ‖·‖n,p is a norm on Lpn(E ,µ), given that we identify µ-almost everywhere
equal functions:

• For any f ∈ Lpn(E ,µ), suppose ‖f‖n,p = 0. Then, |f |= 0 µ-almost everywhere on E, which
implies that f = 0 µ-almost everywhere on E. Conversely, if f = 0 µ-almost everywhere on
E, then |f |= 0 µ-a.e. and thus ‖f‖n,p = 0.
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• For any z ∈ R and f ∈ Lpn(E ,µ),

‖z ·f‖n,p = ‖|z| · |f |‖p = |z| · ‖f‖n,p.

• For any f,g ∈ Lpn(E ,µ),

‖f +g‖n,p ≤ ‖|f |+ |g|‖p ≤ ‖f‖n,p+‖g‖n,p.

Multidimensional Lp Spaces are Banach Spaces

We can see that the space (Lpn(E ,µ),‖·‖n,p) is a Banach space, just as in the univariate case:
this follows easily from the Riesz-Fischer theorem for the univariate case. Choose any sequence
{fk}k∈N+ that is Cauchy in (Lpn(E ,µ),‖·‖n,p). For any 1 ≤ i ≤ n, the sequence of coordinates
{fik}k∈N+ is a Cauchy sequence in the Banach space (Lp(E ,µ),‖·‖p), so there exists a gi ∈Lp(E ,µ)
such that

lim
k→∞

‖fik−gi‖p = 0.

Define g = (g1, · · · ,gn). Then, because g is measurable and

‖g‖n,p = ‖|g|‖p ≤
∥∥∥∥∥
n∑
i=1
|gi|
∥∥∥∥∥
p

≤
n∑
i=1
‖gi‖p <+∞,

we can see that g ∈ Lpn(E ,µ). Furthermore,

‖fk−g‖n,p ≤
n∑
i=1
‖fik−gi‖p

for any k ∈N+, so we have

lim
k→∞

‖fk−g‖n,p = 0

and thus fk
Lp→ g. This shows us that (Lpn(E ,µ),‖·‖n,p) is a Banach space.
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Multidimensional L2 Space is a Hilbert Space

Finally, we can define an inner product on the space (Lp2(E ,µ),‖·‖n,p). Define the function 〈·, ·〉n,2 :
Lp2(E ,µ)×Lp2(E ,µ)→ R as

〈f,g〉n,2 =
∫
E
f ′gdµ

for any f,g ∈ Lp2(E ,µ); this is well-defined, since∫
E

∣∣f ′g∣∣µ=
∥∥f ′g∥∥1 ≤ ‖f‖n,2 · ‖g‖n,2 <+∞.

〈·, ·〉n,2 is an inner product on Lp2(E ,µ), given that we identify functions equal µ-a.e.:

• For any z ∈ R and f,g,h ∈ Lp2(E ,µ),

〈z ·f +g,h〉n,2 =
∫
E

(z ·f +g)′hdµ= z ·
∫
E
f ′hdµ+

∫
E
g′hdµ= z · 〈f,h〉n,2 + 〈g,h〉n,2.

• For any f,g ∈ Lp2(E ,µ),

〈f,g〉n,2 =
∫
E
f ′gdµ=

∫
E
g′fdµ= 〈g,f〉n,2.

• For any f ∈ Lp2(E ,µ),

〈f,f〉n,2 =
∫
E
|f |2dµ≥ 0.

If 〈f,f〉n,2 = 0, then |f |2 = 0 µ-a.e. and thus f = 0 µ-a.e.

‖·‖n,2 is the norm induced by 〈·, ·〉n,2, so (L2
n(E ,µ),〈·, ·〉n,2) is a Hilbert space over the real

field. Below, for notational brevity, we denote

Lpn(E ,µ) = Lp(E ,µ), ‖·‖n,p = ‖·‖p and 〈·, ·〉n,2 = 〈·, ·〉2

when the dimension n is determined.
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1.3.2 Linear Processes

We first show that we can construct autocorrelated weakly stationary processes given a white
noise process and a sequence of coefficients that satisfy weak regularity conditions:

Theorem (Convergence of Linear Processes under Square Summability)
Let {εt}t∈Z be an n-dimensional white noise process with variance Σ ∈ Rn×n, and {Ψj}j∈Z a
sequence of n×n real matrices such that

∞∑
j=−∞

tr
(
ΨjΣΨ′j

)
<+∞.

Then, for any µ ∈ Rn and t ∈ Z, the partial sum process

{
µ+

m∑
j=−m

Ψj ·εt−j
}
m∈N+

is L2 and converges in L2 to some random vector Yt.
The L2 process {Yt}t∈Z defined as above is weakly stationary with mean µ and autocovariance

function Γ : Z→ Rn×n defined as

Γ(τ) =
∞∑

j=−∞
ΨjΣΨ′j−τ

for any τ ∈ Z.

Proof) For any t ∈ Z and m ∈N+, define

Ymt = µ+
m∑

j=−m
Ψj ·εt−j .

Note that E [Ymt] = µ. For any τ ∈ Z and m ∈N+, we have

E
[
(Ymt−µ)(Ym,t−τ −µ)′

]
=

m∑
j=−m

m∑
i=−m

Ψj ·E
[
εt−jε

′
t−τ−i

]
·Ψ′i.

For any m,k ∈N+ such that m> k, note that

‖Ymt−Ykt‖22 = E|Ymt−Ykt|2 = E

∣∣∣∣∣∣
−k−1∑
j=−m

Ψj ·εt−j +
m∑

j=k+1
Ψj ·εt−j

∣∣∣∣∣∣
2

=
−k−1∑
j=−m

tr
(
ΨjΣΨ′j

)
+

m∑
j=k+1

tr
(
ΨjΣΨ′j

)
.

The right hand side goes to 0 as m,k→∞, so it follows that {Ymt}m∈N+ is Cauchy in
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L2(H,P). Because (L2(H,P),〈·, ·〉2) is a Hilbert space, there exists a Yt ∈ L2(H,P) such
that

Ymt
L2
→ Yt

as m→∞.

It remains to show that {Yt}t∈Z is weakly stationary.
For any t ∈ Z and m ∈N+,

|E [Yt]−µ|= |E [Yt]−E [Ymt]| ≤ E|Yt−Ymt| ≤ ‖Yt−Ymt‖2

by Jensen’s inequality, so taking m→∞ on both sides shows us that

|E [Yt]−µ|= 0,

that is, E [Yt] = µ. Therefore, {Yt}t∈Z is mean stationary.

Define Zt = Yt−µ and Zmt = Ymt−µ for any t ∈ Z and m ∈N+. For any t ∈ Z, τ ∈ Z
and m ∈N+,
∥∥∥E[ZmtZ ′m,t−τ ]−E

[
ZtZ

′
t−τ
]∥∥∥≤ E

∥∥(Zmt−Zt)(Zm,t−τ −Zt−τ )′
∥∥+E

∥∥Zt(Zm,t−τ −Zt−τ )′
∥∥

+E
∥∥(Zmt−Zt)Z ′t−τ∥∥

≤ E [|Zmt−Zt| · |Zm,t−τ −Zt−τ |] +E [|Zt| · |Zm,t−τ −Zt−τ |]

+E [|Zmt−Zt| · |Zt−τ |]

≤ ‖Zmt−Zt‖2 · ‖Zm,t−τ −Zt−τ‖2 +‖Zt‖2 · ‖Zm,t−τ −Zt−τ‖2
+‖Zmt−Zt‖2 · ‖Zt−τ‖2,

where the second inequality follows from the trace norm inequality and the third from
Hölder’s inequality. Therefore, taking m→∞ on both sides yields

lim
m→∞

E
[
ZmtZ

′
m,t−τ

]
= E

[
ZtZ

′
t−τ
]
.

The existence of the limit is proved alongside the fact that the limit is E
[
ZtZ

′
t−τ
]
.

Given the value of E
[
ZmtZ

′
m,t−τ

]
for large m, we can see that

Cov[Yt,Yt−τ ] = E
[
ZtZ

′
t−τ
]

=
∞∑

j=−∞

∞∑
i=−∞

Ψj ·E
[
εt−jε

′
t−τ−i

]
·Ψ′i =

∞∑
j=−∞

ΨjΣΨ′j−τ .

Therefore, {Yt}t∈Z is also covariance stationary and has the specified autocovariance
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function.

Q.E.D.

In light of the above theorem, we can define a new class of weakly stationary processes.
An n-dimensional process {Yt}t∈Z is said to be a linear process if it satisfies the following
conditions:

• There exists a square-summable sequence {Ψj}j∈Z of n×n matrices, that is,

∞∑
j=−∞

tr
(
Ψ′jΣΨj

)
<+∞.

• There exists a µ ∈ Rn and an n-dimensional white noise process {εt}t∈Z with covariance
matrix Σ such that

Yt = µ+ Ψ(L)εt = µ+
∞∑

j=−∞
Ψj ·εt−j

for any t ∈ Z, where ∑∞j=−∞Ψj ·εt−j is the L2-limit of the corresponding partial sum pro-
cess.

If µ= 0 above, then we call {Yt}t∈Z a zero-mean linear process.

The previous theorem shows us that {Yt}t∈Z is a weakly stationary process with mean µ and
autocovariance

Γ(τ) =
∞∑

j=−∞
ΨjΣΨj−τ

for any τ ∈ Z.

Let {Yt}t∈Z be an n-dimensional linear process with mean µ∈Rn, innovation process {εt}t∈Z
and square summable linear filter {Ψj}j∈Z. We say that {Yt}t∈Z is a causal linear process if

Ψj =O for any j < 0.

This means that Yt is a function only of the current and past innovations; in this case, we write

Yt = µ+
∞∑
j=0

Ψj ·εt−j ,

where the equality denotes the L2-convergence of the partial sum process.
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A stronger condition than square summability is absolute summability, which states that

∞∑
j=−∞

‖Ψj‖<+∞.

Under the absolute summability of {Ψj}j∈Z, the convergence of

{
µ+

m∑
j=−m

Ψj ·εt−j
}
m∈N+

to Yt holds both in L2 and almost surely. We establish these claims below:

Lemma (Absolute Summability implies Square Summability)
Let {Ψj}j∈Z be an absolutely summable sequence of n×n real matrices. Then, it is also square
summable under any positive definite covariance matrix Σ ∈ Rn×n.

Proof) Suppose that

∞∑
j=−∞

‖Ψj‖<+∞.

Then, note that

0≤
∞∑

j=−∞
tr
(
ΨjΣΨ′j

)
=

∞∑
j=−∞

tr
(
Σ · (Ψ′jΨj)

)

≤
∞∑

j=−∞
‖Σ‖ ·

∥∥∥Ψ′jΨj

∥∥∥≤ ‖Σ‖ ·
 ∞∑
j=−∞

‖Ψj‖2
 .

For any m ∈N+,

m∑
j=−m

‖Ψj‖2 ≤
(

max
−m≤j≤m

‖Ψj‖
)
·

 m∑
j=−m

‖Ψj‖


≤

 ∞∑
j=−∞

‖Ψj‖

2

<+∞.

Therefore,

∞∑
j=−∞

‖Ψj‖2 <+∞

and we have
∞∑

j=−∞
tr
(
ΨjΣΨ′j

)
<+∞.

Q.E.D.
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Theorem (Convergence of Linear Processes under Absolute Summability)
Let {εt}t∈Z be an n-dimensional mean-zero square integrable and weakly stationary time series
with absolutely summable autocovariance function G : Z→ Rn×n. Let {Ψj}j∈Z a sequence of
n×n real matrices such that

∞∑
j=−∞

‖Ψj‖<+∞.

Then, for any µ ∈ Rn and t ∈ Z, the partial sum process

{
µ+

m∑
j=−m

Ψj ·εt−j
}
m∈N+

is in L2 and converges almost surely and in L2 to some random vector Yt.
The L2 process {Yt}t∈Z defined as above is weakly stationary with mean µ and autocovariance

function Γ : Z→ Rn×n defined as

Γ(τ) =
∞∑

i=−∞

∞∑
j=−∞

Ψi ·G(τ + j− i) ·Ψ′j

for any τ ∈ Z.

Proof) Step 1: Almost Sure Convergence

For any t ∈ Z and m ∈N+, define

Ymt = µ+
m∑

j=−m
Ψj ·εt−j .

Define c as the counting measure on Z, and the function f : Z×Ω→ [0,+∞) as

f(j,ω) = |Ψj ·εt−j(ω)|

for any (j,ω) ∈ Z×Ω. Since f is a non-negative measurable function relative to the
product σ-algebra on Z×Ω, by Fubini’s theorem for non-negative functions,

E

 ∞∑
j=−∞

|Ψj ·εt−j |

=
∫

Ω

∫
Z
f(τ,ω)dc(τ)dP(ω)

=
∫
Z

∫
Ω
f(τ,ω)dP(ω)dc(τ)

=
∞∑

j=−∞
E|Ψj ·εt−j |

≤
∞∑

j=−∞
‖Ψj‖ · ‖εt−j‖2 = tr(G(0))

1
2 ·

 ∞∑
j=−∞

‖Ψj‖

<+∞.
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By the finiteness property of non-negative functions, it now follows that

∞∑
j=−∞

|Ψj ·εt−j |<+∞

almost surely, which implies that the series

∞∑
j=−∞

Ψj ·εt−j

converges almost surely. Define Yt as

Yt =
∞∑

j=−∞
Ψj ·εt−j

on the subset of Ω on which the series converges, and 0 otherwise. Then, Yt is a random
vector such that

Ymt
a.s.→ Yt

as m→∞.

Step 2: Mean Square Convergence

To see that the convergence is in L2 as well, we follow the steps of the previous theorem
almost step for step. For any m,k ∈N+ such that m≥ k,

‖Ymt−Ykt‖2 =

∥∥∥∥∥∥
−k−1∑
j=−m

Ψj ·εt−j +
m∑

j=k+1
Ψj ·εt−j

∥∥∥∥∥∥
2

≤
−k−1∑
j=−m

‖Ψj‖ · ‖εt−j‖2 +
m∑

j=k+1
‖Ψj‖ · ‖εt−j‖2

≤ tr(G(0))
1
2

∑
k<|j|≤m

‖Ψj‖.

Since {Ψj}j∈Z is absolutely summable, sending m,k→∞ on both sides yields

lim
m,k→∞

‖Ymt−Ykt‖2 = 0.

This tells us that {Ymt}m∈N+ is Cauchy in the L2 metric, and by the completeness of
the n-dimensional L2 space, there exists a Zt ∈L2(H,P) such that Ymt L

2
→Zt as m→∞.
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Step 3: Equivalence between L2 and Almost Sure Limit

It remains to prove that Zt = Yt. Note that

E|Yt−Zt| ≤ E|Zt−Ymt|+E|Ymt−Yt|

≤ ‖Zt−Ymt‖2 +E|Ymt−Yt|

for any m ∈N+. Since

|Ymt−Yt| ≤ |Ymt|+ |Yt|

≤
m∑

j=−m
|Ψj ·εt−j |+ |Yt| ≤ 2 ·

∞∑
j=−∞

|Ψj ·εt−j |

for any m ∈N+, where

E

 ∞∑
j=−∞

|Ψj ·εt−j |

<+∞,

and Ymt
a.s.→ Yt as m→∞, by the DCT we have

lim
m→∞

E|Ymt−Yt|= 0.

Thus,

E|Yt−Zt|= 0,

and Yt = Zt almost surely.

Step 4: Mean Stationarity

For any t ∈ Z and m ∈N+,

E [Ymt] = µ,

and since

|µ−E [Yt]| ≤ E|Ymt−Yt| ≤ ‖Ymt−Yt‖2,

sending m→∞ shows us that E [Yt] = µ; {Yt}t∈Z is a mean ergodic L2 process.
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Step 5: Covariance Stationarity

Finally, for any t,τ ∈ Z and m ∈N+,

E
[
(Ymt−µ)(Ym,t−τ −µ)′

]
=

m∑
i=−m

m∑
j=−m

Ψi ·G(τ + j− i) ·Ψ′j ;

since

m∑
i=−m

m∑
j=−m

∥∥∥Ψi ·G(τ + j− i) ·Ψ′j
∥∥∥≤

 ∞∑
j=−∞

‖Ψj‖

2 ∞∑
j=−∞

‖G(j)‖

<+∞,

E [(Ymt−µ)(Ym,t−τ −µ)′] converges to

∞∑
i=−∞

∞∑
j=−∞

Ψi ·G(τ + j− i) ·Ψ′j

as m→∞.

We saw in the proof of the previous theorem that

lim
m→∞

E
[
(Ymt−µ)(Ym,t−τ −µ)′

]
= E

[
(Yt−µ)(Yt−τ −µ)′

]
:= Γ(τ)

since Ymt L
2
→ Yt for any t ∈ Z. Therefore,

Γ(τ) =
∞∑

i=−∞

∞∑
j=−∞

Ψi ·G(τ + j− i) ·Ψ′j

and thus {Yt}t∈Z is weakly stationary.

Q.E.D.
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The assumption of absolutely summable coefficients thus allows us to extend the result of
the previous theorem to arbitrary weakly stationary innovation processes. In particular, the
absolute summability of the autocovariances of the underlying innovation process implies that
the linear process constructed using the process is also weakly stationary. A useful shorthand
for this result is

Yt = µ+ Ψ(L)εt := µ+
∞∑

j=−∞
Ψj ·εt−j ,

where Ψ(L) is the lag polynomial written as

∞∑
j=−∞

Ψj ·Lj .

If Ψ(L) and Θ(L) are two lag polynomials corresponding to the absolutely summable coefficients
{Ψj}j∈Z and {Θj}j∈Z and satisfy

Ψ(L)Θ(L)εt = εt,

then we denote

Θ(L) = Ψ(L)−1.
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1.3.3 Ergodicity of Linear Processes

Here we present two law of large numbers for linear processes dealing with first and second
moments, respectively.
We first state a mean ergodicity result for arbitrary weakly stationary processes satisfying cer-
tain regularity conditions:

Theorem (Mean Ergodicity of Weakly Stationary Processes)
Let {Yt}t∈Z be an n-dimensional weakly stationary process with mean µ∈Rn and autocovariance
function Γ : Z→ Rn×n. Suppose that {Yt}t∈Z has trace summable autocovariances, that is,

∞∑
τ=−∞

tr(Γ(τ))<+∞.

Then, the sample mean of {Yt}t∈Z converges in L2 to µ, that is,

1
T

T∑
t=1

Yt
L2
→ µ.

Proof) For any T ∈N+, define

ȲT = 1
T

T∑
t=1

Yt,

and note that

E
∣∣∣ȲT −µ∣∣∣2 = 1

T 2

T∑
t=1

T∑
s=1

E
[
(Yt−µ)′(Ys−µ)

]
= 1
T 2

T∑
t=1

T∑
s=1

tr(Γ(t−s))

≤ 1
T 2

T∑
t=1

[ ∞∑
τ=−∞

tr(Γ(τ))
]

= 1
T

∞∑
τ=−∞

tr(Γ(τ)) .

Since the sum on the right is finite by assumption, taking T →∞ on both sides yields

lim
T→∞

E
∣∣∣ȲT −µ∣∣∣2 = 0,

and by definition ȲT
L2
→ µ.

Q.E.D.

The following utilizes the preceding result to derive an ergodicity result for linear processes
under absolute summability.
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Theorem (Mean Ergodicity of Linear Processes)
Let {εt}t∈Z be an n-dimensional white noise process with positive definite covariance matrix
Σ ∈ Rn×n, {Ψj}j∈Z an absolutely summable sequence of n×n matrices, and {Yt}t∈Z the causal
linear process defined, for any t ∈ Z and some µ ∈ Rn, as

Yt = µ+
∞∑

j=−∞
Ψj ·εt−j .

Let Γ : Z→ Rn×n be the autocovariance function of {Yt}t∈Z. Then,

∞∑
τ=−∞

‖Γ(τ)‖<+∞

and

1
T

T∑
t=1

Yt
L2
→ µ.

Proof) By the results in the previous section, we know that {Yt}t∈Z is a weakly stationary
process with mean µ and

Γ(τ) =
∞∑

j=−∞
ΨjΣΨ′j−τ

for any τ ∈ Z. We can easily establish the trace summability of the autocovariances:

∞∑
τ=−∞

tr(Γ(τ))≤
∞∑

τ=−∞

∞∑
j=−∞

tr
(
ΨjΣΨ′j−τ

)

≤ ‖Σ‖ ·
∞∑

τ=−∞

∞∑
j=−∞

∥∥∥Ψ′j−τΨj

∥∥∥
≤ ‖Σ‖ ·

 ∞∑
j=−∞

‖Ψj‖

2

<+∞.

This in turn implies the absolute summability of the autocovariances, since for any
symmetric matrix A ∈ Rn×n,

‖A‖= tr
(
A′A

) 1
2 ≤ tr(A).

Finally, by the preceding theorem, we can see that

1
T

T∑
t=1

Yt
L2
→ µ.

Q.E.D.
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The next result concerns the ergodicity of linear processes for second moments, under a few
different regularity conditions imposed on the innovation process.

Theorem (Covariance Ergodicity for Linear Processes)
Let {εt}t∈Z be an n-dimensional white noise process with positive definite covariance matrix
Σ ∈ Rn×n, {Ψj}j∈Z an absolutely summable sequence of n×n matrices, and {ut}t∈Z the mean
zero linear process defined as

ut =
∞∑

j=−∞
Ψj ·εt−j

for any t ∈ Z. Let Γ : Z→ Rn×n be the autocovariance function of {ut}t∈Z, which is absolutely
summable due to the absolute summability of {Ψj}j∈Z. Suppose {εt}t∈Z is i.i.d. Then, for any
h≥ 0,

1
T

T∑
t=1

utu
′
t−h

p→ Γ(h).

Proof) Choose some h≥ 0. Then, for any T ∈N+ we can write

1
T

T∑
t=1

utu
′
t−h = 1

T

T∑
t=1

∞∑
k=−∞

∞∑
l=−∞

Ψkεt−kε
′
t−h−lΨl

=
∞∑

k=−∞

∞∑
l=−∞

Ψk

(
1
T

T∑
t=1

εt−kε
′
t−h−l

)
Ψ′l,

where the equality holds almost surely due ot the absolute summability of {Ψj}j∈Z.
We know that

Γ(h) = E
[
utu
′
t−h
]

=
∞∑

k=−∞

∞∑
l=−∞

ΨkE
[
εt−kε

′
t−h−l

]︸ ︷︷ ︸
Σkl

Ψ′l,

where

Σkl =

Σ if k = h+ l

O if k 6= h+ l

by the uncorrelatedness of {εt}t∈Z, so that

∣∣∣∣∣ 1T
T∑
t=1

utu
′
t−h−Γ(h)

∣∣∣∣∣=
∣∣∣∣∣∣
∞∑

k=−∞

∞∑
l=−∞

Ψk

(
1
T

T∑
t=1

εt−kε
′
t−h−l−Σkl

)
Ψ′l

∣∣∣∣∣∣
≤

∞∑
k=−∞

∞∑
l=−∞

‖Ψk‖ · ‖Ψl‖ ·
∥∥∥∥∥ 1
T

T∑
t=1

εt−kε
′
t−h−l−Σkl

∥∥∥∥∥
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almost surely. Defining

Akl,T = 1
T

T∑
t=1

εt−kε
′
t−h−l−Σkl

for any k, l ∈ Z and T ∈N+, we can write
∣∣∣∣∣ 1T

T∑
t=1

utu
′
t−h−Γ(h)

∣∣∣∣∣≤
∞∑

k=−∞

∞∑
l=−∞

‖Ψk‖ · ‖Ψl‖ · ‖Akl,T ‖

almost surely, and by Fubini’s theorem for non-negative integrands,

E
∣∣∣∣∣ 1T

T∑
t=1

utu
′
t−h−Γ(h)

∣∣∣∣∣≤
∞∑

k=−∞

∞∑
l=−∞

‖Ψk‖ · ‖Ψl‖ ·E‖Akl,T ‖.

Let c be the counting measure on Z2. Defining the function fT : Z2→ R as

fT (k, l) = ‖Ψk‖ · ‖Ψl‖ ·E‖Akl,T ‖

for any k, l ∈ Z, we can write

∞∑
k=−∞

∞∑
l=−∞

‖Ψk‖ · ‖Ψl‖ ·E‖Akl,T ‖=
∫
Z2
fTdc.

Note that, for any k, l ∈ Z,

E‖Akl,T ‖ ≤
1
T

T∑
t=1

E
∥∥εt−kε′t−h−l∥∥+

∥∥∥Σkl
∥∥∥

≤ 2
∥∥∥Σkl

∥∥∥≤ 2‖Σ‖.

This tells us that, defining g : Z2→ R+ as

g(k, l) = 2‖Ψk‖ · ‖Ψl‖ · ‖Σ‖

for any k, l ∈ Z, we have

|fT | ≤ g,

for any T ∈N+, and g satisfies

∫
Z2
gdc= 2‖Σ‖ ·

 ∞∑
k=−∞

∞∑
l=−∞

‖Ψk‖ · ‖Ψl‖


= 2‖Σ‖ ·

 ∞∑
k=−∞

‖Ψk‖

2

<+∞
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by the absolute summability of {Ψj}j∈Z.

Suppose each E‖Akl,T ‖ converges to 0 as T →∞. Then,

lim
T→∞

fT (k, l) = 0

for any k, l ∈ Z, so that, by the DCT,

lim
T→∞

∫
Z2
fTdc= 0,

and because E
∣∣∣ 1
T

∑T
t=1utu

′
t−h−Γ(h)

∣∣∣ is dominated by
∫
Z2 fTdc for any T ∈N+, we have

lim
T→∞

E
∣∣∣∣∣ 1T

T∑
t=1

utu
′
t−h−Γ(h)

∣∣∣∣∣= 0,

that is,

1
T

T∑
t=1

utu
′
t−h

L1
→ Γ(h).

As such, it remains to see that each E‖Akl,T ‖ does indeed converge to 0. Given k, l ∈ Z,
we can consider two cases.

i) k = h+ 1
Then,

‖Akl,T ‖=
∥∥∥∥∥ 1
T

T∑
t=1

(
εt−kε

′
t−k−Σ

)∥∥∥∥∥
≤

n∑
i=1

n∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

(εi,t−kεj,t−k−Σij)
∣∣∣∣∣

for any T ∈N+. Choose any 1≤ i, j ≤ n. Because {εtε′t}t∈Z is i.i.d. and E [εtε′t] = Σ
for any t ∈ Z, {εitεjt−Σij}t∈Z is a uniformly integrable process, which in turn
implies that it is L1-bounded. Furthermore, since {εitεjt−Σij}t∈Z is i.i.d, with
mean 0, it is also a martingale difference sequence with respect to the filtration it
generates, and by the WLLN for martingale difference sequences, we can conclude
that

1
T

T∑
t=1

(εi,t−kεj,t−k−Σij) L
1
→ 0.

This holds for any 1≤ i, j ≤ n, and

E‖Akl,T ‖ ≤
n∑
i=1

n∑
j=1

E
∣∣∣∣∣ 1T

T∑
t=1

(εi,t−kεj,t−k−Σij)
∣∣∣∣∣,
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so we have

E‖Akl,T ‖→ 0

as T →∞.

ii) k 6= h+ 1
Then,

‖Akl,T ‖ ≤
n∑
i=1

n∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

εi,t−kεj,t−h−l

∣∣∣∣∣
for any T ∈N+. For any 1≤ i, j ≤ n, the sequence {εi,t−kεj,t−h−l}t∈Z has mean 0.
Assume without loss of generality that k < h+ l, and let F be the filtration on
Z generated by {εt−k}t∈Z. Then, for any t ∈ Z, since εj,t−h−l is Ft−1-measurable
(t−h− l < t−k), we have

E [εi,t−kεj,t−h−l | Ft−1] = E [εi,t−k | Ft−1] ·εj,t−h−l
= E [εi,t−k] ·εj,t−h−l = 0,

where the second inequality follows because εt−k is independent of Ft−1. By defi-
nition, {εi,t−kεj,t−h−l}t∈Z is a martingale difference sequence with respect to F .
Furthermore, because εi,t−k and εj,t−h−l are independent for any t ∈ Z,

E|εi,t−kεj,t−h−l|2 =
(
E|εi,t−k|2

)(
E|εj,t−h−l|2

)
= ΣiiΣjj <+∞,

so that {εi,t−kεj,t−h−l}t∈Z is L2-bounded and thus uniformly integrable.
We can now apply the WLLN for martingale difference sequences to conclude that

1
T

T∑
t=1

εi,t−kεj,t−h−l
L1
→ 0,

and since

E‖Akl,T ‖ ≤
n∑
i=1

n∑
j=1

E
∣∣∣∣∣ 1T

T∑
t=1

εi,t−kεj,t−h−l

∣∣∣∣∣,
we have

E‖Akl,T ‖→ 0

as T →∞ as well.

Q.E.D.
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1.3.4 The Wold Representation

In this section we provide a rationale for focusing on linear processes. It is shown that any weakly
stationary time series that satisfies some light regularity conditions can be written as the sum
of a linear process and a predictable process, the latter whose definition will be stated shortly.
This result, called the Wold representation theorem, provides the theoretical justification for
studying linear processes, and is also why we like to focus on vector autoregressions; they are
simply linear processes with appropriately truncated lags.

We first introduce some definitions. Let {u1, · · · ,uT }⊂L2(H,P) be a collection of n-dimensional
square integrable random vectors, and X ∈L2(H,P) another n-dimensional random vector. Usu-
ally, when we refer to the projection of X on the span of {u1, · · · ,uT }, we refer to the linear
combination of {u1, · · · ,uT } that best approximates X in the L2-norm. In what follows, we call
the linear projection of X on the span of {u1, · · · ,uT } the random vector

P̂ (X | u1, · · · ,uT ) =


X̂1
...
X̂n

 ,

where, for each 1≤ i≤ n, X̂i is the orthogonal projection of Xi on V , and the vector space V is
defined as the span of the collection of (univariate) random variables {uit | 1≤ i≤ n,1≤ t≤ T}.
Since X̂i is contained in the univariate L2-space for each 1≤ i≤ n, the linear projection P̂ (X |
u1, · · · ,uT ) is itself a square integrable n-dimensional random vector.

From the properties of orthogonal projections onto linear subspaces spanned by a finite set,
we can see that there exist matrices A1, · · · ,AT ∈ Rn×n such that

P̂ (X | u1, · · · ,uT ) =
T∑
t=1

At ·ut.

Clearly, P̂ (X | u1, · · · ,uT ) is a more precise approximation to X than the orthogonal projection
of X on the span of {u1, · · · ,uT }. Note that linear projections and orthogonal projections are
identical when n= 1.

The same idea can be extended to the span of infinite sets as well. For any collection
{ut}t∈N+ ⊂ L2(H,P) of n-dimensional square integrable random vectors, we define

P̂ (X | u1,u2, · · ·) =


projWX1

...
projWXn

 ,

where

W = span({uit | 1≤ i≤ n,t ∈N+}) ;
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the only difference with the finite case is that each coordinate of X is projected onto the closure
of W instead of W itself. The reason for this, made clearer below, is that only when we project
onto the closure of W is a unique orthogonal projection guaranteed to exist.

We first show some preliminary results concerning linear projections, using a limit result
that holds for arbitrary Hilbert spaces.

Lemma (Limiting Behavior of Projections in Hilbert Spaces)
Let (V,〈·, ·〉) be an arbitrary Hilbert space over the real field, ‖·‖ the norm induced by 〈·, ·〉, and
d the metric induced by ‖·‖. Let {Wk}k∈N+ be an increasing sequence of linear subspaces of V ,
and denote the union of these subpsaces by W =⋃

kWk. Fix some x ∈ V , and for each k ∈N+,
let there exists a unique orthogonal projection yk of x onto Wk.

Then, the sequence {yk}k∈N+ converges in d to some y ∈W , where y is the unique orthogonal
projection of x on W .

Proof) We first establish that there exists a unique orthogonal projection of x onto W . It is
immediately clear that W is closed. To establish that it is a linear subspace of V over
the real field, choose any w,z ∈W and a ∈ R. Then, there exist sequences {wk}k∈N+

and {zk}k∈N+ that are contained in W and converge in d to w and z. For any k ∈N+,
there exist m1,m2 ∈ N+ such that wk ∈Wm1 and zk ∈Wm2 ; since {Wm}m∈N+ is an
increasing sequence of linear subspaces of V ,

a ·wk +zk ∈Wmax(m1,m2) ⊂W.

Thus, {a ·wk + zk}k∈N+ is a sequence in W that converges in d to a ·w+ z; since W
is closed, a ·w+ z ∈W , which establishes that W is closed under linear combinations.
Furthermore, the zero vector is contained in each Wk (since they are linear subspaces)
and therefore in W as well, proving that W is a linear subspace of V .

W is a closed and convex (this follows from linearity) subset of the Hilbert space V .
By the Hilbert projection theorem, there exists a unique y ∈ W such that y is the
orthogonal projection of x on W , that is,

‖x−y‖ ≤ ‖x−z‖ ∀z ∈W.

It remains to prove that this y is the limit of the sequence {yk}k∈N+ .

Note that

W =
⋃
k

Wk;

the inclusion W ⊂
⋃
kWk holds because ⋃kWk is a closed set containing W , while
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the fact that WkW for any k ∈ N+ implies the reverse inclusion. Since y ∈W , and
{Wk}k∈N+ is an increasing sequence of subsets of V , this means that there exists an
N ∈N+ such that y ∈Wk for any k ≥N . For any k ≥N , choose zk ∈Wk such that

‖y−zk‖<
1
k

;

it is possible to make this choice because y ∈Wk. For k <N , choose any zk ∈Wk; then,
the sequence {zk}k∈N+ satisfies

zk ∈Wk ∀k ∈N+ and zk→ y in d

For any k ∈N+, zk ∈Wk and yk is defined as the orthogonal projection of x on Wk, so
we have the inequality

‖x−yk‖ ≤ ‖x−zk‖.

Furthermore, because each yk ∈Wk ⊂W and y is the unique orthogonal projection of
x on W ,

‖x−y‖ ≤ ‖x−yk‖.

In other words, ‖x−y‖ ≤ ‖x−yk‖ ≤ ‖x−zk‖ for any k ∈ N+, so sending k→∞ on
both sides yields

lim
k→∞

‖x−yk‖= ‖x−y‖.

Likewise, defining vk = y+yk
2 ∈W for any k ∈N+,

‖x−y‖ ≤ ‖x−vk‖ ≤
1
2‖x−y‖+ 1

2‖x−yk‖

for any k ∈N+, so sending k→∞ on both sides yields

lim
k→∞

‖x−vk‖= ‖x−y‖.

Now we use the parallelogram law on inner product spaces to show that yk→ y in the
metric d. By the parallelogram law, for any k ∈N+,

2 · ‖x−yk‖2 + 2 · ‖x−y‖2 = ‖yk−y‖2 + 4 ·
∥∥∥∥x− yk +y

2

∥∥∥∥2
,

so that rearranging terms yields

‖yk−y‖2 = 2 · ‖x−yk‖2 + 2 · ‖x−y‖2−4 · ‖x−vk‖2.
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Sending k→∞ on both sides then yields

lim
k→∞

‖yk−y‖2 = 0,

so that yk→ y in the metric d.

Q.E.D.

Corollary Let {ut}t∈Z ⊂ L2
n(H,P) and X ∈ L2

n(H,P). Then, for any t ∈ Z,

P̂ (X | ut, · · · ,ut−k)
L2
→ P̂ (X | ut,ut−1, · · ·)

as k→∞.

Proof) Fix any t ∈ Z. For any k ∈N+, define the linear subspace

Wk = span({ui,t−j | 1≤ i≤ n,0≤ j ≤ k})

of the univariate L2 space L2(H,P). Then, {Wk}k∈N+ is an increasing sequence of linear
subspaces such that

W =
⋃
k

Wk = span({ui,t−j | 1≤ i≤ n,j ∈ N}) .

For any 1 ≤ i ≤ n, let X̂i be the orthogonal projection of Xi onto W in the L2-norm,
and let X̂(k)

i denote the orthogonal projection of Xi onto Wk in the L2-norm for any
k ∈N+. By definition,

P̂ (X | ut, · · · ,ut−k) =


X̂

(k)
1
...

X̂
(k)
n

 ∀k ∈N+ and P̂ (X | ut,ut−1, · · ·) =


X̂1
...
X̂n

 .

By the lemma above, X̂(k)
i

L2
→ X̂i for each 1≤ i≤ n. Since

∥∥∥P̂ (X | ut,ut−1, · · ·)− P̂ (X | ut, · · · ,ut−k)
∥∥∥
n,2

=
∥∥∥∣∣∣P̂ (X | ut,ut−1, · · ·)− P̂ (X | ut, · · · ,ut−k)

∣∣∣∥∥∥
2

≤
n∑
i=1

∥∥∥X̂(k)
i − X̂i

∥∥∥
2

by Minkowski’s inequality and the definition of the n-dimensional L2-norm, taking
k→∞ on both sides yields

P̂ (X | ut, · · · ,ut−k)
L2
→ P̂ (X | ut,ut−1, · · ·).

Q.E.D.
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The next result shows us how to find the coefficients of linear projections on finite sets.

Lemma Let {u1, · · · ,uh}⊂L2(H,P) be a sequence of n-dimensional square integrable random
vectors such that

E
[
uiu
′
j

]
=

Σ if i= j

O if i 6= j

for some positive definite n×n matrix Σ, and let X ∈ L2(H,P) be an n-dimensional square
integrable random vector. Then,

P̂ (X | u1, · · · ,uh) =
h∑
j=1

E
[
X ·u′j

]
Σ−1 ·uj .

Proof) There exist A1, · · · ,Ah ∈ Rn×n such that

P̂ (X | u1, · · · ,uh) =
h∑
j=1

Aj ·uj .

Since each coordinate of P̂ (X | u1, · · · ,uh) is the orthogonal projection of Xi onto the
linear subspace

W = span({uit | 1≤ i≤ n,1≤ t≤ h}) ,

by the characterization of orthogonal projections we have

E
[
(X− P̂ (X | u1, · · · ,uh))u′j

]
=O

for any 1≤ j ≤ h. This implies that

E
[
X ·u′j

]
= E

[
P̂ (X | u1, · · · ,uh) ·u′j

]
=

h∑
i=1

Ai ·E
[
uiu
′
j

]
=Aj ·Σ

for any 1≤ j ≤ h, which implies that

P̂ (X | u1, · · · ,uh) =
h∑
j=1

E
[
X ·u′j

]
Σ−1 ·uj .

Q.E.D.

We now state and prove the main result of this section:
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Theorem (Wold Representation Theorem)
Let {Xt}t∈Z be an n-dimensional square integrable and weakly stationary process with mean
zero and autocovariance function Γ : Z→ Rn×n. Assume that

Γ(0) · · · Γ(h)
... . . . ...

Γ(h)′ · · · Γ(0)

 ∈ Rnh×nh

is nonsingular for any h∈N+, and that Xt− P̂ (Xt |Xt−1,Xt−2, · · ·) has positive definite variance
for some t ∈ Z.

Then, there exists an n-dimensional white noise process {εt}t∈Z with positive definite covari-
ance matrix Σ ∈ Rn×n, and a sequence {Ψj}j∈N of n×n matrices such that

∞∑
j=0

tr
(
Ψj ·Σ ·Ψ′j

)
<+∞

and

Xt =
∞∑
j=0

Ψj ·εt−j +ηt,

for any t ∈ Z, where {ηt}t∈Z satisfies

P̂ (ηt |Xt−1,Xt−2, · · ·) = ηt.

Proof) We first start by constructing the white noise process {εt}t∈Z. This process is defined
as the difference of Xt and the linear projection of Xt on past values Xt−1,Xt−2, · · · ;
it thus collects the one-period ahead linear forecast errors. Then, the linear process
part of Xt is constructed as the linear projection of Xt on these projection errors. In
effect, Xt is represented as a collection of updates following projection errors (the linear
process part) and a part corresponding to the projection (ηt).

Step 1: Constructing the White Noise Process

As stated above, εt is defined as the one-period ahead linear forecast error of Xt, that
is,

εt =Xt− P̂ (Xt |Xt−1,Xt−2, · · ·).

The difficult part is showing that {εt}t∈Z is a white noise process with positive definite
covariance matrix.
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For any t ∈ Z, we established above that

P̂ (Xt |Xt−1,Xt−2, · · ·)

is the L2-limit of the sequence {P̂ (Xt |Xt−1, · · · ,Xt−h)}h∈N+ . This implies that

εh,t =Xt− P̂ (Xt |Xt−1, · · · ,Xt−h) L
2
→Xt− P̂ (Xt |Xt−1,Xt−2, · · ·) = εt

as h→∞. By the definition of the linear projection as a collection of orthogonal pro-
jections of the coordinates of Xt, we have

E
[
εh,t ·X ′t−i

]
=O

for any 1≤ i≤ h and h ∈N+, and likewise,

E
[
εt ·X ′t−i

]
=O

for any i ∈N+.

Fix h ∈N+, and note that there exist A(h)
1,t , · · · ,A

(h)
h,t ∈ Rn×n such that

P̂ (Xt |Xt−1, · · · ,Xt−h) =
h∑
i=1

A
(h)
i,t ·Xt−i.

Then, for any 1≤ j ≤ h,

O = E
[
εh,tX

′
t−j

]
= E

[
Xt ·X ′t−j

]
−

h∑
i=1

A
(h)
i,t ·E

[
Xt−i ·X ′t−j

]

= Γ(j)−
h∑
i=1

A
(h)
i,t ·Γ(j− i).

Collecting these equations, we end up with the equation

(
A

(h)
1,t · · · A

(h)
h,t

)
Γ(0) · · · Γ(h−1)

... . . . ...
Γ(h−1)′ · · · Γ(0)

=
(
Γ(1) · · · Γ(h)

)
.

By assumption, the matrix nh×nh matrix


Γ(0) · · · Γ(h−1)

... . . . ...
Γ(h−1)′ · · · Γ(0)

 is non-singular,

so the coefficients are given as

(
A

(h)
1,t · · · A

(h)
h,t

)
=
(
Γ(1) · · · Γ(h)

)
Γ(0) · · · Γ(h−1)

... . . . ...
Γ(h−1)′ · · · Γ(0)


−1
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This implies that A(h)
i,t does not depend on the time t; we denote A(h)

i,t = A
(h)
i for any

1≤ i≤ h. We can now show that {εt}t∈Z is a white noise process as follows:

– Mean of εt
For any t ∈ Z,

E [εh,t] =
h∑
i=1

A
(h)
i ·E [Xt−i] = 0,

and because εh,t
L2
→ εt as h→∞,

E [εt] = lim
h→∞

E [εh,t] = 0.

– Covariance of εt−τ and Xt

For any t ∈ Z, τ ∈ Z and h ∈N+,

E
[
Xt ·ε′h,t−τ

]
= E

[
Xt ·X ′t−τ

]
−E

[
Xt · P̂ (Xt−τ |Xt−τ−1, · · · ,Xt−τ−h)′

]
= Γ(τ)−

h∑
i=1

Γ(τ + i) ·A(h)′
i

= Γ(τ)−
(
Γ(τ + 1) · · · Γ(τ +h)

)
Γ(0) · · · Γ(h−1)

... . . . ...
Γ(h−1)′ · · · Γ(0)


−1

Γ(1)′
...

Γ(h)′


︸ ︷︷ ︸

G
(h)
τ

.

Note thatG(h)
τ depends only on τ and h. The left hand side converges to E [Xt ·εt−τ ]

as h→∞ because εh,t−τ
L2
→ εt−τ , so it follows that

lim
h→∞

G(h)
τ =Gτ := Γ(τ)−E

[
Xt ·ε′t−τ

]
,

and we can see that E
[
Xt ·ε′t−τ

]
does not depend on t.

As a special case,

E
[
Xt ·ε′t

]
= Γ(0)−G0.

– The Covariance of εt and εs, t 6= s

First note that, for any h ∈N+ and t,s ∈ Z such that t≤ s,

E
[
P̂ (Xt |Xt−1, · · · ,Xt−h) ·ε′s

]
=

h∑
i=1

A
(h)
i ·E

[
Xt−iε

′
s

]
=O.
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Since P̂ (Xt | Xt−1, · · · ,Xt−h) L2
→ P̂ (Xt | Xt−1,Xt−2, · · ·) as h → ∞, the equality

above implies that

E
[
P̂ (Xt |Xt−1,Xt−2, · · ·) ·ε′s

]
= lim
h→∞

E
[
P̂ (Xt |Xt−1, · · · ,Xt−h) ·ε′s

]
=O.

Now choose any t,s ∈ Z, and assume without loss of generality that t < s. Since

E
[
εtε
′
s

]
= E

[
Xtε

′
s

]
−E

[
P̂ (Xt |Xt−1,Xt−2, · · ·) ·ε′s

]
,

and E [Xtε
′
s] =O by the property of linear projections, we have

E
[
εtε
′
s

]
=O.

{εt}t∈Z is a pairwise uncorrelated sequence.

– The Variance of εt
For any t ∈ Z and h ∈N+, note that

E
[
εtε
′
t

]
= E

[
Xt ·ε′t

]
−E

[
P̂ (Xt |Xt−1,Xt−2, · · ·) ·ε′t

]
= E

[
Xt ·ε′t

]
= Γ(0)−G0 := Σ,

where the second equality uses the result that E
[
P̂ (Xt |Xt−1,Xt−2, · · ·) ·ε′s

]
= O

for any t≤ s.

We have shown that {εt}t∈Z is a white noise process with covariance matrix Σ ∈Rn×n.
Since Σ is the covariance matrix of every Xt− P̂ (Xt |Xt−1,Xt−2, · · ·), which we assumed
to be positive definite, Σ is positive definite.

Step 2: Constructing the Linear Process

Now that we have the desired white noise process {εt}t∈Z, we now construct the linear
process part of Xt.

For any t ∈ Z and h ∈N+, define

Yt = P̂ (Xt | εt,εt−1, · · ·)

and

Yh,t = P̂ (Xt | εt, · · · ,εt−h).
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By the above lemma,

Yh,t =
h∑
j=0

E
[
Xt ·ε′t−j

]
Σ−1 ·εt−j

=
h∑
j=0

(Γ(j)−Gj)Σ−1︸ ︷︷ ︸
Ψj

·εt−j .

We now show that the sequence {Yh,t}h∈N+ converges in L2 to Yt:

– Square Summability of {Ψj}j∈N
For any h ∈N+,

E|Xt−Yh,t|2 = tr
(
E
[
(Xt−Yh,t)(Xt−Yh,t)′

])
= tr

E
Xt−

h∑
j=0

Ψj ·εt−j

Xt−
h∑
j=0

Ψj ·εt−j

′
= tr(Γ(0))− tr

 h∑
j=0

Ψj ·E
[
εt−jX

′
t

]
−

h∑
j=0

E
[
Xtε

′
t−j

]
Ψ′j +

h∑
j=0

h∑
i=0

ΨjE
[
εt−jε

′
t−i
]
Ψ′i

 .
Since

E
[
Xt ·ε′t−j

]
= Γ(j)−Gj = Ψj ·Σ,

we have

E|Xt−Yh,t|2 = tr(Γ(0))−
h∑
j=0

tr
(
ΨjΣΨ′j

)
.

The left hand side is always non-negative, so

h∑
j=0

tr
(
ΨjΣΨ′j

)
≤ tr(Γ(0))<+∞.

This holds for any h∈N+, and since each tr
(
ΨjΣΨ′j

)
, being the trace of a positive

semidefinite matrix, is non-negative, taking h→∞ on both sides reveals that

∞∑
j=0

tr
(
ΨjΣΨ′j

)
≤ tr(Γ(0))<+∞.

– The L2-limit of {Yh,t}h∈N+

{Ψj}j∈N is a square summable sequence of n×n matrices, so by the results on
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linear processes established above,

Yh,t =
h∑
j=0

Ψj ·εt−j
L2
→ Zt

for some n-dimensional Zt ∈ L2(H,P). Since Yh,t
L2
→ Yt by the result on Hilbert

spaces established just above, the uniqueness of L2-limits now tells us that Yt =Zt

almost surely, or that {Yt}t∈Z is the mean zero linear process defined as

Yt =
∞∑
j=0

Ψj ·εt−j

for any t ∈ Z.

We have just shown that Xt can be written as the sum of a linear process and an error
component as follows:

Xt = Yt+ (Xt−Yt) =
∞∑
j=0

Ψj ·εt−j +ηt.

The proof is completed by showing that the linear projection of ηt on Xt−1,Xt−2, · · · is
itself.

Step 3: Establishing Predictability of ηt
By definition,

ηt =Xt−Yt =Xt−
∞∑
j=0

Ψj ·εt−j .

For any h ∈N+,

Yh,t−εt =
h∑
j=1

Ψj ·εt−j ;

this tells us that each coordinate of Yt−εt is contained in the linear subspace

Wh = span({εi,t−j | 1≤ i≤ n,1≤ j ≤ h}) ,

which is itself contained in the closure of the linear subspace

W =
⋃
h

Wh.
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Since Yt−εt is the L2-limit of the sequence {Yh,t−εt}h∈N+ , it follows from the closedness
of W that each coordinate of Yt−εt is contained in W .

For any j ∈N+,

εt−j =Xt−j− P̂ (Xt−j |Xt−j−1,Xt−j−2, · · ·);

the same line of reasoning as above leads us to conclude that each coordinate of εt−j
is contained in the closure of the linear subspace

V = span({Xi,t−j | 1≤ i≤ n,j ∈N+}) .

Thus, W ⊂ V , and we can conclude that each coordinate of Yt−εt is contained in V .

Finally, since

ηt =Xt−Yt = (Xt−εt)− (Yt−εt)

= P̂ (Xt |Xt−1,Xt−2, · · ·)− (Yt−εt),

each coordinate of ηt is contained in V . This leads us to conclude that the orthogo-
nal projection of each ηit on V is ηit itself, and since the linear projection of ηt on
Xt−1,Xt−2, · · · is the collection of the orthogonal projections of each ηit on V , we have
the result

ηt = P̂ (ηt |Xt−1,Xt−2, · · ·).

Q.E.D.

Above, we have shown that any zero-mean weakly stationary time series {Xt}t∈Z subject
to very mild assumptions can be decomposed into two parts: a square summable linear process
part ∑∞j=0 Ψj · εt−j and a predictable part ηt. In the construction of the linear process, we saw
that it was nothing more than the weighted average of all the one-period ahead linear forecast
errors, while the predictable part ηt is ”predictable” in the sense that it can be perfectly linearly
forecast using past values of Xt. Heuristically, this means that any Xt can be expressed as the
sum of an expected/linearly predicted component and an unpredictable component, the latter
of which is a function of the linear forecasts up to time t.
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1.4 Asymptotic Theory for Linear Processes

Here we present an important asymptotic result pertaining to linear processes with i.i.d. inno-
vations that have finite fourth moments. The analysis necessitates the use of the vectorization
operator and the Kronecker product, two devices that will come in handy very often in the
analysis to come.

1.4.1 Vectorization and Kronecker Product

Let A ∈ Cm×n and B ∈ Cp×q. The Kronecker product A⊗B of A and B is the mp×pq matrix
defined as

A
⊗

B =


A11B · · · A1nB

... . . . ...
Am1B · · · AmnB

 .

Clearly, the Kronecker product is not commutative. The following are additional properties of
the Kronecker product:

Lemma (Properties of the Kronecker Product)
Let A ∈ Cm×n, B ∈ Cp×q, C ∈ Ck×l, and D ∈ Cs×r. Then, the following hold true:

i) (A⊗B)⊗C =A
⊗(B⊗C)

ii) If m= p, n= q, k = s and l = r,

(A+B)
⊗

(C+D) =A
⊗

C+B
⊗

C+A
⊗

D+B
⊗

D

iii) If n= p and l = s, then

(A
⊗

C)(B
⊗

D) =AB
⊗

CD

iv) If A and B are nonsingular square matrices, then

(A
⊗

B)−1 = (A−1⊗B−1)

v) If A and B are square matrices, then

tr
(
A
⊗

B
)

= tr(A)tr(B)

vi) Let A be an m×m square matrix with eigenvalues λ1, · · · ,λm ∈ C, and B a p×p square
matrix with eigenvalues µ1, · · · ,µp ∈C. Then, the eigenvalues of A⊗B are collected in the
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set

{λiµj | 1≤ i≤m,1≤ j ≤ p}.

vii) Let A be an m×m square matrix and B a p×p square matrix. Then,
∣∣∣A⊗B

∣∣∣= |A|p|B|m.
Proof) i) This follows immediately by noting that

(A
⊗

B)
⊗

C =


A11B · · · A1nB

... . . . ...
Am1B · · · AmnB

⊗C

=


A11(B⊗C) · · · A1n(B⊗C)

... . . . ...
Am1(B⊗C) · · · Amn(B⊗C)

=A
⊗

(B
⊗

C).

ii) This follows immediately by noting that

(A+B)
⊗

(C+D) =


(A11 +B11)(C+D) · · · (A1n+B1n)(C+D)

... . . . ...
(Am1 +Bm1)(C+D) · · · (Amn+Bmn)(C+D)



=


A11C+B11C+A11D+B11D · · · A1nC+B1nC+A1nD+B1nD

... . . . ...
Am1C+Bm1C+Am1D+Bm1D · · · AmnC+BmnC+AmnD+BmnD


=A

⊗
C+B

⊗
C+A

⊗
D+B

⊗
D.

iii) This also follows immediately by noting that

(A
⊗

C)(B
⊗

D) =


A11C · · · A1nC

... . . . ...
Am1C · · · AmnC



B11D · · · B1qD

... . . . ...
Bn1D · · · BnqD



=


(∑n

i=1A1iBi1)CD · · · (∑n
i=1A1iBiq)CD

... . . . ...
(∑n

i=1AmiBi1)CD · · · (∑n
i=1AmiBiq)CD


=AB

⊗
CD.
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iv) Suppose A and B are nonsingular square matrices. Then, by the preceding result,

(A
⊗

B)(A−1⊗B−1) = (Im
⊗

Ip) = Imp,

so that the inverse of A⊗B exists and is given as

(A
⊗

B)−1 = (A−1⊗B−1).

v) Suppose A and B are again nonsingular square matrices. Then,

tr(A
⊗

B) =
m∑
i=1

Aii tr(B) = tr(A)tr(B).

vi) Let the Schur decompositions of A and B be given as

A= PDP−1 and B =QΛQ−1,

where P,Q are unitary matrices, so that their inverses are their conjugate trans-
poses, and D,Λ are upper triangular matrices. Since the characteristic polynomial
of A and B are given by

chA(z) = |A−z · Im|= |D−z · Im|=
m∏
i=1

(Dii−z)

chB(z) = |B−z · Ip|= |Λ−z · Ip|=
p∏
i=1

(Λii−z).

Therefore, the diagonal entries of D and Λ are the eigenvalues of A and B.
We can now see that

A
⊗

B = (PDP−1)
⊗

(QΛQ−1)

= (P
⊗

Q)((DP−1)
⊗

(ΛQ−1))

= (P
⊗

Q)(D
⊗

Λ)(P−1⊗Q−1)

= (P
⊗

Q)(D
⊗

Λ)(P
⊗

Q)−1.

Therefore, the characteristic polynomial of A⊗B is given as

chA
⊗

B(z) =
∣∣∣(P⊗Q)(D

⊗
Λ)(P

⊗
Q)−1−z · Imp

∣∣∣
=
∣∣∣(D⊗Λ)−z · Imp

∣∣∣
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=
m∏
i=1

p∏
j=1

(DiiΛjj−z)

=
m∏
i=1

p∏
j=1

(λiµj−z)

The eigenvalues of A⊗B are thus collected in the set

{λiµj | 1≤ i≤m,1≤ j ≤ p}.

vii) In light of the above result, we can see that

∣∣∣A⊗B
∣∣∣= chA

⊗
B(0) =

m∏
i=1

λi

 p∏
j=1

µj


=
(
m∏
i=1

λi

)p p∏
j=1

µj

m = |A|p|B|m.

Q.E.D.
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The vectorization operator stacks the columns of a matrix to transform it into a vector.
Formally, for any A ∈ Cm×n, the vectorization of A is the mn-dimensional vector defined as

vec(A) =


A1
...
An

 ,

where A1, · · · ,An ∈Cm are the columns of A. The vec operator has very useful properties, espe-
cially in conjunction with the Kronecker product.

Lemma (Properties of the Vectorization Operator)
Let A ∈ Cm×n, B ∈ Cp×q, C ∈ Ck×l, and D ∈ Cs×r. Then, the following hold true:

i) If n= q = 1, we have

vec
(
AB′

)
=B

⊗
A.

ii) If m= p and n= q, we have

vec(A)′vec(B) = tr
(
A′B

)
.

iii) If n= p and q = k, we have

vec(ABC) = (C ′
⊗

A)vec(B) .

iv) Suppose the matrix product ABCD is well-defined. Then,

tr(ABCD) = vec
(
D′
)′ (C ′⊗A)vec(B)

Proof) i) If A,B are column vectors, then

vec
(
AB′

)
= vec


A11B11 · · · A11Bp1

... . . . ...
Am1B11 · · · Am1Bp1



=



A11B11
...

Am1B11
...

A11Bp1
...

Am1Bp1


=


B11A

...
Bp1A

=B
⊗

A.

76



ii) If A and B are matrices sharing the same dimensions, then

vec(A)′vec(B) =
m∑
i=1

n∑
j=1

AijBij =
n∑
j=1

m∑
i=1

A′jiBij = tr
(
A′B

)
.

iii) Suppose n= p and q = k, so that the matrix product ABC is well-defined. Letting
B1, · · · ,Bq ∈ Cp be the columns of B, and {e1, · · · ,ep} ⊂ Rp the standard basis of
Rp,

B =
q∑
i=1

Bie
′
i.

It follows that

vec(ABC) =
q∑
i=1

vec
(
ABi ·e′iC

)
=

q∑
i=1

(C ′ei)
⊗

(ABi)

= (C ′
⊗

A)
( q∑
i=1

(ei
⊗

Bi)
)

= (C ′
⊗

A)
( q∑
i=1

vec
(
Bie
′
i

))
= (C ′

⊗
A)vec(B) ,

where we used the preceding result on vectorization and one of the properties of
the Kronecker product.

iv) Suppose that the matrix product ABCD is well-defined. In this case, the previous
results tell us that

vec
(
D′
)′ (C ′⊗A)vec(B) = vec

(
D′
)′vec(ABC) = tr(DABC) = tr(ABCD).

Q.E.D.
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1.4.2 Linear Processes and the Martingale Difference CLT

Let {Yt}t∈Z be an n-dimensional absolutely summable causal linear process with n-dimensional
innovation process {εt}t∈Z. In many cases we will be interested in the asymptotic distribution
of the quantity

1√
T

T∑
t=p+1

Yt−hε
′
t

for any 1 ≤ h ≤ p. It turns out that the vectorization of the above quantity follows an asymp-
totically normal distribution when appropriate regularity conditions are imposed on {εt}t∈Z.

Suppose {Yt}t∈Z has absolutely summable coefficients {Ψj}j∈N and mean µ ∈ Rn, so that

Yt = µ+ Ψ(L)εt

for any t ∈ Z. Let Γ : Z→ Rn×n be the autocovariance function of {Yt}t∈Z.
Often, primarily when autoregressions are involved, we want to investigate the properties of

sums involving the np+ 1-dimensional process {Xt}t∈Z, where p ∈N+ and

Xt =


1

Yt−1
...

Yt−p


for any t ∈ Z. The mean of Xt is given as

µ̄ := E [Xt] =
(
1 µ′ · · · µ′

)′
∈ Rnp+1.

We now make the following assumptions:

A1. Nonsingular Autocovariances
We assume that the matrix

Q=


1 µ′ · · · µ′

µ Γ(0) +µµ′ · · · Γ(p−1) +µµ′

...
... . . . ...

µ Γ(p−1)′+µµ′ · · · Γ(0) +µµ′


is nonsingular.

A2. I.I.D. Innovations
This is our core assumption. We assume that {εt}t∈Z is an i.i.d. process with positive
definite covariance matrix Σ ∈ Rn×n and finite fourth moments.

This implies, by absolute summability, that {Yt}t∈Z also has finite fourth moments and
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thus bounded second moments.

A3. Stronger Fourth Moment Assumption
In this assumption, we assume that {εt}t∈Z also has finite 4+2η moments for some η > 0.

We define parameters related to the skewness and kurtosis of the innovation process as
follows:

κ3 = E
[
εt
(
ε′t
⊗

ε′t

)]
∈ Rn×n

2

and

κ4 = E
[
εtε
′
t

⊗
εtε
′
t

]
∈ Rn

2×n2
.

These quantities are designed so that, for any a,b,c,d ∈ {1, · · · ,n} and t ∈ Z,

E [εatεbtεct] = e′a ·κ3 · (eb
⊗

ec)

E [εatεbtεctεdt] = (e′a
⊗

e′b) ·κ4 · (ec
⊗

ed),

where {e1, · · · ,en} ⊂ Rn is the standard basis of Rn.
The following is our main result:

Theorem (Asymptotic Results for Linear Processes with IID Errors)
Under assumptions A1 and A2, Yt−h is independent of εt for any t ∈ Z and h > 0, and the
following hold true:

1
T

T∑
t=p+1

Xt
p→ µ̄

1
T

T∑
t=p+1

XtX
′
t
p→Q

1
T

T∑
t=p+1

εtε
′
t
p→ Σ

1
T

T∑
t=p+1

vec
(
Xtε

′
t

)
vec

(
Xtε

′
t

)′ p→ Σ
⊗

Q

1√
T

T∑
t=p+1

vec
(
Xtε

′
t

) d→N
[
0,Σ

⊗
Q
]
.

If, in addition to assumptions A1 and A2, assumption A3 holds, then the following also hold
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true:

1
T

T∑
t=p+1

 vec(Xtε
′
t)

vec(εtε′t−Σ)

 vec(Xtε
′
t)

vec(εtε′t−Σ)

′ p→
 Σ⊗Q (In

⊗
µ̄)κ3

κ′3(In
⊗
µ̄′) κ4−Σ⊗Σ


1√
T

T∑
t=p+1

 vec(Xtε
′
t)

vec(εtε′t−Σ)

 d→N

0,

 Σ⊗Q (In
⊗
µ̄)κ3

κ′3(In
⊗
µ̄′) κ4−Σ⊗Σ

 .

Proof) We first establish the convergence results pertaining to Xt. For any 0< h≤ p, {Yt−h−
µ}t∈Z is a mean zero causal linear process with absolutely summable coefficients and
i.i.d. innovations, so by the mean and covariance ergodicity of linear processes,

1
T

T∑
t=p+1

Yt−h
p→ µ

and

1
T

T∑
t=p+1

(Yt−h−µ)(Yt−h−j−µ)′ p→ Γ(j)

for any 0≤ j ≤ p−h, which establishes that

1
T

T∑
t=p+1

Yt−hY
′
t−h−j

p→ Γ(j) +µµ′

for any 0≤ j ≤ p−h. Putting together these results reveals that

1
T

T∑
t=p+1

Xt
p→ µ̄ and 1

T

T∑
t=p+1

XtX
′
t
p→Q.

Let F = {Ft | t ∈ Z} be the filtration generated by {εt}t∈Z. First note that, for any
t ∈ Z, Xt is Ft−1-measurable. To see this, choose any t ∈ Z and h > 0, and note that

µ+
m∑
j=0

Ψj ·εt−h−j
a.s.→ Yt−h

as m→∞ due to the absolute summability of {Ψj}j∈N. For any m ∈N+, µ+∑m
j=0 Ψj ·

εt−h−j , being an affine function of the innovations εt−h, · · · ,εt−h−m, is clearly Ft−1-
measurable, since Ft−1 is the σ-algebra generated by the collection {εs | s≤ t−1}. The
(almost sure) pointwise limit of a sequence of Ft−1-measurable functions is itself Ft−1-
measurable, so it follows that Yt−h is Ft−1-measurable. This holds for any h > 0, so
Xt is also a Ft−1-measurable random vector. The independence of εt and Ft−1 implies
that εt is also independent of Xt for any t ∈ Z.
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Note that we can express

vec
(
Xtε

′
t

)
= (εt

⊗
Xt) =

(
In
⊗

Xt

)
εt and vec

(
εtε
′
t−Σ

)
= (εt

⊗
εt)−vec(Σ)

for any t ∈ Z. Note also that, for any matrix A ∈ Rm×k,

∥∥∥A⊗Iq
∥∥∥2

= q
m∑
i=1

k∑
j=1
|Aij |2 = q · ‖A‖2

and, similarly, ‖Iq
⊗
A‖2 = q‖A‖2.

We now show that {vec(Xtε
′
t)}t∈Z is a martingale difference sequences with respect to

F with bounded fourth moments under A1 and A2. Likewise, under assumption A3,
{vec(εtε′t−Σ)}t∈Z is a martingale difference sequences with respect to F with bounded
2 +η moments.

1) {vec(Xtε
′
t)}t∈Z

Suppose assumptions A1 and A2 hold. For any t ∈ Z, since
∣∣∣εt⊗Xt

∣∣∣= ∣∣∣(In⊗Xt)εt
∣∣∣

≤
∥∥∥In⊗Xt

∥∥∥|εt|
=
√
n|εt||Xt|,

we can see that

E
∣∣∣εt⊗Xt

∣∣∣4 ≤ n2E
[
|εt|4|Xt|4

]
= n2

(
E|Xt|4

)(
E|εt|4

)
(Independence of Xit and εjt)

≤ n2
(

sup
s∈Z

E|Xs|4
)(

sup
s∈Z

E|εs|4
)
<+∞,

where the second to last inequality follows from Hölder’s inequality, and the last
from the fact that {Yt}t∈Z, and thus {Xt}t∈Z, has bounded fourth moments. Thus,
{vec(Xtε

′
t)}t∈Z has bounded fourth moments.

Consequently, {vec(Xtε
′
t)}t∈Z is integrable, and since Xt and εt are both Ft-

measurable for any t∈Z, {vec(Xtε
′
t)}t∈Z is F-adapted. Furthermore, for any t∈Z,

E
[
vec

(
Xtε

′
t

)
| Ft−1

]
= E

[
εt
⊗

Xt | Ft−1
]

= E
[
(εt
⊗

Inp+1) | Ft−1
]
·
(
In
⊗

Xt

)
= E

[
εt
⊗

Inp+1
]
·
(
In
⊗

Xt

)
= 0,

where the second equality uses the fact that Xt is Ft−1-measurable and the third
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one follows from the independence of εt and Ft−1. Taking expectations on both
sides now reveals, via the law of iterated expectations, that {vec(Xtε

′
t)}t∈Z is a

zero mean process, and by definition it is an MDS with respect to F that also has
bounded fourth moments.

2) {vec(εtε′t−Σ)}t∈Z
Now assume A3 in addition to A1 and A2. For any t ∈ Z, since

∣∣∣εt⊗εt
∣∣∣≤ ∥∥∥εt⊗In

∥∥∥∥∥∥In⊗εt
∥∥∥

= n|εt|2,

we have

E
∣∣∣εt⊗εt

∣∣∣2+η
≤ n2+ηE|εt|4+2η

≤ n2+η
(

sup
s∈Z

E|εs|4+2η
)
<+∞.

Thus, {vec(εtε′t−Σ)}t∈Z has bounded 2 +η moments.
This also shows that {vec(εtε′t−Σ)}t∈Z is integrable, and since εt is Ft-measurable
for any t ∈ Z, {vec(εtε′t−Σ)}t∈Z is F-adapted. Furthermore, for any t ∈ Z,

E
[
vec

(
εtε
′
t−Σ

)
| Ft−1

]
= E

[
εt
⊗

εt | Ft−1
]
−vec(Σ)

= E
[
εt
⊗

εt
]
−vec(Σ) = 0,

where the second equality uses the independence of εt and Ft−1. Taking expec-
tations on both sides now reveals, via the law of iterated expectations, that
{vec(εtε′t−Σ)}t∈Z is a zero mean process, and by definition it is an MDS with
respect to F that is L2+η-bounded.

From the above results, we are able to conclude that

{vec
(
Xtε

′
t

)
| t ∈ Z}

is an MDS with respect to F with bounded fourth moments under A1 and A2, and, if
we assume A3 as well, that

{ vec(Xtε
′
t)

vec(εtε′t−Σ)

∣∣∣t ∈ Z
}

is an MDS with respect to F with bounded 2 +η moments.
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It remains to investigate the asymptotic variance of the above processes to implement
the MDS CLT. Assume A1 to A3. Note first that we can write

vec
(
Xtε

′
t

)
vec

(
Xtε

′
t

)′ = (
εt
⊗

Xt

)(
ε′t
⊗

X ′t

)
=
(
εtε
′
t

⊗
XtX

′
t

)
,

vec
(
Xtε

′
t

)
vec

(
εtε
′
t−Σ

)′ = (
In
⊗

Xt

)
εt
[(
ε′t
⊗

ε′t

)
−vec(Σ)′

]
vec

(
εtε
′
t−Σ

)
vec

(
εtε
′
t−Σ

)′ = (
εtε
′
t

⊗
εtε
′
t

)
−vec(Σ)

(
ε′t
⊗

ε′t

)
−
(
εt
⊗

εt
)

vec(Σ)′+ vec(Σ)vec(Σ)′

for any t ∈ Z.

Note that

E
∥∥∥(εtε′t−Σ

)⊗
XtX

′
t

∥∥∥≤ (E∥∥∥(εtε′t−Σ
)⊗

Inp+1
∥∥∥)(E∥∥∥In⊗Xt

∥∥∥)
(Independence of εt and Xt)

=
√
n(np+ 1)

(
E
∥∥εtε′t−Σ

∥∥)(E|Xt|)

≤
√
n(np+ 1)

(
E|εt|2 +‖Σ‖

)
(E|Xt|)

=
√
n(np+ 1)(tr(Σ) +‖Σ‖)(E|Xt|)

for any t ∈ Z. {Xt}t∈Z has bounded fourth moments and thus first moments, so it
follows that {(εtε′t−Σ)⊗XtX

′
t}t∈Z is L1-bounded.

In addition,

E
[(
εtε
′
t−Σ

)⊗
XtX

′
t | Ft−1

]
= E

[(
εtε
′
t−Σ

)⊗
Inp+1 | Ft−1

]
· (In

⊗
XtX

′
t)

= E
[(
εtε
′
t−Σ

)⊗
Inp+1

]
· (In

⊗
XtX

′
t) =O

for any t ∈ Z, so each element in the sequence of matrices

{(
εtε
′
t−Σ

)⊗
XtX

′
t

}
t∈Z

is an MDS with respect to F that is L1-bounded. By the martingale WLLN,

1
T

T∑
t=p+1

vec
(
Xtε

′
t

)
vec

(
Xtε

′
t

)′−[Σ
⊗ 1

T

T∑
t=1

XtX
′
t

]
L1
→O.

Using the fact that 1
T

∑T
t=1XtX

′
t
p→Q, we now have the result

1
T

T∑
t=p+1

vec
(
Xtε

′
t

)
vec

(
Xtε

′
t

)′ p→ Σ
⊗

Q.

This result was derived without the need for assumption A3.
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For any t ∈ Z,

E
[
εt
[(
ε′t
⊗

ε′t

)
−vec(Σ)′

]]
= E

[
εt
(
ε′t
⊗

ε′t

)]
−E [εt] ·vec(Σ)′ = E

[
εt
(
ε′t
⊗

ε′t

)]
= κ3.

Consider the sequence

{(
In
⊗

Xt

)(
εt
[(
ε′t
⊗

ε′t

)
−vec(Σ)′

]
−κ3

)}
t∈Z

.

For any t ∈ Z,

E
∥∥∥(In⊗Xt

)(
εt
[(
ε′t
⊗

ε′t

)
−vec(Σ)′

]
−κ3

)∥∥∥
≤ E

[∥∥∥In⊗Xt

∥∥∥ · |εt| · ∣∣∣εt⊗εt−vec(Σ)
∣∣∣]+

(
E
∥∥∥In⊗Xt

∥∥∥)‖κ3‖

=
(
E
∥∥∥In⊗Xt

∥∥∥)[E[|εt| · ∣∣∣εt⊗εt−vec(Σ)
∣∣∣]−‖κ3‖

]

≤
√
n(E|Xt|)

(
tr(Σ)

1
2

(
E
∣∣∣εt⊗εt−vec(Σ)

∣∣∣2) 1
2

+‖κ3‖
)
.

Since {Xt}t∈Z and {εt
⊗
εt−vec(Σ)}t∈Z have bounded 2 +η moments, it follows that

the expression on the right hand side is bounded above.

Furthermore, for any t ∈ Z,

E
[(
In
⊗

Xt

)(
εt
[(
ε′t
⊗

ε′t

)
−vec(Σ)′

]
−κ3

)
| Ft−1

]
=
(
In
⊗

Xt

)
·E
[
εt
[(
ε′t
⊗

ε′t

)
−vec(Σ)′

]
−κ3 | Ft−1

]
=
(
In
⊗

Xt

)
·E
[
εt
[(
ε′t
⊗

ε′t

)
−vec(Σ)′

]
−κ3

]
=O.

It follows that each element in the sequence
{

(In
⊗
Xt)

(
εt
[
(ε′t
⊗
ε′t)−vec(Σ)′

]
−κ3

)}
t∈Z

is an MDS with respect to F that is L1-bounded.

By the martingale WLLN,

1
T

T∑
t=p+1

vec
(
Xtε

′
t

)
vec

(
εtε
′
t−Σ

)′−
In⊗ 1

T

T∑
t=p+1

Xt

κ3
p→O.

Using the fact that 1
T

∑T
t=p+1Xt

p→ µ̄, we have

1
T

T∑
t=p+1

vec
(
Xtε

′
t

)
vec

(
εtε
′
t−Σ

)′ p→ (
In
⊗

µ̄
)
κ3.
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Finally, since

E
[
vec

(
εtε
′
t−Σ

)
vec

(
εtε
′
t−Σ

)′]= κ4−vec(Σ)vec(Σ)′

for any t ∈ Z, each element in the sequence

{vec
(
εtε
′
t−Σ

)
vec

(
εtε
′
t−Σ

)′−(κ4−vec(Σ)vec(Σ)′
)
}t∈Z

is an i.i.d. sequence with mean zero and thus an MDS with respect to F . They are also
L1-bounded because {εt}t∈Z is L4-bounded. Therefore, by the martingale WLLN,

1
T

T∑
t=p+1

vec
(
εtε
′
t−Σ

)
vec

(
εtε
′
t−Σ

)′ p→ κ4−vec(Σ)vec(Σ)′ .

Putting these results together,

1
T

T∑
t=p+1

 vec(Xtε
′
t)

vec(εtε′t−Σ)

 vec(Xtε
′
t)

vec(εtε′t−Σ)

′ p→
 Σ⊗Q (In

⊗
µ̄)κ3

κ′3(In
⊗
µ̄′) κ4−Σ⊗Σ

 .
By the MDS CLT, we now have

1√
T

T∑
t=p+1

 vec(Xtε
′
t)

vec(εtε′t−Σ)

 d→N

0,

 Σ⊗Q (In
⊗
µ̄)κ3

κ′3(In
⊗
µ̄′) κ4−Σ⊗Σ

 .

Since the asymptotic distribution of 1√
T

∑T
t=p+1 vec(Xtε

′
t) does not require assumption

A3, it also holds when we only assume assumptions A1 and A2.

Q.E.D.
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Vector Autoregressions

Here, we study the statistical properties of VAR models as a special case of weakly stationary
linear processes.

An n-dimensional process {Yt}t∈Z is said to follow a (reduced-form) VAR(p) process if there
exist a white noise process {εt}t∈Z, an intercept δ ∈ Rn and coefficients Φ1, · · · ,Φp ∈ Rn×n such
that

Yt = δ+ Φ1 ·Yt−1 + · · ·+ Φp ·Yt−p+εt

for any t ∈ Z. Defining the lag polynomial

Φ(L) = In−Φ1 ·L−·· ·−Φp ·Lp,

we can also write

Φ(L)Yt = δ+εt.

for any t ∈ Z. The companion matrix for this VAR(p) process is defined as

F =


Φ1 · · · Φp−1 Φp

In · · · O O
... . . . ...

...
O · · · In O

 ∈ Rnp×np.

Defining Zt = (Y ′t , · · · ,Y ′t−p+1)′ and c = (δ′,0′, · · · ,0′) and ut = (ε′t,0′, · · · ,0′)′ for any t ∈ Z, we
can see that {Zt}t∈Z follows a VAR(1) process with mean reversion parameter F :

Zt = c+F ·Zt−1 +ut

for any t ∈ Z. This shows us that a VAR process of any order can be expressed as a VAR(1)
process. In particular, this tells us that the conditions under which {Yt}t∈Z is weakly stationary
can simply be imposed on F . This is formally developed in the first subsection.
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2.1 Conditions for Stationarity

Before we state and prove this result, we first extend the trace norm for real matrices to complex
matrices. Let A ∈ Cm×n be a complex m×n matrix. Then, we define

‖C‖=

 m∑
i=1

n∑
j=1
|Cij |2

 1
2

.

To see how this is a natural extension of the trace norm to complex matrices, let A,B ∈ Rm×n

be the real and imaginary parts of C. Then,

‖C‖2 =
m∑
i=1

n∑
j=1
|Cij |2 =

m∑
i=1

n∑
j=1
|Aij |2 +

m∑
i=1

n∑
j=1
|Bij |2

= ‖A‖2 +‖B‖2,

where we used the definition of the absolute value of complex numbers, which tells us that

‖C‖=
(
‖A‖2 +‖B‖2

) 1
2 .

Therefore, the trace norm for complex matrices is defined using the trace norm for real matrices
in a similar manner to how the absolute value of complex numbers is defined.

This extension of the trace norm satisfies many properties of the trace norm for real matrices.
We state a few of these below; let z ∈ C, x ∈ Cn, A ∈ Rm×n, and B ∈ Rn×p.

• ‖AB‖ ≤ ‖A‖ · ‖B‖
By definition,

‖AB‖2 =
m∑
i=1

p∑
j=1

n∑
k=1
|AikBkj |2

≤
m∑
i=1

p∑
j=1

n∑
k=1

n∑
l=1
|AikBlj |2 = ‖A‖2‖B‖2,

so that ‖AB‖ ≤ ‖A‖ · ‖B‖.

• |Ax| ≤ ‖A‖ · |x|
This follows immediately by noting that ‖y‖= |y| for any y ∈ Rn by definition.

• ‖A+B‖ ≤ ‖A‖+‖B‖
This holds when A and B have the same dimensions. In this case,

‖A+B‖=

 m∑
i=1

n∑
j=1
|Aij +Bij |2

 1
2

≤

 m∑
i=1

n∑
j=1
|Aij |2

 1
2

+

 m∑
i=1

n∑
j=1
|Bij |2

 1
2

= ‖A‖+‖B‖,
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where the inequality follows by viewingAij ,Bij as functions defined on the space {1, · · · ,m}×
{1, · · · ,n} and applying Minkowski’s inequality for L2 spaces.

We now prove the result of interest.

Theorem (Eigenvalue Condition for Stationarity of VAR Process)
Let {Yt}t∈Z be a VAR(p) process given as

Yt = δ+ Φ1 ·Yt−1 + · · ·+ Φp ·Yt−p+εt

for any t ∈ Z, where {εt}t∈Z is a white noise process with positive definite variance Σ. Let F be
the companion matrix of {Yt}t∈Z.

If {Yt}t∈Z is a square integrable process such that supt∈Z ‖Yt‖2 < +∞ and the eigenvalues
of F lie within the unit circle, then {Yt}t∈Z is weakly stationary with a causal linear process
representation

Yt = µ+
∞∑
j=0

Ψj ·εt−j

for some one-summable {Ψj}j∈N and µ= Ψ(1)δ.

Proof) We first investigate the convergence properties of the companion matrix F . Let λ1, · · · ,λm ∈
C be the distinct eigenvalues of F , and

J =


J1 · · · O
... . . . ...
O · · · Jm


the Jordan normal form of F , where the ith block Ji is a Jordan matrix corresponding
to the ith distinct eigenvalue λi of F :

Ji =



λi 1 · · · 0 0
0 λi · · · 0 0
...

... . . . ...
...

0 0 · · · λi 1
0 0 · · · 0 λi


.

Then, by the Jordan decomposition theorem, there exists a nonsingular matrix Λ ∈
Cnp×np such that

F = ΛJΛ−1.
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For any j > 0,

F j = ΛJ jΛ−1 = Λ


J j1 · · · O
... . . . ...
O · · · J jm

Λ−1.

Letting Ji be a ki×ki matrix, where ki ≤ np,

J ji =



λji

 j

j−1

λj−1
i · · ·

 j

j−ki+ 1

λj−ki+1
i

0 λji · · ·

 j

j−ki+ 2

λj−ki+2
i

...
... . . . ...

0 0 · · · λji


,

for any j ≥ ki. Since j

j−k

= j!
k!(j−k)! = j× (j−1)×·· ·× (j−k+ 1)

k! ≤ jk

for any j ∈N+ and 0≤ k ≤ j, it follows that, for any j ≥ ki,

∥∥∥J ji ∥∥∥≤ ki∑
l=1

ki−l∑
q=1

 j

j− q+ 1

 |λi|j−q+1

≤
ki∑
l=1

ki−l∑
q=1

jq−1|λi|j−q+1

≤ |λi|j−ki+1

 ki∑
l=1

ki−l∑
q=1

jq−1


≤ |λi|j−ki+1

ki · ki∑
q=1

jq−1


≤ k2

i · jki−1|λi|j−ki+1,

where the third inequality is justified by the fact that |λi| < 1 by assumption. By
implication, letting k = max1≤i≤m ki and λ= max1≤i≤m |λi|< 1,

∥∥∥J j∥∥∥≤ m∑
i=1

∥∥∥J ji ∥∥∥≤mk2jk−1λj−k+1

for any j ≥ k. Defining Θj = F j for any j ∈ N, since

‖Θj‖ ≤ ‖Λ‖
∥∥∥Λ−1

∥∥∥ ·∥∥∥J j∥∥∥,
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we have

(j · ‖Θj‖)
1
j ≤

(
‖Λ‖

∥∥∥Λ−1
∥∥∥k2

) 1
j ·
(
j

1
j

)k
λ
j−k+1
j

for any j ≥ ki, so that

lim
j→∞

(j · ‖Θj‖)
1
j = λ < 1.

By the root test for convergence,

∞∑
j=0

j · ‖Θj‖<+∞,

so that {Θj}j∈N is a one-summable and thus absolutely summable sequence of np×
np matrices. The convergence of the series above also implies that j‖Θj‖ and, by
implication, ‖Θj‖ converges to 0 as j→∞. In other words,

lim
j→∞

∥∥∥F j∥∥∥= 0.

Define Zt = (Y ′t , · · · ,Y ′t−p+1)′, c = (δ′,0′, · · · ,0′) and ut = (ε′t,0′, · · · ,0′)′ for any t ∈ Z.
Then, {Zt}t∈Z follows a VAR(1) process with mean reversion parameter F

Zt = c+FZt−1 +ut

for any t ∈ Z. Additionally, we can see that

|Zt| ≤
p−1∑
j=0
|Yt−j |

for any t ∈ Z, so that, by Minkowski’s inequality,

sup
t∈Z
‖Zt‖np,2 ≤ p · sup

t∈Z
‖Yt‖n,2 <+∞.

For any T ∈N+, the VAR(1) property of Zt allows us to write

Zt =

 T∑
j=0

Θj

c+
T∑
j=0

Θj ·ut−j +F T+1Zt−T−1.

Since {Θj}j∈N is absolutely summable, the sequence

{ T∑
j=0

Θj ·ut−j
}
T∈N
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converges almost surely and in L2 to the square integrable random vector

∞∑
j=0

Θj ·ut−j ,

while the sequence {∑T
j=0 Θj}T∈N converges to

Θ(1) =
∞∑
j=0

Θj .

Finally, since

∥∥∥F T+1Zt−T−1
∥∥∥
np,2
≤
∥∥∥F T+1

∥∥∥ · ‖Zt−T−1‖np,2 ≤
∥∥∥F T+1

∥∥∥ ·(sup
s∈Z
‖Zs‖np,2

)
,

where the right hand side converges to 0 as T →∞, we can see that

{ T∑
j=0

Θj

c+
T∑
j=0

Θj ·ut−j +F T+1Zt−T−1
}
T∈N

converges in L2 to

Θ(1)c+
∞∑
j=0

Θj ·ut−j .

Since Zt is also an L2 limit of the above sequence, the uniqueness of mean square limits
up to almost sure equivalence tells us that

Zt = Θ(1)c+
∞∑
j=0

Θj ·ut−j .

almost surely. This holds for any t ∈ Z, so {Zt}t∈Z is a weakly stationary causal linear
process with mean Ψ(1)c and one-summable coefficients {Θj}j∈N.

Letting {Ψj}j∈N collect the elements of {Θj}j∈N in the first n×n blocks, {Ψj}j∈N is a
sequence of one-summable n×n matrices such that

Yt = Ψ(1)δ+
∞∑
j=0

Ψj ·εt−j

for any t ∈ Z.

Q.E.D.

The next lemma furnishes us with an equivalent formulation of the eigenvalue condition of
the previous theorem in terms of determinants.
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Lemma (Eigenvalue Condition in terms of Determinants)
Let Φ1, · · · ,Φp ∈ Rn×n and let F be the companion matrix defined as

F =


Φ1 · · · Φp−1 Φp

In · · · O O
... . . . ...

...
O · · · In O

 .

Then, the np eigenvalues of F lie within the unit circle if and only if all of the np roots of the
polynomial

det(In−Φ1 ·z−·· ·−Φp ·zp)

lie outside of the unit circle.

Proof) The characteristic function of F is given as

det(F −λ · In) =

∣∣∣∣∣∣∣∣∣∣∣∣


Φ1−λ · In · · · Φp−1 Φp

In · · · O O
... . . . ...

...
O · · · In −λ · In



∣∣∣∣∣∣∣∣∣∣∣∣
.

We proceed by induction for λ 6= 0. When p= 1, it is clear that

|det(In−λ ·F )|= |det(Φ1−λ · In)|.

Suppose that, for some k ≥ 1,

|det(In−λ ·F )|=
∣∣∣det

(
Φp+λ ·Φp−1 + · · ·+λp−1 ·Φ1−λp · In

)∣∣∣
for p = k and any specification of the coefficient matrices in F . Now suppose that
p= k+ 1. In this case, defining

F̃k =


Φ1−λ · In · · · Φk−1 Φk

In · · · O O
... . . . ...

...
O · · · In −λ · In

 ,

Bk =


Φk+1

O
...
O

 ∈ Rnk×n
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Ck =
(
O · · ·O In

)
∈ Rn×nk,

we can see that

F −λ · In =

F̃k Bk

Ck −λ · In

 .
By the formula for the determinant of block matrices, if λ 6= 0, then

det(F −λ · In) = det(−λ · In) ·det
(
F̃k + 1

λ
BkCk

)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λn ·det





Φ1−λ · In · · · Φk−1 Φk + 1
λΦk+1

In · · · O O
... . . . ...

...
O · · · −λ · In O

O · · · In −λ · In





∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣λn ·det

( 1
λ

Φk+1 + Φk + · · ·+λk−1 ·Φ1−λk · In
)∣∣∣∣

=
∣∣∣det

(
Φk+1 +λ ·Φk + · · ·+λk ·Φ1−λk+1 · In

)∣∣∣,
where the second equality follows from the inductive hypothesis.

Therefore, when λ 6= 0, we can see that

|det(F −λ · In)|=
∣∣∣det

(
Φp+λ ·Φp−1 + · · ·+λp−1Φ1−λp · In

)∣∣∣
= 1
|λp|
·
∣∣∣∣det

(
In−Φ1 ·

1
λ
−·· ·− 1

λp
Φp

)∣∣∣∣.
In other words, λ is a non-zero eigenvalue of F if and only if its reciprocal is a
root of det(In−Φ1 ·z−·· ·−Φp ·zp). On the other hand, if λ is a non-zero root of
det(In−Φ1 ·z−·· ·−Φp ·zp), then 1

λ is a non-zero eigenvalue of F .

Suppose that the np roots of det(In−Φ1 ·z−·· ·−Φp ·zp) are all outside the unit circle.
Then, since they are non-zero and their reciprocals are eigenvalues of F , the eigenvalues
of F are all within the unit circle.

Conversely, suppose the eigenvalues of F are all within the unit circle. Assume, for the
sake of contradiction, that det(In−Φ1 ·z−·· ·−Φp ·zp) has roots within or on the unit
circle; these roots are non-zero since det(In−Φ1 ·z−·· ·−Φp ·zp) = 1 when z = 0. Since
the reciprocals of these roots are eigenvalues of F , this means that F has eigenvalues on
or outside the unit circle, a contradiction. Thus, the roots of det(In−Φ1 ·z−·· ·−Φp ·zp)
must all be outside the unit circle.

Q.E.D.
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Retaining the notation of the above theorem, we have

Φ(L)Yt = δ+εt

for any t ∈ Z. The theorem tells us that, if the eigenvalues of F are all within the unit circle and
the VAR process {Yt}t∈Z is L2-bounded, then there exists a one-summable sequence {Ψj}j∈N of
n×n matrices such that

Yt = Ψ(1)δ+ Ψ(L)εt

for any t ∈ Z. It follows that

Φ(1)Ψ(1)δ+ Φ(L)Ψ(L)εt = δ+εt

for any t ∈ Z; therefore, using the notation defined earlier for linear processes,

Ψ(L) = Φ(L)−1,

and we can equivalently write

Yt = Φ(1)−1δ+ Φ(L)−1εt

for any t ∈ Z.
Letting µ= Ψ(1)δ be the mean of Yt, since

Yt = δ+ Φ1 ·Yt−1 + · · ·+ Φp ·Yt−p+εt

for any t ∈ Z and {Yt}t∈Z is mean stationary, taking expectations on both sides yields

(In−Φ1−·· ·−Φp) ·µ= δ.

If (In−Φ1−·· ·−Φp) is singular, then det(In−Φ1−·· ·−Φp) = 0, which means that
det(In−Φ1 ·z−·· ·−Φp ·zp) has a unit root. In light of the above lemma, this contradicts the
fact that the eigenvalues of F are within the unit circle, so that (In−Φ1− ·· ·−Φp) must be
nonsingular. This reveals that

µ= (In−Φ1−·· ·−Φp)−1δ = Ψ(1)δ,

and as such, it is consistent notation to write

Ψ(1) = (In−Φ1−·· ·−Φp)−1 = Φ(1)−1.
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2.2 Topological Properties of Positive Definite Matrices

Now we investigate the asymptotic properties of the QMLE (equivalently, OLS) estimates of the
parameters of stationary VARs. We first establish some topological facts concerning the space
of all real symmetric matrices.

Define Sn×n as the space of all symmetric n×n matrices; we know that (Sn×n,〈·, ·〉tr) is an
inner product space over the real field, where 〈·, ·〉tr is the trace inner product defined as

〈A,B〉tr = tr
(
A′B

)
for any A,B ∈ Sn×n, and that this inner product induces the trace norm ‖·‖ defined as

‖A‖= tr
(
A′A

) 1
2 ,

which can be extended to encompass any real matrix A ∈ Rm×n of arbitrary dimension.
Now let PSn×n denote the space of all positive definite n×n matrices. This is clearly a

convex cone contained in Sn×n; for any A,B ∈ PSn×n and a ≥ 0, since aA+B is also positive
definite, it is contained in Sn×n. We can also show that PSn×n is an open subset of Sn×n with
respect to the metric topology induced by the metric induced by the trace norm on Sn×n:

Lemma (Set of Positive Definite Matrices is Open)
Let ds be the metric on Sn×n induced by the trace norm ‖·‖. Then, PSn×n is an open subset of
Sn×n with respect to the metric ds.

Proof) Let Tn be the unit circle in Rn. We first show that the function f : Sn×n→ R defined
as

f(A) = inf
v∈Tn

v′Av

for any A ∈ Sn×n is a continuous function. Initially, we can see that f is well-defined
and takes values in R because Tn is a compact subset of Rn and the mapping v 7→ v′Av

is continuous for any fixed A ∈ Sn×n. By the extreme value theorem, this implies that,
for any A ∈ Sn×n, there exists a vA ∈ Tn such that

f(A) = v′AAvA.

Now choose A,B ∈ Sn×n. We consider two cases: initially, suppose that f(A) ≤ f(B).
Then, since

v′BBvB = inf
v∈Tn

v′Bv ≤ v′ABvA,
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we have

f(B)−f(A) = v′BBvB−v′AAvA ≤ v′ABvA−v′AAvA = v′A(B−A)vA
= tr

(
(B−A)vAv′A

)
≤ ‖B−A‖ ·

∥∥vAv′A∥∥≤ ‖B−A‖,
where we used the Cauchy-Schwarz inequality and the fact that ‖vAv′A‖ ≤ |vA|

2 = 1.
By symmetry, if f(B)≤ f(A), then

f(A)−f(B)≤ ‖A−B‖

as well. Therefore,

|f(A)−f(B)| ≤ ‖A−B‖,

and we can see that f is Lipschitz continuous with respect to the metric ds.

Let A ∈ PSn×n. Since vA ∈ Tn and is thus non-zero, by definition we have

f(A) = v′AAvA > 0.

Defining ε = f(A) > 0, since f is continuous on Sn×n, this means that there exists a
δ > 0 such that, for any B ∈ Sn×n such that ‖A−B‖< δ, we must also have

|f(A)−f(B)|< ε,

and in particular, f(B)> 0. This indicates that, for any non-zero v ∈ Rn,

v′Bv = |v|2 ·
(
v

|v|

)′
B

(
v

|v|

)
≥ |v|2 ·v′BBvB = |v|2 ·f(B)> 0,

where the last inequality follows because |v|2 > 0 and f(B)> 0. Therefore, B ∈ PSn×n

by definition. In other words, as long as ‖A−B‖ < δ, B is positive definite. Since A
was chosen as an arbitrary positive definite matrix, this shows us that PSn×n is an
open subset of Sn×n.

Q.E.D.
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The operator vech(·) on Sn×n is defined as

vech(A) =



A11
...

An1

A22
...

An2
...

An−1,n−1

An,n−1

Ann



∈ Rn(n+1)/2.

In other words, we stack the lower triangular elements of A. It is clear that vech(·) is a bijection
from Sn×n onto Rn(n+1)/2 and thus admits an inverse function vech−1 (·) from Rn(n+1)/2 onto
Sn×n. We can also easily show that vech−1 (·) is continuous on Rn(n+1)/2; for any a,b∈Rn(n+1)/2,
letting A= vech−1 (a) ,B = vech−1 (b) ∈ Sn×n,

∥∥∥vech−1 (a)−vech−1 (b)
∥∥∥2

=
n∑
i=1

n∑
j=1
|Aij−Bij |2 ≤ 2 ·

n∑
j=1

n∑
i=j
|Aij−Bij |2 = 2 · |a− b|2,

where the inequality follows due to the symmetry of A and B.
Defining the subset A of Rn(n+1)/2 as

A= vech
(
PSn×n

)
,

we can now see that

A=
(
vech−1

)−1 (
PSn×n

)
,

that is, A is the inverse image of the open set PSn×n under the continuous function vech−1 (·).
By the definition of continuity, A is an open subset of Rn(n+1)/2.
A is also convex. Choosing any a = vech(A) , b = vech(B) ∈ A for some A,B ∈ PSn×n and

t ∈ [0,1], note that

tA+ (1− t)B ∈ PSn×n

since PSn×n is a convex cone. Therefore,

ta+ (1− t)b= vech(tA+ (1− t)B) ∈ A.

We have thus shown that A is an open convex subset of Rn(n+1)/2, and as such differentiation
of functions on A is well-defined.
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2.2.1 Duplication, Elimination and Commutation Matrices

To facilitate the transition between the vech and vec operators, we define the duplication matrix
Dn ∈ Rn2×n(n+1)/2 as the unique matrix such that

vec(A) =Dn ·vech(A)

for any A ∈ Sn×n. Clearly, Dn has full rank n(n+1)
2 , so that its pseudoinverse

D+
n = (D′nDn)−1D′n ∈ Rn(n+1)/2×n2

is well-defined and satisfies D+
nDn = In(n+1)/2. Note that

D+
n vec(A) = vech(A)

for any A ∈ Rn×n; we call D+
n the elimination matrix.

Another matrix that often comes in handy is the commutation matrix. For any m,n ∈N+,
and A ∈Rm×n, the mn-dimensional vectors vec(A) and vec(A′) contain the same elements, just
arranged in a different manner. Thus, there exists a matrix Kmn ∈ Rmn×mn such that

Kmnvec(A) = vec
(
A′
)

for any A ∈ Rm×n. We write Kn for Knn.
We can construct Kmn by noting that Aij is the (m(j− 1) + i)th element of vec(A), while

it is the (n(i−1) + j)th element of vec(A′). This indicates that Kmn is the elementary matrix
formed by interchanging the (m(j−1) + i) and (n(i−1) + j)th columns (or equivalently, rows)
of the identity matrix Imn. To do this, we need only put the (n(i−1) + j,m(j−1) + i) element
of Kmn equal to 1 for any 1≤ i≤m and 1≤ j ≤ n, and put every other element equal to 0.

Note that, by definition,

Knmvec
(
A′
)

= vec(A) ,

so that

KmnKnm ·vec
(
A′
)

= vec
(
A′
)

for any A∈Rm×n. This indicates that Knm =K−1
mn, and since Kmn, being an elementary matrix,

is also orthogonal, it follows that Knm =K ′mn =K−1
mn.

The following are some properties of commutation matrices:
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Lemma (Properties of Commutation Matrices)
Let A ∈ Rm×n and B ∈ Rp×q. Then, the following hold true:

i) Pre-and Post-multiplying by commutation matrices exchanges the order of Kronecker prod-
ucts:

Kpm

(
A
⊗

B
)

=
(
B
⊗

A
)
Kqn,

Kpm

(
A
⊗

B
)
Knq =B

⊗
A.

ii) The vectorization of a Kronecker product can be written as the Kronecker product of
vectorizations:

vec
(
A
⊗

B
)

= (In
⊗

Kqm

⊗
Ip) · (vec(A)

⊗
vec(B)).

iii) KnDn =Dn and D+
nKn =D+

n .

iv) Defining Nn := 1
2(In2 +Kn), we have

Nn =DnD
+
n .

Proof) i) For any C ∈ Rq×n,

Kpm

(
A
⊗

B
)

vec(C) =Kpm ·vec
(
BCA′

)
= vec

(
AC ′B′

)
=
(
B
⊗

A
)

vec
(
C ′
)

=
(
B
⊗

A
)
Kqn ·vec(C) .

This holds for any C ∈ Rq×n, so we must have

Kpm

(
A
⊗

B
)

=
(
B
⊗

A
)
Kqn.

Since Knq is the inverse of Kqn, we now have

Kpm

(
A
⊗

B
)
Knq =

(
B
⊗

A
)
.

ii) Let {e1, · · · ,en} ⊂Rn and {u1, · · · ,uq} ⊂Rq be the standard bases of their respec-
tive euclidean spaces. Letting a1, · · · ,an ∈Rm be the columns of A and b1, · · · , bq ∈
Rp those of B, note that we can write

A=
n∑
i=1

aie
′
i and B =

q∑
i=1

biu
′
i.
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It now follows that

vec
(
A
⊗

B
)

=
n∑
i=1

q∑
j=1

vec
(
aie
′
i

⊗
bju
′
j

)

=
n∑
i=1

q∑
j=1

vec
(
(ai
⊗

bj)(ei
⊗

uj)′
)

=
n∑
i=1

q∑
j=1

[
(ei
⊗

uj)
⊗

(ai
⊗

bj)
]

=
n∑
i=1

q∑
j=1

[
ei
⊗

(uj
⊗

ai)
⊗

bj
]

=
n∑
i=1

q∑
j=1

[
ei
⊗

vec
(
aiu
′
j

)⊗
bj
]

=
n∑
i=1

q∑
j=1

(In
⊗

Kqm

⊗
Ip) ·

[
ei
⊗

vec
(
uja
′
i

)⊗
bj
]

=
n∑
i=1

q∑
j=1

(In
⊗

Kqm

⊗
Ip) ·

[
(ei
⊗

ai)
⊗

(uj
⊗

bj)
]

= (In
⊗

Kqm

⊗
Ip)

 n∑
i=1

q∑
j=1

vec
(
aie
′
i

⊗
bju
′
j

)
= (In

⊗
Kqm

⊗
Ip) ·vec

(
A
⊗

B
)

iii) For any A ∈ Sn×n,

KnDnvech(A) =Knvec(A) = vec(A) =Dnvech(A) ,

so that KnDn =Dn. Similarly,

D+
nKn =

(
D′nDn

)−1
D′nKn =

(
D′nDn

)−1
D′n =D+

n .

This shows us that KnDn =Dn and D+
nKn =D+

n .

iv) Note first that

KnDn =Dn and D+
nKn =D+

n

imply

NnDn =Dn and D+
nNn =D+

n .
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We can now show that Nn−DnD
+
n is a symmetric and idempotent matrix: it is

immediately seen to be symmetric, and

(
Nn−DnD

+
n

)2
=N2

n−NnDnD
+
n −DnD

+
nNn+DnD

+
n

=Nn−DnD
+
n ,

where we used the fact that N2
n =Nn (which is clear from insepection). Therefore,

rank(Nn−DnD
+
n ) = tr

(
Nn−DnD

+
n

)
= tr(Nn)− tr

(
Dn(D′nDn)−1D′n

)
= 1

2
(
n2 +n

)
− n(n+ 1)

2 = 0,

so that Nn =DnD
+
n .

Q.E.D.

The last property implies that, for any A,B ∈ PSn×n,

D+
n (A

⊗
B)DnD

+
n (A−1⊗B−1)Dn = 1

2D
+
n (A

⊗
B)(In2 +Kn)(A−1⊗B−1)Dn

= 1
2D

+
n (In2 +Kn)(A

⊗
B)(A−1⊗B−1)Dn

=D+
n In2Dn =D+

nDn = In(n+1)/2,

so that

(
D+
n (A

⊗
B)Dn

)−1
=D+

n (A−1⊗B−1)Dn.

We can also infer that, for any A,B ∈ Rn×n,

(In
⊗

A)DnD
+
n (In

⊗
B) = 1

2(In
⊗

A)(In2 +Kn)(In
⊗

B)

= 1
2
[
(In

⊗
AB) + (In

⊗
A)Kn ·Kn(In

⊗
B)
]

= 1
2
[
(In

⊗
AB) +Kn(A

⊗
In)(B

⊗
In)Kn

]
= 1

2
[
(In

⊗
AB) + (In

⊗
AB)

]
= In

⊗
AB.
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2.3 Maximum Likelihood Estimation

Let {Yt}t∈Z be an n-dimensional VAR(p) process with innovation process {εt}t∈Z such that

Yt = δ+ Φ1 ·Yt−1 + · · ·+ Φp ·Yt−p+εt

for any t ∈ Z and some δ ∈ Rn, Φ1, · · · ,Φp ∈ Rn×n. Assume that the variance Σ ∈ Rn×n of the
innovation process is positive definite.

We can collect the coefficients into the (np+ 1)×n matrix

Π =


δ′

Φ′1
...

Φ′p


and define the np+ 1-dimensional random vector Xt as

Xt =


1

Yt−1
...

Yt−p


for any t ∈ Z. Then, the model can be rewritten as

Yt =
(
δ Φ1 · · · Φp

)


1
Yt−1

...
Yt−p

+εt = Π′Xt+εt.

We make the following assumptions:

A1. Stationarity
We assume that {Yt}t∈Z is a square integrable process, and that its companion matrix
F ∈ Rnp×np has eigenvalues within the unit circle. By the stationarity results above, this
implies that {Yt}t∈Z is a weakly stationary square integrable process with causal linear
process representation

Yt = µ+ Ψ(L)εt,

where {Ψj}j∈N is a one-summable sequence of n×n matrices and µ = (In−Φ1− ·· · −
Φp)−1δ.

A2. Nonsingular Autocovariances
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Letting Γ :Z→Rn×n be the autocovariance function of {Yt}t∈Z, we assume that the matrix

Q=


1 µ′ · · · µ′

µ Γ(0) +µµ′ · · · Γ(p−1) +µµ′

...
... . . . ...

µ Γ(p−1)′+µµ′ · · · Γ(0) +µµ′

 ∈ R(np+1)×(np+1)

is non-singular.

Since we can also write

Q= E
[
XtX

′
t

]
for any t ∈ Z, we also assume, for the sample analogue of this moment condition, that∑T
t=1XtX

′
t is almost surely nonsingular for large enough T .

A3. I.I.D. Innovations
We assume that the innovation process {εt}t∈Z is i.i.d. with finite 4 + 2η moments, where
η > 0:

E|εt|4+2η <+∞.

As above, we define parameters related to the skewness and kurtosis of the innovation process
as follows:

κ3 = E
[
εt
(
ε′t
⊗

ε′t

)]
∈ Rn×n

2

and

κ4 = E
[
εtε
′
t

⊗
εtε
′
t

]
∈ Rn

2×n2
.

Furthermore, we also define

µ̄ := E [Xt] =
(
1 µ′ · · · µ′

)′
∈ Rnp+1.

Given these assumptions, preliminary asymptotic results follow immediately from the result
stated in the previous section:
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Theorem (Asymptotic Results for Stationary VARs with IID Errors)
Under the assumptions above, the following hold true:

1
T

T∑
t=p+1

Xt
p→ µ̄

1
T

T∑
t=p+1

XtX
′
t
p→Q

1
T

T∑
t=p+1

εtε
′
t
p→ Σ

1
T

T∑
t=p+1

 vec(Xtε
′
t)

vec(εtε′t−Σ)

 vec(Xtε
′
t)

vec(εtε′t−Σ)

′ p→
 Σ⊗Q (In

⊗
µ̄)κ3

κ′3(In
⊗
µ̄′) κ4−Σ⊗Σ


1√
T

T∑
t=p+1

 vec(Xtε
′
t)

vec(εtε′t−Σ)

 d→N

0,

 Σ⊗Q (In
⊗
µ̄)κ3

κ′3(In
⊗
µ̄′) κ4−Σ⊗Σ

 .

Proof) {Yt}t∈Z is a causal linear process with absolutely summable coefficients. In addition,
its autocovariance function Γ and the innovation process {εt}t∈Z satisfy the conditions
of assumptions A1 and A2 of the previous section. Therefore, these results follow im-
mediately.

Q.E.D.

In the special case that the errors are normally distributed, letting L be the Cholesky factor
of Σ,

ut := L−1εt ∼N [0, In] ,

making {ut}t∈Z an i.i.d. sequence of standard normally distributed random vectors. Since

κ3 = E
[
εt
(
ε′t
⊗

ε′t

)]
= L ·E

[
ut
(
u′t
⊗

u′t

)]
(L′
⊗

L′)

and E [uitujtukt] = 0 for any 1≤ i, j,k ≤ n, we have κ3 =O and thus (In
⊗
µ̄)κ3 =O.

Similarly,

κ4 = E
[(
εt
⊗

εt
)(
ε′t
⊗

ε′t

)]
= (L

⊗
L) ·E

[(
ut
⊗

ut
)(
u′t
⊗

u′t

)]
(L′
⊗

L′),
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and

E [uitujtuktult]−=


3 if i= j = k = l

1 if i= j,k = l or i= k,j = l or i= l, j = k

0 otherwise

for any 1≤ i, j,k ≤ n. We now have

E
[
(utu′t

⊗
utu
′
t)
]
− (In

⊗
In) = In2 +Kn.

It follows that

κ4−Σ
⊗

Σ = (L
⊗

L)
[
E
[
(utu′t

⊗
utu
′
t)
]
− (In

⊗
In)
]
(L′
⊗

L′)

= Σ
⊗

Σ + (L
⊗

L)Kn(L′
⊗

L′)

= (In2 +Kn)
(
Σ
⊗

Σ
)

= 2DnD
+
n

(
Σ
⊗

Σ
)
.

Therefore, when the errors are i.i.d. Gaussian,

1√
T

T∑
t=p+1

 vec(Xtε
′
t)

vec(εtε′t−Σ)

 d→N

0,

Σ⊗Q O

O 2DnD
+
n (Σ⊗Σ)

 .
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2.3.1 Deriving the Score

Define the vector of parameters θ as

θ =

β
γ

 ∈Θ := Rn(np+1)×A,

where we define β = vec(Π) ∈ Rn(np+1) and γ = vech(Σ) ∈ A ⊂ Rn(n+1)/2. Since the parameter
space Θ is an open subset of Rn(np+1)+n(n+1)/2, differentiation is defined at any point on Θ.

Suppose our sample contains observations from period 1 to T . Then, for each p+1≤ t≤ T ,
the density of Yt given its past values and initial values Yp, · · · ,Y1 is

f(Yt | Yt−1, · · · ,Y0;θ) =
( 1

2π

)n
2
|Σ|−

1
2 exp

(
−1

2(Yt−Π′Xt)′Σ−1(Yt−Π′Xt)
)
,

so that the conditional Gaussian log-likelihood of the model given the initial values Yp, · · · ,Y1 is

l(θ) =
T∑

t=p+1
log(f(Yt | Yt−1, · · · ,Y0;θ))

=−n(T −p)
2 log(2π)− T −p2 log(|Σ|)− 1

2

T∑
t=p+1

(Yt−Π′Xt)′Σ−1(Yt−Π′Xt)

=−n(T −p)
2 log(2π)− T −p2 log(|Σ|)

− 1
2 tr

 T∑
t=p+1

(Yt− (In
⊗

X ′t)β)(Yt− (In
⊗

X ′t)β)′
Σ−1


for any θ ∈Θ. Denote

S(β) =
T∑

t=p+1
(Yt− (In

⊗
X ′t)β)(Yt− (In

⊗
X ′t)β)′

for any β ∈ Rn(np+1).
Recall the matrix derivative results

∂|Σ|
∂Σ = |Σ| ·Σ−1

∂Σ−1

∂x
=−Σ−1∂Σ

∂x
Σ−1.

These can be used to conclude that

∂ tr
(
S(β)Σ−1)
∂x

= tr
(
S(β) · ∂Σ−1

∂x

)

=−tr
(
S(β)Σ−1∂Σ

∂x
Σ−1

)
=−tr

(
Σ−1S(β)Σ−1∂Σ

∂x

)
,
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so that

∂ tr
(
S(β)Σ−1)
∂Σ =−

(
Σ−1S(β)Σ−1

)′
=−Σ−1S(β)Σ−1.

The conditional score function is now given as

s(θ) = ∂l(θ)
∂θ

=


∂l(θ)
∂β

∂l(θ)
∂γ

=


∑T
t=p+1(In

⊗
Xt)Σ−1 (Yt− (In

⊗
X ′t)β)

−T−p
2 vech

(
Σ−1)+ 1

2vech
(
Σ−1S(β)Σ−1)

 .
Note that, for any v ∈ Rn,

(In
⊗

Xt)Σ−1v = (In
⊗

Xt)vec
(
v′Σ−1

)
= vec

(
Xtv

′Σ−1
)

= (Σ−1⊗Xt)v,

so that (In
⊗
Xt)Σ−1 = (Σ−1⊗Xt). Using this property, we can see that

(In
⊗

Xt)Σ−1(In
⊗

X ′t) = Σ−1⊗XtX
′
t

and

(In
⊗

Xt)Σ−1Yt = (Σ−1⊗Xt)Yt = vec
(
XtY

′
t Σ−1

)
= (Σ−1⊗Inp+1) ·vec

(
XtY

′
t

)
for any p+ 1≤ t≤ T . Furthermore, we have

vech
(
Σ−1S(β)Σ−1

)
=D+

n ·vec
(
Σ−1S(β)Σ−1

)
=D+

n (Σ−1⊗Σ−1)vec(S(β)) .

This allows us to write the score function as

s(θ) =

(Σ−1⊗Inp+1)vec
(∑T

t=p+1XtY
′
t

)
−
(
Σ−1⊗∑T

t=p+1XtX
′
t

)
β

1
2 ·D

+
n (Σ−1⊗Σ−1)vec(S(β)− (T −p)Σ)

 .
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2.3.2 The QMLE and its Asymptotic Properties

The (Quasi) MLE θ̂T of θ is defined as the unique vector such that s(θ̂T ) = 0; specifically, we
have

β̂T =

In⊗
 T∑
t=p+1

XtX
′
t

−1
vec

 T∑
t=p+1

XtY
′
t



= vec


 T∑
t=p+1

XtX
′
t

−1 T∑
t=p+1

XtY
′
t




Σ̂T = 1
T −p

S(β̂T ) = 1
T −p

T∑
t=p+1

(Yt− Π̂′TXt)(Yt− Π̂′TXt)′,

where the MLE of Π is given as

Π̂T =

 T∑
t=p+1

XtX
′
t

−1 T∑
t=p+1

XtY
′
t

 .
These estimators can be interpreted as GMM estimators with empirical moment/identification
conditions given as s(θ) = 0.

Due to their formal similarity to the least squares estimators of the parameters, we can natu-
rally hypothesize that the MLE θ̂T is consistent for the true parameters θ0, where the 0 subscript
denotes true values. We confirm below that this is indeed the case under our assumptions:

Theorem (Consistency of MLEs)
Under our assumptions, the MLEs of Π and Σ are consistent:

θ̂T
p→ θ0.

Proof) Using the fact that Yt = Π′0Xt+εt for any t ∈ Z,

Π̂T =

 T∑
t=p+1

XtX
′
t

−1 T∑
t=p+1

XtY
′
t


= Π0 +

 1
T

T∑
t=p+1

XtX
′
t

−1 1
T

T∑
t=p+1

Xtε
′
t

 .
We proved above that

1
T

T∑
t=p+1

XtX
′
t
p→Q and 1

T

T∑
t=p+1

Xtε
′
t
p→O.
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Therefore,

Π̂T
p→Π0,

which implies that β̂T
p→ β0 as well.

As for Σ̂T , note that

T

T −p
Σ̂T = 1

T

T∑
t=p+1

(Yt− Π̂′TXt)(Yt− Π̂′TXt)′

= 1
T

T∑
t=p+1

[(
Π0− Π̂T

)′
Xt+εt

][(
Π0− Π̂T

)′
Xt+εt

]′

=
(
Π0− Π̂T

)′ 1
T

T∑
t=p+1

XtX
′
t

(Π0− Π̂T

)
+
(
Π0− Π̂T

)′ 1
T

T∑
t=p+1

Xtε
′
t


+

 1
T

T∑
t=p+1

Xtε
′
t

′(Π0− Π̂T

)
+ 1
T

T∑
t=p+1

εtε
′
t

p→ Σ0

by the consistency of Π̂T and the result, derived above, that {εt}t∈Z is variance sta-
tionary.

Q.E.D.
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We can actually show a stronger result, namely that θ̂T − θ0 is Op(T−1/2) with an asymp-
totically normal distribution:

Theorem (Asymptotic Normality of MLEs)
Under our assumptions, the MLEs of Π and Σ have the following asymptotic distribution:

√
T
(
θ̂T −θ0

)
d→N

0,

 Σ0
⊗
Q−1 (

In
⊗
Q−1µ̄

)
κ3D

+′
n

D+
n κ
′
3
(
In
⊗
µ̄′Q−1) D+

n (κ4−Σ0
⊗Σ0)D+′

n




Proof) Note that

β̂T = vec
(
Π̂T

)
= β0 +

In⊗
 1
T

T∑
t=p+1

XtX
′
t

−1
vec

 1
T

T∑
t=p+1

Xtε
′
t

 .
Since vec

(
1
T

∑T
t=p+1Xtε

′
t

)
=Op(1), we can see that

√
T
(
β̂T −β0

)
=Op(1). Likewise,

Σ̂T −Σ =
(
Π0− Π̂T

)′ 1
T

T∑
t=p+1

XtX
′
t

(Π0− Π̂T

)
+
(
Π0− Π̂T

)′ 1
T

T∑
t=p+1

Xtε
′
t


+

 1
T

T∑
t=p+1

Xtε
′
t

′(Π0− Π̂T

)
+ 1
T

T∑
t=p+1

(
εtε
′
t−Σ0

)
,

so that

vech
(
Σ̂T

)
−vech(Σ0) =D+

n vec
(
Σ̂T −Σ

)
=D+

n

[(
Π0− Π̂T

)′⊗(
Π0− Π̂T

)′]
vec

 1
T

T∑
t=p+1

XtX
′
t


+D+

n

[
In
⊗(

Π0− Π̂T

)′]
vec

 1
T

T∑
t=p+1

Xtε
′
t


+D+

n

[(
Π0− Π̂T

)′⊗
In

]
vec

 1
T

T∑
t=p+1

Xtε
′
t


+D+

n

1
T

T∑
t=p+1

vec
(
εtε
′
t−Σ0

)
.

We can see that

√
T

[(
Π0− Π̂T

)′⊗(
Π0− Π̂T

)′]
vec

 1
T

T∑
t=p+1

XtX
′
t


=
[√

T
(
Π0− Π̂T

)′⊗(
Π0− Π̂T

)′]
vec

 1
T

T∑
t=p+1

XtX
′
t

 p→ 0
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because
√
T
(
Π0− Π̂T

)
and 1

T

∑T
t=p+1XtX

′
t are Op(1) while

(
Π0− Π̂T

)
is op(1). Since

1
T

∑T
t=p+1Xtε

′
t is op(1) and

√
T
(
Π0− Π̂T

)
is Op(1), we have

√
T

[
In
⊗(

Π0− Π̂T

)′]
vec

 1
T

T∑
t=p+1

Xtε
′
t

 p→ 0

as well. Putting these together,

√
T
(
θ̂T −θ0

)
=

 √
T
(
β̂T −β0

)
√
T
(
vech

(
Σ̂T

)
−vech(Σ0)

)

=

In⊗(
1
T

∑T
t=p+1XtX

′
t

)−1
O

O D+
n

 1√
T

T∑
t=p+1

 vec(Xtε
′
t)

vec(εtε′t−Σ0)

+op(1)

d→N

0,

 Σ0
⊗
Q−1 (

In
⊗
Q−1µ̄

)
κ3D

+′
n

D+
n κ
′
3
(
In
⊗
µ̄′Q−1) D+

n (κ4−Σ0
⊗Σ0)D+′

n




by the CMT.

Q.E.D.

The asymptotic results presented in the previous section also allow us to derive the asymp-
totic distribution of the score function at the true parameter values:

1√
T
s(θ0) =


(
Σ−1

0
⊗
Inp+1

)
1√
T

∑T
t=p+1 vec(Xtε

′
t)

1
2D

+
n

(
Σ−1

0
⊗Σ−1

0

)
1√
T

∑T
t=p+1 vec(εtε′t−Σ0)



=

Σ−1
0
⊗
Inp+1 O

O 1
2D

+
n

(
Σ−1

0
⊗Σ−1

0

) 1√
T

T∑
t=p+1

 vec(Xtε
′
t)

vec(εtε′t−Σ0)


d→N [0, I0] ,

where

I0 =

Σ−1
0
⊗
Inp+1 O

O 1
2D

+
n

(
Σ−1

0
⊗Σ−1

0

) Σ0
⊗
Q (In

⊗
µ̄)κ3

κ′3(In
⊗
µ̄′) κ4−Σ0

⊗Σ0

Σ−1
0
⊗
Inp+1 O

O 1
2D

+
n

(
Σ−1

0
⊗Σ−1

0

)′ .
If the errors are i.i.d. normal,

I0 =

Σ−1
0
⊗
Q O

O 1
2D

+
n

(
Σ−1

0
⊗Σ−1

0

)
D+′
n

 .

111



2.3.3 Deriving the Hessian

To derive the hessian, note that, for any entry x of Σ,

∂

∂x
Σ−1(S(β)− (T −p)Σ)Σ−1 = ∂Σ−1

∂x
(S(β)− (T −p)Σ)Σ−1 + Σ−1∂(S(β)− (T −p)Σ)

x
Σ−1

+ Σ−1(S(β)− (T −p)Σ)∂Σ−1

∂x

=−Σ−1∂Σ
∂x

Σ−1(S(β)− (T −p)Σ)Σ−1

−Σ−1(S(β)− (T −p)Σ)Σ−1∂Σ
∂x

Σ−1

− (T −p)Σ−1∂Σ
∂x

Σ−1

=−Σ−1
[
∂Σ
∂x

Σ−1(S(β)− (T −p)Σ) + (S(β)− (T −p)Σ)Σ−1∂Σ
∂x

+ (T −p)∂Σ
∂x

]
Σ−1.

This implies that

∂vec
(
Σ−1(S(β)− (T −p)Σ)Σ−1)

∂x

=−
(
Σ−1⊗Σ−1

)
·vec

(
∂Σ
∂x

Σ−1(S(β)− (T −p)Σ) + (S(β)− (T −p)Σ)Σ−1∂Σ
∂x

+ (T −p)∂Σ
∂x

)

=−
(
Σ−1⊗Σ−1

)(
(S(β)− (T −p)Σ)Σ−1⊗In

) ∂vec(Σ)
∂x

−
(
Σ−1⊗Σ−1

)(
In
⊗

(S(β)− (T −p)Σ)Σ−1
) ∂vec(Σ)

∂x

− (T −p)
(
Σ−1⊗Σ−1

) ∂vec(Σ)
∂x

=−
(
Σ−1(S(β)− (T −p)Σ)Σ−1⊗Σ−1

) ∂vec(Σ)
∂x

−
(
Σ−1⊗Σ−1(S(β)− (T −p)Σ)Σ−1

) ∂vec(Σ)
∂x

− (T −p)
(
Σ−1⊗Σ−1

) ∂vec(Σ)
∂x

= (T −p)
(
Σ−1⊗Σ−1

) ∂vec(Σ)
∂x

−
[(

Σ−1S(β)Σ−1⊗Σ−1
)

+
(
Σ−1⊗Σ−1S(β)Σ−1

)] ∂vec(Σ)
∂x

,

and as such,

∂vech
(
Σ−1(S(β)− (T −p)Σ)Σ−1)

∂x

=D+
n

∂vec
(
Σ−1(S(β)− (T −p)Σ)Σ−1)

∂x

= (T −p)D+
n

(
Σ−1⊗Σ−1

)
Dn

∂vech(Σ)
∂x
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−D+
n

[(
Σ−1S(β)Σ−1⊗Σ−1

)
+
(
Σ−1⊗Σ−1S(β)Σ−1

)]
Dn

∂vech(Σ)
∂x

.

Therefore,

∂2l(θ)
∂γ∂γ′

= 1
2
∂vech

(
Σ−1(S(β)− (T −p)Σ)Σ−1)

∂vech(Σ)′

= T −p
2 D+

n

(
Σ−1⊗Σ−1

)
Dn−D+

n

[(
Σ−1S(β)Σ−1⊗Σ−1

)
+
(
Σ−1⊗Σ−1S(β)Σ−1

)]
Dn

= T −p
2 D+

n

(
Σ−1⊗Σ−1

)[
In2−

(
Σ̂TΣ−1⊗In

)
−
(
In
⊗

Σ̂TΣ−1
)]
Dn.

Similarly, for any A ∈ R(np+1)×n such that v = vec(A),

∂
(
Σ−1⊗Inp+1

)
v

∂x
=
(
∂Σ−1

∂x

⊗
Inp+1

)
v

=−
(

Σ−1∂Σ
∂x

Σ−1⊗Inp+1

)
v

=−vec
(
AΣ−1∂Σ

∂x
Σ−1

)
=−

(
Σ−1⊗AΣ−1

) ∂vec(Σ)
∂x

=−
(
Σ−1⊗AΣ−1

)
Dn

∂vech(Σ)
∂x

,

which implies that

∂
(
Σ−1⊗Inp+1

)
v

∂vech(Σ)′
=−

(
Σ−1⊗AΣ−1

)
Dn.

Therefore,

∂l(θ)
∂β∂γ′

=−

Σ−1⊗ T∑
t=p+1

Xt
(
Y ′t −X ′tΠ

)Dn.

Putting the two results together,

H(θ) := ∂l(θ)
dθdθ′

=


∂l(θ)
dβdβ′

∂l(θ)
dβdγ′

∂l(θ)
dγdβ′

∂l(θ)
dγdγ′



=

 −
(
Σ−1⊗∑T

t=p+1XtX
′
t

)
−
(
Σ−1⊗[∑T

t=p+1Xt (Y ′t −X ′tΠ)
])
Dn

−D′n
(
Σ−1⊗[∑T

t=p+1 (Yt−Π′Xt)X ′t
])

T−p
2 D+

n

(
Σ−1⊗Σ−1)[In2−

(
Σ̂TΣ−1⊗In

)
−
(
In
⊗ Σ̂TΣ−1

)]
Dn

 .
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For any consistent estimator θ̃T = (β̃′T , γ̃′T )′ of θ0, denoting

β̃T = vec
(
Π̃T

)
and γ̃T = vech

(
Σ̃T

)
,

note that

1
T

T∑
t=p+1

Xt

(
Yt− Π̃′TXt

)′
= (Π0− Π̃T )′ 1

T

T∑
t=p+1

XtX
′
t+

1
T

T∑
t=p+1

Xtε
′
t
p→O

and

D+
n (Σ̃−1

T

⊗
Σ̃−1
T )

[
In2− (Σ̂T Σ̃−1

T

⊗
In)− (In

⊗
Σ̂T Σ̃−1

T )
]
Dn

p→D+
n (Σ−1

0
⊗

Σ−1
0 ) ·O ·Dn =O,

so we have

1
T
H(θ̃T ) p→H0 :=

−Σ−1
0
⊗
Q O

O −1
2D

+
n

(
Σ−1

0
⊗Σ−1

0

)
Dn

 .
Therefore,

(
− 1
T
H(θ̃T )

)−1
p→−H−1

0 :=

Σ0
⊗
Q−1 O

O 2D+
n (Σ0

⊗Σ0)Dn


for any consistent estimator θ̃T of θ0. Note that, when the errors are i.i.d. normal, H0 and I0

are almost equal; this can be seen as the VAR version of the information matrix inequality.
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2.3.4 Asymptotic Variance of θ̂T

Using the values of H0 and I0 we derived above, the asymptotic distribution of θ̂T can be
expressed as

√
T
(
θ̂T −θ0

)
d→N

[
0,H−1

0 I0H
′−1
0

]
.

In the special case that the errors are i.i.d. normal, we obtain the special case

√
T
(
θ̂T −θ0

)
d→N

0,

Σ0
⊗
Q−1 O

O 2D+
n (Σ0

⊗Σ0)D+′
n


︸ ︷︷ ︸

I−1
0

 .

This is exactly the result on Quasi MLEs; given consistent estimators of H0 and I0, we can
obtain a consistent estimator of the asymptotic variance of θ̂T .

It remains to procure consistent estimators of H0 and I0. In the general case, this can be done
by making use of the finiteness of the fourth moments of Xt, which follows from the fact that εt
has finite fourth moments and Xt is a linear process with absolutely summable coefficients and
innovation process εt.

We can naturally consider the following estimators of H0:

Ĥ−1
T =−

Σ̂T
⊗(

1
T

∑T
t=p+1XtX

′
t

)−1
O

O 2D+
n

(
Σ̂T
⊗ Σ̂T

)
Dn

 .
Since I0 is the asymptotic variance of the score function s(θ0), which is itself a partial sum that
can be written as

s(θ0) =
T∑

t=p+1

 vec
(
Xt(Yt−Π′0Xt)′Σ−1

0

)
1
2vech

(
Σ−1

0 (Yt−Π′0Xt)(Yt−Π′0Xt)′Σ−1
0 − (T −p)Σ−1

0

)


=
T∑

t=p+1

 vec
(
Xtε

′
t ·Σ−1

0

)
1
2vech

(
Σ−1

0 εtε
′
tΣ−1

0 −Σ−1
0

)
 ,

we can heuristically view
{ vec

(
Xtε

′
t ·Σ−1

0

)
1
2vech

(
Σ−1

0 εtε
′
tΣ−1

0 −Σ−1
0

)}
t∈Z

as a sequence with mean 0 and

variance

I0 = E


 vec

(
Xtε

′
t ·Σ−1

0

)
1
2vech

(
Σ−1

0 εtε
′
tΣ−1

0 −Σ−1
0

)

 vec

(
Xtε

′
t ·Σ−1

0

)
1
2vech

(
Σ−1

0 εtε
′
tΣ−1

0 −Σ−1
0

)

′
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for any t ∈ Z. Thus, an intuitive estimator for I0 is

ÎT = 1
T

T∑
t=1

 vec
(
Xtε̂

′
tΣ̂−1

T

)
1
2vech

(
Σ̂−1
T ε̂tε̂

′
tΣ̂−1

T − Σ̂−1
T

)

 vec

(
Xtε̂

′
tΣ̂−1

T

)
1
2vech

(
Σ̂−1
T ε̂tε̂

′
tΣ̂−1

T − Σ̂−1
T

)

′

,

where ε̂t is the tth residual. The following result demonstrates that ÎT is consistent for I0:

Theorem (Consistent Estimation of Asymptotic Variance)
Under our assumptions, the estimator ÎT defined above is consistent for the asymptotic variance
I0 of the score function.

Proof) ÎT can be rewritten as a matrix quadratic form as follows:

ÎT =

Σ̂−1
T

⊗
Inp+1 O

O 1
2D

+
n

(
Σ̂−1
T

⊗ Σ̂−1
T

) 1
T

T∑
t=p+1

 vec(Xtε̂
′
t)

vec
(
ε̂tε̂
′
t− Σ̂T

) vec(Xtε̂
′
t)

vec
(
ε̂tε̂
′
t− Σ̂T

)′
×

Σ̂−1
T

⊗
Inp+1 O

O 1
2D

+
n

(
Σ̂−1
T

⊗ Σ̂−1
T

)′ .
It follows from the consistency of Σ̂T thatΣ̂−1

T

⊗
Inp+1 O

O 1
2D

+
n

(
Σ̂−1
T

⊗ Σ̂−1
T

) p→

Σ−1
0
⊗
Inp+1 O

O 1
2D

+
n

(
Σ−1

0
⊗Σ−1

0

) .
Furthermore, we know from the asymptotic results derived above that

1
T

T∑
t=p+1

 vec(Xtε
′
t)

vec(εtε′t−Σ0)

 vec(Xtε
′
t)

vec(εtε′t−Σ0)

′ p→
 Σ0

⊗
Q (In

⊗
µ̄)κ3

κ′3(In
⊗
µ̄′) κ4−Σ0

⊗Σ0

 .
If we can show that

1
T

T∑
t=p+1

 vec(Xtε̂
′
t)

vec
(
ε̂tε̂
′
t− Σ̂T

) vec(Xtε̂
′
t)

vec
(
ε̂tε̂
′
t− Σ̂T

)′− 1
T

T∑
t=p+1

 vec(Xtε
′
t)

vec(εtε′t−Σ0)

 vec(Xtε
′
t)

vec(εtε′t−Σ0)

′ p→O,

or, equivalently,

1
T

T∑
t=p+1

[
st(θ̂T )st(θ̂T )′−st(θ0)st(θ0)′

]
p→O,

then the claim of the theorem will follow.

We focus on each of the four block matrices that comprise the sum on the left hand
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side above. First, we show that

1
T

T∑
t=p+1

(
vec

(
Xtε̂

′
t

)
vec

(
Xtε̂

′
t

)′−vec
(
Xtε

′
t

)
vec

(
Xtε

′
t

)′) p→O.

Note that

∥∥∥vec
(
Xtε̂

′
t

)
vec

(
Xtε̂

′
t

)′−vec
(
Xtε

′
t

)
vec

(
Xtε

′
t

)′∥∥∥
≤
∣∣vec

(
Xt(ε̂t−εt)′

)∣∣2 + 2
∣∣vec

(
Xt(ε̂t−εt)′

)∣∣ · ∣∣vec
(
Xtε

′
t

)∣∣
= ‖Xt(ε̂t−εt)‖2 + 2‖Xt(ε̂t−εt)‖ ·

∥∥Xtε
′
t

∥∥
for any t ∈ Z, where the last equality follows because, for any A ∈ Rm×k,

|vec(A)|2 =
m∑
i=1

k∑
j=1
|Aij |2 = ‖A‖2.

Since

ε̂t−εt = (Π′0− Π̂′T )Xt,

we can see that, for any t ∈ Z,

1
T

T∑
t=p+1

∥∥∥vec
(
Xtε̂

′
t

)
vec

(
Xtε̂

′
t

)′−vec
(
Xtε

′
t

)
vec

(
Xtε

′
t

)′∥∥∥
≤

 1
T

T∑
t=p+1

|Xt|4
∥∥∥Π0− Π̂T

∥∥∥2
+ 2

 1
T

T∑
t=p+1

|Xt|3|εt|

∥∥∥Π0− Π̂T

∥∥∥.
Since {Xt}t∈Z is L4+2η-bounded, the sequence

{
1
T

∑T
t=p+1 |Xt|4

}
T∈N+

is L1+η/2-bounded,
indicating that it is uniformly integrable. Uniform integrability implies boundedness in
probability, so by definition

1
T

T∑
t=p+1

|Xt|4 =Op(1).

Likewise, since Xt and εt are independent for any t ∈ Z, and {εt}t∈Z is L4+2η-bounded,
the sequence

{
1
T

∑T
t=p+1 |Xt|3|εt|

}
T∈N+

is also L1+η/2-bounded, uniformly integrable
and satisfies

1
T

T∑
t=p+1

|Xt|3|εt|=Op(1).
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Since Π0− Π̂T = op(1) by the consistency of θ̂T , it follows that

1
T

T∑
t=p+1

∥∥∥vec
(
Xtε̂

′
t

)
vec

(
Xtε̂

′
t

)′−vec
(
Xtε

′
t

)
vec

(
Xtε

′
t

)′∥∥∥= op(1).

We now focus our attention on the second (and, by symmetry, third) block

1
T

T∑
t=p+1

(
vec

(
Xtε̂

′
t

)
vec

(
ε̂tε̂
′
t− Σ̂T

)′
−vec

(
Xtε

′
t

)
vec

(
εtε
′
t−Σ0

)′)
.

As above, for any t ∈ Z we can see that
∥∥∥∥vec

(
Xtε̂

′
t

)
vec

(
ε̂tε̂
′
t− Σ̂T

)′
−vec

(
Xtε

′
t

)
vec

(
εtε
′
t−Σ0

)′∥∥∥∥
≤
∣∣vec

(
Xt(ε̂t−εt)′

)∣∣ · ∣∣∣vec
(
(ε̂tε̂′t−εtε′t) + (Σ0− Σ̂T )

)∣∣∣
+
∣∣vec

(
Xt(ε̂t−εt)′

)∣∣ · ∣∣vec
(
εtε
′
t−Σ0

)∣∣
+
∣∣∣vec

(
(ε̂tε̂′t−εtε′t) + (Σ0− Σ̂T )

)∣∣∣ · ∣∣vec
(
Xtε

′
t

)∣∣
=
∥∥Xt(ε̂t−εt)′

∥∥ ·∥∥∥(ε̂tε̂′t−εtε′t) + (Σ0− Σ̂T )
∥∥∥

+
∥∥Xt(ε̂t−εt)′

∥∥ ·∥∥εtε′t−Σ0
∥∥

+
∥∥∥(ε̂tε̂′t−εtε′t) + (Σ0− Σ̂T )

∥∥∥ ·∥∥Xtε
′
t

∥∥
≤ |Xt|2 ·

∥∥∥Π0− Π̂T

∥∥∥ ·(|ε̂t−εt|2 + 2|ε̂t−εt| · |εt|+
∥∥∥Σ0− Σ̂T

∥∥∥)
+ |Xt|2 ·

∥∥∥Π0− Π̂T

∥∥∥ ·(|εt|2 +‖Σ0‖
)

+ |Xt||εt| ·
(
|ε̂t−εt|2 + 2|ε̂t−εt| · |εt|+

∥∥∥Σ0− Σ̂T

∥∥∥)
≤ |Xt|2 ·

∥∥∥Π0− Π̂T

∥∥∥ ·(|Xt|2 ·
∥∥∥Π0− Π̂T

∥∥∥2
+ 2|Xt||εt| ·

∥∥∥Π0− Π̂T

∥∥∥+
∥∥∥Σ0− Σ̂T

∥∥∥)
+ |Xt|2 ·

∥∥∥Π0− Π̂T

∥∥∥ ·(|εt|2 +‖Σ0‖
)

+ |Xt||εt| ·
(
|Xt|2 ·

∥∥∥Π0− Π̂T

∥∥∥2
+ 2|Xt||εt| ·

∥∥∥Π0− Π̂T

∥∥∥+
∥∥∥Σ0− Σ̂T

∥∥∥) .
As above,

1
T

T∑
t=p+1

∥∥∥∥vec
(
Xtε̂

′
t

)
vec

(
ε̂tε̂
′
t− Σ̂T

)′
−vec

(
Xtε

′
t

)
vec

(
εtε
′
t−Σ0

)′∥∥∥∥
ends up being majorized by a sum of Op(1)op(1) = op(1) terms, so that it is itself op(1).
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Finally, we deal with the final block

1
T

T∑
t=p+1

(
vec

(
ε̂tε̂
′
t− Σ̂T

)
vec

(
ε̂tε̂
′
t− Σ̂T

)′
−vec

(
εtε
′
t−Σ0

)
vec

(
εtε
′
t−Σ0

)′)
.

Analogously with the first block, for any t ∈ Z

∥∥∥∥vec
(
ε̂tε̂
′
t− Σ̂T

)
vec

(
ε̂tε̂
′
t− Σ̂T

)′
−vec

(
εtε
′
t−Σ0

)
vec

(
εtε
′
t−Σ0

)′∥∥∥∥
≤
∥∥∥(ε̂tε̂′t−εtε′t)+

(
Σ0− Σ̂T

)∥∥∥2
+ 2
∥∥∥(ε̂tε̂′t−εtε′t)+

(
Σ0− Σ̂T

)∥∥∥ ·∥∥εtε′t−Σ0
∥∥

≤
(
|ε̂t−εt|2 +

∥∥∥Σ0− Σ̂T

∥∥∥)2
+ 2

(
|ε̂t−εt|2 +

∥∥∥Σ0− Σ̂T

∥∥∥)(|εt|2 +‖Σ0‖
)

≤
(
|Xt|2

∥∥∥Π0− Π̂T

∥∥∥2
+
∥∥∥Σ0− Σ̂T

∥∥∥)2
+2

(
|Xt|2

∥∥∥Π0− Π̂T

∥∥∥2
+
∥∥∥Σ0− Σ̂T

∥∥∥)(|εt|2 +‖Σ0‖
)
.

Again,

1
T

T∑
t=p+1

∥∥∥∥vec
(
ε̂tε̂
′
t− Σ̂T

)
vec

(
ε̂tε̂
′
t− Σ̂T

)′
−vec

(
εtε
′
t−Σ0

)
vec

(
εtε
′
t−Σ0

)′∥∥∥∥
is majorized by a sum of Op(1)op(1) = op(1) terms, so that it is itself op(1). This com-
pletes the proof.

Q.E.D.

Summarizing the results above, defining

Ĥ−1
T =−

Σ̂T
⊗(

1
T

∑T
t=p+1XtX

′
t

)−1
O

O 2D+
n

(
Σ̂T
⊗ Σ̂T

)
Dn

 ,

ÎT = 1
T

T∑
t=p+1

 vec
(
Xtε̂

′
tΣ̂−1

T

)
1
2vech

(
Σ̂−1
T ε̂tε̂

′
tΣ̂−1

T − Σ̂−1
T

)

 vec

(
Xtε̂

′
tΣ̂−1

T

)
1
2vech

(
Σ̂−1
T ε̂tε̂

′
tΣ̂−1

T − Σ̂−1
T

)
 ,

a consistent estimator of the asymptotic variance of θ̂T can be constructed as

V̂T = Ĥ−1
T ÎT Ĥ

′−1
T .
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2.4 Asymptotics of Structural VARs

So far, we have dealt with the theory of reduced-form VAR models. In practice, we often turn
to structural VARs to make causal inferences and disentangle the influence of one shock from
another.

Let {Yt}t∈Z be an n-dimensional time series. We say that it follows a structural VAR(p)
process if there exist n×n matrices B0,B1, · · · ,Bp and an n-dimensional nonrandom vector α
such that

B0Yt = α+B1Yt−1 + · · ·+BpYt−p+εt

for any t ∈ Z, where {εt}t∈Z is an n-dimensional white noise process with variance In. This
means that the componenets of the error process are uncorrelated; often, we assume that they
are independent. Note that the variances of the shocks are normalized to 1; an equivalent nor-
malization is putting the diagonal elements of B0 equal to 1, but we choose to normalize the
variances of the shocks instead to make interpreting the impulse responses easier. The elements
of {εt}t∈Z are referred to as structural errors.

Assuming that B0 is non-singular, pre-multiplying both sides of the above equation by B−1
0

yields the reduced-form version of the model,

Yt =B−1
0 α+ (B−1

0 B1)Yt−1 + · · ·+ (B−1
0 Bp)Yt−p+B−1

0 εt

= δ+ Φ1Yt−1 + · · ·+ ΦpYt−p+ut,

where {ut}t∈Z is an n-dimensional white noise process with positive definite variance equal to
Σ = B−1

0 B′−1
0 . Under the reduced-form model, the componenets of the errors are no longer

independent. To distinguish them from the structural errors, we call the elements of {ut}t∈Z
reduced-form errors.

Suppose that {Yt}t∈Z is square integrable with bounded second moments and that the com-
panion matrix F ∈ Rnp×np defined as

F =


Φ1 · · · Φp−1 Φp

In · · · O O
... · · ·

...
...

O · · · In O


has eigenvalues within the unit circle. Then, {Yt}t∈Z is weakly stationary with a one-summable
causal linear process representation

Yt = µ+
∞∑
j=0

Ψj ·ut−j = µ+ Ψ(L)ut
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for any t ∈ Z. Since ut =B−1
0 εt for any t ∈ Z by definition, defining

Θj = Ψj ·B−1
0

for any j ∈ N, {Θj}j∈Z is a one-summable sequence of n×n matrices such that

Yt = µ+
∞∑
j=0

Θj ·εt−j = µ+ Θ(L)εt

for any t∈Z. This indicates that any Yt is a function of current and past structural errors, where
the function is time-invariant.

The h-period impulse response of the ith dependent variable, Yit, to a one standard deviation
shock to the jth structural error, εjt, can now be defined as

IRFt+h,ij = ∂Yi,t+h
∂εjt

= Θh,ij ,

due to the independence of the components of εt and its independence with the structural errors
of all other periods. We collect the h-period ahead impulse responses for all dependent variables
with respect to each structural shock in the n×n matrix

IRFt+h = ∂Yt+h
∂ε′t

= Θh.

An estimate of this matrix requires knowledge of Ψh and B−1
0 . Since Ψh is just the n×n matrix in

the (1,1) position of F h, which itself is comprised of the reduced-form mean reversion coefficients
Φ1, · · · ,Φp, it can be consistently estimated by estimating the reduced-form model via QMLE,
as we did in the previous section.

The problem arises when attempting to recover B−1
0 . As is, B−1

0 contains n2 entries that
we must estimate. However, in the course of estimating the reduced-form model, we estimate
Σ = B−1

0 B′−1
0 , which only has n(n+1)

2 free parameters due to being a symmetric matrix. Thus,
the order condition for identification is not satisfied; we require n(n−1)

2 more restrictions at the
very least. In what follows, we study some popular methods to impose this restriction, and, for
a select few cases, derive the asymptotic distribution of the impulse responses using the delta
method.

121



2.4.1 Recursive Identification

Perhaps the most popular and certaintly the simplest method of identifying B−1
0 is recursive

identification, which imposes the constraint that B−1
0 is lower triangular with non-zero diagonal

elements. Since B−1
0 dictates the contemporaneous effects of the structural shocks on the de-

pendent variables, recursive identification implies that the variables comprising Yt are ordered
so that, for any 1≤ j ≤ n, the structural error εjt only contemporaneously affects the dependent
variables Yit for i≥ j. A famous example of this identification scheme in practice is the monetary
VAR found in Stock and Watson (2001).

Formally, this allows us to identify B−1
0 as the Cholesky factor of the positive definite matrix

Σ. Thus, our estimate of B−1
0 is simply the Cholesky factor of the MLE of Σ. Recall that the

reduced-form parameters are

Π =


δ′

Φ′1
...

Φ′p

 and Σ.

Let θ = (vec(Π)′ ,vech(Σ)′)′ ∈ Θ = Rn(np+1)×A be the reduced form parameters collected in
vector form. We define the reduced-form impulse response Ψh : Rn(np+1)→ Rn×n as

Ψh(β) = J ·


Φ1 · · · Φp−1 Φp

In · · · O O
... · · ·

...
...

O · · · In O



h

·J ′

for any β = vec(Π) ∈ Rn(np+1), where J = (In,O, · · · ,O) ∈ Rn×np. Then, the h-period ahead
impulse response function IRFRIh : Θ→ Rn×n under recursive identification is defined as

IRFRIh (θ) = Ψh(β) · chol
(
vech−1 (γ)

)
for any θ = (β′,γ′)′ ∈ Θ. To apply the delta method later on, we first obtain the derivative of
vec

(
IRFRIh

)
on the open set Θ = Rn(np+1)×A.

Choose any θ= (β′,γ′)′= (vec(Π)′ ,vech(Σ)′)′ ∈Θ. We first derive the derivative of vec
(
IRFRIh

)
at θ with respect to β = vec(Π). To do so, it suffices to derive

∂vec(Ψh(β))
∂β′

,

the derivative of vec(Ψh) at β. This derivative proves useful under other identification methods
as well, so we present it as a lemma:
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Lemma (Derivative of Reduced-Form Impulse Response)
For any h≥ 0,

∂vec(Ψh(β))
∂β′

=
(
On2×n

∑h−1
i=0

(
J(F h−i−1)′⊗Ψi(β)

))
·Knp+1,n

for any β = vec
((
α Φ1 · · · Φp

)′)
= Rn(np+1), where F ∈ Rnp×np is the companion matrix

F =


Φ1 · · · Φp−1 Φp

In · · · O O
... · · ·

...
...

O · · · In O


and J = (In,On×n, · · · ,On×n) ∈ Rn×np.

Proof) Note initially that

∂Ψh(β)
∂x

= J ·
(
∂F

∂x
F h−1 +F

∂F h−1

∂x

)
J ′

= · · ·= J ·
(
h−1∑
i=0

F i
∂F

∂x
F h−i−1

)
J ′ =

h−1∑
i=0

JF i
∂F

∂x
F h−i−1J ′.

It follows that

∂vec(Ψh(β)))
∂x

=
h−1∑
i=0

(
J(F h−i−1)′

⊗
JF i

)
· ∂vec(F )

∂x
.

Letting Π′2:e collect the last np columns of Π′ = (δ,Φ1, · · · ,Φp), that is,

Π′2:e =
(
Φ1 · · · Φp

)
,

we can see that

∂vec(F )
∂vec(Π′2:e)

′ = Inp
⊗

J ′.

It follows that

∂vec(Ψh(β)))
∂vec(Π′2:e)

′ =
h−1∑
i=0

(
J(F h−i−1)′

⊗
JF i

)
· (Inp

⊗
J ′)

=
h−1∑
i=0

(
J(F h−i−1)′

⊗
JF iJ ′

)

=
h−1∑
i=0

(
J(F h−i−1)′

⊗
Ψi(β)

)
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and since the elements of δ do not appear in the formula for Ψh(β), we can see that

∂vec(Ψh(β)))
∂vec(Π′)′

=
(
On2×n

∑h−1
i=0

(
J(F h−i−1)′⊗Ψi(β)

))
=
h−1∑
i=0

(
On×1 J(F h−i−1)′

)⊗
Ψi(β)

Since Kn,np+1 · vec(Π′) = vec(Π) by definition of the commutation matrix, we finally
have the derivative

∂vec(Ψh(β)))
∂β′

= ∂vec(Ψh(β)))
∂vec(Π′)′

·K ′n,np+1

=
[
h−1∑
i=0

(
On×1 J(F h−i−1)′

)⊗
Ψi(β)

]
Knp+1,n.

Q.E.D.

Using the fact that

vec
(
IRFRIh (θ)

)
=
(

chol
(
vech−1 (γ)

)′⊗
In

)
·vec(Ψh(β)) ,

we can see that

∂vec
(
IRFRIh (θ)

)
∂β′

=
(
chol(Σ)′

⊗
In
)
· ∂vec(Ψh(β)))

∂β′

=
(
chol(Σ)′

⊗
In
)
·
[
h−1∑
i=0

(
On×1 J(F h−i−1)′

)⊗
Ψi(β)

]
Knp+1,n

=
[
h−1∑
i=0

(
On×1 chol(Σ)′ ·J(F h−i−1)′

)⊗
Ψi(β)

]
Knp+1,n.
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We now move onto the derivative of vec
(
IRFRIh

)
with respect to γ = vech(Σ). The differen-

tiation is slightly more involved than the earlier case, so we start by introducing the derivative
of the function chol : PSn×n → Rn×n. Since PSn×n is an open set with respect to the metric
induced by the trace norm, we do not have to worry about boundary problems when dealing
with differentiation. Define the n2× n(n+1)

2 matrix Ln as the matrix satisfying

Ln ·vech(A) = vec(A)

for any lower triangular matrix A ∈ Rn×n. We can construct Ln be taking the n2×n2 identity
matrix and removing the n(i−1) + jth columns for any 1≤ i, j ≤ n such that j > i.

In addition, since each column of Ln contains exactly one element equal to 1, L′nLn =
In(n+1)/2, making Ln an orthogonal matrix. By definition, for any lower triangular A ∈ Rn×n,

L′n ·vec(A) = L′nLn ·vech(A) = vech(A) .

This shows us that L′n serves a similar function as D+
n for lower trianguar matrices.

Choose any A ∈ PSn×n and note that

A= chol(A)chol(A)′ .

As such,

∂A

∂x
= chol(A)

(
∂chol(A)

∂x

)′
+
(
∂chol(A)

∂x

)
· chol(A)′ .

Therefore,

∂vech(A)
∂x

=D+
n ·

∂vec(A)
∂x

=D+
n (In

⊗
chol(A)) ·

∂vec
(
chol(A)′

)
∂x

+D+
n (chol(A)

⊗
In) · ∂vec(chol(A))

∂x

=D+
n

[
(In

⊗
chol(A))Kn+ (chol(A)

⊗
In)
]
· ∂vec(chol(A))

∂x

=D+
n (Kn+ In2)(chol(A)

⊗
In) · ∂vec(chol(A))

∂x

=D+
n (Kn+ In2)(chol(A)

⊗
In)Ln ·

∂vech(chol(A))
∂x

= 2D+
n (DnD

+
n )(chol(A)

⊗
In)Ln ·

∂vech(chol(A))
∂x

= 2D+
n (chol(A)

⊗
In)Ln ·

∂vech(chol(A))
∂x

,

where we used the fact that Knvec(chol(A)) = vec
(
chol(A)′

)
by definition of the commutation
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matrix and 1
2(In2 +Kn) =DnD

+
n . Therefore,

∂vech(A)
∂vech(chol(A)) = 2D+

n (chol(A)
⊗

In)Ln,

and as such,

∂vech(chol(A))
∂vech(A) =

(
2D+

n (chol(A)
⊗

In)Ln
)−1

.

Now we move onto the differentiation of vec
(
IRFRIh (θ)

)
. Since

vec
(
IRFRIh (θ)

)
=
(
In
⊗

Ψh(β)
)
·vec(chol(Σ)) =

(
In
⊗

Ψh(β)
)
Ln ·vech(chol(Σ)) ,

by the result derived above we can see that

∂vec
(
IRFRIh (θ)

)
∂γ′

=
∂vec

(
IRFRIh (θ)

)
∂vech(Σ)′

=
(
In
⊗

Ψh(β)
)
Ln ·

∂vech(chol(Σ))
∂vech(Σ)′

=
(
In
⊗

Ψh(β)
)
Ln
[
2D+

n (chol(Σ)
⊗

In)Ln
]−1

.

Putting the two results together, we can see that

∂vec
(
IRFRIh (θ)

)
∂θ′

=
(
∂vec(IRFRIh (θ))

∂β′
∂vec(IRFRIh (θ))

∂γ′

)
=
([∑h−1

i=0

(
On×1 chol(Σ)′ ·J(F h−i−1)′

)⊗Ψi(β)
]
Knp+1,n (In

⊗Ψh(β))Ln
[
2D+

n (chol(Σ)⊗In)Ln
]−1
)
.

The Delta method can now be applied to study the asymptotic properties of the h-period ahead
impulse response under recursive identification; we state this as a theorem.
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Theorem (Asymptotic Normality of IRF under Recursive Identification)
Maintain assumptions A1 to A3, and retain the notations of the previous section. Let θ̂T be the
QMLE of θ0. Then,

√
T
[
vec

(
IRFRIh (θ̂T )

)
−vec

(
IRFRIh (θ0)

)]

d→N

0,

∂vec
(
IRFRIh (θ0)

)
∂θ′

H−1
0 I0H

′−1
0

∂vec
(
IRFRIh (θ0)

)
∂θ′

′
 ,

where H0, I0 are as defined above.

Proof) This follows from the Delta method, together with the preceding result that, under our
assumptions, the QMLE of θ is asymptotically normal with asymptotic distribution

√
T
(
θ̂T −θ0

)
d→N

[
0,H−1

0 I0H
′−1
0

]
.

Here,

H−1
0 =

Σ0
⊗
Q−1 O

O 2D+
n (Σ0

⊗Σ0)Dn


and I0 is the information matrix.

Q.E.D.

Using consistency results concerning β̂T = vec
(
Π̂T

)
, Σ̂T and ÎT , we can easily construct a

consistent estimator for the asymptotic variance of the estimaed h-step ahead impulse response
under recursive identification, IRFRIh (θ̂T ).
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2.5 Likelihood Ratio Tests under Linear Restrictions

Here, we study likelihood ratio tests for linear restrictions on the coefficient parameters β. We do
not discuss tests of linear restrictions on the covariance terms for two reasons. First, the analysis
of LR test statistics for linear restrictions on covariance terms is very complicated, in contrast
to the simplicity of Wald tests; thus, when testing linear restrictions on covariance terms, we
opt for Wald tests. Second, we will later be interested in sequentially tests to find the correct
lag order, which can be formulated in terms of linear restrictions on the coefficient parameters.

Recall that we derived the (quasi) log likelihood function for a reduced form VAR(p) model
as

l(θ) =−n(T −p)
2 log(2π)− T −p2 log |Σ|− 1

2 tr

Σ−1 ·
T∑

t=p+1
(Yt−Π′Xt)(Yt−Π′Xt)′


for any θ ∈Θ = Rn(np+1)×A. Since the QMLE of Π and Σ are

Π̂T =

 T∑
t=p+1

XtX
′
t

−1 T∑
t=p+1

XtY
′
t


and

Σ̂T = 1
T −p

T∑
t=p+1

(Yt− Π̂′TXt)(Yt− Π̂′TXt)′,

the maximized log likelihood function is given by

l(θ̂T ) =−n(T −p)
2 log(2π)− T −p2 log

∣∣∣Σ̂T

∣∣∣− 1
2 tr

Σ̂−1 ·
T∑

t=p+1
(Yt− Π̂′TXt)(Yt− Π̂′TXt)′


=−n(T −p)

2 (log(2π) + 1)− T −p2 log
∣∣∣Σ̂T

∣∣∣.
In other words, log

∣∣∣Σ̂T

∣∣∣ can be used as an indicator of the fit of the model, since the mean
maximized log likelihood, 1

T−p l̂(p), is a linear transformation of log
∣∣∣Σ̂T

∣∣∣.
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2.5.1 Feasible Restricted Estimators of θ

We consider linear restrictions of the form Rβ = q, where R ∈Rr×n(np+1) is a matrix of full rank
r, and q ∈Rr. We want to find the Gaussian QMLE of θ udner the restriction Rβ = q. To do so,
for every outcome we must solve the constrained optimization problem

max
θ∈Θ

− T −p2 log |Σ|− 1
2 tr

Σ−1 ·
T∑

t=p+1
(Yt−Π′Xt)(Yt−Π′Xt)′


subject to Rβ = q.

Let θ̃T = (β̃′T , γ̃′T )′ be a solution to the above problem, where

β̃T = vec
(
Π̃T

)
and γ̃T = vech

(
Σ̃T

)
.

Fixing an outcome ω ∈ Ω, the Lagrangian for constrained maximization is given as

L=−T −p2 log |Σ|− 1
2 tr

Σ−1 ·
T∑

t=p+1
(Yt−Π′Xt)(Yt−Π′Xt)′

+λ(q−Rβ)

=−T −p2 log |Σ|− 1
2 tr

Σ−1 ·
T∑

t=p+1
(Yt− (In

⊗
X ′t)β)(Yt− (In

⊗
X ′t)β)′

+λ′(q−Rβ).

The first order conditions for maximization are

T∑
t=p+1

(In
⊗

Xt)Σ̃−1
T (Yt− (In

⊗
X ′t)β̃T )−R′λ= 0

T −p
2 vech

(
Σ̃−1
T

)
+ 1

2vech
(
Σ̃−1
T S(β̃T )Σ̃−1

T

)
= 0,

where the function S(·) is defined as above; that is, as

S(β) =
T∑

t=p+1
(Yt− (In

⊗
X ′t)β)(Yt− (In

⊗
X ′t)β)′

for any β ∈ Rn(np+1).
Since there is no restriction imposed on the covariance, Σ̃T is given identically as in the un-

restricted case, except that the unrestricted estimator β̂T of β is used in Σ̂T , while the restricted
estimator β̃T is used in Σ̃T :

Σ̃T = 1
T −p

S(β̃T ) = 1
T −p

T∑
t=p+1

(Yt− (In
⊗

X ′t)β̃T )(Yt− (In
⊗

X ′t)β̃T )′.

Turning our attention to the first order condition for the coefficient parameters, since

(In
⊗

Xt)Σ̃−1
T (Yt− (In

⊗
X ′t)β̃T ) = (Σ̃−1

T

⊗
Xt)(Yt− (In

⊗
X ′t)β̃T ),
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we can see that

T∑
t=p+1

(Σ̃−1
T

⊗
Xt)(Yt− (In

⊗
X ′t)β̃T ) =R′λ.

Sovlingn for β̃T now yields

β̃T =

Σ̃T

⊗ T∑
t=p+1

XtX
′
t

−1

 T∑
t=p+1

(Σ̃−1
T

⊗
Xt)Yt−R′λ



=

In⊗
 T∑
t=p+1

XtX
′
t

−1
 T∑
t=p+1

(In
⊗

Xt)Yt−

Σ̃T

⊗ T∑
t=p+1

XtX
′
t

−1
R′λ

= vec


 T∑
t=p+1

XtX
′
t

−1
T∑

t=p+1
XtY

′
t

−
Σ̃T

⊗ T∑
t=p+1

XtX
′
t

−1
R′λ

= β̂T −

Σ̃T

⊗ T∑
t=p+1

XtX
′
t

−1
R′λ.

Since R is of full rank and Σ̃T
⊗(∑T

t=p+1XtX
′
t

)−1
is nonsingular, we can see that

R

Σ̃T

⊗ T∑
t=p+1

XtX
′
t

−1
R′

is a nonsingular r× r matrix. β̃T must also satisfy the constraint Rβ̃T = q, so pre-multiplying
both sides of the above equation by R allows us to express the Lagrange multiplier λ as

λ=

R
Σ̃T

⊗ T∑
t=p+1

XtX
′
t

−1
R′


−1

(Rβ̂T − q).

This holds for any outcome ω ∈ Ω, so the preservation of measurability under continuous map-
pings implies that the Lagrange multiplier itself is a random vector; to emphasize this, we write
λ̃T .

Given the above formulation for the Lagrange multiplier, the restricted estimator of β is
finally given as

β̃T = β̂T −

Σ̃T

⊗ T∑
t=p+1

XtX
′
t

−1
R′

R
Σ̃T

⊗ T∑
t=p+1

XtX
′
t

−1
R′


−1

(Rβ̂T − q).
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A clear problem is that β̃T and Σ̃T are simultaneously determined by the equations

β̃T = β̂T −

Σ̃T

⊗ T∑
t=p+1

XtX
′
t

−1
R′

R
Σ̃T

⊗ T∑
t=p+1

XtX
′
t

−1
R′


−1

(Rβ̂T − q)

Σ̃T = 1
T −p

T∑
t=p+1

(Yt− (In
⊗

X ′t)β̃T )(Yt− (In
⊗

X ′t)β̃T )′.

We therefore use the feasible restricted estimators

β̃FRT = β̂T −

Σ̂T

⊗ T∑
t=p+1

XtX
′
t

−1
R′

R
Σ̂T

⊗ T∑
t=p+1

XtX
′
t

−1
R′


−1

(Rβ̂T − q)

Σ̃FR
T = 1

T −p

T∑
t=p+1

(Yt− (In
⊗

X ′t)β̃FRT )(Yt− (In
⊗

X ′t)β̃FRT )′,

where Σ̂T is the unrestricted QMLE of Σ. Note that, β̃FRT continues to satisfy the linear restric-
tions Rβ = q.
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2.5.2 Asymptotic Properties of Restricted Estimators

The following theorem shows us that, if the restrictions are true, then β̃FRT and Σ̃FR
T are con-

sistent and that the difference between the FR and unrestricted QMLE coefficient estimators is
asymptotically stable:

Theorem (Asymptotic Properties of FR Estimators)
Maintain assumptions A1 to A3 made in the previous section. If the linear restrictions Rβ = q

hold for the true parameter β0, then

β̃FRT
p→ β0,

Σ̃FR
T

p→ Σ0,

√
T
(
β̃FRT − β̂T

)
d→N

[
0,
(
Σ0
⊗

Q−1
)
R′
[
R
(
Σ0
⊗

Q−1
)
R′
]−1

R
(
Σ0
⊗

Q−1
)]

Σ̃FR
T − Σ̂T =Op(T−1).

Proof) Under assumptions A1 to A3, the unrestricted QMLEs are consistent and asymptoti-
cally normal:

√
T
(
θ̂T −θ0

)
d→N

0,

 Σ0
⊗
Q−1 (

In
⊗
Q−1µ̄

)
κ3D

+′
n

D+
n κ
′
3
(
In
⊗
µ̄′Q−1) D+

n (κ4−Σ0
⊗Σ0)D+′

n


 .

Suppose that Rβ0 = q. Then,

β̃FRT = β̂T −

Σ̂T

⊗ 1
T

T∑
t=p+1

XtX
′
t

−1
R′

R
Σ̂T

⊗ 1
T

T∑
t=p+1

XtX
′
t

−1
R′


−1

(Rβ̂T − q)

p→ β0−
[
Σ0
⊗

Q−1
]
R′
(
R
[
Σ0
⊗

Q−1
]
R′
)−1

(Rβ0− q) = β0

and, letting β̃FRT = vec
(
Π̃FR
T

)
,

T

T −p
Σ̃FR
T = 1

T

T∑
t=p+1

(Yt− Π̃FR′
T Xt)(Yt− Π̃FR′

T Xt)′

= 1
T

T∑
t=p+1

[(
Π0− Π̃FR

T

)′
Xt+εt

][(
Π0− Π̃FR

T

)′
Xt+εt

]′

=
(
Π0− Π̃FR

T

)′ 1
T

T∑
t=p+1

XtX
′
t

(Π0− Π̃FR
T

)
+
(
Π0− Π̃FR

T

)′ 1
T

T∑
t=p+1

Xtε
′
t



132



+

 1
T

T∑
t=p+1

Xtε
′
t

′(Π0− Π̃FR
T

)
+ 1
T

T∑
t=p+1

εtε
′
t

p→ Σ0

by the consistency of Π̃FR
T for Π0 and the variance ergodicity of εt. This establishes

consistency.

As for asymptotic normality, note that

β̃FRT − β̂T =−

Σ̂T

⊗ T∑
t=p+1

XtX
′
t

−1
R′

R
Σ̂T

⊗ T∑
t=p+1

XtX
′
t

−1
R′


−1

(Rβ̂T − q)

=−

Σ̂T

⊗ T∑
t=p+1

XtX
′
t

−1
R′

R
Σ̂T

⊗ T∑
t=p+1

XtX
′
t

−1
R′


−1

R(β̂T −β0),

where we used the fact that Rβ0 = q. By the consistency of θ̂T ,

Σ̂T

⊗ 1
T

T∑
t=p+1

XtX
′
t

−1
R′

R
Σ̂T

⊗ 1
T

T∑
t=p+1

XtX
′
t

−1
R′


−1

R

p→
(
Σ0
⊗

Q−1
)
R′
[
R
(
Σ0
⊗

Q−1
)
R′
]−1

R.

Furthermore, by the asymptotic normality result above,

√
T
(
β̂T −β0

)
d→N

[
0,Σ0

⊗
Q−1

]
.

By Slutsky’s theorem,

√
T
(
β̃FRT − β̂T

)
d→
(
Σ0
⊗

Q−1
)
R′
[
R
(
Σ0
⊗

Q−1
)
R′
]−1

R×N
[
0,Σ0

⊗
Q−1

]
=N

[
0,
(
Σ0
⊗

Q−1
)
R′
[
R
(
Σ0
⊗

Q−1
)
R′
]−1

R
(
Σ0
⊗

Q−1
)]
.

Similarly,

Σ̃FR
T = 1

T −p

T∑
t=p+1

(Yt− Π̃FR′
T Xt)(Yt− Π̃FR′

T Xt)′

= 1
T −p

T∑
t=p+1

[
Yt− Π̂′TXt+ (Π̂T − Π̃FR

T )′Xt

]
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×
[
Yt− Π̂′TXt+ (Π̂T − Π̃FR

T )′Xt

]′

= Σ̂T + (Π̂T − Π̃FR
T )′

 1
T −p

T∑
t=p+1

XtX
′
t

(Π̂T − Π̃FR
T )

+ (Π̂T − Π̃FR
T )′

 1
T −p

T∑
t=p+1

Xt(Yt− Π̂′TXt)′
+

 1
T −p

T∑
t=p+1

Xt(Yt− Π̂′TXt)′
′ (Π̂T − Π̃FR

T )

= Σ̂T + (Π̂T − Π̃FR
T )′

 1
T −p

T∑
t=p+1

XtX
′
t

(Π̂T − Π̃FR
T ),

where we used the fact that ∑T
t=p+1Xt(Yt− Π̂′TXt)′ = 0 by design. We saw above that

√
T (β̃FRT − β̂T ) =Op(1), or

β̃FRT − β̂T =Op(T−1/2).

It follows that

Π̂T − Π̃FR
T =Op(T−1/2)

as well, and therefore,

Σ̃FR
T − Σ̂T = (Π̂T − Π̃FR

T )′
 1
T −p

T∑
t=p+1

XtX
′
t

(Π̂T − Π̃FR
T )

=Op(T−1/2)Op(1)Op(T−1/2)

=Op(T−1).

Q.E.D.

The above result shows us that the difference between the variance matrices converge at a
faster rate than the coefficients.
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2.5.3 Asymptotic Distribution of LR Test Statistic

Denoting

θ̃FRT =

 β̃FRT

vech
(
Σ̃FR
T

) ,
the value of the quasi log likelihood evaluated at the feasible restricted estimators is

l(θ̃FRT ) =−n(T −p)
2 (log(2π) + 1)− T −p2 log

(∣∣∣Σ̃FR
T

∣∣∣),
and the difference between the unrestricted maximum log likelihood and restricted maximum
log likelihood becomes

l(θ̂T )− l(θ̃FRT ) = T −p
2

[
log
∣∣∣Σ̃FR

T

∣∣∣− log
∣∣∣Σ̂T

∣∣∣] .
The LR test statistic is now given as

L̂RT := 2 ·
(
l(θ̂T )− l(θ̃FRT )

)
= (T −p)

[
log
∣∣∣Σ̃FR

T

∣∣∣− log
∣∣∣Σ̂T

∣∣∣] .
In light of the result above and the continuous mapping theorem, it stands to reason that the
LR statistic is Op(1). The next theorem shows us that this is indeed the case, and that the
asymptotic distribution is a chi-squared distributed with r degrees of freedom under the null:

Theorem (Asymptotic Distribution of LR Statistic)
Maintain assumptions A1 to A3 made in the previous section. Suppose that the null hypothesis
H0 :Rβ = q is true. Then,

L̂RT = (β̃FRT − β̂T )′
Σ̂−1

T

⊗ 1
T

T∑
t=p+1

XtX
′
t

(β̃FRT − β̂T ) +op(1)

d→ χ2
r .

Proof) The asymptotic properties of the LR test statistic is best studied by employing a Taylor
expansion of the log likelihood function. By the stochastic version of the second-order
Taylor expansion, there exists a random vector θ̄T that is a convex combination of θ̂T
and θ̃FRT such that

l(θ̃FRT ) = l(θ̂T ) + ∂l(θ̂T )
∂θ′

(θ̃FRT − θ̂T ) + 1
2(θ̃FRT − θ̂T )′∂

2l(θ̄T )
∂θ∂θ′

(θ̃FRT − θ̂T )

= l(θ̂T ) + 1
2(θ̃FRT − θ̂T )′ ·H(θ̄T ) · (θ̃FRT − θ̂T ),

since ∂l(θ̂T )
∂θ = 0 by the definition of the unrestricted QMLE θ̂T . Since both θ̂T and θ̃FRT

are consistent for θ0, and θ̄T is a convex combination of the two estimators, θ̄T is also
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consistent for θ0. We showed above that this implies H(θ̄T ) p→H0, where

H0 =

−Σ−1
0
⊗
Q O

O −1
2D

+
n (Σ−1

0
⊗Σ−1

0 )Dn

 .
We can write

l(θ̃FRT )− l(θ̂T ) = 1
2(θ̃FRT − θ̂T )′ ·H(θ̄T ) · (θ̃FRT − θ̂T )

= 1
2
(√

T (β̃FRT − β̂T )′
√
T (γ̃FRT − γ̂T )′

)
·
[ 1
T
H(θ̄T )

]√T (β̃FRT − β̂T )
√
T (γ̃FRT − γ̂T )

 .
The previous theorem tells us that

√
T (β̃FRT − β̂T ) = Op(1) but that Σ̃FR

T − Σ̂T =
Op(T−1) and thus

√
T (γ̃FRT − γ̂T ) = op(1). Therefore,

L̂RT = 2
(
l(θ̂T )− l(θ̃FRT )

)
=
[√
T (β̃FRT − β̂T )

]′(
Σ−1

0
⊗

Q
)[√

T (β̃FRT − β̂T )
]

+op(1),

where −Σ−1
0
⊗
Q is the matrix in the (1,1) block of H0. Due to the consistency of

Σ̂−1
T

⊗ 1
T

∑T
t=p+1XtX

′
t for Σ−1

0
⊗
Q, it follows that

L̂RT = (β̃FRT − β̂T )′
Σ̂−1

T

⊗ 1
T

T∑
t=p+1

XtX
′
t

(β̃FRT − β̂T ) +op(1).

It is now easy to derive the asymptotic distribution of the LR statistic. Recall that

√
T (β̃FRT − β̂T ) d→ (Σ0

⊗
Q−1)R′L×Z,

where L ∈ Rr×r is the Cholesky factor of

[
R
(
Σ0
⊗

Q−1
)
R′
]−1

and Z = (Z1, · · · ,Zr) is an r-dimensional standard normally distributed random vari-
able. It follows from the continuous mapping theorem and Slutsky’s theorem that

L̂RT
d→ Z ′

[
L′R(Σ0

⊗
Q−1)

(
Σ−1

0
⊗

Q
)

(Σ0
⊗

Q−1)R′L
]
Z

= Z ′
[
L′R(Σ0

⊗
Q−1)R′L

]
Z.

Since (LL′)−1 =R(Σ0
⊗
Q−1)R′, it follows that L′R(Σ0

⊗
Q−1)R′L= Ir, and we have

L̂RT
d→ Z ′Z =

r∑
i=1

Z2
i .

The random variable on the right hand side is the sum of r squared independent stan-
dard normally distributed random variables, so by definition it follows a chi-squared
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distribution with r degrees of freedom.

Q.E.D.
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2.6 Lag Length Selection

So far, we have taken the lag order p of a VAR model as given. In reality, it is often the case that
p is unknown, and we must estimate the lag order. To obtain a rudimentary criterion with which
to compare models with different lag orders, we return once again to the (quasi) log likelihood
for a VAR(p) process.

Throughout, we will assume that the maximum lag order is given by k > 0, and that we search
between 0 and k for the true lag order. In order to use the same number of observations in any
case, we assume that observations from time k+1 to T are used. For notational convenience, in
what follows we denote

Π(p) =


δ′

Φ′1
...

Φ′p

 and Π(p : q) =


Φ′p+1

...
Φ′q

 for any p < q ≤ k

Xt(p) =


1
Yt
...

Yt−p

 and Xt(p : q) =


Yt−p−1

...
Yt−q

 for any p < q ≤ k

Π̂T (p) =

 T∑
t=k+1

Xt(p)Xt(p)′
−1

T∑
t=k+1

Xt(p)Y ′t

Σ̂T (p) = 1
T −k

T∑
t=k+1

[
Yt− Π̂T (p)′Xt(p)

][
Yt− Π̂T (p)′Xt(p)

]′
.

In other words, in a model with p ≤ k lags, Xt(p) is the regressor used for QML estimation,
Π̂T (p) the QMLE of Π = (δ,Φ1, · · · ,Φp)′, and Σ̂T (p) the QMLE of Σ. In a model with p≤ k lags,
the paramter space is denoted by

Θ(p) = Rn(np+1)×A.

The quasi log likelihood for a model with p≤ k lags is given as

l(θ;p) =−n(T −k)
2 log(2π)− T −k2 log |Σ|− 1

2 tr

Σ−1 ·
T∑

t=k+1
(Yt−Π′Xt(p))(Yt−Π′Xt(p))′


for any θ ∈Θ, and the maximized log likelihood is

l̂T (p) =−n(T −k)
2 (log(2π) + 1)− T −k2 log

∣∣∣Σ̂T (p)
∣∣∣.
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2.6.1 Sequential LR Testing

We saw above that log
∣∣∣Σ̂T (p)

∣∣∣ can serve as an indicator of the fit of a model with p lags. Thus,
an intuitively appealing way to search for the true lag order is to conduct sequential LR tests.

Specifically, suppose we wish to test the null hypothesis of p−1 lags against p lags. This can
be viewed as testing whether Φp =O in the VAR(p) model

Yt = δ+ Φ1Yt−1 + · · ·+ Φp−1Yt−p+1 + ΦpYt−p+εt.

The unrestricted estimators of Π and Σ are, of course, given by Π̂T (p) and Σ̂T (p).
Defining

R=
(
On2×(n2(p−1)+n) In2

)
︸ ︷︷ ︸

J

Knp+1,n ∈ Rn
2×n(np+1),

R is a matrix of full rank n2 such that

Rβ =Rvec(Π) = J ·vec
(
Π′
)

=
(
On2×(n2(p−1)+n) In2

)
vec

(
δ Φ1 · · · Φp−1 Φp

)
= vec(Φp) .

Thus, the null H0 : Φp =O can be expressed equivalently as

H0 :Rβ = 0.

Note that the restricted QMLEs θ̃T of θ solve the problem

max
θ∈Θ(p)

− T −k2 log |Σ|− 1
2 tr

Σ−1 ·
T∑

t=k+1
(Yt−Π(p)′Xt(p))(Yt−Π(p)′Xt(p))


subject to Φp =O.

Substituting the constraint into the objective function, the maximization problem can be rewrit-
ten as the unconstrained problem

max
θ∈Θ(p−1)

− T −k2 log |Σ|− 1
2 tr

Σ−1 ·
T∑

t=k+1
(Yt−Π(p−1)′Xt(p−1))(Yt−Π(p−1)′Xt(p−1))

 .
This indicates that β̃T , the restricted QMLE of β, is simply the QMLEs of β in a VAR(p-1)
model together with Φp equal to O. Similarly, Σ̃T , the restricted QMLE of Σ, can also put equal
to the covariance estimator in a VAR(p-1) model:

Σ̃T = 1
T −p

T∑
t=p+1

(Yt− Π̂T (p−1)′Xt(p−1))(Yt− Π̂T (p−1)′Xt(p−1))′ = Σ̂T (p−1).

Since an estimate of Σ no longer appears in the equation for β̃T , in this case the restricted
estimators are identical to the FR estimators. Therefore, the asymptotic theory developed above
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continues to hold, and we can see that

L̂RT = (T −k)
(
log
∣∣∣Σ̂T (p−1)

∣∣∣− log
∣∣∣Σ̂T (p)

∣∣∣) d→ χ2
n2 .

2.6.2 Information Criteria

Often, the lag order of a VAR model is chosen by minimizing an information criterion. Generally,
information criteria are given as

IC(p) = log
∣∣∣Σ̂T (p)

∣∣∣+p · cT
T

for lag orders 0≤ p≤ k, where cT is a penalty term that is often deterministic functions of the
sample size T . The first part of the criterion, log

∣∣∣Σ̂T (p)
∣∣∣, is easy to understand; it represents the

negative log-likelihood, so that the lower it is, the better the model fit. However, relying on only
the negative log-likelihood may induce overfitting, since the higher the lag order, the better the
model fit and thus the higher the log-likelihood. Therefore, a penalty term p · cTT is introduced in
order to penalize lag orders that are too high without significantly improving the log-likelihood.

Given an information criterion, the optimal lag order is chosen as the value p̂T that minimizes
IC(p) over {0, · · · ,k}. Letting p0 ∈ {0, · · · ,k} be the true lag order, we say that IC(p) consistently
estimates the true lag order if

p̂T
p→ p0,

which is equivalent in this case to

lim
T→∞

P(p̂T = p0) = 1.

Since p̂T is chosen as the minimizer of IC(p) over {0, · · · ,k},

{p̂T = p0}=
⋂
p 6=p0

{IC(p)> IC(p0)}.

Therfore, another equivalent characterization of consistency is

lim
T→∞

P(IC(p)> IC(p0)) = 1

for any 0≤ p≤ k such that p 6= p0.
We can furnish a sufficient condition for the consistency of information criteria. First, a

lemma:
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Lemma (Simultaneous Diagonlization of Positive Semidefinite Matrices)
Suppose A,B ∈ Rn×n are positive semidefinite matrices, and that A is positive definite. Then,
there exists a nonsingular P ∈Rn×n and a diagonal matrix D ∈Rn×n with non-negative diagonal
entries such that

A= PP ′ and B = PDP ′.

Proof) Let A= Λ1D1Λ′1 be the eigendecomposition of A, where Λ1 is an orthogonal matrix and
D1 is a diagonal matrix collecting the eigenvalues of A. Since A is positive definite, the
diagonal entries of D1 are all positive, meaning that D

1
2
1 is well defined and nonsingular.

Define

M = Λ1D
1
2
1 .

Defining

C =M−1BM ′−1,

since B is positive semidefinite, so is C. Therefore, C has eigendecomposition

C = Λ2DΛ′2,

where the diagonal elements of D are non-negative. It follows that

B =MCM ′ = Λ1D
1
2
1 Λ2 ·D ·Λ′2D

1
2
1 Λ′1.

Define

P = Λ1D
1
2
1 Λ2.

Since all three matrices that comprise P are invertible, so is P . By definition,

B = PDP ′,

where D is a diagonal matrix with non-negative entries. Finally,

PP ′ = Λ1D
1
2
1 Λ2Λ′2D

1
2
1 Λ′1 = Λ1D1Λ′1 =A,

where we used the fact that Λ2 is an orthogonal matrix.

Q.E.D.

141



Theorem (Consistency of Information Criteria)
Maintain assumptions A1 to A3 made in the previous section. Let IC(p) be an information
criterion given by

IC(p) = log
∣∣∣Σ̂T (p)

∣∣∣+p · cT
T

for any 0≤ p≤ k, and p̂T the lag order chosen by IC(p). p̂T is consistent for the true lag order
p0 if

cT →+∞ and cT
T
→ 0

as T →∞.

Proof) The theorem is proven by showing that

P(IC(p)> IC(p0))→ 1

as T →∞ for any p < p0 since cT
T → 0 and for any p > p0 since cT → +∞. We first

study the case p < p0.

Step 1: p < p0
Suppose that p < p0. Recall that

Π̂T (p) =

 T∑
t=k+1

Xt(p)Xt(p)′
−1

T∑
t=k+1

Xt(p)Yt

Σ̂T (p) = 1
T −k

T∑
t=k+1

(Yt− Π̂T (p)′Xt(p))(Yt− Π̂T (p)′Xt(p))′,

and likewise for p0. From the asymptotic properties of the QMLE estimators under
the correctly specified VAR model, Π̂T (p0) and Σ̂T (p0) are consistent for the true
parameters Π0 = Π(p0) and Σ0. Meanwhile, note that

Yt = Π(p0)′Xt(p0) +εt = Π(p)′Xt(p) + Π(p : p0)′Xt(p : p0) +εt

for any t ∈ Z, so that

Π̂T (p) =

 T∑
t=k+1

Xt(p)Xt(p)′
−1

T∑
t=k+1

Xt(p)(Π(p)′Xt(p) + Π(p : p0)′Xt(p : p0) +εt)′

= Π(p) +

 1
T

T∑
t=k+1

Xt(p)Xt(p)′
−1 1

T

T∑
t=k+1

Xt(p)Xt(p : p0)′
Π(p : p0)
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+

 1
T

T∑
t=k+1

Xt(p)Xt(p)′
−1 1

T

T∑
t=k+1

Xt(p)ε′t

 .
By assumption,

1
T

T∑
t=k+1

Xt(p0)Xt(p0)′ p→Q=

Q(p) Q12

Q21 Q(p : p0)

 ,
where Q and by extension Q(p),Q(p : p0) are symmetric positive definite matrices. We
can thus see that

1
T

T∑
t=k+1

Xt(p)Xt(p)′
p→Q(p) ∈ R(np+1)×(np+1)

1
T

T∑
t=k+1

Xt(p)Xt(p : p0)′ p→Q12 ∈ R(np+1)×n(p0−p).

Also as shown in a theorem above, under our assumptions 1
T

∑T
t=k+1Xt(p)ε′t = op(1).

Therefore, by the continuous mapping theorem,

Π̂T (p) p→Π(p) +Q(p)−1Q12 ·Π(p : p0).

Defining

Π̃T (p) =

 Π̂T (p)
On(p0−p)×n

 ,
we can see that

Σ̂T (p) = 1
T −k

T∑
t=k+1

[
Yt− Π̃T (p)′Xt(p0)

][
Yt− Π̃T (p)′Xt(p0)

]′
.

Expanding this expression as usual yields

Σ̂T (p) = 1
T −k

T∑
t=k+1

εtε
′
t

+ (Π(p0)− Π̃T (p))′
 1
T −k

T∑
t=k+1

Xt(p0)Xt(p0)′
(Π(p0)− Π̃T (p))

+ (Π(p0)− Π̃T (p))′
 1
T −k

T∑
t=k+1

Xt(p0)ε′t

+

 1
T −k

T∑
t=k+1

Xt(p0)ε′t

′ (Π(p0)− Π̃T (p)).

Since

Π̃T (p) p→

Π(p) +Q(p)−1Q12 ·Π(p : p0)
On(p0−p)×n

 ,
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Π̃T (p) is Op(1), so that the last two terms above converge in probability to 0. Meanwhile,
we can see that

(Π(p0)− Π̃T (p))′
 1
T −k

T∑
t=k+1

Xt(p0)Xt(p0)′
(Π(p0)− Π̃T (p))

p→

−Q(p)−1Q12 ·Π(p : p0)
Π(p : p0)

′Q
−Q(p)−1Q12 ·Π(p : p0)

Π(p : p0)


= Π(p : p0)′ ·

(
−Q′21Q(p)−1 In(p0−p)

)
Q

−Q(p)−1Q12

In(p0−p)

 ·Π(p : p0)

= Π(p : p0)′
[
Q(p : p0)−Q21Q(p)−1Q12

]
Π(p : p0) := Q̃.

Since Q(p : p0)−Q21Q(p)−1Q12 is the Schur complement of Q, a positive definite matrix,
it is also positive definite. Therefore, Q̃ is an n(p0−p)×n(p0−p) positive semidefinite
matrix with at least one positive eigenvalue (otherwise, Π(p : p0) must be equal to 0,
which contradicts the fact that p0 is the true lag order). Together, we can see that

Σ̂T (p) p→ Σ0 + Q̃.

The log-likelihood ratio of a model with p lags and one with p0 lags is given by

log
∣∣∣Σ̂T (p)

∣∣∣− log
∣∣∣Σ̂T (p0)

∣∣∣.
By the consistency results derived above,

log
∣∣∣Σ̂T (p)

∣∣∣− log
∣∣∣Σ̂T (p0)

∣∣∣ p→ log
∣∣∣Σ0 + Q̃

∣∣∣− log |Σ0|.

Since Σ0 is positive definite and Q̃ is positive semidefinite, the preceding lemma tells
us that there exist a nonsingular P ∈ Rn×n and a diagonal matrix D ∈ Rn×n with
non-negative diagonal elements such that

Σ0 = PP ′ and Q̃= PDP ′.

Note that at least one element of D is positive, since otherwise Q̃=O, a contradiction.
We can now see that

log
∣∣∣Σ0 + Q̃

∣∣∣− log |Σ0|= log
∣∣P (D+ In)P ′

∣∣− log
∣∣PP ′∣∣

= log
(
|P |2 · |D+ In|

)
− log

(
|P |2

)
= log |D+ In|> 0,

where the last inequality follows because |D+ In|> 1. Therefore,

log
∣∣∣Σ̂T (p)

∣∣∣− log
∣∣∣Σ̂T (p0)

∣∣∣ p→ log |D+ In|> 0.
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Since cT
T → 0 as T →∞ by assumption, this tells us that

IC(p)− IC(p0) = log
∣∣∣Σ̂T (p)

∣∣∣− log
∣∣∣Σ̂T (p0)

∣∣∣+ (p−p0) · cT
T

p→ log |D+ In|> 0.

By definition,

lim
T→∞

P(|(IC(p)− IC(p0))− log |D+ In||< ε) = 1

for any ε > 0. Putting ε= log |D+ In|> 0 yields

lim
T→∞

P(IC(p)− IC(p0)> 0) = 1.

Step 2: p > p0
Now suppose that p0 < p≤ k. In this case, the true model is a restricted version of the
model with p lags; that is, the solutions to the constrained maximization problem

max
θ∈Θ(p)

− n(T −k)
2 log |Σ|− 1

2 tr

Σ−1 ·
T∑

t=k+1
(Yt−Π′Xt(p))(Yt−Π′Xt(p))′


subject to Φp0+1 = · · ·= Φp =O

are

Π̃T =

 Π̂T (p0)
On(p−p0)×n

 and Σ̂T (p0).

Here, no covariance terms enter into the solution for β, so that the restricted estimators
are identical to the feasible restricted estimators. Therefore, as we derived for the LR
test statistic computed using FR estimators,

L̂RT = T ·
(
log
∣∣∣Σ̂T (p0)

∣∣∣− log
∣∣∣Σ̂T (p)

∣∣∣) d→ χ2
n2(p−p0).

In other words,

log
∣∣∣Σ̂T (p0)

∣∣∣− log
∣∣∣Σ̂T (p)

∣∣∣=Op(T−1),

which implies that log
∣∣∣Σ̂T (p0)

∣∣∣− log
∣∣∣Σ̂T (p)

∣∣∣= op(1).

The difference between the information criteria for lags p and p0 is given as

IC(p)− IC(p0) =−
(
log
∣∣∣Σ̂T (p0)

∣∣∣− log
∣∣∣Σ̂T (p)

∣∣∣)+ (p−p0)cT
T
.
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By the definition of boundedness in probability, for any ε > 0 there exists an M > 0
such that

P((p−p0) · cT −T (IC(p)− IC(p0))>M) = P
(
T
(
log
∣∣∣Σ̂T (p0)

∣∣∣− log
∣∣∣Σ̂T (p)

∣∣∣)>M
)
< ε

for large enough T . By assumption, cT → +∞ as T →∞, and p−p0 > 0, so for large
enough T we have (p−p0)cT >M + 1 and as such

P(T (IC(p)− IC(p0))≤ 0)≤ P(T (IC(p)− IC(p0))< (p−p0) · cT −M −1)< ε

for any T that is large enough. Thus,

limsup
T→∞

P(T (IC(p)− IC(p0))≤ 0)≤ ε,

and since this holds for any ε > 0,

lim
T→∞

P(T (IC(p)− IC(p0))≤ 0) = 0,

or equivalently,

lim
T→∞

P(T (IC(p)− IC(p0))> 0) = 1.

Finally, for any T ≥ k+ 1,

{T (IC(p)− IC(p0))> 0}= {IC(p)− IC(p0)> 0},

so that

lim
T→∞

P(IC(p)− IC(p0)> 0) = 1

as well.

Q.E.D.

We have thus seen that the condition cT
T → 0 is required to ensure that lag orders smaller than

p0 are not chosen; in effect, it does not penalize lag orders that are smaller than p0. On the other
hand, the condition cT → +∞ is required to preculde lag orders greater than p0; heuristically,
because lag orders greater than p0 actually yield higher log likelihoods than p0, they must be
penalized heavily.
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Examples of information criteria include:

AIC: Akaike Information Criterion
This is perhaps the most widely used information criterion, and is given as

AIC(p) = log
∣∣∣Σ̂T (p)

∣∣∣+np(np+ 1) · 2
T
,

where np(np+ 1) is the number of freely estimated coefficient parameters (n(np+ 1))
multiplied by the lag length p.

Despite its renown, it is inconsistent for lag orders higher than the true lag length p0, since
cT = 2 for any T ∈N+ and therefore cT

T =Op(T−1) in this case. It follows that AIC(p)−
AIC(p0) is the sum of two Op(T−1) terms for any p > p0, so that AIC(p)−AIC(p0)> 0
does not hold in the limit with probability 1.

BIC: Bayesian Information Criterion
This is a widely used consistent information criterion, and is given as

BIC(p) = log
∣∣∣Σ̂T (p)

∣∣∣+np(np+ 1) · log(T )
T

.

Clearly, log(T )
T → 0 but log(T )→ +∞ as T →∞, so that it is consistent in light of the

preceding theorem.

HQ: Hannan-Quinn Information Criterion
This is an information criterion that is strongly consistent, or in other words, p̂T a.s.→ p0 (we
omit the proof):

HQ(p) = log
∣∣∣Σ̂T (p)

∣∣∣+np(np+ 1) · 2log(log(T ))
T

.

The penalty term also satisfies the conditions of the preceding theorem.
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Spectral Analysis

In this chapter we study the frequency domain representation of time series through the spectral
representation theorem. In addition, we introduce the spectral density and investigate some
consistent non-parametric estimators of the spectral density.

3.1 The Spectral Density

So far, we have presented time series as a doubly infinite sequence {Yt}t∈Z of random vectors
taking values in euclidean space. We can instead express this time series in terms of its fre-
quencies, that is, weighted averages of sinusoidal waves of the form t 7→ exp(ir·) for some r ∈R.
The spectral representation theorem, the proof of which is the main objective of this section,
shows that every weakly stationary and well-behaved time series possesses both time domain
and frequency domain representations.

First, we define and study the properties of the spectral density of time series. Let {Yt}t∈Z be
an n-dimensional mean zero weakly stationary time series with autocovariance function Γ : Z→
Rn. If the autocovariances of {Yt}t∈Z are absolutely summable, then we can define the function
f : (−π,π]→ Cn as

f(w) = 1
2π

∞∑
τ=−∞

Γ(τ)exp(−iτw)

for any w ∈ (−π,π]; note that this series converges to an n×n complex matrix in this case
because it is absolutely convergent under absolutely summable autocovariances:

∞∑
τ=−∞

‖Γ(τ)exp(−iτw)‖=
∞∑

τ=−∞
‖Γ(τ)‖<+∞.

Note that

tr(f(w)) = 1
2π

∞∑
τ=−∞

tr(Γ(τ))exp(−irw)

for any w ∈ (−π,π]. Since Γ(−τ) = Γ(τ)′ for any τ ∈ Z, tr(Γ(τ)) = tr(Γ(−τ)), and we can see
that

tr(f(w)) = 1
2π

[
tr(Γ(0)) +

∞∑
τ=1

tr(Γ(τ))(exp(−iτw) + exp(iτw))
]
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= 1
2π

[
tr(Γ(0)) + 2

∞∑
τ=1

tr(Γ(τ))cos(τw)
]
,

so that tr(f) is a real-valued function. We can in fact show a stronger result, namely that tr(f)
is non-negative everywhere on (−π,π].

Lemma Let {Yt}t∈Z be an n-dimensional weakly stationary time series with absolutely
summable autocovariance function Γ : Z→ Rn×n. Letting f : (−π,π]→ Cn×n be the spectral
density of {Yt}t∈Z, tr(f(w))≥ 0 for any w ∈ (−π,π]. Furthermore, f(0) is a positive semidefinite
matrix.

Proof) For any T ∈N+, define fT : (−π,π]→ Cn×n as

fT (w) = 1
2πT

T∑
s=1

T∑
r=1

Γ(s− r)exp(−isw)exp(irw)

= 1
2π

T−1∑
τ=−T+1

(
1− |τ |

T

)
Γ(τ)exp(−iτw)

for any w ∈ (−π,π]. Fixing w ∈ (−π,π],

f(w)−fT (w) = 1
2π

∑
|τ |<T

|τ |
T

Γ(τ)exp(−iτw) + 1
2π

∑
|τ |≥T

Γ(τ)exp(−iτw).

so we have

‖f(w)−fT (w)‖ ≤ 1
2π

∑
|τ |≥T

‖Γ(τ)‖+ 1
2π

∑
|τ |<T

|τ |
T
· ‖Γ(τ)‖.

Choose some ε > 0. The absolute summability of the autocovariances tells us that there
exists some N ∈N+ such that

∑
|τ |≥T

‖Γ(τ)‖< ε

3 .

for any T ≥N . For such T , we also have

∑
|τ |<T

|τ |
T
‖Γ(τ)‖ ≤

∑
|τ |<N

|τ |
T
‖Γ(τ)‖+

∑
N≤|τ |<T

‖Γ(τ)‖

≤ N

T

∑
|τ |<N

‖Γ(τ)‖+
∑
|τ |≥N

‖Γ(τ)‖

<
N

T

N−1∑
τ=−N+1

‖Γ(τ)‖+ ε

3 .
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The first term here goes to 0 as T →∞, so there exists some N0 ≥N such that

N

T

N−1∑
τ=−N+1

‖Γ(τ)‖< ε

3

for any T ≥N0. Therefore, for any T ≥N0, since T ≥N as well, we have

‖f(w)−fT (w)‖ ≤ 1
2π

∑
|τ |≥T

‖Γ(τ)‖+ 1
2π

N
T

N−1∑
τ=−N+1

‖Γ(τ)‖+ ε

3


≤ 1

2π
ε

3 + 1
2π

(
ε

3 + ε

3

)
= 1

2πε < ε.

Such an N0 ∈N+ exists for any ε > 0, so it follows that

lim
T→∞

fT (w) = f(w).

For any w ∈ (−π,π] and T ∈ N+, we can show that tr(fT (w)) ≥ 0. To this end, note
that we can write

tr(fT (w)) = 1
2πT

T∑
s=1

T∑
t=1

tr(Γ(s− r))exp(−isw)exp(irw)

= 1
2πT

(
exp(−iw) · · · exp(−iTw)

)
tr(Γ(0)) · · · tr(Γ(T −1))

... . . . ...
tr(Γ(T −1)) · · · tr(Γ(0))




exp(iw)
...

exp(iTw)

 .

Defining

β =


exp(iw)

...
exp(iTw)

 ,

we can rewrite tr(fT (w)) as

tr(fT (w)) = 1
2πT β

′E



Y ′1Y1 · · · Y ′1YT

... . . . ...
Y ′TY1 · · · Y ′TYT


β

= 1
2πT E

β′

Y ′1
...
Y ′T

(Y1 · · · YT

)
β

= 1
2πT E

[
ZT
′
ZT
]

= 1
2πT E|ZT |2 ≥ 0,
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where we define the n-dimensional random vector ZT as

ZT =
(
Y1 · · · YT

)
β.

Similarly, we can show that the n×n real valued matrix fT (0) is positive semidefinite.
Choose any α ∈ Rn, and define yt = α′Yt for any t ∈ Z. Then, {yt}t∈Z is a univariate
mean zero weakly stationary process with autocovariance function γ : Z→R defined as

γ(τ) = E [ytyt−τ ] = α′E
[
YtY

′
t−τ
]
α= α′Γ(τ)α

for any τ ∈ Z. Then,

α′fT (0)α= 1
2πT

T∑
s=1

T∑
t=1

(
α′Γ(s− r)α

)

= 1
2πT ι

′
T


γ(0) · · · γ(T −1)

... . . . ...
γ(T −1) · · · γ(0)

 ιT

= 1
2πT E

ι′T

y1
...
yT

(y1 · · · yT

)
ιT

= 1
2πT E

[
z2
T

]
≥ 0,

where we define zT =
(
y1 · · · yT

)
ιT =∑T

t=1 yt. This holds for any α ∈Rn, so by def-
inition fT (0) is positive semidefinite.

We showed that fT → f pointwise on (−π,π], that tr(fT ) is non-negative valued for
any T ∈ N+, and that fT (0) is positive semidefinite for any T ∈ N+. Therefore, tr(f)
is non-negative valued on (−π,π] and f(0) is positive semidefinite by the continuity of
the trace operation and (ordered) eigenvalues of real symmetric matrices.

Q.E.D.

Heuristically, f(w) represents the contribution that the sinusoid of frequency w makes to the
variance, or power, of the stationary time series {Yt}t∈Z; this is formalized below.
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Theorem (Relationship between Spectral Density and Autocovariance Function)
Let {Yt}t∈Z be an n-dimensional weakly stationary time series with absolutely summable auto-
covariance function Γ : Z→Rn×n. Letting f : (−π,π]→Cn×n be the spectral density of {Yt}t∈Z,

Γ(τ) =
∫ π

−π
exp(iτw)f(w)dw

for any τ ∈ Z.

Proof) Choose any τ ∈ Z. Note that, for any T ∈N+,∥∥∥∥∥∥
T∑

s=−T
Γ(s)exp(i(τ −s)w)

∥∥∥∥∥∥≤
∞∑

s=−∞
‖Γ(s)‖<+∞

for any w ∈ (−π,π] by absolute summability. Defining the function gT : (−π,π]→Cn×n

and g : (−π,π]→ [0,+∞) as

gT (w) =
T∑

s=−T
Γ(s)exp(i(τ −s)w)

and

g(w) =
∞∑

s=−∞
‖Γ(s)‖

for any w ∈ (−π,π],

∫ π

−π
g(w)dw = 2π ·

( ∞∑
s=−∞

‖Γ(s)‖
)
<+∞.

Since {gT }T∈N+ is a sequence of complex matrix valued functions with limit

∞∑
s=−∞

Γ(s)exp(i(τ −s)w)

such that ‖gT ‖ ≤ g for any T ∈N+, and g is a non-negative function that is integrable
on (−π,π] with respect to the Lebesgue measure, so by the DCT,

2π ·
∫ π

−π
exp(iτw)f(w)dw =

∫ π

−π

( ∞∑
s=−∞

Γ(s)exp(i(τ −s)w)
)
dw

= lim
T→∞

∫ π

−π

 T∑
s=−T

Γ(s)exp(i(τ −s)w)

dw
= lim
T→∞

T∑
s=−T

(∫ π

−π
Γ(s)exp(i(τ −s)w)dw

)
.
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For any s 6= τ ,∫ π

−π
Γ(s)exp(i(τ −s)w)dw = Γ(s) ·

∫ π

−π
exp(i(τ −s)w)dw

= Γ(s) · 1
i(τ −s) (exp(i(τ −s)π)− exp(−i(τ −s)π)) =O,

because r 7→ exp(ir) is a function with period 2π, while∫ π

−π
Γ(s)exp(i(τ −s)w)dw = 2π ·Γ(s)

if s= τ . Therefore, ∫ π

−π
exp(iτw)f(w)dw = Γ(τ),

as desired.

Q.E.D.

This result tells us that, for τ = 0,

Γ(0) =
∫ π

−π
f(w)dw,

so that the variance Γ(0) of {Yt}t∈Z is the sum of the spectral densities for frequencies between
−π to π. As such, we can interpret f(w) as the contribution the time series of frequency w makes
to Γ(0). The spectral representation theorem, which is the topic of the next section, shows that
any time series can indeed be decomposed into the weighted sum of sinusoids of various frequen-
cies.
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3.2 The Spectral Representation of Time Series

Given an n-dimensional time series {Yt}t∈Z, our goal in this section is to express each Yt as
a stochastic integral of the mapping r 7→ exp(itr) with respect to some stochastic process on
the index space (−π,π] with orthogonal increments. To this end, we first rigorously define the
stochastic integral of deterministic functions; because we only deal with non-random integrands,
the development of this particular theory of stochastic integration is much simpler than that of
the Ito integral, for instance.

3.2.1 Orthogonal Increment Processes

Let {Zt}−π≤t≤π be a stochastic process with index set [−π,π] such that each Zt is a random
vector taking values in Cn. Suppose that {Zt}−π≤t≤π is in L2

n(H,P), that is,

‖Zt‖n,2 =
(
E|Zt|2

) 1
2 <+∞

for any −π ≤ t≤ π. In this case, we say that {Zt}−π≤t≤π is a mean-zero process with orthogonal
increments if

E [Zt] = 0 for any −π ≤ t≤ π, and

〈Zt−Zs,Zu−Zw〉n,2 = E
[
(Zt−Zs)′(Zu−Zw)

]
= 0 for any −π ≤ w ≤ u≤ s≤ t≤ π.

In light of the mean-zero assumption, the second condition is equivalent to requiring that the
trace of the covariance of Zt−Zs and Zu−Zw is 0 if the index intervals do not overlap.
{Zt}−π≤t≤π is said in addition to be right-continuous in mean square (or simply just right-

continuous) if, for any −π ≤ t < π,

‖Zt+δ−Zt‖n,2 =
(
E|Zt+δ−Zt|2

) 1
2 → 0

as δ ↓ 0. From here on, we will be working with stochastic processes {Zt}−π≤t≤π that are square
integrable (that is, is a process in L2

n(H,P)), with mean zero and orthogonal increments,
that are also right-continuous. When we refer to orthogonal increment processes on [−π,π],
we will be referring to a process {Zt}−π≤t≤π that possesses all the above properties.

Brownian motion is a famous example of a square integrable, right-continuous and mean
zero stochastic process with orthogonal (in its case independent) increments. In fact, Brownian
motion also has the added condition that the increments are stationary, that is, the distribution
of the increments only depend on the difference between the time indices. Furthermore, in the
case of Brownian motion, the entire paths themselves are continuous, that is, each realization
t 7→ Zt(ω) of the process is a continuous function, which implies the kind of right-continuity in
mean square discussed above.

The right continuity property of an orthogonal increment process {Zt}−π≤t≤π actually allows
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us to construct a finite measure on R whose value on any interval (s, t]⊂ [−π,π] coincides with
the variance ‖Zt−Zs‖2n,2 = E|Zt−Zs|2. This result is formalized below:

Lemma Let {Zt}−π≤t≤π be an n-dimensional orthogonal increment process. Then, there exists
an increasing, right-continuous and bounded function F : R→ R, a σ-algebra LF on R and a
finite measure λF on (R,LF ) such that:

i) LF contains every Borel set on R, that is, B(R)⊂ LF .

ii) (Completeness) (R,LF ,λF ) is a complete measure space.

iii) (Regularity) λF is a regular Borel measure, that is,

λF (A) = inf{λF (V ) |A⊂ V, V is open}

= sup{λF (K) |K ⊂A K is compact}

for any A ∈ LF .

iv) (Approximation Property) For any A ∈ LF and ε > 0, there exists an open set V and
a closed set K such taht K ⊂A⊂ V and

λF (V \K)< ε.

v) For any half-open interval (s, t]⊂ [−π,π],

λF ((s, t]) = F (t)−F (s) = ‖Zt−Zs‖2n,2.

vi) The entire mass of λF is concentrated on (−π,π], that is,

λF ((−π,π]c) = 0.

Proof) Define F : R→ R as

F (t) =


‖Zπ−Z−π‖2n,2 if t > π

‖Zt−Z−π‖2n,2 if −π < t≤ π

0 if t≤−π

for any t ∈R. Then, F is bounded above by E|Zπ−Z−π|2 <+∞, which is finite by the
square integrability of {Zt}−π≤t≤π. It is clearly increasing because, for any −π ≤ s ≤
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t≤ π,

F (t) = ‖Zt−Z−π‖2n,2 = ‖(Zt−Zs) + (Zs−Z−π)‖2n,2
= ‖Zt−Zs‖2n,2 +‖Zs−Z−π‖2n,2 + 2 ·Re(〈Zt−Zs,Zs−Z−π〉n,2)

= ‖Zt−Zs‖2n,2 +‖Zs−Z−π‖2n,2 = ‖Zt−Zs‖2n,2 +F (s),

where the fourth equality follows from the orthogonality of the increments Zt−Zs and
Zs−Z−π. It follows that

F (t)−F (s) = ‖Zt−Zs‖2n,2 ≥ 0,

and as such that F is an increasing function on R.

Finally, F is right-continuous because, for any −π ≤ t < π,

lim
δ↓0

(F (t+ δ)−F (t)) = lim
δ↓0
‖Zt+δ−Zt‖2n,2 = 0

by the right-continuty property of {Zt}−π≤t≤π.

Given an increasing and right continuous function F : R → R, the theorem on the
construction of the Lebesgue-Stieltjes measure on R found in the probability theory
text shows us that there exist an σ-algebra LF on R and a measure λF on (R,LF ) such
that properties i) to iv) are satisfied, and

λF ((s, t]) = F (t)−F (s)

for any half-open interval (s, t]⊂ R. λF must be finite because

λF (R) = lim
t↗+∞

F (t)≤ E|Zπ−Z−π|2 <+∞,

where the first equality follows from sequential continuity.

Choose any half-open interval (s, t]⊂ [−π,π]. Then, by what we showed above,

λF ((s, t]) = F (t)−F (s) = ‖Zt−Zs‖2n,2.

Finally, note that the sequence {Ak}k∈N+ of sets defined as Ak = (−π−k,−π] for any
k ∈N+ is an increasing sequence of Borel sets on R such that ⋃kAk = (−∞,π]. For any
k ∈N+,

λF (Ak) = F (−π)−F (−π−k) = 0,

so by sequential continuity

λF ((−∞,π]) = lim
k→∞

λF (Ak) = 0.
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Likewise, let {Bk}k∈N+ be defined as Bk = (π,π+k] for any k ∈N+. Then, {Bk}k∈N+

is an increasing sequence of Borel sets on R with union (π,+∞) such that

λF (Bk) = F (π+k)−F (π) = 0

for any k ∈N+. Sequential continuity again tells us that

λF ((π,+∞)) = 0,

so that

λF ((−π,π]c) = λF ((−∞,π]) +λF ((π,+∞)) = 0.

This completes the proof.

Q.E.D.

The function F and measure λF constructed above are called the distribution function and
distribution associated with the orthogonal increment process {Zt}−π≤t≤π. Similarly, we refer to
LF as the σ-algebra associated with {Zt}−π≤t≤π. The term “distribution” is a bit of a misnomer,
since the total mass of λF is not necessarily equal to 1, but we overlook this abuse in notation
for the time being.
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3.2.2 Stochastic Integration of Elementary Functions

Let {Zt}−π≤t≤π be an n-dimensional orthogonal increment process with associated distribution
function F : R→R and distribution µF on (R,LF ), where the σ-algebra LF associated with this
process contains B(R).

Let D be the collection of all complex functions on R taking values in C that can be written
as

f =
k∑
i=0

ri · I(λi,λi+1]

for some partition −π = λ0 < · · · < λk+1 = π of [−π,π] and r0, · · · , rk ∈ C. In other words, D
collects complex functions on R taking finitely many values, which are equal to 0 at −π, and
have support [−π,π]. These kind of functions are called elementary functions on [−π,π], and they
are Borel measurable and thus LF -measurable because they are left-continuous. Furthermore,

∫ ∞
−∞
|f |2dµF =

∫ π

−π
|f |2dµF =

k∑
i=0
|ri|2 ·µF ((λi,λi+1])

=
k∑
i=0
|ri|2 (F (λi+1)−F (λi))<+∞

by the definition of µF as the distribution associated with {Zt}−π≤t≤π, so it follows that f ∈
L2(LF ,µF ). Thus, D is a subset of the inner product space L2(LF ,µF ) over the complex field.
Denote the inner product on L2(LF ,µF ) by 〈·, ·〉F , and the L2-norm induced by this inner
product as ‖·‖F .

Note that D is a linear subspace of L2(LF ,µF ); the zero function is trivially included in D,
and for any a ∈C and f,g ∈ D, since af +g takes finitely many values, equals 0 at −π, and has
support [−π,π], it must be the case that af +g ∈ D.

We define the stochastic integral of the elementary function f with respect to {Zt}−π≤t≤π
as the n-dimensional complex valued random variable

I(f) :=
k∑
i=0

ri ·
(
Zλi+1−Zλi

)
.

We also denote I(f) by ∫ π

−π
f(λ)dZ(λ).

I(f) is well-defined for any two representations of an elementary function f ∈D by the same line
of reasoning used to show that the integral of a non-negative simple function is well-defined1.

Since I(f) is square integrable by the square integrability of {Zt}−π≤t≤π, we can view the
stochastic integration operation I as a mapping from the vector space D over the complex field

1For the sake of completeness, we present the formal argument in this footnote. Let f,g be two elementary
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into the vector space L2
n(H,P) over the complex field.

We can establish the following properties of the mapping I :D→ L2
n(H,P):

Theorem (Properties of the Stochastic Integral for Elementary Functions)
Let {Zt}−π≤t≤π be an n-dimensional orthogonal increment process with associated distribution
function F , distribution µF , and σ-algebra LF . Let the operation I : D → L2

n(H,P) denote
stochastic integation with respect to the orthogonal increment process {Zt}−π≤t≤π. Then, the
following hold true:

i) (Preservation of Inner Products)
For any f,g ∈ D,

〈I(f), I(g)〉n,2 = 〈f,g〉F .

In particular,

E
∣∣∣∣∫ π

−π
f(λ)dZ(λ)

∣∣∣∣2 =
∫ π

−π
|f(λ)|2dµF (λ).

ii) (Linearity)
I :D→ L2

n(H,P) is a linear transformation: for any a ∈ C and f,g ∈ D,

I(af +g) = a · I(f) + I(g).

iii) For any f ∈ D, E [I(f)] = 0.

functions on [−π,π] with representations

f =
l∑
i=0

ri · I(λf
i
,λf

i+1] and g =
m∑
i=0

si · I(λg
i
,λg

i+1]

for partitions −π= λf0 < · · ·<λ
f
l+1 = π and −π= λg0 < · · ·<λ

g
m+1 = π of [−π,π]. Letting −π= λ0 < · · ·<λk+1 = π

be the common refinement (for a definition, consult chapter 6 of PMA) of the two partitions above, we can express

f =
k∑
i=0

r̃i · I(λi,λi+1] and g =
k∑
i=0

s̃i · I(λi,λi+1].

Suppose that f ≤ g. Then, r̃i ≤ s̃i for any 0≤ i≤ k, so it follows that

I(f) =
k∑
i=0

r̃i
(
Zλi+1 −Zλi

)
≤

k∑
i=0

s̃i
(
Zλi+1 −Zλi

)
= I(g)

everywhere on the sample space. Thus, if f = g, that is, if
∑l
i=0 ri · I(λf

i
,λf

i+1] and
∑m
i=0 si · I(λg

i
,λg

i+1] are two
different elementary function representations of the same function in D, then

I(f) = I(g);

the stochastic integral of the function is invariant to the elementary function representation of functions in D.
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Proof) Let f,g ∈ D. Then, there exists a partition −π = λ0 < · · · < λk+1 = π of [−π,π] and
complex numbers r0, · · · , rk ∈ C and s0, · · · ,sk ∈ C such that2

f =
k∑
i=0

ri · I(λi,λi+1] and g =
k∑
i=0

si · I(λi,λi+1].

Note that

fg =
k∑
i=0

risi · I(λi,λi+1].

By the definition of the stochastic integral of f and g with respect to the n-dimensional
orthogonal increment process {Zt}−π≤t≤π,

I(f) =
k∑
i=0

ri ·
(
Zλi+1−Zλi

)
I(g) =

k∑
i=0

si ·
(
Zλi+1−Zλi

)
.

It follows from the linearity properties of the inner product that

〈I(f), I(g)〉n,2 =
k∑
i=0

k∑
j=0

risj · 〈Zλi+1−Zλi ,Zλj+1−Zλj 〉n,2.

Due to the orthogonality of the increments of {Zt}−π≤t≤π,

〈Zλi+1−Zλi ,Zλj+1−Zλj 〉n,2 = 0

if i 6= j, so that

〈I(f), I(g)〉n,2 =
k∑
i=0

risi ·
∥∥Zλi+1−Zλi

∥∥2
n,2.

From the preceding lemma, we know that

∥∥Zλi+1−Zλi
∥∥2
n,2 = F (λi+1)−F (λi) = µF ((λi,λi+1])

for each 0≤ i≤ k, so

〈I(f), I(g)〉n,2 =
k∑
i=0

risi ·µF ((λi,λi+1])

=
∫ π

−π

(
k∑
i=0

risi · I(λi,λi+1]

)
dµF

2For the existence of this common partition, consult the preceding footnote.
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=
∫ π

−π
(fg)dµF .

The last integral is precisely the inner product of f and g on the space L2(LF ,µF ), so
our first result has been proven.

Now choose a ∈ C. Using the same representation for f,g as above, we can see that

af +g =
k∑
i=0

(ari+si) · I(λi,λi+1],

so we have

I(af +g) =
k∑
i=0

(ari+si) ·
(
Zλi+1−Zλi

)
= a ·

k∑
i=0

ri ·
(
Zλi+1−Zλi

)
+

k∑
i=0

si ·
(
Zλi+1−Zλi

)
= a · I(f) + I(g).

This establishes the linearity of the mapping I.

Finally, let f ∈ D have the representation

f =
k∑
i=0

ri · I(λi,λi+1]

for some r0, · · · , rk ∈ C and partition −π = λ0 < · · ·< λk+1 = π of [−π,π]. Then,

I(f) =
k∑
i=0

ri
(
Zλi+1−Zλi

)
,

and since {Zt}−π≤t≤π is a mean-zero process,

E [I(f)] = 0

as well.

Q.E.D.
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3.2.3 Stochastic Integration of Square Integrable Functions

Let D be the closure of D with respect to the metric induced by the L2-norm on L2(LF ,µF ).
Consider an arbitrary function f ∈D. Then, there exists a sequence {fk}k∈N+ of functions in D
such that

lim
k→∞

‖fk−f‖F = 0.

Note now that the sequence {I(fk)}k∈N+ of stochastic integrals in L2
n(H,P) is Cauchy in the

metric induced by 〈·, ·〉n,2; for any k,m ∈N+,

‖I(fk)− I(fm)‖2n,2 = ‖I(fk−fm)‖2n,2
= 〈I(fk−fm), I(fk−fm)〉n,2
= 〈fk−fm,fk−fm〉F = ‖fk−fm‖2F

by the linearity of the mapping I : D→ L2
n(H,P) and the fact that it preserves inner prodcuts

across D ⊂ L2(LF ,µF ) and L2
n(H,P). Since {fk}k∈N+ is convergent in L2, it is also Cauchy in

L2, so that

lim
k,m→∞

‖I(fk)− I(fm)‖n,2 = lim
k,m→∞

‖fk−fm‖F = 0.

Therefore, {I(fk)}k∈N+ is Cauchy in L2 as well, and since L2
n(H,P) is a Hilbert space under the

inner product 〈·, ·〉n,2, it follows that {I(fk)}k∈N+ converges to some unique (up to almost sure
equivalence) random vector in L2

n(H,P) in mean square. We choose to denote this limit by Ĩ(f),
that is,

Ĩ(f) := m.s.lim
k→∞

I(fk).

We can verify that Ĩ(f) is well-defined in the following two respects:

• Ĩ(f) is invariant to the choice of convergent sequence
Suppose that {gk}k∈N+ and {fk}k∈N+ are two sequences in D converging to f ∈ D in L2.
Denote

Ig = m.s.lim
k→∞

I(gk) and If = m.s.lim
k→∞

I(fk).

Then, for any k ∈N+,

‖Ig− If‖n,2 ≤ ‖Ig− I(gk)‖n,2 +‖I(gk)− I(fk)‖n,2 +‖I(fk)− If‖n,2.

By assumption, the first and third terms go to 0 as k→∞. As for the second term,

‖I(gk)− I(fk)‖n,2 = ‖I(gk−fk)‖n,2 = ‖gk−fk‖F
≤ ‖gk−f‖F +‖f −fk‖F ,
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where the first equality follows from the linearity of the mapping I : D → L2
n(H,P), the

second from the fact that it preserves inner prodcuts, and the last inequality is Minkowski’s
inequality. Both terms on the right hand side go to 0 as k→∞, so ‖I(gk)− I(fk)‖n,2 also
goes to 0 as k→∞. It follows that

‖Ig− If‖n,2 = 0,

so that Ig = If = Ĩ(f) almost surely. This shows us that Ĩ(f) does not depend on the
choice of sequence in D that converges to f .

• Ĩ(f) is I(f) for elementary functions
Suppose f ∈ D. Then, {fk}k∈N+ defined as fk = f for any k ∈ N+ is a sequence in D
converging to f in L2, so

Ĩ(f) = m.s.lim
k→∞

I(fk) = I(f).

Therefore, Ĩ(f) is precisely the stochastic integral of f with respect to {Zt}−π≤tπ if f is
an elementary function.

The two remarks above allow us to define, for any f ∈D, the stochastic integral of f with respect
to {Zt}−π≤t≤π as

I(f) = m.s.lim
k→∞

I(fk),

where {fk}k∈N+ is any sequence in D converging to f in L2.

Now it remains to see which functions in L2(LF ,µF ) are included in D, which is a sub-
set of L2(LF ,µF ). Fortunately, it turns out the space L2(LF ,µF ) is exactly D; D is dense in
L2(LF ,µF ) in the L2-sense thanks to the fact that µF is concentrated on (−π,π], so we can de-
fine the stochastic integral for every function in L2(LF ,µF ). The formal result is presented below:

Lemma (D is dense in the set of all Square Integrable Functions)
Let {Zt}−π≤t≤π be an n-dimensional orthogonal increment process with associated distribution
function F , distribution µF , and σ-algebra LF . Denot by D the collection of elementary functions
defined above. Then, for any f ∈ L2(LF ,µF ) and ε > 0, there exists a g ∈ D such that

‖f −g‖F < ε.

Proof) Let Cc(R,C) be the set of all continuous complex valued functions on R with compact
support. Every function in Cc(R,C) is continuous and continuous functions are LF -
measurable, so Cc(R,C) is a collection of LF -measurable functions. In addition, for any
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f ∈ Cc(R,C), letting K = {f 6= 0} be the compact support of f , f is bounded on K by
the extreme value theorem. Letting M > 0 be this bound, we can now see that∫

R
|f |2dµF =

∫
K
|f |2dµF ≤M2 ·µF (K)<+∞,

where the final inequality follows because µF is a finite measure. Thus, f ∈L2(LF ,µF ),
so that Cc(R,C)⊂ L2(LF ,µF ).

The proof wil proceed in two steps. First, we will show that D is dense in Cc(R,C) in
the L2-norm. Afterward, we show that Cc(R,C) is dense in L2(LF ,µF ) in the L2-norm,
at which point the proof will be complete.

Step 1: D is dense in Cc(R,C)
Choose any f ∈Cc(R,C), and let ε > 0. Since f is a complex valued continuous function
with compact support, it is uniformly continuous3 on R, and as such there exists a δ > 0
such that

|f(x)−f(y)|< ε

1 +
√
µF ((−π,π])

for any x,y ∈ R such that |x−y|< δ. Choosing k ∈N+ so that 2π
k < δ, define

λj =−π+ 2π
k+ 1 · j

for any 0≤ j ≤ k+1. Then, −π = λ0 <λ1 < · · ·<λk+1 = π is a partition of [−π,π] such
that λi+1−λi = 2π

k+1 < δ for any 0≤ i≤ k. Now define the function g : R→ C as

g =
k∑
i=0

f(λi) · I(λi,λi+1].

Clearly, g ∈ D, and for any x ∈ (−π,π], letting λi < x≤ λi+1 for some 0≤ i≤ k,

|f(x)−g(x)|= |f(x)−f(λi)|<
ε

1 +
√
µF ((−π,π])

because |x−λi| ≤ λi+1−λi < δ. Therefore,

|f −g|2 · I(−π,π] <

(
ε

1 +
√
µF ((−π,π])

)2

3For a formal proof, consult the theorem in chapter 4 of the measure theory text that constructs the Lebesgue
measure using the Riemann integral and the Riesz representation theorem.
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and since µF ((−π,π]c) = 0, we can see that

‖f −g‖F =
(∫

(−π,π]
|f −g|2dµF

) 1
2

≤ ε ·
√
µF ((−π,π])

1 +
√
µF ((−π,π])

< ε.

Such a g ∈ D exists for any ε > 0, so D is dense in Cc(R,C).

Step 2: Cc(R,C) is dense in L2(LF ,µF )
Choose some A ∈ LF and ε > 0. Focusing on the regulariy property of µF , since

µF (A) = inf{µF (V ) |A⊂ V, V is open}

= sup{µF (K) |K ⊂A, K is compact}

and µF (A)<+∞, by the definitions of the infimum and supremum there exist an open
set V and a compact set K such that K ⊂A⊂ V and

µF (V )< µF (A) + ε

2 , µF (A)− ε

2 < µF (K).

Putting these results together, we have

µF (V \K) = µF (V )−µF (K)< µF (A) + ε

2 + ε

2 −µF (A) = ε.

By Urysohn’s lemma for locally compact Hausdorff spaces, since R is locally compact
Hausdorff, K ⊂ V , V is open, and K is compact, there exists a function g ∈ Cc(R,C)
such that

g(x) ∈


{1} if x ∈K

[0,1] if x ∈ V \K

{0} if x /∈ V

for any x ∈ R. In other words, IK ≤ g ≤ IV . If x ∈K, then

|IA(x)−g(x)|= 0

because x ∈A and g(x) = 1; if x /∈ V , then

|IA(x)−g(x)|= 0

because x /∈A and g(x) = 0; if x ∈ V \K, then

|IA(x)−g(x)| ≤ 2
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since both IA and g are bounded above by 1. It follows that

‖IA−g‖2F =
∫
R
|IA−g|2dµF =

∫
V \K
|IA−g|2dµF

≤ 4 ·µF (V \K)< 4ε.

Thus, we can find a continuous compactly supported function g on R that approximates
IA arbitrarily closely in mean square.

Let f be a non-negative LF -measurable simple function; then, there exist a1, · · · ,ak ∈
[0,+∞) and disjoint A1, · · · ,Ak ∈ LF such that

f =
k∑
i=1

ai · IAi .

Choose any ε > 0. For each Ai, we saw above that there exists a gi ∈Cc(R,C) such that

‖IAi−gi‖F ≤
ε

k(ai+ 1) .

Defining

g =
k∑
i=1

aigi ∈ Cc(R,C),

we can now see that, by Minkowski’s inequality,

‖f −g‖F ≤
k∑
i=1

ai · ‖IAi−g‖F < ε · 1
k

(
k∑
i=1

ai
ai+ 1

)
< ε.

It follows that any non-negative LF -measurable simple function can be arbitrarily
closely approximated in mean square by a continuous compactly supported funciton.

Now let f be an arbitrary non-negative function in L2(LF ,µF ). Then, there exists a
sequence {fk}k∈N+ of simple non-negative LF -measurable function that increases point-
wise to f . {|f −fk|2}k∈N+ is a sequence of LF -measurable functions such that |f −fk|2≤
4|f |2, where 4|f |2 is µF -integrable due to the assumption that f ∈ L2(LF ,µF ), and
which converges pointwise to 0. Therefore, by the DCT,

lim
k→∞

∫
R
|f −fk|2dµF = 0,

or equiavlently, ‖f −fk‖F → 0 as k→∞. For any ε > 0, there thus exists a k ∈N+ such
that

‖fk−f‖F <
ε

2 ,
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and since this fk is a simple non-negative LF -measurable function, by the preceding
result there exists a g ∈ Cc(R,C) such that

‖fk−g‖F <
ε

2 .

Putting these two results together, we can conclude that ‖f −g‖F < ε; a non-negative
square integrable function f can be arbitrarily closely approximated in mean square by
a continuous compactly supported function.

Moving onto real-valued functions, suppose f ∈ L2(LF ,µF ) is real valued. Then, its
positive and negative parts f+ and f− are also µF -square integrable LF -measurable
functions. For any ε > 0, by the preceding result, there exist g1,g2 ∈Cc(R,C) such that

∥∥∥f+−g1
∥∥∥
F
,
∥∥f−−g2

∥∥
F <

ε

2 .

It follows that, defining g = g1−g2 ∈ Cc(R,C),

‖f −g‖F =
∥∥∥(f+−g1)− (f−−g2)

∥∥∥
F
≤
∥∥∥f+−g1

∥∥∥
F

+
∥∥f−−g2

∥∥
F < ε.

Finally, let f ∈ L2(LF ,µF ) in general. Then, its real and imaginary parts Re(f) and
Im(f) are real-valued functions in L2(LF ,µF ), and a process similar to the proof for
real valued functions in L2(LF ,µF ) shows that, for any ε > 0, there exists a g ∈Cc(R,C)
such that

‖f −g‖F < ε.

Q.E.D.

With the above lemma, we can formally claim that, for any f ∈ L2(LF ,µF ), there exists an
almost surely unique stochastic integral

I(f) =
∫ π

−π
f(λ)dZ(λ)

of f with respect to the orthogonal increment process {Zt}−π≤t≤π, defined as the L2-limit of
the sequence {I(fk)}k∈N+ ⊂ L2

n(H,P), where {fk}k∈N+ is a sequence of elementary functions
converging in mean square to f . The domain of the mapping I as now been extended from D
to L2(LF ,µF ). The following are some properties of the mapping I : L2(LF ,µF )→ L2

n(H,P):
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Theorem (Properties of the Stochastic Integral)
Let {Zt}−π≤t≤π be an n-dimensional orthogonal increment process with associated distribution
function F , distribution µF , and σ-algebra LF . Let the operation I : L2(LF ,µF )→ L2

n(H,P)
denote stochastic integation with respect to the orthogonal increment process {Zt}−π≤t≤π. Then,
the following hold true:

i) (Preservation of Inner Products)
For any f,g ∈ L2(LF ,µF ),

〈I(f), I(g)〉n,2 = 〈f,g〉F .

In particular,

E
∣∣∣∣∫ π

−π
f(λ)dZ(λ)

∣∣∣∣2 =
∫ π

−π
|f(λ)|2dµF (λ).

ii) (Linearity)
I : L2(LF ,µF )→ L2

n(H,P) is a linear transformation: for any a ∈ C and f,g ∈ L2(LF ,µF ),

I(af +g) = a · I(f) + I(g).

iii) For any f ∈ L2(LF ,µF ), E [I(f)] = 0.

Proof) Let f,g ∈ L2(LF ,µF ). Then, because f,g ∈ D, there exists sequences {fk}k∈N+ and
{gk}k∈N+ of elementary functions that converge in mean square to f and g. For each
k ∈N+, the properties of stochastic integration for elementary functions tell us that

〈I(fk), I(gk)〉n,2 = 〈fk,gk〉F .

By the definition of stochastic integrals,

‖I(fk)− I(f)‖n,2→ 0, ‖I(gk)− I(g)‖n,2→ 0

as k→∞. Note now that∣∣〈I(fk), I(gk)〉n,2−〈I(f), I(g)〉n,2
∣∣=
∣∣〈I(fk)− I(f), I(gk)− I(g)〉n,2 + 〈I(fk)− I(f), I(g)〉n,2 + 〈I(f), I(gk)− I(g)〉n,2

∣∣
≤ ‖I(fk)− I(f)‖n,2 · ‖I(gk)− I(g)‖n,2

+‖I(g)‖n,2 · ‖I(fk)− I(f)‖n,2 +‖I(f)‖n,2 · ‖I(gk)− I(g)‖n,2,

where the last inequality follows from the Cauchy-Schwarz inequality. Taking k→∞
on both sides now yields

lim
k→∞
〈I(fk), I(gk)〉n,2 = 〈I(f), I(g)〉n,2.
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Likewise,

lim
k→∞
〈fk,gk〉F = 〈f,g〉F ,

so we can see that

〈I(f), I(g)〉n,2 = 〈f,g〉F .

Now choose some a ∈ C and f,g ∈ L2(LF ,µF ). Then, as above, there exists sequences
{fk}k∈N+ and {gk}k∈N+ of elementary functions that converge in mean square to f and
g, and by definition

‖I(fk)− I(f)‖n,2→ 0, ‖I(gk)− I(g)‖n,2→ 0.

By the linearity of stochastic integration for elementary functions,

I(afk +gk) = a · I(fk) + I(gk)

for any k ∈N+. Since {afk+gk}k∈N+ is a sequence of elementary functions converging
in mean square to af +g ∈ L2(LF ,µF ), by definition

I(afk +gk)
L2
→ I(af +g).

Similarly, because I(fk)
L2
→ I(f) and I(gk)

L2
→ I(g), we can conclude that

a · I(fk) + I(gk)
L2
→ a · I(f) + I(g)

as well. By the almost sure uniqueness of L2-limits, we can conclude that

I(af +g) = a · I(f) + i(g)

almost surely.

Finally, let f ∈L2(LF ,µF ) and {fk}k∈N+ a sequence of elementary functions converginig
to f in mean square. Recall that E [I(fk)] = 0 for any k ∈N+. Thus,

|E [I(f)]|= |E [I(f)− I(fk)]| ≤ E|I(f)− I(fk)| ≤
(
E|I(f)− I(fk)|2

) 1
2 = ‖I(f)− I(fk)‖n,2
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for any k ∈N+, where the second inequality is Hölder’s. Taking k→∞ on both sides
now tells us that |E [I(f)]|= 0, that is, E [I(f)] = 0.

Q.E.D.

3.2.4 Trigonometric Polynomials

Before moving onto the spectral representation theorem, we take a brief detour to prove that
the space of trigonometric polynomials is dense in the space of all functions on R that are square
integrable with respect to a finite measure on R that assigns all of its mass to (−π,π]. Note
that this is precisely the type of measure that is naturally associated with orthogonal increment
processes on [−π,π], hence the usefulness of the result we are about to show.

We first review the Stone-Weierstrass theorem, which plays a central role in the exposition
this section. A vector space V over a field F is said to be an algebra over the field F if it is
equipped with a product operation × : V 2→ V satisfying the following properties:

• The Distributive Law
For any x,y,z ∈ V ,

(x+y)×z = x×z+y×z

z× (x+y) = z×x+z×y

• Compatibility with Scalars
For any a,b ∈ F and x,y ∈ V ,

(a ·x)× (b ·y) = (ab) · (x×y),

where · is the scalar multiplication operation.

Given any set E and a field F , the collection F of all functions f :E→ F is an algebra over
the field F under the product × : F2→F defined as

(f ×g)(x) = f(x)g(x)

for any x ∈ E. In particular, if (E,τ) is a topological space and F = R or C, then the space
Cb(E,F ) of all bounded continuous functions from E into F is a subalgebra of F equipped
with the same product operation; this can be easily seen since the product of bounded con-
tinuous functions is also bounded and continuous, and scalar products obey the distributivity
and associativity properties. Recall that the space of bounded continuous functions can itself be
considered a metric space under the supremum metric dC , which is the metric induced by the
supremium norm ‖·‖C : Cb(E,F )→ R+ defined as

‖f‖C = sup
x∈E
|f(x)|.
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for any f ∈ Cb(E,F ).
Let E be a set, F a field with additive identity 0F , F the algebra of all functions from E to

F , and A a subalgebra of F . We say that A:

• Separates points on E

If, for any x1,x2 ∈ E such that x1 6= x2, there exists an f ∈ A such that f(x1) 6= f(x2).

• Vanishes at no point in E

If, for any x ∈ E, there exists an f ∈ A such that f(x) 6= 0F .

• Is Self-Adjoint
If F = C and, for any f ∈ A, its conjugate f is also contained in A.

The Stone-Weierstrass theorem can now be stated as follows:

Theorem (The Stone-Weierstrass Theorem)
Let (E,τ) be a topological space, F = R or C, Cb(E,F ) the set of all continuous and bounded
functions from E to F , and dC the supremum metric on Cb(E,F ). Let A be a subalgebra of
Cb(E,F ) over the field F . Then, the following hold true:

i) If A separates points on E, then (E,τ) is a Hausdorff space.

ii) (Real Version of the Stone-Weierstrass Theorem)
Suppose (E,τ) is a compact space and that F =R. If A separates points on E and vanishes
at no point in E, then A is uniformly dense in C(E,F ), that is, C(E,F ) is the closure of
A under the metric dC .

iii) (Complex Version of the Stone-Weierstrass Theorem)
Suppose (E,τ) is a compact space and that F = C. If A separates points on E, vanishes at
no point in E, and is self-adjoint, then A is uniformly dense in C(E,F ), that is, C(E,F )
is the closure of A under the metric dC .

Proof) Consult chapter 6 of the probability theory text.

Q.E.D.
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The complex version of the Stone-Weierstrass theorem can now be used to show the first
part of our desired result. Let T be the unit circle on C, that is,

T = {x ∈ C | |x|= 1}.

Clearly, T is compact under the euclidean metric on C. Furthermore, functions on T are equiv-
alent to periodic functions on R with period 2π in the sense below:

Lemma (Characterization of Periodic Functions)
Let f : T→C be a c ontinuous function on T. Then, there exists a continuous periodic function
g : R→ C with period 2π such that

f(exp(ix)) = g(x)

for any x ∈ R.
Conversely, suppose f : R→C is a continuous periodic function with period 2π. Then, there

exists a continuous function g : T→ C such that

g(exp(ix)) = f(x)

for any x ∈ R.

Proof) First choose some continuous f : T→ C, and define the function g : R→ C as

g(x) = f(exp(ix))

for any x ∈R. g is well-defined because exp(ix) ∈ T for any x ∈R, and it has period 2π
because, for any x ∈ R,

g(x+ 2π) = f(exp(i(x+ 2π))) = f(exp(ix)) = g(x)

by the periodicity of the mapping x 7→ exp(ix). Furthermore, it is continuous because
it is the composition of two continuous functions.

Conversely, let f : R→ C be a continuous function with period 2π. Let θ : R→ T be
defined as θ(x) = exp(ix) for any x ∈ R. By Euler’s formula, the real and imaginary
parts of θ are continuous, so θ is also itself a continuous function. Define g : T→ C as

g(z) ∈ f
(
θ−1 ({z})

)
for any z ∈T, where θ−1({z}) is the inverse image of the singleton {z}, and f

(
θ−1 ({z})

)
is the image of the set θ−1({z}). g is a well-defined function because the periodicity of
f ensures that f

(
θ−1 ({z})

)
contains one and only one element. It is also easy to see
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that the relationship

g(exp(ix)) = g(θ(x)) = f(x)

holds for any x ∈ R.

It remains to show that g is continuous on T. To this end, let V be a subset of C; we
initially note that

g−1(V ) = θ(f−1(V )).

To rigorously establish this result, first choose some z ∈ g−1(V ). Then, since g(z) ∈ V
and f(θ−1({z})) = {g(z)}, it follows that

θ−1({z})⊂ f−1(V ).

By definition, there exists a x∈ θ−1({z}) such that θ(x) = z, and since this x is contained
in f−1(V ), we have

z ∈ θ(f−1(V )),

which implies that g−1(V )⊂ θ(f−1(V )).

Conversely, choose some z ∈ θ(f−1(V )). Then, there exists some x ∈ f−1(V ) such that
z = θ(x), which shows us that x∈ θ−1({z}). By definition, g(z) = f(x)∈ V , so it follows
that z ∈ g−1(V ). This establishes the reverse inclusion, and we are able to conclude
that

g−1(V ) = θ(f−1(V )).

To establish the continuity of g on T, it suffices then to show that

θ(f−1(V ))

is an open subset of T for any open subset V of C. Since the set of all open intervals
on R forms a base generating the standard topology on R, we can express U as the
arbitrary union of open intervals (a,b). The proof will therefore be over if we can show
that the image

θ((a,b))

is an open subset of T for any open interval (a,b) on R.

Choose any such interval (a,b); note that θ((a,b)) forms an arc on the unit circle. Let
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z ∈ θ((a,b)). Then, there exists an x ∈ (a,b) such that z = θ(x), and using this we can
choose a 0< δ < π such that

(x− δ,x+ δ)⊂ (a,b).

We will now search for an ε > 0 such that

B(z,ε)∩T⊂ θ((x− δ,x+ δ)).

For any y ∈ R, note that

|θ(x)−θ(y)|2 = |exp(ix)− exp(iy)|2

= (cos(x)− cos(y))2 + (sin(x)− sin(y))2

= 2−2(cos(x)cos(y) + sin(x)sin(y))

= 2(1− cos(x−y))

= 2
(

1−
(

1−2sin2
(
x−y

2

)))
= 4sin2

(
x−y

2

)
.

Therefore, for any 0< ε < 4, if w ∈ B(z,ε)∩T, then there exists some y ∈ R such that
w = θ(y), where the y is chosen so that |x−y| ≤ π. This y then satisfies

4sin2
(
x−y

2

)
= |θ(x)−θ(y)|2 < ε2,

which implies that

|x−y|< arcsin
(
ε

2

)
,

where we can employ the inverse sine function because −π
2 ≤

x−y
2 ≤

π
2 . It follows that,

if we set

ε= 2sin
(
δ

2

)
> 0,

then since 0< δ
2 <

π
2 , we have

|x−y|< δ

and therefore

w = θ(y) ∈ θ((x− δ,x+ δ)).
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We have just shown that

B

[
z,2sin

(
δ

2

)]
∩T⊂ θ((x− δ,x+ δ))⊂ θ((a,b)).

Therefore, any point z in θ((a,b)) has a neighborhood open in T that is once again con-
tained in θ((a,b)). This shows us that θ((a,b)) is open in T, and we can now conclude
that g is a continuous function.

Q.E.D.

The main functions of interest in this section are trigonometric polynomials. A trigonometric
polynomial is a function P : R→ C of the form

P (x) = a0 +
k∑
t=1

(at · cos(tx) + bt · sin(tx))

for any x ∈ R, where a0, · · · ,ak, b1, · · · , bk ∈ C. By Euler’s formula, we can formulate the cosine
and sine functions in terms of the complex exponential as follows:

cos(tx) = 1
2 (exp(itx) + exp(−itx))

sin(tx) = 1
2i (exp(itx)− exp(−itx))

for any t ∈ Z and x ∈R. Therefore, the trigonometric polynomial above can be written in terms
of the complex exponential as

P (x) = a0 +
k∑
t=1

[
at
2 · (exp(itx) + exp(−itx)) + bt

2i · (exp(itx)− exp(−itx))
]

= a0 +
k∑
t=1

at− ibt
2 · exp(itx) +

k∑
t=1

at+ ibt
2 · exp(−itx)

=
k∑

t=−k
ct · exp(itx)

for any x ∈ R, where

ct =


at−ibt

2 if 1≤ t≤ k

a0 if t= 0
at+ibt

2 if −k ≤ t≤−1

.

Euler’s formula also tells us that we can write any finite partial linear combination of complex
exponentials as a trigonometric polynomial, so from here on we write trigonometric polynomials
as a doubly finite linear combination of complex exponentials, which is more convenient for our
purposes.
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The preceding characterization of 2π-periodic continuous functions, combined with the Stone-
Weierstrass theorem, produces the following result central to the ubiquity of trigonometric poly-
nomials in mathematics:

Lemma (Density of Trigonometric Polynomials for 2π-Periodic Functions)
Let T be the space of all trigonometric polynomials on R. Then, T is uniformly dense in the
space C2π(R,C) of all complex periodic and continuous functions on R with period 2π.

Proof) Define A as the set of all polynomials from the unit circle T to the complex field C. A is
clearly an algebra over the complex field, since the linear combination of polynomials,
as well as the product of polynomials are still polynomials. A also separates points on
T; for any distinct z1,z2 ∈ T, the simple linear function P ∈ A defined as P (x) = x for
any x∈T separates z1 and z2. For any z ∈T, the polynomial P ∈A defined as P (x) = 1
for any x ∈ T satisfies P (z) = 1 6= 0, and therefore A vanishes at no point in T. Finally,
for any polynomial P ∈ A defined as

P (z) =
k∑
t=0

at ·zt

for any z ∈ T, its conjugate P is defined as

P (z) =
k∑
t=0

at ·zt

for any z ∈ T and is thus also a complex-valued polynomial on T, meaning that it is
contained in A. In other words, A is also a self-adjoint algebra.

The properties of A shown above, together with the compactness of T, allow us to
use the complex version of the Stone-Weierstrass theorem; we can conclude that A is
uniformly dense in the space C(T,C) of all complex continuous functions on T.

Now choose any function f ∈C2π(R,C). The preceding lemma tells us that there exists
a g ∈ C(T,C) such that

f(x) = g(exp(ix))

for any x ∈ R. Since A is uniformly dense in T, there exists a sequence {Pn}n∈N+ of
polynomials on T, where each Pn is defined as

Pn(z) =
kn∑
t=0

a
(n)
t ·zt
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for any z ∈ T, such that

lim
n→∞

sup
z∈T
|Pn(z)−g(z)|= 0.

Define the sequence {Tn}n∈N+ as

Tn(x) = Pn(exp(ix)) =
kn∑
t=0

a
(n)
t · exp(itx)

for any x ∈ R and n ∈ N+; {Tn}n∈N+ is, by definition, a sequence of trigonometric
polynomials on R. Since g(exp(ix)) = f(x) for any x∈R, it follows that, for any n∈N+,

sup
z∈T
|Pn(z)−g(z)|= sup

x∈R
|Tn(x)−f(x)|.

Therefore,

lim
n→∞

sup
x∈R
|Tn(x)−f(x)|,

and since this holds for any continuous 2π-periodic function f : R→ C, the space T of
trigonometric polynomials on R is uniformly dense in C2π(R,C).

Q.E.D.

We can now show that trigonometric polynomials are dense in certain kinds of L2-spaces.

Lemma (Density of Trigonometric Polynomials for Square Integrable Functions)
Let T be the space of all trigonometric polynomials on R. Let E be a σ-algebra on R that
contains the Borel σ-algebra B(R), and µ a finite measure on (R,E) concentrated on (−π,π],
that is,

µ((−π,π]c) = 0.

Then, T is dense in L2(E ,µ) in the mean-square sense, that is, L2(E ,µ) is the closure of T with
respect to the L2-norm ‖·‖2 on L2(E ,µ).

Proof) We first show that T is dense in the space of all complex continuous functions f on
R such that f(−π) = f(π), in the mean-square sense. Let f : R→ C be a continuous
function such that f(−π) = f(π), and choose any ε > 0. Define f̃ as the restriction of f
to (−π,π], and construct g : R→C by connecting an infinite number of f̃ side by side.
Then, g is a continuous periodic function on R with period 2π. By the previous result,
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there exists a trigonometric polynomial P ∈ T such that

sup
x∈R
|P (x)−g(x)|< ε

1 +
√
µ((−π,π])

.

By implication, we have

sup
x∈(−π,π]

|P (x)−f(x)|= sup
x∈(−π,π]

|P (x)−g(x)|

≤ sup
x∈R
|P (x)−g(x)|< ε

1 +
√
µ((−π,π])

,

since f and g agree on (−π,π], and since the measure µ is concentrated on (−π,π],

‖f −P‖2 =
(∫

R
|f(x)−P (x)|2dx

) 1
2

=
(∫

(−π,π]
|f(x)−P (x)|2dx

) 1
2

≤ ε ·
√
µ((−π,π])

1 +
√
µ((−π,π])

< ε.

Now we show that the sapce of all complex continuous functions f on R such that
f(−π) = f(π) is dense in the space C(R,C) of continuous complex functions on R in
the mean-square sense. Choose any f ∈C(R,C) and ε > 0. Since f is continuous on the
compact set [−π,π], by the Weierstrass theorem it is bounded on this set; let M > 1
be an upper bound of |f(x)| for x ∈ [−π,π]. Define

K = (π2 + 1)2M2 > 0,

and choose δ ∈ (0,1) so that

µ((−π,−π+ δ)) +µ((π− δ,π])< ε

2K ;

such a δ exists due to sequential continuity and the finiteness of µ. Having chosen this
δ, since

lim
h↓0

(
1 +

(
π2
)2h
−2(2πδ− δ2)h

)
= 0,

there exists an h ∈ (0,1) such that(
1 +

(
π2
)2h
−2(2πδ− δ2)h

)
<

ε

2M2 ·µ((−π,π]) .

Now define g : R→ C as

g(x) = f(x)
(
x2−π2

)h
for any x ∈ R. We can clearly see that g is a continuous function on R such that
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f(−π) = f(π) = 0, with upper bound

sup
x∈[−π,π]

|g(x)| ≤
(

sup
x∈[−π,π]

|f(x)|
)(

π2
)h
≤M ·π2

on [−π,π]. It follows that

sup
x∈[−π,π]

|f(x)−g(x)|2 ≤M2
(
π2 + 1

)2
=K,

and since

sup
x∈[−π+δ,π−δ]

(π2−x2)h =
(
π2
)h

inf
x∈[−π+δ,π−δ]

(π2−x2)h =
(
π2− (π− δ)2

)h
=
(
2πδ− δ2

)h
,

we can see that

sup
x∈[−π+δ,π−δ]

|f(x)−g(x)|2 = sup
x∈[−π+δ,π−δ]

(
1− (π2−x2)h

)2
|f(x)|2

=M2
[

sup
x∈[−π+δ,π−δ]

(
1 +

(
π2−x2

)2h
−2

(
π2−x2

)h)]

=M2
(

1 +
(
π2
)2h
−2

(
2πδ− δ2

)h)
<

ε

2 ·µ((−π,π])

by our choice of δ > 0 and h > 0. We can now see that

‖f −g‖22 =
∫
R
|f(x)−g(x)|2dµ(x)

=
∫

(−π,π]
|f(x)−g(x)|2dµ(x)

=
∫

(−π,−π+δ)
|f(x)−g(x)|2dµ(x) +

∫
(π−δ,π]

|f(x)−g(x)|2dµ(x)

+
∫

[−π+δ,π−δ]
|f(x)−g(x)|2dµ(x)

≤K (µ((−π,−π+ δ)) +µ((π− δ,π]))

+
(

sup
x∈[−π+δ,π−δ]

|f(x)−g(x)|2
)
·µ([−π+ δ,π− δ])

≤ ε

2 + ε

2 ·µ((−π,π])µ([−π+ δ,π− δ])≤ ε.

Putting these two results together, we can see that, for any continuous function f :R→
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C and ε > 0, there exists a trigonometric polynomial P ∈ T such that

‖f −P‖2 < ε.

In other words, T is dense in C(R,C) in the mean square sense. Since we already saw in
the previous section that the collection Cc(R,C) of all continuous compactly supported
functions on R is dense in L2(E ,µ) in the mean-square sense, it now follows that T is
dense in L2(E ,µ) in the mean-square sense.

Q.E.D.

3.2.5 The Spectral Representation Theorem

Now we return to the main objective of this section, namely furnishing a representation of some
time series as the stochastic integral of sinusoidal functions. Let {Yt}t∈Z be an n-dimensional
mean zero weakly stationary process with absolutely summable autocovariances. Letting Γ :Z→
Rn×n be the autocovariance function of {Yt}t∈Z, we defined the spectral density f : (−π,π]→
Cn×n of {Yt}t∈Z as

f(w) = 1
2π

∞∑
τ=−∞

Γ(τ)exp(−iτw)

for any w ∈ (−π,π]. The spectral distribution F : R→ R of {Yt}t∈Z is defined using f as

F (x) =


tr(Γ(0)) if x > π∫ x
−π tr(f(w))dw if −π < x≤ π

0 if −π ≤ x

for any x∈R. F is continuous at π and −π because Γ(0) =
∫ π
−π f(w)dw, and it is differentiable on

(−π,π) because tr(f) is continuous on (−π,π). Therefore, F is continuous on R, bounded above
by tr(Γ(0)), and increasing because tr(f) is a non-negative function on (−π,π]. This indicates,
in light of the construction of the Lebesgue-Stieltjes measure, that there exists a σ-algebra LF
on R and a finite measure µF on (R,LF ) satisfying the following properties:

i) LF contains every Borel set on R, that is, B(R)⊂ LF .

ii) (Completeness) (R,LF ,µF ) is a complete measure space.

iii) (Regularity) µF is a regular Borel measure, that is,

µF (A) = inf{µF (V ) |A⊂ V, V is open}

= sup{µF (K) |K ⊂A K is compact}

for any A ∈ LF .
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iv) (Approximation Property) For any A ∈ LF and ε > 0, there exists an open set V and
a closed set K such taht K ⊂A⊂ V and

µF (V \K)< ε.

v) For any half-open interval (s, t]⊂ [−π,π],

µF ((s, t]) = F (t)−F (s) =
∫ t

s
tr(f(w))dw.

vi) The entire mass of µF is concentrated on (−π,π], that is,

µF ((−π,π]c) = 0.

The last property follows in a manner similarly to how we showed the distribution associ-
ated with an orthogonal increment process is concentrated on (−π,π]. We call µF the spectral
distribution of {Yt}t∈Z, and LF the associated σ-algebra.

Suppose we extend the definition of f so that

f(−π) = f(π), f(w) =O for any w /∈ [−π,π].

Then, for any half-open interval (s, t]⊂ R, we have

µF ((s, t]) =
∫ t

s
tr(f(w))dw,

and since the set of half-open intervals generates the Borel σ-algebra on R, this makes tr(f) the
Radon-Nikodym derivative of µF with respect to the Lebesgue measure on R. It follows that∫ π

−π
gdµF =

∫ π

−π
(g(w)tr(f(w)))dw

for any LF -measurable and µF -integrable complex valued function g.

Our goal is to first and foremost construct an n-dimensional orthogonal increment process
{Zt}−π≤t≤π with respect to which each Yt can be expressed as a stochastic integral. To this end,
we first consider the linear subspaces

W2 ⊂ L2
n(H,P), and WF ⊂ L2(LF ,µF )

defined as

W2 = span{Yt | t ∈ Z}, and T = span{w 7→ exp(itw) | t ∈ Z}.

Note that T is simply the space of all trigonometric polynomials; similarly, for any X ∈W2, we
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can write

X =
N∑

t=−N
at ·Yt

for some N ∈N+ and N ∈N+.
Define the mapping T :W2→T as

T

 N∑
t=−N

at ·Yt

=
N∑

t=−N
at · exp(it·),

for any ∑N
t=−N at ·Yt ∈W2, where exp(it·) represents the complex exponential x 7→ exp(itx). The

following is our first result concerning the operation T :

Lemma Let {Yt}t∈Z be an n-dimensional mean-zero weakly stationary time series with
absolutely summable autocovariances, and denote the autocovariance function of {Yt}t∈Z by
Γ : Z→ Rn×n. Let f be the spectral density, F the spectral distribution, and (R,LF ,µF ) the
spectral measure space associated with the process {Yt}t∈Z.

Define the linear subspaces W2 ⊂ L2
n(H,P) and T ⊂ L2(LF ,µF ) as above, and let T :W2→

T be the operation introduced above. Then, T is an inner product space isomorphism from
(W2,〈·, ·〉n,2) onto (T ,〈·, ·〉F ).

Proof) We first establish a key result. Choose any

N∑
t=−N

at ·Yt,
N∑

t=−N
bt ·Yt ∈W2.

Then, we have

∥∥∥∥∥∥T
 N∑
t=−N

at ·Yt

−T
 N∑
t=−N

bt ·Yt

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
N∑

t=−N
at · exp(it·)−

N∑
t=−N

bt · exp(it·)

∥∥∥∥∥∥
2

F

=
∫
R

∣∣∣∣∣∣
N∑

t=−N
(at− bt)exp(itw)

∣∣∣∣∣∣
2

dµF (w)

=
∑
|t|≤N

∑
|s|≤N

(at− bt)(as− bs) ·
∫ π

−π
exp(i(t−s)w)dµF (w)

=
∑
|t|≤N

∑
|s|≤N

(at− bt)(as− bs) ·
∫ π

−π
exp(i(t−s)w)tr(f(w))dw

=
∑
|t|≤N

∑
|s|≤N

(at− bt)(as− bs)
∞∑

τ=−∞
tr(Γ(τ)) ·

∫ π

−π
exp(i((t−s)− τ)w)dw
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=
∑
|t|≤N

∑
|s|≤N

(at− bt)(as− bs)tr(Γ(t−s))

=
∑
|t|≤N

∑
|s|≤N

(at− bt)(as− bs) ·E
[
Y ′t Ys

]

= E

∣∣∣∣∣∣
∑
|t|≤N

(at− bt)Yt

∣∣∣∣∣∣
2

=

∥∥∥∥∥∥
N∑

t=−N
at ·Yt−

N∑
t=−N

bt ·Yt

∥∥∥∥∥∥
2

n,2

.

As such,∥∥∥∥∥∥T
 N∑
t=−N

at ·Yt

−T
 N∑
t=−N

bt ·Yt

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
N∑

t=−N
at ·Yt−

N∑
t=−N

bt ·Yt

∥∥∥∥∥∥
n,2

;

if ∑N
t=−N at ·Yt and ∑N

t=−N bt ·Yt are two representations of the same random vector
X ∈W2, then the right hand side is 0, so that

T

 N∑
t=−N

at ·Yt

= T

 N∑
t=−N

bt ·Yt

= T (X)

almost surely. This shows us that T is a well-defined operation.

Another way to express the above equation is that, for any X,Z ∈W2, we have

‖T (X)−T (Z)‖F = ‖X−Z‖n,2.

Putting Z = 0, we can see that

‖T (X)‖F = ‖X‖n,2,

so that T (X) = 0 if and only if X = 0. This shows us that the operation T is injective.
In addition, for any X,Z ∈W2 and c ∈ C such that

X =
N∑

t=−N
at ·Yt, Z =

N∑
t=−N

bt ·Yt,

since

cX+Z =
N∑

t=−N
(c ·at+ bt) ·Yt,

we have

T (cX+Z) =
N∑

t=−N
(c ·at+ bt) · exp(it·)
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= c

 N∑
t=−N

at · exp(it·)

+

 N∑
t=−N

bt · exp(it·)

= c ·T (X) +T (Z),

which demonstrates that T is a linear transformation. This, together with the injectiv-
ity of T , shows us that T is a vector space isomorphism from W2 onto T .

It remains to show that T preserves inner products. This is seen below; for any

N∑
t=−N

at ·Yt,
N∑

t=−N
bt ·Yt ∈W2.

we have

〈
T

 ∑
|t|≤N

at ·Yt

 , T
 ∑
|t|≤N

bt ·Yt

〉
F

=
〈 ∑
|t|≤N

at · exp(it·),
∑
|t|≤N

bt · exp(it·)
〉
F

=
∑
|t|≤N

∑
|s|≤N

atbs ·
∫ π

−π
exp(i(t−s)w)dµF (w)

=
∑
|t|≤N

∑
|s|≤N

atbs ·
∫ π

−π
exp(i(t−s)w)tr(f(w))dw

=
∑
|t|≤N

∑
|s|≤N

atbs

∞∑
τ=−∞

tr(Γ(τ)) ·
∫ π

−π
exp(i((t−s)− τ)w)dw

=
∑
|t|≤N

∑
|s|≤N

atbs tr(Γ(t−s))

=
∑
|t|≤N

∑
|s|≤N

atbs ·E
[
Y ′t Ys

]

= E


 N∑
t=−N

at ·Yt

′ N∑
t=−N

bt ·Yt




=
〈 N∑
t=−N

at ·Yt,
N∑

t=−N
bt ·Yt

〉
n,2
.

Therefore, T is an inner product space isomorphism from W2 onto T .

Q.E.D.

184



Now, we want to extend the domain of T to W2 and its target space to T , where W2 is the
L2-closure of W2 and T the L2-closure of WF . Note that, since T is the set of all trigonometric
polynomials, LF is a σ-algebra on R containing B(R), and µF is a finite measure on (R,LF )
concentrated on (−π,π], by the result shown in the previous section the L2-closure T is precisely
the space L2(LF ,µF ).

T is extended to W2 in almost the same manner as the stochastic integral. For any X ∈W2,
there exists a sequence {Xk}k∈N+ ∈W2 such that

lim
n→∞

‖Xk−X‖n,2 = 0.

Since the operation T on W2 preserves norms, we can see that

‖T (Xk)−T (Xm)‖F = ‖Xk−Xm‖n,2

for any k,m ∈ N+. Since the right hand side goes to 0 as n,m→∞ (all convergent sequences
are Cauchy), so does the left hand side; this tells us that {T (Xk)}k∈N+ ⊂ L2(LF ,µF ) is Cauchy
in L2, and by the completeness of L2-spaces as Hilbert spaces, it follows that this sequence
converges to some quantity in L2(LF ,µF ) =WF . We then define

T̃ (X) =m.s.lim
k→∞

T (Xk).

As during the construction of stochastic integrals, we must verify the following to see that T̃ (X)
is well-defined:

• T̃ (X) is invariant to the choice of convergent sequence
Suppose that {Xk}k∈N+ and {Zk}k∈N+ are two sequences in W2 converging to X ∈W2 in
L2. Denote

TX = m.s.lim
k→∞

T (Xk) and TZ = m.s.lim
k→∞

T (Zk).

Then, for any k ∈N+,

‖TX −TZ‖F ≤ ‖TX −T (Xk)‖F +‖T (Xk)−T (Zk)‖F +‖T (Zk)−TZ‖F .

By assumption, the first and third terms go to 0 as k→∞. As for the second term,

‖T (Xk)−T (Zk)‖F = ‖Xk−Zk‖n,2
≤ ‖Xk−X‖n,2 +‖X−Zk‖n,2.

Both terms on the right hand side go to 0 as k→∞, so ‖T (Xk)−T (Zk)‖F also goes to 0
as k→∞. It follows that

‖TX −TZ‖F = 0,
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so that TX = TZ = T̃ (X) almost surely. This shows us that T̃ (X) does not depend on the
choice of sequence in W2 that converges to X.

• T̃ (X) is T (X) for X ∈W2

Suppose X ∈W2. Then, {Xk}k∈N+ defined as Xk =X for any k ∈N+ is a sequence in W2

converging to X in L2, so

T̃ (X) = m.s.lim
k→∞

T (Xk) = T (X).

Therefore, T̃ (X) is precisely T (X) if X ∈W2.

As in the case of stochastic integration, these two remarks allow us to define the operation
T :W2→ L2(LF ,µF ) as

T (X) = m.s.lim
k→∞

T (Xk)

for any X ∈W2 and sequence {Xk}k∈N+ converging to X in L2.
The extended operation T :W2→L2(LF ,µF ) is actually an inner product isomorphsim from

W2 onto L2(LF ,µF ), as we show below:

Lemma Let {Yt}t∈Z be an n-dimensional mean-zero weakly stationary time series with
absolutely summable autocovariances, and denote the autocovariance function of {Yt}t∈Z by
Γ : Z→ Rn×n. Let f be the spectral density, F the spectral distribution, and (R,LF ,µF ) the
spectral measure space associated with the process {Yt}t∈Z.

Define the linear subspace W2 ⊂ L2
n(H,P) as above, and let T : W2 → L2(LF ,µF ) be the

operation introduced above. Then, T is an inner product space isomorphism from (W2,〈·, ·〉n,2)
onto L2(LF ,µF ).

Proof) Let c ∈C, X,Z ∈W2, and {Xk}k∈N+ , {Zk}k∈N+ sequences in W2 converging to X and
Z in L2. Then, since {cXk +Zk}k∈N+ is a sequence in W2 converging to cX+Z in L2,

T (cX+Z) = m.s.lim
k→∞

T (cXk +Zk)

= c

(
m.s.lim
k→∞

T (Xk)
)

+ m.s.lim
k→∞

T (Zk)

= cT (X) +T (Z),

where the second equality follows from the linearity of T on W2. Therefore, T is a linear
transformation on W2.
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In addition, we can see that, because inner products are continuous functions,

〈T (X),T (Z)〉F = lim
k→∞
〈T (Xk),T (Zk)〉F

= lim
k→∞
〈Xk,Zk〉n,2 = 〈X,Z〉n,2;

the second equality follows because T preserves inner products on W2. Therefore, T
preserves inner products on W2, and as a special case, when X = Z,

‖T (X)‖F = ‖X‖n,2.

This shows us that the operation T is injective, and as such T is an inner product space
isomorphism from W2 onto L2(LF ,µF ).

Q.E.D.

The inner product space isomorphism T : W2 → L2(LF ,µF ) defined above can be used to
construct the orthogonal increment process of interest.

Lemma Let {Yt}t∈Z be an n-dimensional mean-zero weakly stationary time series with
absolutely summable autocovariances, and denote the autocovariance function of {Yt}t∈Z by
Γ : Z→ Rn×n. Let f be the spectral density, F the spectral distribution, and (R,LF ,µF ) the
spectral measure space associated with the process {Yt}t∈Z.

Define the linear subspace W2 ⊂ L2
n(H,P) as above, and let T : W2 → L2(LF ,µF ) be the

operation introduced above. Letting T−1 : L2(LF ,µF )→ W2 be the inverse of T , define the
process {Zλ}−π≤λ≤π as

Zλ = T−1
(
I(−π,λ]

)
for any −π ≤ λ ≤ π. Then, {Zλ}−π≤λ≤π is a mean-zero, square integrable and right continu-
ous orthogonal increment process, and F is precisely the distribution function associated with
{Zλ}−π≤λ≤π.

Proof) {Zλ}−π≤λ≤π is clearly square integrable, since each Zλ takes values in W2 ⊂ L2
n(H,P).

In addition, since Zλ is an element of W2, there exists a sequence {Xk}k∈N+ in W2

that converges in mean square to Zλ. Each Xk has mean zero because it is the linear
combination of random vectors with mean zero. Since

|E [Zλ]|= |E [Zλ]−E [Xk]| ≤ E|Zλ−Xk| ≤ ‖Zλ−Xk‖n,2
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for any k ∈N+ by Hölder’s inequality, taking k→∞ on both sides shows us that

|E [Zλ]|= 0,

or that Zλ has mean zero.

For any −π ≤ w ≤ u≤ s≤ t≤ π,

〈Zt−Zs, Zu−Zw〉n,2 = 〈T (Zt)−T (Zs), T (Zu)−T (Zw)〉F

= 〈I(s,t], I(w,u]〉F =
√
µF ((w,u]∩ (s, t]),

where the first equality follows because the operation T is linear and preserves inner
products. Since (w,u]∩ (s, t] = ∅, it follows that

〈Zt−Zs, Zu−Zw〉n,2 = 0,

so that {Zλ}−π≤λ≤π has orthogonal increments.

Finally, for any −π < λ≤ π, note that

E|Zλ−Z−π|2 = ‖Zλ−Z−π‖2n,2

= ‖T (Zλ)−T (Z−π)‖2F =
∥∥∥I(−π,λ]

∥∥∥2

F

= µF ((−π,λ]) = F (λ).

F (λ) = 0 for any λ≤ π and F (λ) = F (π) for any λ > π, so it follows that F is precisely
the distribution function associated with {Zλ}−π≤λ≤π. By implication,

‖Zλ+δ−Zλ‖n,2 =
√
F (λ+ δ)−F (λ)

for any −π ≤ λ < π and sufficiently small δ > 0, so by the continuity of F ,

lim
δ↓0
‖Zλ+δ−Zλ‖n,2 = 0.

This demonstrates that {Zλ}−π≤λ≤π is a process that is right continuous (in mean
square).

Q.E.D.

Finally, we can show that each Yt can be expressed as the stochastic integral of exp(it·) with
respect to the orthogonal increment process constructed above. This is the formal statement of
the spectral representation theorem.
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Theorem (Spectral Representation Theorem)
Let {Yt}t∈Z be an n-dimensional mean-zero weakly stationary time series with absolutely summable
autocovariances, and denote the autocovariance function of {Yt}t∈Z by Γ : Z→ Rn×n. Let f be
the spectral density, F the spectral distribution, and (R,LF ,µF ) the spectral measure space
associated with the process {Yt}t∈Z.

Then, there exists a mean-zero, square integrable and right continuous (in mean square)
orthogonal increment process {Zλ}−π≤λ≤π such that

E|Zλ−Z−π|2 = F (λ)

for any −π ≤ λ≤ π and

Yt =
∫ π

−π
exp(itλ)dZ(λ)

for any t ∈ Z.

Proof) Let W2 ⊂ L2
n(H,P) be the linear subspace and T : W2 → L2(LF ,µF ) the inner prod-

uct space isomorphism defined above. Furthermore, let {Zλ}−π≤λ≤π be the orthogonal
increment process constructed in the preceding lemma as

Zλ = T−1
(
I(−π,λ]

)
for any −π ≤ λ≤ π.

Let the operation I : L2(LF ,µF )→ L2
n(H,P) denote stochastic integration with respect

to the process {Zλ}−π≤λ≤π, that is,

I(f) =
∫ π

−π
f(λ)dZ(λ)

for any f ∈ L2(LF ,µF ). Recall that I is a linear transformation that preserves inner
products. We must show that I = T−1 on L2(LF ,µF ; then,

Yt = T−1(exp(it·)) = I(exp(it·)) =
∫ π

−π
exp(itλ)dZ(λ)

for any t ∈ Z, as we desired.

To this end, choose some elementary function f ∈ D ⊂ L2(LF ,µF ), and represent it as

f =
k∑
i=0

ri · I(λi,λi+1],
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where −π = λ0 < · · ·< λk+1 = π is a partition of [−π,π]. Then,

T−1(f) =
k∑
i=0

ri ·T−1
(
I(λi,λi+1]

)

=
k∑
i=0

ri ·
[
T−1

(
I(−π,λi+1]

)
−T

(
I(−π,λi]

)]

=
k∑
i=0

ri ·
(
Zλi+1−Zλi

)
= I(f),

so that I = T−1 on the space D of all elementary functions on [−π,π].

Now choose some f ∈ L2(LF ,µF ). Since D is dense in L2(LF ,µF ) in the mean square
sense, there exists a sequence {fk}k∈N+ of elementary functions that converges to f in
L2. By definition,

I(f) = m.s.lim
k→∞

I(fk) = m.s.lim
k→∞

T−1(fk).

Note that, for any k ∈N+,
∥∥∥T−1(fk)−T−1(f)

∥∥∥
n,2

=
∥∥∥T (T−1(fk))−T (T−1(f))

∥∥∥
F

= ‖fk−f‖F

by the linearity and inner product perserving property of T . Thus, taking k→∞ on
both sides shows that

T−1(f) = m.s.lim
k→∞

T−1(fk),

and by the almost sure uniqueness of L2-limits,

I(f) = T−1(f).

In other words, I = T−1 on L2(LF ,µF ), which completes the proof.

Q.E.D.

What the spectral representation tells us is that any time series {Yt}t∈Z can be expressed as
the weighted sum of periodic functions of frequencies ranging from −π to π. Here, Zλ can be
interpreted as the weight assigned to the periodic function t 7→ exp(itλ). Use Euler’s formula to
see that

exp(itλ) = cos(tλ) + isin(tλ).

190



exp(itλ), as a function of t, is a periodic function with period 2π
λ , since

cos(tλ) = cos(tλ+ 2π) = cos
(
λ

(
t+ 2π

λ

))
.

In other words, this function repeats every 2π
λ time periods. An equivalent way to say this is

to say that the function has frequency λ
2π ; the frequency of a periodic function is the average

number of times the function is expected to repeat its behavior in a single time period. The
lower the frequency, the less frequently we observe the same behavior.

Therefore, Zλ is the weight assigned to a wavelength of frequency λ
2π . The larger λ, the more

the associated wavelength recurs in a given length of time, meaning that it represents cyclical
behavior. In contrast, a wavelegnth with a lower frequency takes much longer to recur, so that
it can be interpreted as representing the trending behavior of a time series. Thus, the spec-
tral representation theorem, by allowing us to decompose a time series into its higher and lower
frequency components, allows us to extract and study separately its trend and cycle components.

3.3 Time Invariant Linear Filters

Let {Yt}t∈Z be an n-dimensional, mean-zero, square integrable and weakly stationary time se-
ries with absolutely summable autocovariance function Γ : Z→ Rn×n. An absolutely summable
sequence {Ψj}j∈Z of n×n matrices is referred to as a time-invariant linear filter (TLF), and the
process {Xt}t∈Z defined as

Xt = Ψ(L)Yt =
∞∑

j=−∞
Ψj ·Yt−j

for any t ∈ Z is said to be obtained from {Yt}t∈Z via the filter Ψ = {Ψj}j∈Z. Recall that {Xt}t∈Z
is itself a mean-zero weakly stationary process and absolutely summable autocovariances. The
filter Ψ is said to be causal if Ψj =O for any j < 0.

TLFs arise often in time series analysis; for instance, the h-period moving average process
{Xt}t∈Z defined as

Xt = 1
2h

h∑
j=−h

Yt−j

for any t ∈ Z is obtained from {Yt}t∈Z via the filter H = {Hj}j∈Z defined as

Hj =


1

2hIn if |j| ≤ h

O if |j|> h
.

Similarly, the first difference process {∆Yt}t∈Z defined as

∆Yt = Yt−Yt−1
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for any t ∈ Z is obtained from {Yt}t∈Z via the causal filter D = {Dj}j∈Z defined as

Dj =


In if j = 0

−In if j = 1

O otherwise

.

However, one should exercise caution when employing TLFs because they have the effect of
eliminating wavelengths of certain frequencies from the original time series; this may leave us
only with the trend or cycle components of the original series. This is formally articulated in
the following theorem:

Theorem (Transformations in Spectrum via TLF)
Let {Yt}t∈Z be a univariate mean-zero weakly stationary time series with absolutely summable
autocovariances. Let f be the spectral density of {Yt}t∈Z, F its spectral distribution, and
(R,LF ,µF ) the associated measure space. Denote the L2-norm on L2(LF ,µF ) by ‖·‖F . Finally,
let

Yt =
∫ π

−π
exp(itλ)dZ(λ)

the spectral representation of {Yt}t∈Z, where F is the distribution function associated with the
orthogonal increment process {Zλ}−π≤λ≤π.

Let Ψ = {Ψj}j∈Z be a TLF, and let Ψ(z) be the associated polynomial defined as

Ψ(z) =
∞∑

j=−∞
Ψj ·zj

for any z ∈ C.
Suppose we obtain the univariate mean-zero weakly stationary time series {Xt}t∈Z with

absolutely summable autocovariances from {Yt}t∈Z via the TLF Ψ. Then, the spectral density
fX : (−π,π]→ C of {Xt}t∈Z is given as

fX(w) =
∣∣∣Ψ(e−iw)

∣∣∣2f(w)

for any w ∈ (−π,π], and {Xt}t∈Z has spectral representation

Xt =
∫ π

−π
eitλΨ(e−iλ)dZ(λ)

for any t ∈ Z.

Proof) We first show the result for the spectral density. Letting Γ : Z→ R and G : Z→ R be
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the autocovariance functions of {Yt}t∈Z and {Xt}t∈Z, recall that

G(τ) =
∞∑

j=−∞

∞∑
k=−∞

Ψj ·Γ(τ +k− j) ·Ψk

for any τ ∈ Z. By definition, for any w ∈ (−π,π] we now have

fX(w) = 1
2π

∞∑
τ=−∞

G(τ)exp(−iτw)

= 1
2π

∞∑
τ=−∞

∞∑
j=−∞

∞∑
k=−∞

[Ψj ·Γ(τ +k− j) ·Ψk] exp(−iτw)

=
∞∑

j=−∞

∞∑
k=−∞

ΨjΨk

[
1

2π

∞∑
s=−∞

Γ(s)exp(−i(s+ j−k)w)
]

=

 ∞∑
j=−∞

∞∑
k=−∞

ΨjΨk exp(i(k− j)w)

f(w)

=

 ∞∑
j=−∞

Ψj · exp(−ijw)

2

f(w) =
∣∣∣Ψ(e−iw)

∣∣∣2f(w).

Now we move onto the spectral representation. For any t ∈ Z and N ∈ N+, by the
linearity of stochastic integration,

∑
|j|≤N

Ψj ·Yt−j =
∑
|j|≤N

Ψj ·
∫ π

−π
exp(i(t− j)λ)dZ(λ)

=
∫ π

−π
exp(itλ)

 ∑
|j|≤N

Ψj exp(−ijλ)

dZ(λ).

The sequence

{ ∑
|j|≤N

Ψj ·Yt−j
}
N∈N+

converges in mean square and almost surely to Xt. Furthermore, defining

XN,t =
∫ π

−π
exp(itλ)

 ∑
|j|≤N

Ψj exp(−ijλ)

dZ(λ)

for any N ∈N+,

∥∥∥∥XN,t−
∫ π

−π
eitλΨ(e−iλ)dZ(λ)

∥∥∥∥2

2
=

∥∥∥∥∥∥exp(it·)

 ∑
|j|≤N

Ψj exp(−ij·)−Ψ(exp(−i·))

∥∥∥∥∥∥
2

F
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=
∫
R

∣∣∣∣∣∣eitλ
 ∑
|j|≤N

Ψje
−ijλ−Ψ(e−iλ)

∣∣∣∣∣∣
2

dµF (λ)

=
∫
R

∣∣∣∣∣∣
∑
|j|≤N

Ψje
−ijλ−Ψ(e−iλ)

∣∣∣∣∣∣
2

dµF (λ),

where the first equality follows from the fact that stochastic integration perserves inner
products.

{∣∣∣∣∣∣
∑
|j|≤N

Ψj exp(−ij·)−Ψ(exp(−i·))

∣∣∣∣∣∣
2}

N∈N+

is a sequence of continuous functions on R that converges pointwise to 0 and which is
dominated by the µF -integrable function 3|Ψ(exp(−i·))|, so by the DCT,

lim
N→∞

∥∥∥∥XN,t−
∫ π

−π
eitλΨ(e−iλ)dZ(λ)

∥∥∥∥2

n,2

= lim
N→∞

∫
R

∣∣∣∣∣∣
∑
|j|≤N

Ψje
−ijλ−Ψ(e−iλ)

∣∣∣∣∣∣
2

dµF (λ) = 0.

It follows from the almost sure uniqueness of L2-limits that

Xt =
∫ π

−π
eitλΨ(e−iλ)dZ(λ).

Q.E.D.

The mapping w 7→Ψ(e−iw) is called the gain function, and w 7→
∣∣Ψ(e−iw)

∣∣2 the squared gain
function. For example, the gain function of the h-period moving average filter is

H(e−iw) = 1
2h

h∑
j=−h

e−ijw = 1
h

 h∑
j=1

cos(jw) + 1
2

 ,
and that of the first difference filter is

D(e−iw) = 1−e−iw.

The above theorem basically tells us that wavelengths of frequencies for which the gain function
equals 0 are erased from the transformed process {Xt}t∈Z.
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Unit Root Asymptotics

Here we introduce the mathematics needed to study the asymptotics of non-stationary and coin-
tegrated processes. As in the previous section, we take (Ω,H,P) as our underlying probability
space.

4.1 The FCLT and its Extensions

The FCLT is a generalization of the CLT studied above. We first re-state some results concerning
continuous function spaces and weak convergence on such spaces.

4.1.1 Continuous Function Spaces

For any topological space (E,τ) and F = Rn or C, the space Cb(E,F ) collects every bounded
and continuous function mapping E into F ; the boundedness condition can be omitted if E is
compact due to the extreme value theorem. The supremum norm on Cb(E,F ) is defined as

‖f‖C = sup
x∈E
|f(x)|

for any f ∈ Cb(E,F ), and the supremum metric d on Cb(E,F ) as

d(f,g) = ‖f −g‖C

for any f,g ∈ Cb(E,F ). We can show that (Cb(E,F ),d) is a complete metric space.
Using the Stone-Weierstrass theorem, it is also possible to show that, if (E,ρ) is a compact

metric space, then (C(E,F ),d) defines a separable metric space. Thus, (C(E,F ),d) is a Polish
space (a complete and separable metric space) if (E,ρ) is a compact metric space.

Let BC(E,F ) be the Borel σ-algebra generated by the metric topology induced by d. Defining
the set of all finite-dimensional distributions as

Cf = {π−1
t1,··· ,tk(A) | t1, · · · , tk ∈ E,A ∈ B(F k)},
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where πt1,··· ,tk : C(E,F )→ F k is the projection function defined as

πt1,··· ,tk ◦f = (f(t1), · · · ,f(tk))

for any f ∈ C(E,F ), Cf is a π-system that generates BC(E,F ).

4.1.2 Random Functions

A random functionX is a random variable that takes values in the measurable space (C(E,F ),BC(E,F )).
To any X there corresponds a stochastic process {Xt}t∈E with continuous paths taking values
in (F,B(F )) defined as

Xt = πt ◦X

for any t ∈ E. Conversely, for any stochastic process {Xt}t∈E with continuous paths taking
values in (F,B(F )), we can define a corresponding random function X by letting X(ω) be the
continuous mapping

t 7→Xt(ω)

for any ω ∈Ω. The random function X and the stochastic process {Xt}t inE are in this case said
to correspond to one another.

We are mostly interested in the collection of continuous functions defined on the compact
metric space [0,1] equipped with the euclidean metric. The properties mentioned above all apply
to the metric space (C([0,1],Rn),d), where d is the supremum metric, and to the measurable
space (C([0,1],Rn),BC([0,1],Rn)), where BC([0,1],Rn) is the Borel σ-algebra generated by the
metric topology induced by d.

4.1.3 The FCLT

Let {εt}t∈Z be an i.i.d. sequence of n-dimensional random vectors with mean 0, positive definite
covariance matrix Σ, and finite fourth moments. For any T ∈N+, we can define the stochastic
process {XT (r)}r∈[0,1] with continuous paths as

XT (r) = 1√
T

bTrc∑
t=1

εt+
1√
T

(Tr−bTrc)εbTrc+1

for any r ∈ [0,1]. Let the random function corresponding to {XT (r)}r∈[0,1] be denoted XT , and
µT its distribution.

The Functional Central Limit Theorem (FCLT) tells us that the sequence {XT }T∈N+ of
random functions converges weakly to the n-dimensional Brownian function Bn with covariance
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matrix Σ, that is,

Bn = Σ
1
2Wn

for the standard n-dimensional Wiener function Wn and Σ 1
2 the Cholesky factor of Σ. The

stochastic process {Bn(r)}r∈[0,1] corresponding to Bn is the n-dimensional Brownian motion
with covariance matrix Σ, and

Bn(r) = Σ
1
2Wn(r)

for any r ∈ [0,1], where {Wn(r)}r∈[0,1] is the standard n-dimensional Wiener process on [0,1].
By the continuous mapping theorem, for any 0≤ r1 < · · ·< rk ≤ 1,

(XT (r1), · · · ,XT (rk))
d→ (Bn(r1), · · · ,Bn(rk))

as T →∞, which holds because the projection πr1,··· ,rk is a uniformly continuous function from
C([0,1],Rn) to Rnk.

The FCLT implies the Lindeberg-Levy CLT, since the FCLT implies

XT (1) = 1√
T

T∑
t=1

εt
d→Bn(1)∼N(0,Σ).

4.1.4 Linear Processes and the BN Decomposition

We often find it necessary to extend the FCLT beyond i.i.d. processes. A natural class of time
series to which to apply the FCLT is the class of linear processes. Recall that, given a white
noise process {εt}t∈Z with positive definite covariance matrix Σ ∈Rn×n, and a square summable
{Ψj}j∈N, that is,

∞∑
j=0

tr
(
ΨjΣΨ′j

)
<+∞,

we can define the (causal) zero mean linear process {Yt}t∈Z as

Yt =
∞∑
j=0

Ψj ·εt−j

for any t∈Z, where the limit is taken in L2. If {Ψj}j∈N is absolutely summable instead of square
summable, we showed above that the convergence can be extended to almost sure convergence
as well.

A stronger result than square summability and even absolute summability is one-summability;
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{Ψj}j∈N is said to be one-summable if

∞∑
j=0

j · ‖Ψj‖<+∞.

This implies that {Ψj}j∈N is absolutely summable, or that

∞∑
j=0
‖Ψj‖<+∞,

and both these conditions imply square summability. In these cases,

∞∑
j=0

Ψj ·εt−j

can be viwed as both the L2 and the almost sure limit of the corresponding partial sum process.

The following theorem allows us to decompose the partial sum process of a linear process into
a pure trend component and a stationary component.

Theorem (The Beveridge-Nelson Decomposition)
Let {Yt}t∈Z be an n-dimensional zero-mean linear process with underlying white noise process
{εt}t∈Z with covariance matrix Σ ∈ Rn×n and one-summable filter {Ψj}j∈N. Then, defining

αj =−
∞∑

h=j+1
Ψh

for any j ∈N, {αj}j∈N is absolutely summable, and there exists an almost sure set Ω0 ∈H such
that, for any t ∈ Z,

Yt = Ψ(1) ·εt+ηt−ηt−1

on Ω0, where Ψ(1) is defined as

Ψ(1) =
∞∑
j=0

Ψj ∈ Rn×n

and {ηt}t∈Z is a zero-mean weakly stationary process such that

ηt = α(L)εt =
∞∑
j=0

αj ·εt−j

for any t ∈ Z.
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Consequently, for any T > 0,

T∑
t=1

Yt = Ψ(1) ·
T∑
t=1

εt+ηT −η0

on Ω0.

Proof) We first prove the claim that {αj}j∈N is absolutely summable. Clearly, the process itself
is well-defined because of the absolute summability of {Ψj}j∈N. Now note that, for any
m,k ∈N+,

∞∑
j=0
‖αj‖ ≤

∞∑
j=0

∞∑
h=j+1

‖Ψh‖=
∞∑
j=1

j · ‖Ψj‖<+∞,

where the terms in the series can be rearranged due to the absolute summability of
{Ψj}j∈N and the last inequality follows from one-summability. Thsi shows that {αj}j∈N
is absolutely summable.

By the absolute summability of {Ψj}j∈N, Yt is the almost sure limit of the sequence

{ m∑
j=0

Ψj ·εt−j
}
m∈N+

= {Yt,m}m∈N+

for any t ∈ Z. Likewise, the absolute summability of {αj}j∈N ensures that each ηt is the
almost sure limit of the sequence

{ m∑
j=0

αj ·εt−j
}
m∈N+

= {ηt,m}m∈N+ .

Z is countable, so we can define the almost sure set Ω0 ∈H on which every {Yt,m}m∈N+

and {ηt,m}m∈N+ converges absolutely.
Now choose any t ∈ Z. It follows that, for any ω ∈ Ω0,

Yt(ω) =
∞∑
j=0

Ψj ·εt−j(ω)

= (Ψ(1) +α0) ·εt(ω) +
∞∑
j=1

(αj−αj−1) ·εt−j(ω)

= (Ψ(1) +α0) ·εt(ω) +
∞∑
j=1

(αj ·εt−j(ω)−αj−1 ·εt−j(ω))

= Ψ(1) ·εt(ω) +α0 ·εt(ω) +
∞∑
j=1

αj ·εt−j(ω)−
∞∑
j=0

αj ·εt−j−1(ω)

= Ψ(1) ·εt(ω) +ηt(ω)−ηt−1(ω),

where the additive operations above all hold because the series involved are all abso-
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lutely convergent. Therefore, on Ω0, for any t ∈ Z we have

Yt = Ψ(1) ·εt+ηt−ηt−1.

It follows that, for any T > 0,

T∑
t=1

Yt =
T∑
t=1

(Ψ(1) ·εt+ηt−ηt−1) = Ψ(1) ·
T∑
t=1

εt+ηT −η0

on Ω0.
Q.E.D.

Let {Yt}t∈Z be a zero-mean linear process as the one above, and assume that the process
{St}t∈N is defined as

St =
t∑

s=1
Ys+S0

for any t ∈N+, so that

St = St−1 +Yt

for any t ∈ N+. {St}t∈N thus looks like a random walk process, but has potentially serially
correlated errors.
Similarly, define the pure random walk process {τt}t∈N as τ0 = 0 and

τt =
t∑

s=1
εs

for any t ∈N+, so that

τt = τt−1 +εt

again, but this time with WN errors.
Then, the BN Decomposition of St is

St =
t∑

s=1
Ys+S0 = Ψ(1) ·

t∑
s=1

εs+ηt−η0 +S0

= Ψ(1) · τt+ηt+ (S0−η0)

almost surely for any t ∈ N+. Thus, the BN decomposition allows us to decompose St into a
trend component Ψ(1) · τt, a stationary component ηt, and a component consisting of initial
values S0−η0. This will come in handy later on when defining I(1) processes.
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4.1.5 The CLT for Linear Processes

The BN Decomposition allows us to establish the CLT for zero mean linear processes when the
underlying white noise process is an MDS with finite fourth moments.

Theorem (CLT for Linear Processes)
Let {εt}t∈Z be an n-dimensional MDS with finite fourth moments and common positive definite
covariance matrix Σ ∈ Rn×n. Suppose {Ψj}j∈N is a one-summable sequence of n×n matrices
and define the linear process {Yt}t∈Z as

Yt =
∞∑
j=0

Ψjεt−j .

for any t ∈ Z. Then,

1√
T

T∑
t=1

Yt
d→N

[
0,Ψ(1)ΣΨ(1)′

]
,

where Ψ(1) =∑∞
j=0 Ψj .

Proof) Define {αj}j∈N ⊂ Rn×n and {ηt}t∈Z as in the BN decomposition. By that theorem,
there exists an almost sure set Ω0 ∈H such that, for any T ∈N+,

1√
T

T∑
t=1

Yt = Ψ(1) · 1√
T

T∑
t=1

εt+
1√
T

(ηT −η0)

on Ω0.
Letting γ : Z→ Rn×n be the autocovariance function of the weakly stationary process
{ηt}t∈Z,

P
(∣∣∣∣ 1√

T
(ηT −η0)

∣∣∣∣> δ

)
≤ 1
δ2E

∣∣∣∣ 1√
T

(ηT −η0)
∣∣∣∣2

= 1
δ2T

E
[
η′T ηT +η′0η0−2η′T η0

]
= 2
δ2T

[tr(γ(0))− tr(γ(T ))]

for any T ∈ N+. Since γ(T )→ O as T →∞ due to the absolute summability of the
autocovariances γ(·) (which follows from the absolute summability of the coefficient
matrices {αj}j∈N), taking T →∞ on both sides tells us that

lim
T→∞

P
(∣∣∣∣ 1√

T
(ηT −η0)

∣∣∣∣> δ

)
= 0.

This holds for any δ > 0, so

1√
T

(ηT −η0) p→ 0
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by definition.
On the other hand,

1√
T

T∑
t=1

εt
d→N(0,Σ)

by the Martingale Difference CLT. It follows from Slutsky’s theorem that

Ψ(1) · 1√
T

T∑
t=1

εt+
1√
T

(ηT −η0) d→N(0,Ψ(1)ΣΨ(1)′).

Finally,

P
(∣∣∣∣∣ 1√

T

T∑
t=1

Yt−
(

Ψ(1) · 1√
T

T∑
t=1

εt+
1√
T

(ηT −η0)
)∣∣∣∣∣> δ

)
≤ P(Ωc) = 0

for any δ > 0, so

1√
T

T∑
t=1

Yt−
(

Ψ(1) · 1√
T

T∑
t=1

εt+
1√
T

(ηT −η0)
)

p→ 0,

and by Slutsky’s theorem once more,

1√
T

T∑
t=1

Yt
d→N(0,Ψ(1)ΣΨ(1)′).

Q.E.D.

Here, the positive semidefinite covariance matrix

ΣY = Ψ(1)ΣΨ(1)′

is called the long run variance. This is clearly different from the ordinary variance

Γ(0) =
∞∑
j=0

ΨjΣΨ′j

of the process {Yt}t∈Z.
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4.1.6 Extending the FCLT to Linear Processes

With the BN decomposition, we can extend the FCLT in a manner thata allows the underlying
process to be a linear process. Since linear processes are generally autocorrelated, this means
that the FCLT can be formulated even for partial sums of some autocorrelated processes. The
formal statement is as follows:

Theorem (The Extended FCLT)
Let {εt}t∈Z be an n-dimensional i.i.d. white noise process with positive definite covariance matrix
Σ ∈ Rn×n and finite fourth moments, and {Ψj}j∈N a one-summable sequence of n×n matrices.
Let {ut}t∈Z be the mean zero linear process defined as

ut =
∞∑
j=0

Ψjεt−j

for any t ∈ Z.
For any T ∈N+, define the n-dimensional stochastic process {XT (r)}r∈[0,1] with continuous

paths as

XT (r) = 1√
T

bTrc∑
t=1

ut+
1√
T

(Tr−bTrc)ubTrc+1

for any r ∈ [0,1]. Then, letting XT be the random function in C([0,1],Rn) corresponding to
{XT (r)}r∈[0,1],

XT d→Bn

as T →∞, whereBn is the n-dimensional Wiener function with covariance matrix Σu = Ψ(1)ΣΨ(1)′.
By implication, for any 0≤ r1 < · · ·< rk ≤ 1,

(XT (r1), · · · ,XT (rk))
d→ (Bn(r1), · · · ,Bn(rk))

as T →∞.

Proof) By the Beveridge-Nelson decomposition, there exists an almost sure set Ω0 ∈ H such
that, for any T ∈N+ and r ∈ [0,1],

bTrc∑
t=1

ut = Ψ(1) ·
bTrc∑
t=1

εt+ηbTrc−η0

and

ubTrc+1 = Ψ(1) ·εbTrc+1 +ηbTrc+1−ηbTrc
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on Ω0, where

αj =−
∞∑

h=j+1
Ψh

for any j ∈ N and {ηt}t∈Z is the weakly stationary process defined as

ηt =
∞∑
j=0

αj ·εt−j

for any t ∈ Z. We now decompose each random function XT in a convenient way.

Defining {VT (r)}r∈[0,1] as

VT (r) = 1√
T

bTrc∑
t=1

εt+
1√
T

(Tr−bTrc)εbTrc+1

for any r ∈ [0,1] and {AT (r)}r∈[0,1] as

AT (r) = 1√
T

(
ηbTrc−η0

)
+ 1√

T
(Tr−bTrc)(ηbTrc+1−ηbTrc)

for any r ∈ [0,1], both {VT (r)}r∈[0,1] and {AT (r)}r∈[0,1] have continuous paths, so that
there exist random functions V T and AT in C([0,1],Rn) corresponding to these pro-
cesses.

We can see that, for any T ∈N+ and r ∈ [0,1],

XT (r) = 1√
T

bTrc∑
t=1

ut+
1√
T

(Tr−bTrc)ubTrc+1

= 1√
T

Ψ(1) ·
bTrc∑
t=1

εt+ηbTrc−η0

+ 1√
T

(Tr−bTrc)
(
Ψ(1) ·εbTrc+1 +ηbTrc+1−ηbTrc

)

= Ψ(1) ·

 1√
T

bTrc∑
t=1

εt+
1√
T

(Tr−bTrc)εbTrc+1


+
[ 1√

T

(
ηbTrc−η0

)
+ 1√

T
(Tr−bTrc)(ηbTrc+1−ηbTrc)

]
= Ψ(1) ·VT (r) +AT (r)

on Ω0. It follows that

XT = Ψ(1) ·V T +AT

on Ω0 for any T ∈N+. We study the limiting behavior of each term:

i) The First Term V T
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By the FCLT, we know that

V T d→ Σ
1
2Wn,

where Wn is the n-dimensional standard Wiener function on [0,1] and Σ 1
2 is the

Cholesky factor of Σ.

ii) The Second Term AT

Meanwhile, for any T ∈N+ and r ∈ [0,1],

|AT (r)| ≤ 1√
T

(
2 ·
∣∣∣ηbTrc∣∣∣+ ∣∣∣ηbTrc+1

∣∣∣+ |η0|
)

because Tr−bTrc ≤ 1. We now have

∥∥∥AT ∥∥∥
C

= sup
r∈[0,1]

|AT (r)| ≤ 1√
T

4 · max
0≤t≤T+1

|ηt|

and as such, for any δ > 0,

P
(∥∥∥AT ∥∥∥

C
> δ

)
≤ P

( 1√
T

max
0≤t≤T+1

|ηt|>
δ

4

)

Note that

{ 1√
T

max
0≤t≤T+1

|ηt|>
δ

4
}

=
T+1⋃
t=0

{ 1√
T
|ηt|>

δ

4
}
,

so that, by finite suabdditivity and the generalized Markov inequality,

P
( 1√

T
max

0≤t≤T+1
|ηt|>

δ

4

)
≤
T+1∑
t=0

P
( 1√

T
|ηt|>

δ

4

)

≤
(
δ

4

)−4 1
T 2

T+1∑
t=0

E
[
|ηt|4

]
.

Since {ηt}t∈Z has finite fourth moments due to the finiteness of the fourth moments
of the underyling WN process {εt}t∈Z, letting

E|ηt|4 = µ4 <+∞

for any t ∈ Z, we can see that

P
(∥∥∥AT ∥∥∥

C
> δ

)
≤
(
δ

4

)−4 1
T 2

T+1∑
t=0

E
[
|ηt|4

]
≤ µ4 ·

(
δ

4

)−4 T + 2
T 2 .
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Therefore,

lim
T→∞

P
(∥∥∥AT ∥∥∥

C
> δ

)
= 0,

and because this holds for any δ > 0,

AT
p→ 0C

as T →∞, where 0C is the zero function on [0,1].

By Slutsky’s theorem, it now follows that

Ψ(1) ·V T +AT
d→Ψ(1)Σ

1
2Wn,

and because Ω0 ⊂ {XT = Ψ(1) ·V T +AT },

P
(∥∥∥XT − (Ψ(1) ·V T +AT )

∥∥∥
C
> δ

)
≤ P(Ωc

0) = 0

for any δ > 0; this trivially implies that

XT − (Ψ(1) ·V T +AT ) p→ 0C ,

and by Slutsky’s theorem again,

XT d→Ψ(1)Σ
1
2Wn.

Here, Ψ(1)Σ 1
2Wn is an n-dimensional Wiener function with covariance matrix Ψ(1)ΣΨ(1)′=

Σu, which is the result we desired.
Q.E.D.
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4.2 The Limit of Functions of Trending Processes

In this section, we use the results of the preceding section to derive asymptotic results pertaining
to trending processes.

4.2.1 Continuous Functions on C([0,1],Rn)

To set the stage, we first note that the following are continuous functions:

• The Integral of a Continuous Function
Define the function g : C([0,1],Rn)→ Rn as

g(f) =
∫ 1

0
f(r)dµ(r)

for any f ∈ C([0,1],Rn), where µ is any finite measure on [0,1]; µ is most often taken to be
the Lebesgue measure on [0,1]. The integral is well-defined because f , being continuous,
is measurable and it is also bounded by the extreme value theorem, which, in light of the
finiteness of µ, means that f is µ-integrable. Thus, the usual integral arithmetic operatinos
apply.
For any f,h ∈ C([0,1],Rn),

|g(f)−g(h)|=
∣∣∣∣∫ 1

0
(f(r)−h(r))dµ(r)

∣∣∣∣≤ ∫ 1

0
|f(r)−h(r)|dµ(r)

≤ sup
r∈[0,1]

|f(r)−h(r)| ·µ([0,1]) = µ([0,1]) · ‖f −h‖C ,

and because µ([0,1])<+∞, this shows us that g is Lipschitz continuous on C([0,1],Rn).

When µ is the Lebesgue measure on [0,1], we can discuss a stronger form of continuity.
Consider the product space [0,1]×C([0,1],Rn) given the product metric ρ of the euclidean
metric on R and the supremum metric on C([0,1],Rn), which is defined as

ρ((r,f),(s,g)) = max(|r−s|,‖f −g‖C)

for any (r,f),(s,g) ∈ [0,1]×C([0,1],Rn).
Define G : [0,1]×C([0,1],Rn)→ Rn as

G(r,f) =
∫ r

0
f(x)dx

for any (r,f) ∈ [0,1]×C([0,1],Rn). To see that G is continuous, choose any ε > 0 and
(r,f) ∈ [0,1]×C([0,1],Rn). For any (s,g) ∈ C([0,1],Rn) such that

‖f −g‖C , |r−s| ≤ ρ((r,f),(s,g))< ε

2 ·max(‖f‖C ,1) ,

207



we have

|G(r,f)−G(s,g)|=
∣∣∣∣∫ r

0
f(x)dx−

∫ s

0
g(x)dx

∣∣∣∣
≤
∣∣∣∣∫ r

0
f(x)dx−

∫ s

0
f(x)dx

∣∣∣∣+ ∣∣∣∣∫ s

0
f(x)dx−

∫ s

0
g(x)dx

∣∣∣∣
≤
∫ max(r,s)

min(r,s)
|f(x)|dx+

∫ s

0
|f(x)−g(x)|dx

≤ ‖f‖C · |r−s|+‖f −g‖ ·s

≤ ‖f‖C · |r−s|+‖f −g‖

< ‖f‖C ·
ε

2 · ‖f‖C
+ ε

2 ≤ ε.

By definition, G is continuous at (r,f), and because this point was chosen arbitrarily, G
is continuous on the entire product space.
Since the pair of any two measurable random variables on metric spaces is also measurable
with respect to the Borel σ-algebra associated with the product metric on the product
space, this result is sufficient for us to apply the continuous mapping theorem.

• More Integrals

While we only considered the integral of a function itself in the above discussion, we can
in fact define a wider variety of functions from C([0,1],Rn) into arbitrary metric spaces
defined via integration.

For any finite measure µ on [0,1], define g2 : C([0,1],Rn)→ Rn×n as

g2(f) =
∫ 1

0
f(r)f(r)′dµ(r)

for any f ∈ C([0,1],Rn). The integral is once again well defined because of the boundedness
and continuity of f , as well as the finiteness of µ.
To see that g2 is continuous, choose any f,h ∈ C([0,1],Rn) and note that

‖g2(f)−g2(h)‖ ≤
n∑
i=1

n∑
j=1

∣∣∣∣∫ 1

0
(fi(r)fj(r)−hi(r)hj(r))dµ(r)

∣∣∣∣
≤

n∑
i=1

n∑
j=1

∫ 1

0
|fi(r)fj(r)−hi(r)hj(r)|dµ(r)

≤ µ([0,1]) ·
n∑
i=1

n∑
j=1
‖fifj−hihj‖C .

Each fifj −hihj is bounded above by linear combinations of ‖f‖C and ‖f −h‖C , so g2 is
continuous on C([0,1],Rn).
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Now define ḡ : C([0,1],Rn)→ Rn as

ḡ(f) =
∫ 1

0
r ·f(r)dµ(r)

for any f ∈ C([0,1],Rn). Then, for any f,h ∈ C([0,1],Rn),

|ḡ(f)− ḡ(h)|=
∣∣∣∣∫ 1

0
r · (f(r)−g(r))dµ(r)

∣∣∣∣≤ ∫ 1

0
r · |f(r)−g(r)|dµ(r)

≤ ‖f −g‖C ·
∫ 1

0
rdµ(r)≤ ‖f −g‖C ·µ([0,1]),

so ḡ is Lipschitz continuous on C([0,1],Rn).

• Joint Continuity of Projections
For any 0≤ r1 < · · ·< rk ≤ 1, we saw that the projection πr1,··· ,rk is uniformly continuous
on C([0,1],Rn).
Choosing any r ∈ [0,1], we can also view the projection πr(f) of f ∈ C([0,1],Rn) as a func-
tion of both r and f . Reflecting this change in perspective, define π : [0,1]×C([0,1],Rn)→
Rn as

π(r,f) = πr(f)

for any (r,f)∈ [0,1]×C([0,1],Rn). Define the product metric ρ as above. We can now show
that π is continuous.

To this end, chose any (r,f) ∈ [0,1]×C([0,1],Rn). Then, for any ε > 0, by the uniform
continuity of f there exists a δ1 > 0 such that

|f(x)−f(y)|< ε

2

for any x,y ∈ [0,1] such that |x−y|< δ1. Now define

δ = min
(
δ1,

ε

2

)
> 0.

It follows that, for any (s,g) ∈ [0,1]×C([0,1],Rn) such that

|r−s|,‖f −g‖C ≤ ρ((r,f),(s,g))< δ,

since ‖f −g‖C < ε
2 and |r−s|< δ1 implies

|f(r)−f(s)|< ε

2 ,
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we have

|π(r,f)−π(s,g)|= |f(r)−g(s)| ≤ |f(r)−f(s)|+ |f(s)−g(s)|

<
ε

2 +‖f −g‖C ≤
ε

2 + ε

2 = ε.

By definition, π is continuous. Since the pair of any two measurable random variables on
metric spaces is also measurable with respect to the Borel σ-algebra associated with the
product metric on the product space, this result is sufficient for us to apply the continuous
mapping theorem.
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4.2.2 Convergence to Stochastic Integrals

So far, given an n-dimensional linear process {ut}t∈Z, our main convergence result has been that
of the random function XT , defined as the random function corresponding to the continuous
stochastic process {XT (r)}r∈[0,1] defined as

XT (r) = 1√
T

bTrc∑
t=1

ut+
1√
T

(Tr−bTrc)ubTrc+1

for any r ∈ [0,1]. As we will soon see, however, we require not only the convergence of XT to an
n-dimensional Brownian motion, but the convergence of a partial sum process to a stochastic
integral as well. Furthermore, this convergence should hold jointly for XT and the partial sum
process. We thus show here that this sort of joint convergence holds true.

First, we state some of the results to be used to derive this result. The two main ones are as
follows:

Theorem (Skorokhod’s Reprsentation Theorem)
Let (E,d) be a complete and separable metric space, τ the metric topology induced by d, and E
the Borel σ-algebra on E generated by τ . Let {µT }T∈N+ be a sequence of probability measures
on (E,E) weakly converging to a probability measure µ on (E,E).
There exists a probability space and random variables {XT }T∈N+ , X defined on that probability
space, take values in (E,E), and satisfy the following:

i) XT has distribution µT for any T ∈N+ and X has distribution µ.

ii) XT converges almost surely to X.

The above theorem allows us to move back and forth between the weak convergence of prob-
ability measures and the almost sure convergence of specific random variables.

We also require the following result, which we state without proof (refer to the text on the
convergence theory for a proof):

Theorem (Egorov’s Theorem)
Let (E,d) be a separable metric space, τ the metric topology induced by d and E the Borel
σ-algebra on E generated by τ . Suppose {XT }T∈N+ is a sequence of random variables on (E,E)
that converges almost surely to the random variable X.
Then, for any ε > 0 there exists a measurable set Ω0 ∈ H such that P(Ω0) < ε and {XT }T∈N+

converges to X uniformly on Ω\Ω0.

This theorem furnishes sufficient conditions for pointwise convergence of a sequence of ran-
dom variables taking values in a separable metric space to converge uniformly. It turns out that
the sequence converges uniformly except on a set whose measure can be made arbitrarily small.
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Both of the above theorems are proved in a separate text exclusively concerning the conver-
gence of random variables and probability measures.

We are now ready to prove our joint convergence result. The proof below is based on Chen and
Wei (1988), where we have imposed stronger assumptions to make use of convergence results in
C([0,1],Rn).

Theorem (Joint Convergence to Stochastic Integrals for IID Processes)
Let {εt}t∈Z be an n-dimensional i.i.d. process with mean 0, positive definite covariance matrix
Σ ∈ Rn×n and finite fourth moments. In addition, define {Vt}t∈N as the partial sum process of
{εt}t∈Z such that V0 = 0 and

Vt =
t∑

s=1
εs+V0

for any t ∈N+. For any T ∈N+, define the stochastic process {XT (r)}r∈[0,1] as

XT (r) = 1√
T

bTrc∑
t=1

εt+
1√
T

(Tr−bTrc)εbTrc+1

for any r ∈ [0,1], and let XT be the random function taking values in C([0,1],Rn) corresponding
to {XT (r)}r∈[0,1]. Defining

VhT = 1
T

T−h∑
t=1

Vt−1ε
′
t

for any h∈N, for any p∈N+, XT and V0
T , · · · ,V

p
T jointly converge in distribution to their limits:

XT d→ Σ
1
2Wn

(V0
T , · · · ,V

p
T ) d→ ι′p+1

⊗[
Σ

1
2

∫ 1

0
Wn(r)dWn(r)′Σ

1
2 ′
]

jointly, where {Wn(r)}r∈[0,1] is the n-dimensional Wiener process, where ιp+1 is a p+1-dimensional
vector of ones.

Proof) To avoid confusion, we denote by Wn the standard n-dimensional Wiener function.

We know from the FCLT that XT d→ Σ 1
2Wn. Because (C([0,1],Rn),d), where d is the

supremum metric, is a complete and separable metric space, by Skorokhod’s repre-
sentation theorem there exists a probability space (Ω0,H0,P0) and random functions
{Y T }T∈N+ ,Wn

0 on Ω0 taking values in the measurable space (C([0,1],Rn),BC([0,1],Rn))
such that

– Y T ∼XT for any T ∈N+,
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– Wn
0 is an n-dimensional standard Wiener function, and

– Y T a.s.→ Σ 1
2Wn

0 .

as T →∞. For any T ∈N+, let {YT (r)}r∈[0,1] be the stochastic process corresponding
to the random function Y T .

Now we fix some 0≤ h≤ p. Note that

1
T

T−h∑
t=1

Vt−1ε
′
t =

T−h−1∑
t=0

XT

(
t

T

)[
XT

(
t+ 1
T

)
−XT

(
t

T

)]′
,

a function of XT . By implication, defining

ZhT =
T−h−1∑
t=0

YT

(
t

T

)[
YT

(
t+ 1
T

)
−YT

(
t

T

)]′
,

we have

(Y T ,ZT )∼
(
XT ,

1
T

T−h∑
t=1

Vt−1ε
′
t

)
.

We will now show that (Y T ,ZhT ) converges in probability to the limit in the claim of
the theorem.
For notational simplicity, we denote Wn

0 by Wn, and the expectation with respect to
P0 by E [·].

The separability of (C([0,1],Rn),d) allows us to use Egorov’s theorem, which tells us
that, for any ε > 0, there exists a set Ωε ∈H0 such that

P0 (Ωε)≥ 1− ε, and

δT = sup
ω∈Ωε

∥∥∥Y T (ω)−Σ
1
2Wn(ω)

∥∥∥
C
→ 0 as T →∞.

We can choose a subsequence {ST }T∈N+ of N+ such that ST ≤ T −h−1 for any T ≥ h
and

ST δT → 0 and ST
T
→ 0 as T →∞.

In other words, ST must converge to +∞ at a slower rate than δT and 1
T converge to

0. One possible choice for ST could be

ST = bmin
( 1√

δT
,
√
T −h−1

)
c.

Once {ST }T∈N+ has been established, for any T ∈N+ choose a partition
{
t0
T , · · · ,

tST
T

}
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of
[
0, T−h−1

T

]
, where t0 = 0, tST = T −h−1 and t1, · · · , tST−1 ∈N+ are chosen so that

lim
T→∞

1
T

(
max

1≤i≤ST
|ti− ti−1|

)
= 0.

One possible choice is to set

ti = bT −h−2
ST −1 c · i ∀1≤ i≤ ST −1.

The natural numbers t0, · · · , tST represent a non-overlapping partition of the interval
[0,T −h− 1], since ti− ti−1 > 0 for any 1 ≤ i ≤ ST − 1 for large enough T (this is the
case because ST

T → 0 as T →∞) and

tST−1 = bT −h−2
ST −1 c · (ST −1)≤ T −h−2

ST −1 · (ST −1) = T −h−2< T −h−1,

so that tST − tST−1 > 0. Finally,

1
T
bT −h−2
ST −1 c ≤

T −h−1
T

· 1
ST −1 → 0

as T →∞ because ST →+∞ as T →∞ and, letting m= bT−h−1
ST−1 c,

T −h−1−m · (ST −1)
T

<
ST
T
→ 0

as T →∞, where the inequality is justified because

m≤ T −h−2
ST −1 <m+ 1

and thus

T −h−1−m · (ST −1)< T −h−1 + (ST −1)− T −h−2
ST −1 · (ST −1) = ST

Therefore,

lim
T→∞

1
T

(
max

1≤i≤ST
|ti− ti−1|

)
= 0

under our choice of t0, · · · , tST .
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We now proceed in steps:

1) Step 1:
We first show that

ZhT =
ST∑
i=1

YT

(
ti−1
T

)[
YT

(
ti
T

)
−YT

(
ti−1
T

)]′
+op(1).

To this end, note that, because {ST }T∈N+ is a subsequence of N+,

JT = ZhT −
ST∑
i=1

YT

(
ti−1
T

)[
YT

(
ti
T

)
−YT

(
ti−1
T

)]′

=
ST∑
i=1

ti−1∑
t=ti−1

[
YT

(
t

T

)
−YT

(
ti−1
T

)][
YT

(
t+ 1
T

)
−YT

(
t

T

)]′
.

Since {εt}t∈Z is an i.i.d. sequence, and

YT

(
t

T

)
−YT

(
ti−1
T

)
∼ 1√

T

t∑
s=ti−1+1

εs

YT

(
t+ 1
T

)
−YT

(
t

T

)
∼ 1√

T
εt+1,

for any 1≤ i≤ ST and ti−1 ≤ t, we can see that, for any 1≤ j,k ≤ n,

E|JT,jk|2 =
ST∑
i=1

ti−1∑
t=ti−1

E
[(
YjT

(
t

T

)
−YjT

(
ti−1
T

))2
]
·E
[(
YkT

(
t+ 1
T

)
−YkT

(
t

T

))2
]

= ΣjjΣkk
1
T 2

ST∑
i=1

ti−1∑
t=ti−1

(t− ti−1)

= ΣjjΣkk
1
T 2

ST∑
i=1

(ti−1− ti−1)(ti− ti−1)
2

≤ 1
2ΣjjΣkk

1
T 2

ST∑
i=1

(ti− ti−1)2

≤ 1
2ΣjjΣkk

 1
T

ST∑
i=1

(ti− ti−1)

 ·( max
1≤i≤ST

∣∣∣∣ tiT − ti−1
T

∣∣∣∣)

= 1
2ΣjjΣkk ·

(
max

1≤i≤ST

∣∣∣∣ tiT − ti−1
T

∣∣∣∣) ,
where the first equality follows from the independence of {εt}t∈Z, and the second
from the fact that

E
[(
YjT

(
t

T

)
−YjT

(
ti−1
T

))2
]

= 1
T

t∑
s=ti−1+1

E
[
ε2
j,s

]
= (t− ti−1)Σjj

T
and

E
[(
YkT

(
t+ 1
T

)
−YkT

(
t

T

))2
]

= 1
T
E
[
ε2
k,t+1

]
= 1
T

Σkk.

215



By assumption, the right hand side of the above chain of inequalities goes to 0 as
T →∞, and because

E‖JT ‖2 ≤
n∑
j=1

n∑
k=1

E|JT,jk|2,

we have JT
p→O as T →∞. Therefore,

ZhT =
ST∑
i=1

YT

(
ti−1
T

)[
YT

(
ti
T

)
−YT

(
ti−1
T

)]′
+op(1),

where the op(1) term represents JT .

2) Step 2:
Now we show that

ZhT · IΩε = IΩε ·Σ
1
2

ST∑
i=1

Wn
(
ti−1
T

)[
YT

(
ti
T

)
−YT

(
ti−1
T

)]′
+op(1).

The above result shows us that we need only prove

DT = IΩε ·
ST∑
i=1

[
YT

(
ti−1
T

)
−Σ

1
2Wn

(
ti−1
T

)][
YT

(
ti
T

)
−YT

(
ti−1
T

)]′
= op(1).

Since

sup
r∈[0,1]

∣∣∣(YT (r))(ω)−Σ
1
2 (Wn(r))(ω)

∣∣∣≤ sup
ω′∈Ωε

∥∥∥Y T (ω′)−Σ
1
2Wn(ω′)

∥∥∥
C

= δT

for any ω ∈ Ωε, for any 1≤ j,k ≤ n we have

|DT,jk|2 = IΩε ·

 ST∑
i=1

(
YjT

(
ti−1
T

)
−Σ

1
2Wj

(
ti−1
T

))(
YkT

(
ti
T

)
−YkT

(
ti−1
T

))2

≤ IΩε · δ2
T ·

 ST∑
i=1

(
YkT

(
ti
T

)
−YkT

(
ti−1
T

))2

.

By the independence of {εt}t∈Z, we once again have

E|DT,jk|2 ≤ IΩε · δ2
T ·

ST∑
i=1

E
[(
YkT

(
ti
T

)
−YkT

(
ti−1
T

))2
]

= IΩε ·Σkkδ
2
T

1
T

ST∑
i=1

(ti− ti−1)

= IΩε ·Σkkδ
2
T .
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The term on the right hand side converges to 0 as T →∞ by design, and since
this holds for any 1≤ j,k ≤ n and

E‖DT ‖2 ≤
n∑
j=1

n∑
k=1

E|DT,jk|2

we can see that DT
p→O.

3) Step 3:
We now replace the remaining Y T terms with Σ 1

2Wn; specifically, we want to show
that

ZhT · IΩε = IΩε ·Σ
1
2

ST∑
i=1

Wn
(
ti−1
T

)[
Wn

(
ti
T

)
−Wn

(
ti−1
T

)]′
Σ

1
2 ′+op(1).

To this end, we utilize the following summation by parts formula:

Σ
1
2

ST∑
i=1

Wn
(
ti−1
T

)[
YT

(
ti
T

)
−YT

(
ti−1
T

)]′

+ Σ
1
2

ST∑
i=1

[
Wn

(
ti
T

)
−Wn

(
ti−1
T

)]
YT

(
ti
T

)′
= Σ

1
2Wn(1)YT (1)′.

Following the same process as in step 2 reveals that

IΩε ·Σ
1
2

ST∑
i=1

[
Wn

(
ti
T

)
−Wn

(
ti−1
T

)]
YT

(
ti
T

)′

= IΩε ·Σ
1
2

ST∑
i=1

[
Wn

(
ti
T

)
−Wn

(
ti−1
T

)]
Wn

(
ti
T

)′
Σ

1
2 ′+op(1).

In addition, YT (1) d→ Σ 1
2Wn(1) implies that YT (1)−Σ 1

2Wn(1) = op(1), so

IΩε ·Σ
1
2

ST∑
i=1

Wn
(
ti−1
T

)[
YT

(
ti
T

)
−YT

(
ti−1
T

)]′

= IΩε ·Σ
1
2Wn(1)Wn(1)′Σ

1
2 ′−IΩε ·Σ

1
2

ST∑
i=1

[
Wn

(
ti
T

)
−Wn

(
ti−1
T

)]
Wn

(
ti
T

)′
Σ

1
2 ′+op(1).

The same summation by parts formula reveals that

Σ
1
2Wn(1)Wn(1)′Σ

1
2 ′−Σ

1
2

ST∑
i=1

[
Wn

(
ti
T

)
−
(
ti−1
T

)]
Wn

(
ti
T

)′
Σ

1
2 ′

= Σ
1
2

ST∑
i=1

Wn
(
ti−1
T

)[
Wn

(
ti
T

)
−Wn

(
ti−1
T

)]′
Σ

1
2 ′,
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so we have

IΩε ·Σ
1
2

ST∑
i=1

Wn
(
ti−1
T

)[
YT

(
ti
T

)
−YT

(
ti−1
T

)]′

= IΩε ·Σ
1
2

ST∑
i=1

Wn
(
ti−1
T

)[
Wn

(
ti
T

)
−Wn

(
ti−1
T

)]′
Σ

1
2 ′+op(1).

In light of the previous developments, it stands to reason that

ZhT · IΩε = IΩε ·Σ
1
2

ST∑
i=1

Wn
(
ti−1
T

)[
Wn

(
ti
T

)
−Wn

(
ti−1
T

)]′
Σ

1
2 ′+op(1).

It now remains to show that the partial sum above converges to the stochastic integral∫ 1
0 W

n(r)dWn(r). Choose any 1≤ i, j ≤ n, and let Wi and Wj represent the i and jth
coordinates of Wn; Wi and Wj are independent random functions corresponding to the
univariate Wiener process.
For any T ∈N+, define the elementary function φT : Ω× [0,1]→ R as

φT (·, t) =
ST∑
l=1

Wi

(
tl−1
T

)
I[ tl−1

T
,
tl
T

)(t).

Since

φT (·, t)−Wi(t) =
ST∑
l=1

(
Wi

(
tl−1
T

)
−Wi(t)

)
· I[ tl−1

T
,
tl
T

)(t)−Wi(t) · I[T−h−1
T

,1](t)

for any t ∈ [0,1],

E
[∫ 1

0
|φT (·, t)−Wi(t)|2dt

]
=
∫ 1

0
E|φT (·, t)−Wi(t)|2dt (Fubini’s theorem)

=
ST∑
l=1

∫ tl/T

tl−1/T
E
∣∣∣∣Wi

(
tl−1
T

)
−Wi(t)

∣∣∣∣2dt−∫ 1

T−h−1
T

E|Wi(t)|2dt

=
ST∑
l=1

∫ tl/T

tl−1/T

(
t− tl−1

T

)
dt−

∫ 1

T−h−1
T

tdt

= 1
T 2

ST∑
l=1

[1
2
(
t2l − t2l−1

)
− tl−1(tl− tl−1)

]
+ 1

2

[(
T −h−1

T

)2
−1
]

= 1
2T 2

ST∑
l=1

(tl− tl−1)2 + 1
2

[(
T −h−1

T

)2
−1
]

≤ 1
2

(
max

1≤i≤ST

∣∣∣∣ tiT − ti−1
T

∣∣∣∣)+ 1
2

[(
T −h−1

T

)2
−1
]
.
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The term on the right goes to 0 as T →∞, so we have

lim
T→∞

E
[∫ 1

0
|φT (·, t)−Wi(t)|2dt

]
= 0,

that is, the sequence {φT }T∈N+ of elementary functions on Ω× [0,1] converges in
L2(P0×λ) to the mapping (ω,t) 7→ (Wi(t))(ω), where λ is the Lebesgue measure on
[0,1]. By definition, the stochastic integral of Wi with respect to Wj is the L2(P0) limit
of

∫ 1

0
φT (·, t)dWj(t) =

ST∑
l=1

Wi

(
tl−1
T

)[
Wj

(
tl
T

)
−Wj

(
tl−1
T

)]
.

This holds for any 1≤ i, j ≤ n, so we have

ST∑
i=1

Wn
(
ti−1
T

)[
Wn

(
ti
T

)
−Wn

(
ti−1
T

)]′
L2
→
∫ 1

0
Wn(r)dWn(r)′,

which implies that the convergence is in probability as well. Therefore,

ZhT · IΩε = IΩε ·Σ
1
2

∫ 1

0
Wn(r)dWn(r)′Σ

1
2 ′+op(1).

By implication, for any δ > 0,

P0

(∥∥∥∥ZhT −Σ
1
2

∫ 1

0
Wn(r)dWn(r)′Σ

1
2 ′
∥∥∥∥> δ

)
≤ P0

(∥∥∥∥IΩε ·ZhT − IΩε ·Σ
1
2

∫ 1

0
Wn(r)dWn(r)′Σ

1
2 ′
∥∥∥∥> δ

)
+P0 (Ωc

ε) .

Taking T →∞ on both sides yields

lim
T→∞

P0

(∥∥∥∥ZhT −Σ
1
2

∫ 1

0
Wn(r)dWn(r)′Σ

1
2 ′
∥∥∥∥> δ

)
= P0 (Ωc

ε)< ε,

and because this holds for any ε > 0,

lim
T→∞

P0

(∥∥∥∥ZhT −Σ
1
2

∫ 1

0
Wn(r)dWn(r)′Σ

1
2 ′
∥∥∥∥> δ

)
= 0.

As such,

ZhT
p→ Σ

1
2

∫ 1

0
Wn(r)dWn(r)′Σ

1
2 ′,

and because almost sure convergence implies convergence in probability,

(Y T ,ZhT ) p→
(

Σ
1
2Wn,Σ

1
2

∫ 1

0
Wn(r)dWn(r)′Σ

1
2 ′
)
.
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This holds for any 0≤ h≤ p, so

(Y T ,Z0
T , · · · ,Z

p
T ) p→

(
Σ

1
2Wn, ι′p+1

⊗[
Σ

1
2

∫ 1

0
Wn(r)dWn(r)′Σ

1
2 ′
])
.

Convergence in probability implies weak convergence, so the above convergence is in
distribution as well. Finally, because

(Y T ,Z0
T , · · · ,Z

p
T )∼

(
XT ,

1
T

T∑
t=1

Vt−1ε
′
t, · · · ,

1
T

T−h∑
t=1

Vt−1ε
′
t

)

for any T ∈N+, we can conclude that
(
XT ,

1
T

T∑
t=1

Vt−1ε
′
t, · · · ,

1
T

T−h∑
t=1

Vt−1ε
′
t

)
d→
(

Σ
1
2Wn, ι′p+1

⊗[
Σ

1
2

∫ 1

0
Wn(r)dWn(r)′Σ

1
2 ′
])
.

Q.E.D.

220



Now we show the main result, which generalizes the above theorem for the case when the un-
derlying errors form a linear process. The proof follows the martingale approximation approach
by Phillips (1988) almost verbatim, save for the use of the BN decomposition instead of a mar-
tingale approximation.

Theorem (Joint Convergence to Stochastic Integrals for Linear Processes)
Let {εt}t∈Z be an n-dimensional mean zero i.i.d. process with positive definite covariance matrix
Σ ∈ Rn×n and finite fourth moments, and {Ψj}j∈N a one-summable sequence of n×n matrices.
Let {ut}t∈Z be the mean zero linear process defined as ut = Ψ(L)εt for any t∈Z. Let Γ :Z→Rn×n

be the autocovariance function of {ut}t∈Z.
Define the process {St}t∈N as S0 = 0 and St =∑t

s=1us for any t ∈N+. For any T ∈N+, define
the stochastic processes {XT (r)}r∈[0,1] and {VT (r)}r∈[0,1] as

XT (r) = 1√
T

bTrc∑
t=1

ut+
1√
T

(Tr−bTrc)ubTrc+1

VT (r) = 1√
T

bTrc∑
t=1

εt+
1√
T

(Tr−bTrc)εbTrc+1

for any r ∈ [0,1], and let XT and V T be the random functions taking values in C([0,1],Rn)
corresponding to {XT (r)}r∈[0,1] and {VT (r)}r∈[0,1]. Defining

VhT = 1
T

T−h∑
t=1

St−1ε
′
t

UhT = 1
T

T−h∑
t=1

St−1u
′
t

for any h ∈ N, for any p ∈N+

V T d→ Σ
1
2Wn

XT d→Ψ(1)Σ
1
2Wn

(V0
T , · · · ,V

p
T ) d→ ι′p+1

⊗[
Ψ(1)Σ

1
2

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′
]

(U0
T , · · · ,U

p
T ) d→ ι′p+1

[
Ψ(1)Σ

1
2

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′Ψ(1)′+K

]
jointly, whereWn is the n-dimensional Wiener function, {Wn(r)}r∈[0,1] the corresponding Wiener
process, and K =∑∞

j=1 Γ(j)′.

Proof) We first define some notations and state preliminary results.
Recall from the BN decomposition that there exists an almost sure set Ω0 ∈ H such
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that

ut = Ψ(1)εt+ηt−ηt−1

St =
t∑

s=1
us = Ψ(1)

(
t∑

s=1
εs

)
+ηt−η0

on Ω0 for any t ∈ N+, where

– Ψ(1) =∑∞
j=0 Ψj ,

– {αj}j∈N is an absolutely summable sequence of n×n matrices such that

αj =−
∞∑

h=j+1
Ψj for any j ∈ N,

– {ηt}t∈Z is an absolutely summable linear process such that ηt =∑∞
j=0αj ·εt−j for

any t ∈N+.

Define the random walk τt as τ0 = 0 and

τt =
t∑

s=1
εs+ τ0

for any t ∈N+, so that we can express

St = Ψ(1)τt+ηt−η0

and

ut = Ψ(1)εt+ηt−ηt−1

for any t ∈N+. Furthermore, it was shown in the proof of the extended CLT that we
can write

XT = Ψ(1)V T +AT

for some random function AT taking values in C([0,1],Rn) that converges to the zero
function in probability.
By the stochastic integral convergence result we proved in the previous theorem,

V T d→ Σ
1
2Wn

 1
T

T∑
t=1

τt−1εt, · · · ,
1
T

T−p∑
t=1

τt−1εt

 d→ ι′p+1
⊗[

Σ
1
2

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2

]

jointly. We can easily see that, by the continuous mapping theorem, the convergence
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result

XT d→Ψ(1)Σ
1
2Wn

occurs jointly with the above results. We are now ready to prove the remaining items.

We start with the easier of the two partial sum processes.
For any 0≤ h≤ p,

1
T

T−h∑
t=1

St−1ε
′
t = 1

T

T−h∑
t=1

(Ψ(1)τt−1 +ηt−1−η0)ε′t

= Ψ(1)
(

1
T

T−h∑
t=1

τt−1εt

)
+ 1
T

T−h∑
t=1

(ηt−1−η0)ε′t.

The first term converges in distribution to

Ψ(1)Σ
1
2

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′

by the previous theorem. Meanwhile, because the {ηt}t∈Z is an absolutely summable
causal linear process representation with an iid innovation process {εt}t∈Z that has
finite fourth moments, the earlier result on linear processes tells us that

1√
T

T−h∑
t=1

ηt−1εt =Op(1).

In addition,

1√
T

T−h∑
t=1

εt =Op(1)

by the usual Lindeberg-Levy CLT, so it follows that

1
T

T−h∑
t=1

(ηt−1−η0)ε′t

converges to 0. This holds for any 0≤ h≤ p, so using the result proven above,

XT d→Ψ(1)Σ
1
2 ·Wn

 1
T

T∑
t=1

St−1ε
′
t, · · · ,

1
T

T−p∑
t=1

St−1ε
′
t

 d→ ι′p+1
⊗[

Ψ(1)Σ
1
2

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′
]

jointly by the continuous mapping theorem and Slutsky’s theorem.

223



The proof that the second partial sum process converges is slightly trickier.
For any 0≤ h≤ p we have

1
T

T−h∑
t=1

St−1u
′
t = 1

T

T−h∑
t=1

(Ψ(1)τt−1 +ηt−1−η0)(Ψ(1)εt+ηt−ηt−1)′

= Ψ(1)
(

1
T

T−h∑
t=1

τt−1εt

)
Ψ(1)′+ Ψ(1)

(
1
T

T−h∑
t=1

τt−1 (ηt−ηt−1)′
)

+
(

1
T

T−h∑
t=1

(ηt−1−η0)ε′t

)
Ψ(1)′+ 1

T

T−h∑
t=1

(ηt−1−η0)(ηt−ηt−1)′ .

We examine each term in turn.

The Last Term
Because the innovation process {εt}t∈Z for {ηt}t∈Z is i.i.d. and the linear filter
{αj}j∈N is absolutely summable, we can apply the WLLN for linear processes and
conclude that

1
T

T−h∑
t=1

(ηt−1−η0)(ηt−ηt−1)′ p→G(1)′−G(0),

where G : Z→ Rn×n is the autocovariance function of ηt. Examining the limit
G(1)′−G(0) further, we can tell that

G(1)′−G(0) =
∞∑
j=1

αj−1Σα′j−
∞∑
j=0

αjΣα′j

=
∞∑
j=1

(αj−1−αj)Σα′j−α0Σα′0

=−
∞∑
j=1

ΨjΣα′j−α0Σα′0

=−
∞∑
j=1

ΨjΣα′j−Σu−Ψ0ΣΨ′0 + Ψ(1)ΣΨ′0 + Ψ0ΣΨ(1)′,

since α0 =−∑∞j=1 Ψj = Ψ0−Ψ(1).

The Third Term
From our earlier result, we have

1
T

T−h∑
t=1

(ηt−1−η0)ε′tΨ(1)′ p→O.

224



The Second Term
As for the second term, we have

Ψ(1)
(

1
T

T−h∑
t=1

τt−1 (ηt−ηt−1)′
)

= Ψ(1) 1
T

T−h∑
t=1

τt−1η
′
t−Ψ(1) 1

T

T−h∑
t=1

τt−1η
′
t−1

= Ψ(1) 1
T

T∑
t=1

τtη
′
t−Ψ(1) 1

T

T−h∑
t=1

εtη
′
t−Ψ(1) 1

T

T−h∑
t=1

τt−1η
′
t−1

= Ψ(1) 1
T
τT−hη

′
T−h−Ψ(1) 1

T

T−h∑
t=1

εtη
′
t.

Since E|τT |2 = T · tr(Σ) for any T ∈N+,

E
∥∥∥∥ 1
T
τT−hη

′
T−h

∥∥∥∥≤ 1
T

(
E|τT−h|2

) 1
2 tr(G(0))

1
2

= tr(Σ)
1
2 tr(G(0))

1
2

√
T −h
T

,

so that 1
T τT−hη

′
T−h

L1
→O and thus 1

T τT−hη
′
T−h = op(1). The sum of the product of

ηt and εt can be expanded as

1
T

T−h∑
t=1

εtη
′
t = 1

T

T−h∑
t=1

εt(ηt−α0εt)′+
1
T

T−h∑
t=1

εtε
′
tα
′
0.

Because {ηt−α0εt}t∈Z has the absolutely summable causal linear process repre-
sentation

ηt−α0εt =
∞∑
j=0

αj+1 ·εt−1−j

for any t ∈ Z, the result on linear processes tells us once again that

1√
T

T−h∑
t=1

εt(ηt−α0εt)′ =Op(1).

By implication,

1
T

T−h∑
t=1

εt(ηt−α0εt)′
p→O.

As for the second term,

1
T

T−h∑
t=1

εtε
′
tα
′
0
p→ Σα′0
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by the WLLN for iid processes. Considering the fact that α0 = Ψ0−Ψ(1), we have

Ψ(1)
(

1
T

T−h∑
t=1

τt−1 (ηt−ηt−1)′
)

p→−Ψ(1)Σα′0 = Ψ(1)ΣΨ(1)′−Ψ(1)ΣΨ′0.

The First Term
Finally, the first term has the limit

Ψ(1)
(

1
T

T−h∑
t=1

τt−1εt

)
Ψ(1)′ d→Ψ(1)Σ

1
2

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′Ψ(1)′,

because we know the limit of the sum in the middle.

The above results hold for any 0≤ h≤ p, so

V T d→ Σ
1
2 ·Wn

XT d→Ψ(1)Σ
1
2 ·Wn

 1
T

T∑
t=1

St−1ε
′
t, · · · ,

1
T

T−p∑
t=1

St−1ε
′
t

 d→ ι′p+1
⊗[

Ψ(1)Σ
1
2

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′
]

 1
T

T∑
t=1

St−1u
′
t, · · · ,

1
T

T−p∑
t=1

St−1u
′
t

 d→ ι′p+1
⊗[

Ψ(1)Σ
1
2

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′Ψ(1)′+K

]

jointly by the continuous mapping theorem and Slutsky’s theorem, for some K ∈Rn×n

by Slutsky’s theorem and the joint convergence of VT and 1
T

∑T
t=1 τt−1ε

′
t.

The constant term K is given as

K = Ψ(1)ΣΨ(1)′−Ψ(1)ΣΨ′0−
∞∑
j=1

ΨjΣα′j−Σu−Ψ0ΣΨ′0 + Ψ(1)ΣΨ′0 + Ψ0ΣΨ(1)′

=−
∞∑
j=1

ΨjΣα′j + Ψ0Σ(Ψ(1)−Ψ0)′ =−
∞∑
j=0

ΨjΣα′j .

By the definition of each αj ,

−
∞∑
j=0

ΨjΣα′j =
∞∑
j=0

∞∑
h=j+1

ΨjΣΨ′h =
∞∑
j=1

∞∑
h=j

Ψh−jΣΨ′h =
∞∑
j=1

Γ(j)′.

Q.E.D.
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4.2.3 Main Limit Results

Theorem (Main Limit Results)
Let {εt}t∈Z be an n-dimensional mean zero i.i.d. process with positive definite covariance matrix
Σ ∈ Rn×n and finite fourth moments, and {Ψj}j∈N a one-summable sequence of n×n matrices.
Let {ut}t∈Z be the mean zero linear process defined as

ut =
∞∑
j=0

Ψj ·εt−j

for any t ∈ Z. Let Γ : Z→ Rn×n be the autocovariance function of {ut}t∈Z.
Define the process {St}t∈N as S0 = 0 and

St =
t∑

s=1
us+S0.

for any t ∈N+. Define Σu = Ψ(1)ΣΨ(1)′, Σ 1
2 as the Cholesky factor of Σ, and Λ = Ψ(1)Σ 1

2 . Let
Wn denote the standard n-dimensional Wiener function, and {Wn(r)}r∈[0,1] the corresponding
Brownian motion. For any p ∈N+, the following convergence results hold jointly:

1√
T

T∑
t=1

εt
d→ Σ

1
2Wn(1)

1√
T

T∑
t=1

ut
d→ Λ ·Wn(1)

1
T

T∑
t=1

utu
′
t−h

p→ Γ(h) for any h≥ 0

1
T

T∑
t=h+1

St−1ε
′
t−h

d→ Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′+ Σ for any 0≤ h≤ p

1
T

T∑
t=h+1

St−1u
′
t−h

d→ Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Λ′+ Σu−

∞∑
j=h

Γ(j) for any 0≤ h≤ p

1
T 3/2

T∑
t=1

St−1
d→ Λ ·

∫ 1

0
Wn(r)dr

1
T 2

T∑
t=1

St−1S
′
t−1

d→ Λ
(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′

1
T 3/2

T∑
t=h+1

t ·ut−h
d→ Λ ·

∫ 1

0
rdWn(r) for any h≥ 0

1
T 3/2

T∑
t=1

t ·εt−1
d→ Σ

1
2 ·
∫ 1

0
rdWn(r)

1
T 5/2

T∑
t=1

t ·St−1
d→ Λ ·

∫ 1

0
r ·Wn(r)dr
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Proof) For any T ∈ N+, define the n-dimensional stochastic processes {XT (r)}r∈[0,1] and
{VT (r)}r∈[0,1] with continuous paths as

XT (r) = 1√
T

bTrc∑
t=1

ut+
1√
T

(Tr−bTrc)ubTrc+1

VT (r) = 1√
T

bTrc∑
t=1

εt+
1√
T

(Tr−bTrc)εbTrc+1

for any r ∈ [0,1]. Let XT and V T be the random functions in C([0,1],Rn) corresponding
to {XT (r)}r∈[0,1] and {VT (r)}r∈[0,1]. Finally, defining

VhT = 1
T

T−h∑
t=1

St−1ε
′
t−h and

UhT = 1
T

T−h∑
t=1

St−1u
′
t−h

for 0≤ h≤ p, the joint convergence results in the previous theorem tell us that

V T d→ Σ
1
2 ·Wn

XT d→ Λ ·Wn

(V0
T , · · · ,V

p
T ) d→ ι′p+1

⊗[
Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′
]

(U0
T , · · · ,U

p
T ) d→ ι′p+1

[
Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Λ′+K

]
jointly, where

K =
∞∑
j=1

Γ(j)′.

These results are now used to prove the results claimed in the theorem.

We proceed one by one:

i) For any T ∈N+,

1√
T

T∑
t=1

εt = VT (1) = π1(VT ),
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so by the continuity of projections,

1√
T

T∑
t=1

εt
d→ π1(Σ

1
2Wn) = Σ

1
2Wn(1).

ii) The proof is almost identical to the above. For any T ∈N+,

1√
T

T∑
t=1

ut =XT (1) = π1(XT ),

so by the continuity of projections,

1√
T

T∑
t=1

ut
d→ π1(Λ ·Wn) = Λ ·Wn(1).

iii) This was proven in the lemma for the WLLN of Linear Processes.

iv) Choose any 0≤ h≤ p. Then,

1
T

T∑
t=h+1

St−1ε
′
t−h = 1

T

T∑
t=h+1

St−h−1 +
t∑

s=t−h
εs

ε′t−h
= 1
T

T−h∑
t=1

St−1ε
′
t+

1
T

T∑
t=h+1

t∑
s=t−h

(
εsε
′
t−h
)

= VhT +
h∑
j=0

 1
T

T−h+j∑
t=j+1

εtε
′
t−j


d→ Λ

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′+ Σ,

where we used the fact that

1
T

T−h+j∑
t=j+1

εtε
′
t−j

p→ E
[
εtε
′
t−j

]
=

Σ if j = 0

O otherwise

for any j ∈ N. This holds jointly for any 0≤ h≤ p.
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v) This result can be shown in a similar manner to the preceding result. Choose any
0≤ h≤ p. Then,

1
T

T∑
t=h+1

St−1u
′
t−h = 1

T

T∑
t=h+1

St−h−1 +
t−1∑

s=t−h
us

u′t−h
= 1
T

T−h∑
t=1

St−1u
′
t+

1
T

T∑
t=h+1

t−1∑
s=t−h

(
usu
′
t−h
)

= VhT +
h−1∑
j=0

 1
T

T−h+j∑
t=j+1

utu
′
t−j


d→ Λ

(∫ 1

0
Wn(r)dWn(r)′

)
Λ′+K+

j−1∑
j=0

Γ(j),

where this time we used the fact that

1
T

T−h+j∑
t=j+1

utu
′
t−j

p→ Γ(j)

for any j ∈ N, as shown in iii). Since K =∑∞
j=1 Γ(j)′, we can see that

1
T

T∑
t=h+1

St−1u
′
t−h

d→ Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Λ′+

∞∑
j=1−h

Γ(j)′.

To obtain the alternative formulation of the nuisance term ∑∞
j=1−hΓ(j)′, note

that, because {ut}t∈Z has an MA(∞) representation with coefficients {Ψj}j∈N,

Σu = Ψ(1)ΣΨ(1)′

is 2π times the spectral density of ut evaluated at 0, that is,

Σu = 2π ·fuu(0).

By definition,

fuu(z) = 1
2π

∞∑
τ=−∞

exp(−iτz)Γ(τ) = 1
2π

[
Γ(0) +

∞∑
τ=1

exp(−iτz)
(
Γ(τ) + Γ(τ)′

)]
,

so we have

Σu = Γ(0) +
∞∑
τ=1

(
Γ(τ) + Γ(τ)′

)
.

It follows that
∞∑

j=1−h
Γ(j)′ = Σu−

∞∑
j=h

Γ(j).
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This again holds jointly for any 0≤ h≤ p.

vi) Note that the Lebesgue integral of XT (r) with respect to r is given by

∫ 1

0
XT (r)dr =

T∑
t=1

∫
[ t−1
T
, t
T )
XT (r)dr

= 1√
T

T∑
t=1

[(
1
T

t−1∑
s=1

us

)
+
(∫ t

T

t−1
T

(Tr− (t−1))dr
)
·ut

]

= 1
T 3/2

T∑
t=1

St−1 + 1√
T

T∑
t=1

[
T

(
t2

2T 2 −
(t−1)2

2T 2

)
− t−1

T

]
ut

= 1
T 3/2

T∑
t=1

St−1 + 1
2 ·

1
T 3/2

T∑
t=1

ut.

By implication,

1
T 3/2

T∑
t=1

St−1 =
∫ 1

0
XT (r)dr− 1

2 ·
1

T 3/2

T∑
t=1

ut = g(XT )− 1
2T ·XT (1).

It follows from the continuous mapping theorem and Slutsky’s theorem that

1
T 3/2

T∑
t=1

St−1 = g(XT )− 1
2T ·π1(XT )

d→ g(Λ ·Wn) = Λ ·
∫ 1

0
Wn(r)dr.

vii) As above,

∫ 1

0
XT (r)XT (r)′dr =

T∑
t=1

∫
[ t−1
T
, t
T )
XT (r)XT (r)′dr

= 1
T

T∑
t=1

∫
[ t−1
T
, t
T )

(St−1 + (Tr− (t−1))ut)(St−1 + (Tr− (t−1))ut)′ dr

= 1
T

T∑
t=1

[
1
T
St−1S

′
t−1 +St−1 ·

(∫ t
T

t−1
T

(Tr− (t−1))dr
)
u′t

]

+ 1
T

T∑
t=1

[
ut ·

(∫ t
T

t−1
T

(Tr− (t−1))dr
)
S′t−1 +ut

(∫ t
T

t−1
T

(Tr− (t−1))2dr

)
u′t

]

= 1
T 2

T∑
t=1

St−1S
′
t−1 + 1

2T 2

T∑
t=1

(
St−1u

′
t+utS

′
t−1
)

+ 1
3T 2

T∑
t=1

utu
′
t.
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It follows that

1
T 2

T∑
t=1

St−1S
′
t−1 =

∫ 1

0
XT (r)XT (r)′dr− 1

2T

(
1
T

T∑
t=1

(
St−1u

′
t+utS

′
t−1
))
− 1

3T

(
1
T

T∑
t=1

utu
′
t

)

= g2(XT )− 1
2T

(
1
T

T∑
t=1

(
St−1u

′
t+utS

′
t−1
))
− 1

3T

(
1
T

T∑
t=1

utu
′
t

)
;

the last two terms converge in probability to 0 by the previous results, and by the
continuous mapping theorem,

1
T 2

T∑
t=1

St−1S
′
t−1

d→ Λ ·
(∫ 1

0
Wn(r)Wn(r)′dr

)
·Λ.

viii) For any h≥ 0,

1√
T

T∑
t=h+1

ut−h−
1

T 3/2

T∑
t=h+1

t ·ut−h = 1
T 3/2

T∑
t=h+1

(T − t)ut−h

= 1
T 3/2 (uT−h−1 + 2 ·uT−h−2 + · · ·+ (T −h−1) ·u1)

= 1
T 3/2

(
T−h−1∑
t=1

ut+
T−2∑
t=1

ut+ · · ·+
1∑
t=1

ut

)

= 1
T 3/2

T−h∑
t=1

St−1.

From viii), we can deduce that

1
T 3/2

T−h∑
t=1

St−1 =G

(
T −h
T

,XT

)
− 1

2T π
(
T −h
T

,XT

)
,

and

1
T 3/2

h∑
t=1

t ·ut−h
p→ 0,

so we have

1
T 3/2

T∑
t=1

t ·ut−h = 1
T 3/2

T∑
t=h+1

t ·ut−h+ 1
T 3/2

h∑
t=1

t ·ut−h

= 1√
T

T∑
t=h+1

ut−h−
1

T 3/2

T−h∑
t=1

St−1 + 1
T 3/2

h∑
t=1

t ·ut−h

=
√
T −h
T

π

(
T −h
T

,XT

)
−G

(
T −h
T

,XT

)
+op(1)
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d→ π(1,Wn)−G(1,Wn) = Λ ·
(
Wn(1)−

∫ 1

0
Wn(r)dr

)
.

By Ito’s lemma, for any 1≤ i≤ n,

d(rWi(r)) =Wi(r)dr+ rdWi(r),

so that

Wi(1) =
∫ 1

0
Wi(r)dr+

∫ 1

0
rdWi(r).

Therefore,

Wn(1)−
∫ 1

0
Wn(r)dr =

∫ 1

0
rdWn(r),

so the limiting distribution can be written as

1
T 3/2

T∑
t=1

t ·ut−h
d→ Λ ·

∫ 1

0
rdWn(r).

ix) By the same process as the preceding result, we can see that

1√
T

T∑
t=2

εt−1−
1

T 3/2

T∑
t=2

t ·εt−1 = 1
T 3/2

T∑
t=1

(
t−1∑
s=1

εs

)
.

Analogously to viii), we can deduce that

1
T 3/2

T−1∑
t=1

(
t∑

s=1
εs

)
−
∫ 1

0
VT (r)dr = op(1),

and by the continuous mapping theorem,
∫ 1

0
VT (r)dr d→ Σ

1
2

∫ 1

0
Wn(r)dr.

Furthermore,

1√
T

T∑
t=2

εt−1 =
√
T −1
T
·π
(
T −1
T

,VT

)
,
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so we can see that

1
T 3/2

T∑
t=1

t ·εt−1 = 1
T 3/2 ε0 +

√
T −1
T

π

(
T −1
T

,VT

)
− 1
T 3/2

T−1∑
t=1

(
t∑

s=1
εs

)
d→ π(1,Σ

1
2Wn)−Σ

1
2

∫ 1

0
Wn(r)dr = Σ

1
2

(
Wn−

∫ 1

0
Wn(r)dr

)
.

As in the preceding result,

1
T 3/2

T∑
t=1

t ·εt−1
d→ Σ

1
2 ·
∫ 1

0
rdWn(r).

x) Note that

∫ 1

0
r ·XT (r)dr = 1√

T

T∑
t=1

∫
[ t−1
T
, t
T )

(
rSt−1 + (Tr2− (t−1)r)ut

)
dr

= 1√
T

T∑
t=1

( 1
T 2 t ·St−1−

1
2T 2St−1

)
+ 1

6T 5/2

T∑
t=1

(3t−1)ut

= 1
T 5/2

T∑
t=1

t ·St−1−
1

2T 5/2

T∑
t=1

ST−1 + 1
2T 5/2

T∑
t=1

t ·ut−
1

6T 5/2

T∑
t=1

ut.

By implication,

1
T 5/2

T∑
t=1

t ·St−1 =
∫ 1

0
r ·XT (r)dr+ 1

2T 5/2

T∑
t=1

ST−1−
1

2T 5/2

T∑
t=1

t ·ut+
1

6T 5/2

T∑
t=1

ut

= ḡ(XT ) + 1
2T 5/2

T∑
t=1

ST−1−
1

2T 5/2

T∑
t=1

t ·ut+
1

6T 5/2

T∑
t=1

ut

p→ Λ ·
(∫ 1

0
r ·Wn(r)dr

)
by the continuous mapping theorem and Slutsky’s theorem.

To see that the convergence results hold jointly, note that each term can be expressed
as the sum of, on the one hand, continuous functions of V T , XT and the partial sums
V0
T , · · · ,V

p
T ,U0

T , · · · ,U
p
T , and on the other, a term that converges to 0 in probability.

Therefore, the continuous mapping theorem and Slutsky’s theorem imply that the terms
all converge to their weak limits jointly.

Q.E.D.
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Items iv) and v) can be further simplified when n = 1. In this case, denoting Σ = σ2 > 0 and
Σu = Ψ(1)ΣΨ(1)′ = σ2Ψ(1)2, the above theorem tells us that

1
T

T∑
t=1

St−1ut
d→ 1

2σ
2Ψ(1)2

∫ 1

0
W 1(r)dW 1(r) + σ2Ψ(1)2−Γ(0)

2

= Ψ(1)2

2

(
σ2
∫ 1

0
W 1(r)dW 1(r) + σ2Ψ(1)2−Γ(0)

Ψ(1)2

)
,

1
T

T∑
t=1

St−1ut−h
d→ 1

2

σ2Ψ(1)2W 1(1)2 + Γ(0) + 2
h−1∑
j=1

Γ(j)

 .
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Cointegration

Here, we investigate the properties of cointegrated time series using the limit results established
above. We first define what is meant by I(1) and I(0) time series, and then define cointegration of
I(1) processes. We derive the asymptotic properties of the Phillips-Ouliaris test for cointegration,
and afterward move onto cointegrated VAR systems, or VECMs. There, we derive the Granger
representation for such systems, and investigate methods, including Johansen’s MLE approach
and Ahn and Reinsel’s least squares approach, to estimating VECMs.

As above, we let (Ω,H,P) be our underlying probability space.

5.1 I(1) Processes and Cointegrated Time Series

5.1.1 I(0) Processes

Let {Yt}t∈Z be an n-dimensional time series. We say that {Yt}t∈Z is I(0) if it is a weakly stationary
and causal linear process; that is, if

• There exist some µ ∈ Rn, an i.i.d. process {εt}t∈Z and

• A one summable sequence {Ψj}j∈N of n×n matrices such that

• For any t ∈ Z,

Yt = µ+
∞∑
j=0

Ψj ·εt−j ,

where the limit is both in L2 and almost surely.

We limit the class of I(0) processes, which is often taken to be the class of weakly stationary
processes in general, to the class of weakly stationary causal linear processes with i.i.d. innova-
tions and one-summable coefficients, for analytical convenience. Note that any stationary VAR
process with i.i.d. innovations satisfies the above conditions and is thus I(0), which demonstrates
that our definition is not as restrictive as it first seems.

It is also important to note that the first difference of I(0) processes is again I(0). To see
this, let the I(0) process {Yt}t∈Z be defined as

Yt = µ+
∞∑
j=0

Ψj ·εt−j
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for any t ∈ Z. Then, the first difference {∆Yt}t∈Z is given as

∆Yt = Yt−Yt−1 =
∞∑
j=0

Ψj ·εt−j−
∞∑
j=0

Ψj ·εt−1−j

= Ψ0εt+
∞∑
j=1

(Ψj−Ψj−1)εt−j

for any t ∈ Z, where the last equality is justified because the series ∑∞j=0 Ψj · εt−j converges
absolutely with probability 1 for any t ∈ Z. Defining Θ0 = Ψ0 and Θj = Ψj −Ψj−1 for any
j ∈N+,

∞∑
j=0

j · ‖Θj‖ ≤
∞∑
j=0

j · ‖Ψj‖+
∞∑
j=1

j · ‖Ψj−1‖

=
∞∑
j=0

j · ‖Ψj‖+
∞∑
j=1

(j−1) · ‖Ψj−1‖+
∞∑
j=1
‖Ψj−1‖

= 2 ·
∞∑
j=0

j · ‖Ψj‖+
∞∑
j=0
‖Ψj‖.

The rightmost term is finite due to the one-summability of {Ψj}j∈N, so it follows that {Θj}j∈N
is also one-summable; it follows that the process {∆Yt}t∈Z, written as

∆Yt =
∞∑
j=0

Θj ·εt−j = Θ(L)εt,

is an I(0) process with mean zero.

5.1.2 I(1) Processes

We say that the n-dimensional time series {Yt}t∈Z is I(d) for some d ≥ 1 if its d difference
process {(In−InL)dYt}t∈Z is I(0), or equivalently, a weakly stationary causal linear process with
i.i.d. innovations and one-summable coefficients. Of special interest are I(1) processes, which are
processes whose first difference process {∆Yt}t∈Z is I(0).

Suppose that {Yt}t∈Z is an I(1) process, and define ut = ∆Yt = Yt−Yt−1 for any t ∈ Z. Then,
{ut}t∈Z is a weakly stationary causal linear process with mean δ ∈ Rn, i.i.d. innovation process
{εt}t∈Z and one-summable coefficients {Ψj}j∈N; by the Beveridge-Nelson decomposition, there
exists a weakly stationary causal linear process {ηt}t∈Z with mean zero such that

Yt−Y0 =
t∑

s=1
ut = δt+ Ψ(1) ·

t∑
s=1

εs+ηt−η0,
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or

Yt = δt︸︷︷︸
Deterministic Trend

+ Ψ(1) ·
t∑

s=1
εs︸ ︷︷ ︸

Stochastic Trend

+ ηt︸︷︷︸
Cycle

+ (Y0−η0)︸ ︷︷ ︸
Initial Values

for any t ∈N with probability 1. We say that {Yt}t∈N is non-stationary if δ 6= 0 or Ψ(1) 6=O; the
latter condition is referred to as the ”no MA unit root” condition. This definition is motivated
by the fact that, if δ = 0 and Ψ(1) =O, then for the inital value Y0 = η0, we have Yt = ηt for any
t ∈ N, which renders {Yt}t∈N weakly stationary.

5.1.3 Cointegrated Processes

Let {Yt}t∈Z be an n-dimensional I(1) process. {Yt}t∈N is said to be cointegrated if there exists a
non-zero vector β ∈ Rn such that {β′Yt}t∈N is weakly stationary for some initial value Y0. The
vector β is called a cointegrating vector for {Yt}t∈N.

Let {Yt}t∈Z be an n-dimensional I(1) process; we can carry over the Beveridge Nelson de-
composition used in the previous section, so that

Yt = δt+ Ψ(1) ·
t∑

s=1
εs+ηt+ (Y0−η0)

for any t ∈ N with probability 1. This representation allows us to obtain a characterization of
the space of all cointegration vectors, which we denote by V and refer to as the cointegrating
space.

Suppose that β ∈ Rn is a cointegrating vector for {Yt}t∈N. Then,

β′Yt = β′δt+β′Ψ(1) ·
t∑

s=1
εs+β′ηt+ (Y0−η0)

defines a stationary process {β′Yt}t∈N for some choice of Y0. If β′δ 6= 0 or β′Ψ(1) 6= 0′, then
for any choice of Y0, β′Yt will possess either a deterministic time trend or a stochastic trend.
Therefore, a necessary condition for cointegration under the cointegrating vector β is that

β′δ = 0 and Ψ(1)′β = 0.

That is, V ⊂Nδ′ ∩NΨ(1)′ , where Nδ′ and NΨ(1)′ are the null spaces of the linear transformations
δ′ and Ψ(1)′ defined on Rn. Since the intersection of two vector spaces is also a vector space,
Nδ′ ∩NΨ(1)′ is a linear subspace of Rn.

On the other hand, suppose that β ∈ Nδ′ ∩NΨ(1)′ and β is non-zero. Then, β′δ = 0 and
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β′Ψ(1) = 0′, so that

β′Yt = β′ηt+ (Y0−η0)

for any t ∈N, and given initial value Y0 = η0, β′Yt = β′ηt for any t ∈N. The weak stationarity of
{ηt}t∈Z implies that {β′Yt}t∈N is also weakly stationary, and as such β is a cointegrating vector
for {Yt}t∈N. We have thus shown that (Nδ′ ∩NΨ(1)′) \ {0} ⊂ V , and putting the two results
together, we can see that the space of all cointegrating vectors is characterized as

V = (Nδ′ ∩NΨ(1)′)\{0}.

This shows us that the cointegrating space V augmented by the zero vector 0 is a linear subspace
of Rn; for simplicity, denote the augmented cointegrating space by Ṽ = V ∪{ 0}=Nδ′ ∩NΨ(1)′ .
The rank of Ṽ is called the cointegrating rank, and any basis of Ṽ is called a cointegrating basis
for {Yt}t∈N; since basis vectors must be non-zero, the cointegrating basis consists of cointegrating
vectors.

Let q be the cointegrating rank and {β1, · · · ,βq} ⊂ Ṽ a cointegrating basis. Define

B =


β′1
...
β′q

 .

Because βi ∈Nδ′ ∩NΨ(1)′ for 1≤ i≤ q,

BYt =Bηt

for any t∈N under the initial value Y0 = η0. Thus, {BYt}t∈N is a q-dimensional weakly stationary
causal linear process.

Lemma (Cointegrating Rank of a Non-Stationary Cointegrated I(1) Process)
Let {Yt}t∈Z be an n-dimensional I(1) process. If {Yt}t∈N is non-stationary and cointegrated, then
its cointegrating rank q cannot be 0 or n.

Proof) We continue to rely on the Beveridge-Nelson decomposition of Yt, which tells us that

Yt = δt+ Ψ(1) ·
t∑

s=1
εs+ηt+ (Y0−η0)

for any t ∈ N with probability 1. Let V be the cointegrating space of {Yt}t∈N, and Ṽ

its extension to a vector space. The cointegrating rank q is the dimension of Ṽ .

Suppose that q= 0. Then, Ṽ =Nδ′ ∩NΨ(1)′ contains only the zero vector, which implies
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that

V = (Nδ′ ∩NΨ(1)′)\{0}= ∅,

or that there are no cointegrating relationships among the elements of Yt. This contra-
dicts the fact that {Yt}t∈N is cointegrated, so we must have q > 0.

On the other hand, suppose that q = n. Then, Nδ′ ∩NΨ(1)′ = Rn, which implies that
Nδ′ = NΨ(1)′ = Rn. Thus, δ = 0 and Ψ(1) = O, which contradicts the non-stationarity
of {Yt}t∈N (δ 6= 0 or Ψ(1) 6=O). It follows that q < n.

Q.E.D.

Of particular interest is the case δ = 0. In this case, the dimension of Ṽ =NΨ(1)′ is exactly
the cointegrating rank. Denoting the cointegrating rank by r, by the dimension theorem we can
see that

0< rank(Ψ(1)) = n− r < n.

Since the rank of Ψ(1) dictates the number of linearly independent and thus distinct random
walks comprising the stochastic trend of Yt, we call n− r the number of common trends. Thus,
the larger the cointegrating rank, or the more series are cointegrated, the more the dynamics of
the n series are driven by a small number of common stochastic trends.
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5.1.4 The Phillips-Ouliaris Test for Cointegration

Before studying a cointegrated system, we must first verify whether the system is cointegrated
in the first place. The first of these types of tests was developed by Engle and Granger. Their
test is based on the intuition that, if there is no cointegration between variables, then any
linear combination of the variables is non-stationary. This indicates that the OLS residual from
regressing one of the variables on the other ones must be non-stationary, and as such they
propose running an ADF or PP type unit root test on the residuals. In this manner, the null of
no cointegration is transformed into a null of a unit root in the residuals.

The Phillips-Ouliaris test extends the Engle-Granger test and derives the exact asymptotic
distribution for the test statistic, which differs slightly from that of the ADF and PP tests. In
addition, they implement a bias correction in the vein of the PP test to obtain a pivotal distri-
bution for the test statistic. The exposition here follows that of Phillips and Ouliaris (1990).

The model is one in which there is at most one cointegrating relationship, where the vari-
ables have been ordered so that the last n− 1 variables are not cointegrated. Formally, let
{Yt = (yt,X ′t)′}t∈Z be an n-dimensional non-stationary I(1) process, where {Xt}t∈Z is not coin-
tegrated. Let {∆Yt}t∈Z be a weakly stationary causal linear process with one summable coeffi-
cients {Ψj}j∈N, mean δ ∈Rn and i.i.d. innovation process {εt}t∈Z with positive definite variance
Σ ∈ Rn×n and finite fourth moments. By the Beveridge-Nelson decomposition, we have

Yt = δt+ Ψ(1) ·
t∑

s=1
εs+ηt+ (Y0−η0).

for any t ∈ N with probability 1, where {ηt}t∈Z is an absolutely summable weakly stationary
linear process. The augmented cointegrating space Ṽ is given as

Ṽ =Nδ′ ∩NΨ(1)′ .

Define the long run variance Σu = Ψ(1)ΣΨ(1)′, and partition it as

Σu =

Σu,11 Σu,12

Σu,21 Σu,22


conformably with (yt,X ′t)′. We can now derive a convenient necessary and sufficient condition
for cointegration using Σu:
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Lemma (Characterization of Cointegration)
Let {Yt = (yt,X ′t)′}t∈Z be an n-dimensional non-stationary I(1) process, where {Xt}t∈Z is not
cointegrated. Retain the notations above, and let the long run variance Σu be defined and
partitioned in the same way. Then, Σu,22 is positive definite.

Suppose, in addition, that NΨ(1)′ ⊂Nδ′ , so that the augmented cointegrating space Ṽ equals
the null space of Ψ(1)′. Then, {Yt}t∈Z is cointegrated if and only if

Σu,1·2 = Σu,11−Σu,12Σ−1
u,22Σu,21

is equal to 0.

Proof) We first show that Σu,22 is positive definite. Since {Xt}t∈Z is not cointegrated, if

(
0 β′

)
Ψ(1) = 0′

for some β ∈ Rn−1, then we must have β = 0; otherwise,

β′Xt = β′η
(2)
t

for any t ∈ N when the initial value Y0 = η0, where η(2)
t collects the last n−1 elements

of ηt. this makes β a cointegrating vector for {Xt}t∈N, a contradiction.

Now choose some β ∈ Rn−1; since Σu is positive semidefinite,

β′Σu,22β =
(
0 β′

)
Σu

0
β

≥ 0,

which tells us that Σu,22 is also positive semidefinite. To show that Σu,22 is positive
definite, suppose β′Σu,22β = 0. Then,

0 =
(
0 β′

)
Σu

0
β

=
(
0 β′

)
Ψ(1)ΣΨ(1)′

0
β

 .
Since Σ is positive definite, this implies that

Ψ(1)′
0
β

= 0,

and we just showed above that this implies β = 0. Therefore, β′Σu,22β > 0 if and only
if β is non-zero, which tells us that Σu,22 is positive definite.

Define Σu,1·2 as above. Then, since Σu,1·2 is the Schur complement of the positive
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semidefinite matrix Σu,

det(Σu) = det(Σu,1·2) ·det(Σu,22)≥ 0,

and since det(Σu,22)> 0, we have det(Σu,1·2) = Σu,1·2 ≥ 0.

Suppose Σu,1·2 > 0. Then, det(Σu)> 0, and thus

Σu = Ψ(1)ΣΨ(1)′

is positive definite. Σu and Ψ(1)′ share the same null space and are linear transforma-
tions on the same space Rn, so it follows that they have the same rank; in other words,
Ψ(1) has full rank n. Otherwise, if Σu,1·2 = 0, then Σu, and by extension Ψ(1), has rank
n−1.

Assume now that the augmented cointegrating space of {Yt}t∈Z is Ṽ = NΨ(1)′ . If
Σu,1·2 = 0, then NΨ(1)′ is a subspace of dimension 1 and thus Ṽ contains a non-zero
vector, meaning {Yt}t∈Z is cointegrated. Otherwise, Ṽ = {0} and {Yt}t∈Z is not cointe-
grated.

Q.E.D.

In light of the above result, the null of no cointegration is equivalent to putting Σu,1·2 > 0.

The Phillips-Ouliaris test considers the OLS residual ût from regressing yt on an intercept
and Xt; letting µ̂T and β̂T be the OLS estimators of the intercept and coefficient terms estimated
using the sample up to time T ,

ût = yt− µ̂T − β̂′TXt

for any 1≤ t≤ T . We consider the asymptotic behavior of the Dickey-Fuller test statistic

ρ̂T =
∑T
t=2 ûtût−1∑T
t=2 û

2
t−1

.

Intuitively, if ρ̂T is close to 1, then ût is close to a unit root process and it is likely that yt is
cointegrated with Xt. Thus, we reject the null of no cointegration if ρ̂T is significantly smaller
than 1. To define what is meant by ”significantly smaller”, we derive the asymptotic distribution
of ρ̂T below:
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Theorem (Asymptotic Distribution of Phillips-Ouliaris Test Statistic)
Let {Yt = (yt,X ′t)′}t∈Z be an n-dimensional non-stationary I(1) process, where {Xt}t∈Z is not
cointegrated. Retain the notations above, and assume that δ = 0, so that there is no deter-
ministic time trend. Suppose the autocovariance function of the mean zero weakly stationary
linear process {∆Yt = et}t∈Z is given as Γ : Z→ Rn×n, and let λ = ∑∞

j=1 Γ(j)′. Let {Wn(r) =
(Wn

1 (r),Wn
2 (r)′)′}r∈[0,1] be the conformably partitioned n-dimensional standard Wiener process

on [0,1].
Let {Wn∗(r) = (Wn∗

1 (r),Wn∗
2 (r)′)′}r∈[0,1] be the n-dimensional Brownian bridge defined as

Wn∗(r) =Wn(r)−
∫ 1

0
Wn(s)ds

for any r ∈ [0,1], and let {Q(r)}r∈[0,1] be the stochastic process defined as

Q(r) =Wn∗
1 (r)−

(∫ 1

0
Wn∗

1 (r)Wn∗
2 (r)′dr

)(∫ 1

0
Wn∗

2 (r)Wn∗
2 (r)′dr

)−1
Wn∗

2 (r)

for any r ∈ [0,1]. Then, under the null of no cointegration, there exists an n-dimensional random
vector η such tat

T (ρ̂T −1) d→
∫ 1

0 Q(r)dQ(r)∫ 1
0 Q(r)2dr

+ 1∫ 1
0 Q(r)2dr

· 1
2Σu,1·2

η′ (Σu−Γ(0))η.

Proof) By the previous lemma, Σu,22 is positive definite, and if {Yt}t∈Z is not cointegrated,
Σu,1·2 > 0. Denoting ∆Yt = et = Ψ(L)εt for any t ∈ Z, define the process {Zt}t∈N as

Zt = Yt−Y0 =
t∑

s=1
es

for any t ∈ N; note that Z0 = 0. Letting {Bn(r) = (Bn
1 (r),Bn

2 (r)′)′}r∈[0,1] be the n-
dimensional Brownian motion with variance Σu, by the asymptotic results derived
above we know that

1√
T

T∑
t=1

et
d→Bn(1)

1
T

T∑
t=1

ete
′
t
p→ Γ(0)

1
T

T∑
t=1

Zt−1e
′
t
d→
∫ 1

0
Bn(r)dBn(r)′+ Σu−

∞∑
j=0

Γ(j)
︸ ︷︷ ︸

λ

1
T 3/2

T∑
t=1

Zt−1
d→
∫ 1

0
Bn(r)dr
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1
T 2

T∑
t=1

Zt−1Z
′
t−1

d→
∫ 1

0
Bn(r)Bn(r)′dr.

Since the only difference between Zt and Yt is the presence of the initial value Y0, the
above results hold unchanged for Yt in the place of Zt. Furthermore, since Yt = Yt−1 +et,

1
T 3/2

T∑
t=1

Yt = 1
T 3/2

T∑
t=1

Yt−1 + 1
T 3/2

T∑
t=1

et

d→
∫ 1

0
Bn(r)dr

1
T 2

T∑
t=1

YtY
′
t = 1

T 2

T∑
t=1

Yt−1Y
′
t−1 + 1

T 2

T∑
t=1

Yt−1e
′
t+

1
T 2

T∑
t=1

etY
′
t−1 + 1

T 2

T∑
t=1

ete
′
t

d→
∫ 1

0
Bn(r)Bn(r)′dr.

Note that Σu is nonsingular due to the assumption of no integration, which means∫ 1
0 B

n(r)Bn(r)′dr is positive definite-valued.

We now proceed in steps.

Step 1: Asymptotic Distribution of the OLS Estimators

Let (µ̂T , β̂′T )′ be the OLS estimators from the regression of yt on Xt. By definition,

µ̂T
β̂T

=

 T
∑T
t=1X

′
t∑T

t=1Xt
∑T
t=1XtX

′
t

−1 ∑T
t=1 yt∑T

t=1Xtyt

 ,
and the residuals are given as

ût = yt−
(
1 X ′t

)µ̂T
β̂T


for any 1≤ t≤ T . We can scale the estimators above as√T µ̂T

T · β̂T

=

√T O

O T · In−1

µ̂T
β̂T



=

 1 1
T 3/2

∑T
t=1X

′
t

1
T 3/2

∑T
t=1Xt

1
T 2
∑T
t=1XtX

′
t

−1 1√
T

∑T
t=1 yt

1
T

∑T
t=1Xtyt

 .
Note how the last term diverges because the speed at which they converge is T 3/2 and
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T 2. Thus, we divide both sides by T , which reveals that

 1√
T
µ̂T

β̂T

=

 1 1
T 3/2

∑T
t=1X

′
t

1
T 3/2

∑T
t=1Xt

1
T 2
∑T
t=1XtX

′
t

−1 1
T 3/2

∑T
t=1 yt

1
T 2
∑T
t=1Xtyt



d→

 1
∫ 1

0 B
n
2 (r)′dr

∫ 1
0 B

n
2 (r)dr

∫ 1
0 B

n
2 (r)Bn

2 (r)′dr


−1

∫ 1
0 B

1(r)dr
∫ 1

0 B
n
2 (r)Bn

1 (r)′dr

 .
This shows us that β̂T is Op(1), and that µ̂T diverges. In particular, using the formula
for block matrix inversion, we can see that

 1√
T
µ̂T

β̂T

 d→


∫ 1

0 B
n
1 (r)dr−

(∫ 1
0 B

n
2 (r)′dr

)(∫ 1
0 B

n∗
2 (r)Bn∗

2 (r)′dr
)−1(∫ 1

0 B
n∗
2 (r)Bn∗

1 (r)dr
)

(∫ 1
0 B

n∗
2 (r)Bn∗

2 (r)′dr
)−1(∫ 1

0 B
n∗
2 (r)Bn∗

1 (r)dr
)

 ,
where {Bn∗(r) = (Bn∗

1 (r),Bn∗
2 (r)′)′}r∈[0,1] is the Brownian bridge defined as

Bn∗(r) =Bn(r)−
∫ 1

0
Bn(s)ds

for any r∈ [0,1]. Note the similarities with the usual OLS intercept and slope estimators.

Step 2: Asymptotic Distribution of Test Statistic

Using the above result, we can derive the asymptotic distribution of the denominator
of the test statistic ρ̂T as follows:

1
T 2DT = 1

T 2

T∑
t=2

û2
t−1

= 1
T 2

T∑
t=2

y2
t−1−2

(
1

T 3/2
∑T
t=2 yt−1

1
T 2
∑T
t=2 yt−1X

′
t−1

) 1√
T
µ̂T

β̂T


+
(

1√
T
µ̂T β̂′T

) T−1
T

1
T 3/2

∑T
t=2X

′
t−1

1
T 3/2

∑T
t=2Xt−1

1
T 2
∑T
t=2Xt−1X

′
t−1

 1√
T
µ̂T

β̂T


d→
∫ 1

0
Bn

1 (r)2dr

−
(∫ 1

0 B
n
1 (r)dr

∫ 1
0 B

n
1 (r)Bn

2 (r)′dr
)

×

 1
∫ 1
0 B

n
2 (r)′dr

∫ 1
0 B

n(r)dr
∫ 1
0 B

n
2 (r)Bn

2 (r)′dr


−1

∫ 1
0 B

n
1 (r)dr

∫ 1
0 B

n
2 (r)Bn

1 (r)′dr


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=
∫ 1

0
Bn

1 (r)2dr−
(∫ 1

0
Bn

1 (r)dr
)2

+
(∫ 1

0
Bn

1 (r)dr
)(∫ 1

0
Bn

2 (r)′dr
)(∫ 1

0
Bn∗

2 (r)Bn∗
2 (r)′dr

)−1(∫ 1

0
Bn∗

2 (r)Bn∗
1 (r)dr

)
−
(∫ 1

0
Bn

1 (r)Bn
2 (r)′dr

)(∫ 1

0
Bn∗

2 (r)Bn∗
2 (r)′dr

)−1(∫ 1

0
Bn∗

2 (r)Bn∗
1 (r)dr

)

=
∫ 1

0
Bn∗

1 (r)2dr−
(∫ 1

0
Bn∗

1 (r)Bn∗
2 (r)′dr

)(∫ 1

0
Bn∗

2 (r)Bn∗
2 (r)′dr

)−1(∫ 1

0
Bn∗

2 (r)Bn∗
1 (r)dr

)
.

Defining the univariate stochastic process {J(r)}r∈[0,1] as

J(r) =Bn∗
1 (r)−

(∫ 1

0
Bn∗

1 (s)Bn∗
2 (s)′ds

)(∫ 1

0
Bn∗

2 (s)Bn∗
2 (s)′dr

)−1
Bn∗

2 (r)

for any r ∈ [0,1], the above result can be simply written as

1
T 2DT

d→
∫ 1

0
J(r)2dr.

Likewise, since

ût = yt− µ̂T − β̂′TXt

= yt−1− µ̂T − β̂′TXt−1 +e1t− β̂′T e2t = ût−1 +e1t− β̂′T e2t,

where et = (e1t,e
′
2t)′ is the conformable partition of the first difference et, the numerator

of the test statistic is given as

NT =DT +
T∑
t=2

(
e1t− β̂′T e2t

)
ût−1

=DT +
T∑
t=2

e1tyt−1− β̂′T
T∑
t=2

e2tyt−1

−
(∑T

t=2 e1t
∑T
t=2 e1tX

′
t−1

)µ̂T
β̂T

+ β̂′T

(∑T
t=2 e2t

∑T
t=2 e2tX

′
t−1

)µ̂T
β̂T

 .
Denoting NT −DT = ∆T , we can write

1
T

∆T = 1
T

T∑
t=2

e1tyt−1− β̂′T ·
1
T

T∑
t=2

e2tyt−1

−
(

1√
T

∑T
t=2 e1t

1
T

∑T
t=2 e1tX

′
t−1

) 1√
T
µ̂T

β̂T

+ β̂′T

(
1√
T

∑T
t=2 e2t

1
T

∑T
t=2 e2tX

′
t−1

) 1√
T
µ̂T

β̂T

 .
Note that
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1
T

T∑
t=2

e1tyt−1−
(

1√
T

∑T
t=2 e1t

1
T

∑T
t=2 e1tX

′
t−1

) 1√
T
µ̂T

β̂T


d→
∫ 1

0
Bn

1 (r)dBn
1 (r) +λ11

−B1(1)·
∫ 1

0
Bn

1 (r)dr+B1(1) ·
(∫ 1

0
Bn

2 (r)′dr
)(∫ 1

0
Bn∗

2 (r)Bn∗
2 (r)′dr

)−1(∫ 1

0
Bn∗

2 (r)Bn∗
1 (r)dr

)
−
(∫ 1

0
B2(r)dB1(r) +λ12

)′(∫ 1

0
Bn∗

2 (r)Bn∗
2 (r)′dr

)−1(∫ 1

0
Bn∗

2 (r)Bn∗
1 (r)dr

)

=
∫ 1

0
Bn∗

1 (r)dBn
1 (r)−

(∫ 1

0
Bn∗

2 (r)dBn
1 (r)

)′(∫ 1

0
Bn∗

2 (r)Bn∗
2 (r)′dr

)−1(∫ 1

0
Bn∗

2 (r)Bn∗
1 (r)dr

)
+λ11−λ′12

(∫ 1

0
Bn∗

2 (r)Bn∗
2 (r)′dr

)−1(∫ 1

0
Bn∗

2 (r)Bn∗
1 (r)dr

)

=
∫ 1

0
J(r)dBn

1 (r)

λ11−λ′12

(∫ 1

0
Bn∗

2 (r)Bn∗
2 (r)′dr

)−1(∫ 1

0
Bn∗

2 (r)Bn∗
1 (r)dr

)
,

and similarly,

1
T

T∑
t=2

e2tyt−1−
(

1√
T

∑T
t=2 e2t

1
T

∑T
t=2 e2tX

′
t−1

) 1√
T
µ̂T

β̂T


d→
∫ 1

0
Bn∗

1 (r)dBn
2 (r)′−

(∫ 1

0
Bn∗

2 (r)dBn
2 (r)

)′(∫ 1

0
Bn∗

2 (r)Bn∗
2 (r)′dr

)−1(∫ 1

0
Bn∗

2 (r)Bn∗
1 (r)dr

)
+λ′21−λ′22

(∫ 1

0
Bn∗

2 (r)Bn∗
2 (r)′dr

)−1(∫ 1

0
Bn∗

2 (r)Bn∗
1 (r)dr

)

=
∫ 1

0
J(r)dBn

2 (r)′

+λ′21−λ′22

(∫ 1

0
Bn∗

2 (r)Bn∗
2 (r)′dr

)−1(∫ 1

0
Bn∗

2 (r)Bn∗
1 (r)dr

)
.

Therefore,

1
T

∆T
d→
∫ 1

0
J(r)dJ(r) +η′λη,

where we define

η =

 1
−
(∫ 1

0 B
n∗
2 (r)Bn∗

2 (r)′dr
)−1(∫ 1

0 B
n∗
2 (r)Bn∗

1 (r)dr
) .

The convergence results above all hold jointly, so

T (ρ̂T −1) = T

(
NT

DT
−1
)

= T ·∆T

DT
=

1
T ∆T

1
T 2DT
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d→
∫ 1

0 J(r)dJ(r)∫ 1
0 J(r)2dr

+ 1∫ 1
0 J(r)2dr

η′λη.

Examining the nuisance parameter term η′λη, we find that

η′λη = η′

 ∞∑
j=1

Γ(j)′
η

= η′ (Σu−Γ(0))η−η′
 ∞∑
j=1

Γ(j)

η
= η′ (Σu−Γ(0))η−η′λη.

Therefore,

η′λη = 1
2η
′ (Σu−Γ(0))η.

Step 3: Simplifying the Asymptotic Distributions

Define L22 = Σ
1
2
u,22 as the Cholesky factor of Σu,22, and

l11 =
√

Σu,1·2 :=
√

Σu,11−Σu,12Σ−1
u,22Σu,21 > 0

L12 = Σu,12

(
Σ

1
2 ′
u,22

)−1

Then, letting

L=

l11 L12

O L22

 ∈ Rn×n,

we have

LL′ =

l211 +L12L
′
12 L12L

′
22

L22L
′
12 L22L

′
22

= Σu.

Therefore, LWn and Bn are both n-dimensional Brownian motions with variance Σu;
it follows that LWn ∼Bn.

This implies thatBn
1

Bn
2

=

l11 L12

O L22

Wn
1

Wn
2

=

l11W
n
1 +L12W

n
2

L22W
n
2

 ,
so that
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(∫ 1

0
Bn∗

2 (r)Bn∗
2 (r)′dr

)−1(∫ 1

0
Bn∗

2 (r)Bn∗
1 (r)dr

)
∼ L′−1

22

(∫ 1

0
Wn∗

2 (r)Wn∗
2 (r)′

)−1(
l11 ·

∫ 1

0
Wn∗

2 (r)Wn∗
1 (r)dr+

∫ 1

0
Wn∗

2 (r)Wn∗
2 (r)drL′12

)
= l11L

′−1
22

(∫ 1

0
Wn∗

2 (r)Wn∗
2 (r)′

)−1(∫ 1

0
Wn∗

2 (r)Wn∗
1 (r)dr

)
+L′−1

22 L
′
12.

It follows that

J(r) =Bn∗
1 (r)−

(∫ 1

0
Bn∗

1 (s)Bn∗
2 (s)′ds

)(∫ 1

0
Bn∗

2 (s)Bn∗
2 (s)′dr

)−1
Bn∗

2 (r)

∼ l11

[
Wn∗

1 (r)−
(∫ 1

0
Wn∗

2 (r)′Wn∗
1 (r)dr

)(∫ 1

0
Wn∗

2 (r)Wn∗
2 (r)′

)−1
Wn∗

2 (r)
]

= l11Q(r)

for any r ∈ [0,1]. The asymptotic distribution of the test statistic is now given as

T (ρ̂T −1) d→
∫ 1

0 Q(r)dQ(r)∫ 1
0 Q(r)2dr

+ 1∫ 1
0 Q(r)2dr

1
2Σu,1·2

η′ (Σu−Γ(0))η.

Q.E.D.

As expected, the test statistic ρ̂T is superconsistent for 1 under the null of no cointegration;
if there is no cointegration, no linear combination of the variables yields a stationary process.
However, a nuisance term is present on the right hand side, which prevents us from actually
implementing the test in practice. For this reason, Phillips and Ouliaris propose a bias correction
in the same vein as the PP test.

The bias correction term is based on the observation that 1
−β̂T


is a consistent estimator of the random vector η. Thus, provided that there exists a consistent
estimator Σ̂u of Σu and a consistent estimator σ̂2 of Γ(0), it follows that

(
1 −β̂′T

)(
Σ̂u− σ̂2

) 1
−β̂T

 p→ η′ (Σu−Γ(0))η.

Furthermore, we already saw that

1
T 2

T∑
t=2

û2
t−1

d→
∫ 1

0
J(r)2dr ∼ Σu,1·2 ·

∫ 1

0
Q(r)2dr.
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Therefore, we can construct the bias-corrected Phillips-Ouliaris test statistic

ẐT = T (ρ̂T −1)− 1
2
(
1 −β̂′T

)(
Σ̂u− σ̂2

) 1
−β̂T

 ·( 1
T 2

T∑
t=2

û2
t−1

)−1

.

By the result in the preceding theorem,

ẐT
d→
∫ 1

0 Q(r)dQ(r)∫ 1
0 Q(r)2dr

,

where the right hand side is a pivotal distribution.
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5.2 Estimating Cointegrating Relationships

Here we study methods to estimate for cointegrating relationships in the case that the cointegra-
tion rank is 1. We start with the Static OLS (SOLS) approach to estimating the cointegrating
vector, that is, via ordinary least squares from the first equation in the triangular representation.
Due to the presence of nuisance parameters in the asymptotic distribution of the SOLS estima-
tor, we introduce the Fully Modified OLS (FM-OLS) estimator, which provides a non-parametric
correction that yields a pivotal asymptotic distribution.

First we study Phillips’ triangular representation, which provides the basis for the estimation
methods studied later.

5.2.1 Phillips’ Triangular Representation

Recall that the augmented cointegrating space is a linear subspace. This indicates that any lin-
ear combination of cointegrating vectors is again a cointegrating vector, and we can exploit this
feature to derive a convenient representation for cointegrated systems.

Transforming the Cointegrating Basis

Let {Yt}t∈Z be a non-stationary and cointegrated n-dimensional I(1) process. Letting {∆Yt}t∈Z
be a weakly stationary causal linear process with one summable coefficients {Ψj}j∈N and mean
δ ∈ Rn, we showed above that the augmented cointegrating space Ṽ is the intersection of the
null spaces of δ′ ∈ R1×n and Ψ(1)′ ∈ Rn×n:

Ṽ =Nδ′ ∩NΨ(1)′ .

Let the cointegration rank be 0< q < n and choose a cointegrating basis {β1, · · · ,βq} ⊂ Ṽ .
We proceed by induction. Since β1 6= 0, it has a non-zero element; assume that the elements

Y1t, · · · ,Ynt are ordered so that β11 6= 0. Then, we can define

{β(1)
1 , · · · ,β(1)

q } ⊂ Rn

as

β
(1)
1 = 1

β11
β1 and β

(1)
i = βi−

β1i
β11

β1 for any 2≤ i≤ q.

Then, since each β
(1)
i is a linear combination of β1, · · · ,βq, they are contained in Ṽ . To see that

{β(1)
1 , · · · ,β(1)

q } is linearly independent, let

q∑
i=1

ri ·β(1)
i = 0
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for some r1, · · · , rn ∈ R; then,

q∑
i=1

ri ·β(1)
i = 1

β11

(
r1−

q∑
i=2

ri

)
β1 +

q∑
i=2

ri ·βi = 0,

and since the cointegrating basis consists of linearly independent vectors,

r2 = · · ·= rq = 1
β11

(
r1−

q∑
i=2

ri

)
= 0,

which implies that r1 = 0 as well. By definition, {β(1)
1 , · · · ,β(1)

q } is a collection of q linearly
independent subset of Ṽ ; it is thus a cointegrating basis. In particular, the first column of the
q×n matrix

B(1) =


β

(1)′
1
...

β
(1)′
q


is the first standard basis vector in Rq.

Now suppose, for some 1≤ k < q, that we have constructed a cointegrating basis {β(k)
1 , · · · ,β(k)

q }⊂
Ṽ such that the first k columns of the q×n matrix

B(k) =


β

(k)′
1
...

β
(k)′
q


are the first k standard basis vectors in Rq. Since β(k)

k+1 is a non-zero vector, it contains a non-zero
value; since the first k elements of β(k)

k+1 are equal to 0, the non-zero element must be found among
the last n−k elements of this vector. Without loss of generality, assume that Yk+1,t, · · · ,Ynt have
been arranged so that β(k)

k+1,k+1 6= 0. We now proceed identically as above; define

{β(k+1)
1 , · · · ,β(k+1)

q } ⊂ Rn

as

β
(k+1)
k+1 = 1

β
(k)
k+1,k+1

β
(k)
k+1 and β

(k+1)
i = β

(k)
i −

β
(k)
k+1,i

β
(k)
k+1,k+1

β
(k)
k+1 for any i 6= k+ 1.

Since the first k elements of β(k)
k+1 are equal to 0, the first k elements of β(k+1)

1 , · · · ,β(k+1)
q are

identical to those of β(k)
1 , · · · ,β(k)

q . The same line of reasoning as above leads us to conclude
that {β(k+1)

1 , · · · ,β(k+1)
q } is a cointegrating basis, this time with the property that the first k+1
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columns of

B(k+1) =


β

(k+1)′
1

...
β

(k+1)′
q


are equal to the first k+ 1 standard basis vectors of Rq.

Proceeding in this manner, by induction there exists a cointegrating basis {β(q)
1 , · · · ,β(q)

q }⊂ Ṽ
such that

B(q) =


β

(q)′
1
...

β
(q)′
q

=
(
Iq −Γ

)

for some Γ ∈ Rq×n−q.

Deriving the Triangular Representation

Define

Y
(1)
t =


Y1t
...
Yqt

 and Y
(2)
t =


Yq+1,t

...
Ynt


for any t ∈ Z. Letting {ηt}t∈Z be the cycle component of Yt, we can see that

B(q)Yt = Y1t−ΓY2t =B(q)ηt+B(q)(Y0−η0) := µ+ut

where ut is a q-dimensional weakly stationary and causal linear process with mean zero, and we
assume µ=B(q)(Y0−η0) is a degenerate q-dimensional random vector.

Letting vt collect the last n−q entries in Ψ(L)εt for any t ∈ Z and δ(2) the last n−q entries
in δ, we finally have the triangular representation

Y
(1)
t = µ+ ΓY (2)

t +ut and ∆Y (2)
t = δ(2) +vt

for any t∈N. In other words, we have partitioned the data into two components: the first compo-
nent is Y (2)

t , which collects the n−q common trends that drive the n series comprising Yt. Each
variable in Y

(2)
t represents a distinct common trend because all the cointegration relationships

are collected in the equation relating Y (1)
t to Y (2)

t . Speaking of that equation, it shows that Y (1)
t

contains the common trends Y (2)
t and a stationary noise comopnent µ+ut.
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A More General Triangular Representation

Suppose ηt = α(L)εt for any t ∈ Z, where {αj}j∈N is an absolutely summable sequence of coeffi-
cients. Defining the absolutely summable sequences {Θj}j∈N and {Λj}j∈N as

Θj =
(
Iq −Γ

)
αj and Λj = JΨj

for any j ∈ N, where J =
(
O In−q

)
∈ R(n−q)×n, we can see that

ut =
(
Iq −Γ

)
ηt = Θ(L)εt

vt = JΨ(L)εt = Λ(L)εt

for any t ∈ Z, and as such that

et =

ut
vt

=
∞∑
j=0

Θj

Λj

εt−j .
It follows that {et}t∈Z is a weakly stationary causal mean zero linear process with absolutely
summable coefficients.

Therefore, we can see that any cointegrated non-stationary system {Yt}t∈Z can be represented
in terms of two equations

Y
(1)
t = µ+ ΓY (2)

t +e
(1)
t and ∆Y (2)

t = δ(2) +e
(2)
t ,

where et = (e(1)′
t ,e

(2)′
t )′ is a weakly stationary causal mean zero linear process with absolutely

summable coefficients and we assume that
(
Iq −Γ

)
(Y0−η0) is degenerate.

5.2.2 SOLS Estimation

The exposition here is based on Phillips and Hansen (1990). Suppose {Yt}t∈Z is an I(1) process
that is non-stationarity and cointegrated, with a single cointegrating relationship. As stated in
the previous section, this indicates that Yt can be partitioned as

Yt =

 yt
Xt


and that there exists a weakly stationary causal linear process {et = (ut,v′t)′}t∈Z with absolutely
summable coefficients such that

yt = µ+β′Xt+ut and ∆Xt = δ+vt
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for some β,δ ∈ Rn−1 and µ ∈ R. The intuitive approach is to estimate β via least squares, by
regressing yt on Xt. However, the fact that Yt is I(1) implies that this least squares estimate has
a non-standard asymptotic distribution; this is demonstrated below. We consider a case with no
deterministic time trend for simplicity. An extension to models with deterministic time trends
can be found in Hansen (1992).

Theorem (Asymptotic Distribution of the SOLS Estimator)
Let {Yt = (yt,X ′t)′}t∈Z be an n-dimensional I(1) process that is non-stationary and cointegrated,
with cointegrating rank 1. Let the triangular representation of the system be

yt = µ+β′Xt+ut

∆Xt = vt,

for some µ∈R and δ ∈Rn−1, where {et = (ut,v′t)′}t∈Z is a weakly stationary causal linear process
with absolutely summable coefficients {Φj}j∈N and i.i.d. innovation process {εt}t∈Z with positive
definite variance Σ ∈ Rn×n and finite fourth moments. Let Γ : Z→ Rn×n be the autocovariance
function of {et}t∈Z, and assume in addition that the coefficients are one-summable and that
Φ(1) has full rank n, so that the long run variance Σu = Φ(1)ΣΦ(1)′ is positive definite. Lastly,
define

λ=

λ11 λ12

λ21 λ22

=
∞∑
j=0

Γ(j)′ =
∞∑
j=0

E [u0uj ] E
[
u0v
′
j

]
E [v0uj ] E

[
v0v
′
j

] .
Denoting by (µ̂T , β̂′T ) the OLS estimator of (µ,β′)′ obtained using the sample up to time T ,

we can see that√T (µ̂T −µ)
T ·
(
β̂T −β

) d→

 1
∫ 1

0 B
n
2 (r)′dr∫ 1

0 B
n
2 (r)dr

∫ 1
0 B

n
2 (r)Bn

2 (r)′dr

−1 Bn
1 (1)∫ 1

0 B
n
2 (r)dBn

1 (r) +λ21

 ,
where {Bn(r) = (Bn

1 (r),Bn
2 (r)′)′}r∈[0,1] is an n-dimensional Brownian motion with variance Σu.

Proof) The OLS estimator of (µ,β′)′ is given by

µ̂T
β̂T

=

 T
∑T
t=1X

′
t∑T

t=1Xt
∑T
t=1XtX

′
t

−1 ∑T
t=1 yt∑T

t=1Xtyt


=

µ
β

+

 T
∑T
t=1X

′
t∑T

t=1Xt
∑T
t=1XtX

′
t

−1 ∑T
t=1ut∑T

t=1Xtut

 .
We can scale the estimators above as√T (µ̂T −µ)

T ·
(
β̂T −β

)=

√T O

O T · In−1

µ̂T −µ
β̂T −β


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=

 1 1
T 3/2

∑T
t=1X

′
t

1
T 3/2

∑T
t=1Xt

1
T 2
∑T
t=1XtX

′
t

−1 1√
T

∑T
t=1ut

1
T

∑T
t=1Xtut

 .
We investigate below the asymptotic distribution of each of these terms.

Define the process {Zt = (Z1t,Z
′
2t)′}t∈N as Z0 = 0 and

Zt =
t∑

s=1
es+Z0 =

∑t
s=1us∑t
s=1 vs


for any t ∈ N. By the asymptotic results derived above we know that

1√
T

T∑
t=1

et
d→Bn(1)

1
T

T∑
t=1

ete
′
t
p→ Γ(0)

1
T

T∑
t=1

Zt−1e
′
t
d→
∫ 1

0
Bn(r)dBn(r)′+ Σu−

∞∑
j=0

Γ(j)

1
T 3/2

T∑
t=1

Zt−1
d→
∫ 1

0
Bn(r)dr

1
T 2

T∑
t=1

Zt−1Z
′
t−1

d→
∫ 1

0
Bn(r)Bn(r)′dr.

Since Σu is nonsingular by assumption,
∫ 1

0 B
n(r)Bn(r)′dr is positive definite-valued.

Since Zt = Zt−1 +et for any t ∈ N, we have

1
T 3/2

T∑
t=1

Zt = 1
T 3/2

T∑
t=1

Zt−1 + 1
T 3/2

T∑
t=1

et
d→
∫ 1

0
Bn(r)dr

1
T

T∑
t=1

Zte
′
t = 1

T

T∑
t=1

Zt−1e
′
t+

1
T

T∑
t=1

ete
′
t
d→
∫ 1

0
Bn(r)dBn(r)′+ Σu−

∞∑
j=1

Γ(j)
︸ ︷︷ ︸

λ

and

1
T 2

T∑
t=1

ZtZ
′
t = 1

T 2

T∑
t=1

Zt−1Z
′
t−1 + 1

T 2

T∑
t=1

Zt−1e
′
t+

1
T 2

T∑
t=1

etZ
′
t−1 + 1

T 2

T∑
t=1

ete
′
t

d→
∫ 1

0
Bn(r)Bn(r)′dr.

Note that Z2t = Xt−X0, so that the asymptotic results for Z2t apply for Xt as well.
Specifically,

1
T 3/2

T∑
t=1

Xt
d→
∫ 1

0
Bn

2 (r)dr
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1
T

T∑
t=1

Xt ·ut
d→
∫ 1

0
Bn

2 (r)dBn
1 (r) +λ21

1
T 2

T∑
t=1

XtX
′
t
d→
∫ 1

0
Bn

2 (r)Bn
2 (r)′dr.

It now follows easily that
√T (µ̂T −µ)
T ·
(
β̂T −β

)=

 1 1
T 3/2

∑T
t=1X

′
t

1
T 3/2

∑T
t=1Xt

1
T 2
∑T
t=1XtX

′
t

−1 1√
T

∑T
t=1ut

1
T

∑T
t=1Xtut



d→

 1
∫ 1

0 B
n
2 (r)′dr∫ 1

0 B
n
2 (r)dr

∫ 1
0 B

n
2 (r)Bn

2 (r)′dr

−1 Bn
1 (1)∫ 1

0 B
n
2 (r)dBn

1 (r) +λ21

 .

Q.E.D.

Remarkably, the OLS estimator β̂T of the cointegrating vector is superconsistent for the true
value β. However, the formulation above is intractable for a number of reasons For one, due to
the dependence between the Brownian motions Bn

2 (r) and Bn
1 (r), the long run variance cannot

be easily disentangled from the asymptotic distribution. Moreover, the asymptotic distribution
contains a nuisance parameter λ21, which represents the sum of the covariances between v0 and
uj for any j ∈ N.

Thus, we require a modification of the estimator that has a pivotal asymptotic distribution.
There are many ways to do this; among the most famous is the Dynamic OLS (DOLS) estimator
introduced in Saikkonen (1991), which furnishes a parametric correction for the nuisance pa-
rameter by adding lags and leads of ∆Xt into the regression. The technical details, however, are
complicated, so we instead focus on the FM-OLS estimator introduced in Phillips and Hansen
(1990), which provides a non-parametric correction. The relationship between the DOLS and
FM-OLS estimators is akin to that of the ADF and PP tests for unit roots.

5.2.3 FM-OLS Estimation

We retain the notations introduced in the previous theorem. The FM-OLS estimator is based
on the modification of the error ut to form the new error process

u+
t = ut−Σu,12Σ−1

u,22vt =
(
1 −Σu,12Σ−1

u,22

)
et

258



for any t ∈ Z, where {u+
t }t∈Z is a mean zero absolutely summable linear process. Given a con-

sistent estimator Σ̂u for the long run variance Σu and a consistent estimator λ̂ for ∑∞j=0 Γ(j)′,
define

y+
t = yt− Σ̂u,12Σ̂−1

u,22vt

and

λ̂+ = λ̂21− Σ̂u,12Σ̂−1
u,22λ̂22,

where vt = ∆Xt. Then, the FM-OLS estimator is the OLS estimate from regressing y+
t on Xt

and an intercept term with an additional correction term λ̂+; formally, we define the FM-OLS
estimator (µ+

T ,β
+′
T )′ of (µ,β′)′ as

µ+
T

β+
T

=

 T∑
t=1

 1
Xt

(1 X ′t

)−1 T∑
t=1

 y+
t

Xty
+
t

−
 0
T · λ̂+



=

 T
∑T
t=1X

′
t∑T

t=1Xt
∑T
t=1XtX

′
t

−1 ∑T
t=1 y

+
t∑T

t=1Xty
+
t −T · λ̂+

 .
We show below that the FM-OLS estimator converges to a pivotal distribution.

Theorem (Asymptotic Distribution of the FM-OLS Estimator)
Let {Yt = (yt,X ′t)′}t∈Z be an n-dimensional I(1) process that is non-stationary and cointegrated,
with cointegrating rank 1. Let the triangular representation of the system be

yt = µ+β′Xt+ut

∆Xt = vt,

where we retain the assumptions and notations of the previous theorem. Then,

√T (µ+
T −µ

)
T ·
(
β+
T −β

)
d→ σ1 ·

 1
(∫ 1

0 W
n
2 (r)′dr

)
L′22

L22
(∫ 1

0 W
n
2 (r)dr

)
L22

(∫ 1
0 W

n
2 (r)Wn

2 (r)′dr
)
L′22


−1 Wn

1 (1)

L22
(∫ 1

0 W
n
2 (r)dWn

1 (r)
)
 ,

where {Wn(r) = (Wn
1 (r),Wn

2 (r)′)′}r∈[0,1] is an n-dimensional standard Wiener process on [0,1],

L22 = Σ
1
2
u,22 and σ2

1 = Σu,1·2 = Σu,11−Σu,12Σ−1
u,22Σu,21.
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Proof) By definition,

y+
t = yt− Σ̂u,12Σ̂−1

u,22vt

= µ+β′Xt+ut− Σ̂u,12Σ̂−1
u,22vt

= µ+β′Xt+u+
t +

(
Σu,12Σ−1

u,22− Σ̂u,12Σ̂−1
u,22

)
vt

for any t ∈ N, so that
µ+

T

β+
T

=

 T
∑T
t=1X

′
t∑T

t=1Xt
∑T
t=1XtX

′
t

−1 ∑T
t=1 y

+
t∑T

t=1Xty
+
t −T · λ̂+



=

µ
β

+

 T
∑T
t=1X

′
t∑T

t=1Xt
∑T
t=1XtX

′
t

−1 ∑T
t=1u

+
t∑T

t=1Xtu
+
t


−

 1 ∑T
t=1X

′
t∑T

t=1Xt
∑T
t=1XtX

′
t

−1 0
T · λ̂+


+

 T
∑T
t=1X

′
t∑T

t=1Xt
∑T
t=1XtX

′
t

−1 ∑T
t=1 v

′
t∑T

t=1Xtv
′
t

(Σu,12Σ−1
u,22− Σ̂u,12Σ̂−1

u,22

)′
.

This reveals that√T (µ+
T −µ

)
T
(
β+
T −β

) =

 1 1
T 3/2

∑T
t=1X

′
t

1
T 3/2

∑T
t=1Xt

1
T 2
∑T
t=1XtX

′
t

−1 1√
T

∑T
t=1u

+
t

1
T

∑T
t=1Xt ·u+

t



−

 1 1
T 3/2

∑T
t=1X

′
t

1
T 3/2

∑T
t=1Xt

1
T 2
∑T
t=1XtX

′
t

−1 0
λ̂+



+

 1 1
T 3/2

∑T
t=1X

′
t

1
T 3/2

∑T
t=1Xt

1
T 2
∑T
t=1XtX

′
t

−1 1√
T

∑T
t=1 v

′
t

1
T

∑T
t=1Xtv

′
t

(Σu,12Σ−1
u,22− Σ̂u,12Σ̂−1

u,22

)′
.

Letting {Bn(r) = (Bn
1 (r),Bn

2 (r)′)′}r∈[0,1] be an n-dimensional Brownian motion with
variance Σu, by the asymptotic results in the previous thereom we have

1√
T

T∑
t=1

et
d→Bn(1)

1
T 3/2

T∑
t=1

Zt
d→
∫ 1

0
Bn(r)dr

1
T

T∑
t=1

Zte
′
t
d→
∫ 1

0
Bn(r)dBn(r)′+ Σu−

∞∑
j=1

Γ(j)
︸ ︷︷ ︸

λ

260



1
T 2

T∑
t=1

ZtZ
′
t
d→
∫ 1

0
Bn(r)Bn(r)′dr

for the stochastic process {Zt = (Z1t,Z
′
2t)′}t∈N with Z0 = 0 and defined as

Zt =
t∑

s=1
es+Z0 =

∑t
s=1us∑t
s=1 vs


for any t ∈ N. We noted earlier that, since Z2t =Xt−X0,

1
T 3/2

T∑
t=1

Xt
d→
∫ 1

0
Bn

2 (r)dr

1
T

T∑
t=1

Xte
′
t
d→
∫ 1

0
Bn

2 (r)dBn(r)′+
(
λ21 λ22

)
1
T 2

T∑
t=1

XtX
′
t
d→
∫ 1

0
Bn

2 (r)Bn
2 (r)′dr.

In particular,

1√
T

T∑
t=1

u+
t =

(
1 −Σu,12Σ−1

u,22

) 1√
T

T∑
t=1

et

d→Bn(1)′
 1
−Σ−1

u,22Σu,21


1
T

T∑
t=1

Xt ·u+
t =

(
1
T

T∑
t=1

Xt ·e′t

)
·

 1
−Σ−1

u,22Σu,21


d→
(∫ 1

0
Bn

2 (r)dBn(r)′
) 1
−Σ−1

u,22Σu,21


+
(
λ21−λ′22Σ−1

u,22Σu,21
)
.

These asymptotic results tell us that

 1 1
T 3/2

∑T
t=1X

′
t

1
T 3/2

∑T
t=1Xt

1
T 2
∑T
t=1XtX
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t

−1 1√
T

∑T
t=1u

+
t

1
T

∑T
t=1Xt ·u+

t



d→

 1
∫ 1

0 B
n
2 (r)′dr∫ 1

0 B
n
2 (r)dr

∫ 1
0 B

n
2 (r)Bn

2 (r)′dr

−1 Bn(1)′∫ 1
0 B

n
2 (r)dBn(r)′

 1
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u,22Σu,21
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+

 1
∫ 1

0 B
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2 (r)dr

∫ 1
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n
2 (r)Bn
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−1 0
λ21−λ′22Σ−1

u,22Σu,21


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and

 1 1
T 3/2

∑T
t=1X

′
t

1
T 3/2

∑T
t=1Xt

1
T 2
∑T
t=1XtX

′
t

−1 0
λ̂+



d→

 1
∫ 1

0 B
n
2 (r)′dr∫ 1

0 B
n
2 (r)dr

∫ 1
0 B

n
2 (r)Bn

2 (r)′dr

−1 0
λ21−λ′22Σ−1

u,22Σu,21

 .
As for 1 1

T 3/2
∑T
t=1X

′
t

1
T 3/2

∑T
t=1Xt

1
T 2
∑T
t=1XtX

′
t

−1 1√
T

∑T
t=1 v

′
t

1
T

∑T
t=1Xtv

′
t

(Σu,12Σ−1
u,22− Σ̂u,12Σ̂−1

u,22

)′
,

since the first two terms are Op(1) and the last one is op(1), the entire term converges
to 0 in probability. Thus, we have
√T (µ+

T −µ
)

T
(
β+
T −β

)  d→

 1
∫ 1

0 B
n
2 (r)′dr∫ 1

0 B
n
2 (r)dr

∫ 1
0 B

n
2 (r)Bn

2 (r)′dr

−1 Bn(1)′∫ 1
0 B

n
2 (r)dBn(r)′

 1
−Σ−1

u,22Σu,21

 .

Define the univariate stochastic process {J(r)}r∈[0,1] as

J(r) =
(
1 −Σu,12Σ−1

u,22

)
Bn(r) =Bn

1 (r)−Σu,12Σ−1
u,22B

n
2 (r)

for any r ∈ [0,1]. We can see that {J(r)}r∈[0,1] is a Brownian motion with variance equal
to

(
1 −Σu,12Σ−1

u,22

)
Σu

 1
−Σ−1

u,22Σu,21

= Σu,1·2 := Σu,11−Σu,12Σ−1
u,22Σu,21.

In addition,

E [Bn
2 (r)J(r)] = E

[
Bn

2 (r)Bn(r)′
] 1
−Σ−1

u,22Σu,21


=
(
Σu,21 Σu,22

) 1
−Σ−1

u,22Σu,21

= 0,

so that {J(r)}r∈[0,1] and {Bn
2 (r)}r∈[0,1] are independent Brownian motions with vari-

ances equal to Σu,1·2 and Σu,22, respectively. Therefore, we can write Σ
1
2
u,1·2 ·Wn

1 and

Σ
1
2
u,22 ·Wn

2 in place of J and Bn
2 , which yields

√T (µ+
T −µ

)
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(
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T −β

)  d→

 1
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n
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0 B
n
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n
2 (r)Bn
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−1 J(1)∫ 1
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n
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
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∼σ1 ·

 1
(∫ 1

0 W
n
2 (r)′dr

)
L′22

L22
(∫ 1

0 W
n
2 (r)dr

)
L22

(∫ 1
0 W

n
2 (r)Wn

2 (r)′dr
)
L′22


−1 Wn

1 (1)

L22
(∫ 1

0 W
n
2 (r)dWn

1 (r)
)
 ,

where

L22 = Σ
1
2
u,22 and σ2

1 = Σu,1·2

Q.E.D.

It is clear that the resulting asymptotic distribution is free from any nuisance parameters
and, since we have estimates of σ2

1 and Σu,22, pivotal. Using this distribution, we can obtain
the limiting distribution of the usual Wald-type test that imposes linear restrictions on the
cointegrating vector under the null.

First note that

T (β+
T −β) d→ σ1

[
L22

(∫ 1

0
Wn∗

2 (r)Wn∗
2 (r)dr

)
L′22

]−1(
L22 ·

∫ 1

0
Wn∗

2 (r)dWn
1 (r)

)
,

where {Wn∗
2 (r)}r∈[0,1] is the Brownian bridge defined as

Wn∗
2 (r) =Wn

2 (r)−
∫ 1

0
Wn

2 (s)ds

for any r ∈ [0,1]. We denote

H = L22

(∫ 1

0
Wn∗

2 (r)Wn∗
2 (r)dr

)
L′22

J = L22 ·
∫ 1

0
Wn∗

2 (r)dWn
1 (r).

From the proof above, it is clear that

1
T 2

T∑
t=1

Xd
tX

d′
t

d→H,

where the superscript d indicates that the variable has been demeaned.

Now consider testing the null hypothesis H0 : Rβ = q against the alternative H0 : Rβ 6= q,
where R ∈ Rm×(n−1) is a matrix of full rank m. Then, under the null,

T (Rβ+
T − q) =R ·T (β+

T −β),

so we can consider the Wald statistic

WT = 1
σ̂2

1
(Rβ+

T − q)
′

R( T∑
t=1

Xd
tX

d′
t

)−1

R′

−1

(Rβ+
T − q),
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where σ̂2
1 is a consistent estimator of σ2

1. Then,

WT = 1
σ̂2

1

[
T (β+

T −β)
]′
R′
[
R

(
1
T 2

T∑
t=1

Xd
tX

d′
t

)
R′
]−1

R
[
T (β+

T −β)
]

d→ J ′R′
[
RHR′

]−1
RJ.

Given Wn
2 , due to the independence of Wn

2 and Wn
1 we can see that the distribution of J is

normal with mean 0 and variance H:

J |Wn
2 ∼N (0,H) .

Therefore, given Wn
2 , J ′R′ [RHR′]−1RJ follows a chi-squared distribution with m degrees of

freedom. Since this distribution does not depend on Wn
2 , we can conclude that the unconditional

distribution of J ′R′ [RHR′]−1RJ is χ2
m, and as such that

WT
d→ χ2

m.

This demonstrates that we the Wald test statistic constructed using the FM-OLS estimator has
the same asymptotic distribution as the usual Wald statistic.
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5.3 Vector Error Correction Models

So far, we have only considered the estimation of cointegrating relationships under the triangular
representation, and even then only under the assumption that there is at most one cointegrating
relationship. Here, we study a model that imposes a semi-parametric structure on the time se-
ries of interest in exchange for allowing for the consistent estimation of the cointegrating space
itself under a fixed cointegrating rank (which is allowed to be greater than 1). The structure is
identical to that of the VAR case, except that now we use an equivalent error correction rep-
resentation, to be defined below, as a means of accounting for the non-stationarity of the process.

Let {Yt}t∈Z be an n-dimensional time series that follows the (reduced form) VAR(p) process

Yt = δ+ Φ1Yt−1 + · · ·+ ΦpYt−p+εt,

where {εt}t∈Z is a white noise process with positive definite covariance Σ ∈ Rn×n, δ ∈ Rn, and
Φ1, · · · ,Φp ∈ Rn×n. Denote the AR polynomial corresponding to this process by

A(L) = In−Φ1 ·L−·· ·−Φp ·Lp.

We saw in the section on vector autoregressions that {Yt}t∈Z is stationary with a causal linear
process representation if the eigenvalues of the polynomial

|A(z)|= det(In−Φ1 ·z−·· ·−Φp ·zp)

lie outside the unit circle. We are now interested in what happens if |A(z)| possess a unit root,
that is, when |A(1)| = 0. It can be shown that there is a very close connection between the
number of unit roots of |A(z)| and the non-stationarity of {Yt}t∈Z.

In what follows, we deal with the case where the roots of |A(z)| are either on or outside
the unit circle. When |A(z)| has roots within the unit circle, the companion matrix of {Yt}t∈Z
has eigenvalues greater than 1 in magnitude and thus it becomes an explosive process; we are
precluding this case. In this context, we first show that a necessary condition for {Yt}t∈Z to be
I(1) is for |A(z)| to have at most n unit roots and at least one unit root.

Lemma Let {Yt}t∈Z be an n-dimensional time series that follows the VAR(p) process

Yt = δ+ Φ1Yt−1 + · · ·+ ΦpYt−p+εt,

for an n-dimensional i.i.d. process {εt}t∈Z is a white noise process with positive definite covari-
ance Σ ∈ Rn×n. Letting A(z) be the AR polynomial corresponding to the above VAR process,
suppose |A(z)| has roots on or outside the unit circle.

In this case, if {Yt}t∈Z is I(1) with innovation process {εt}t∈Z, then |A(z)| has at least one
unit root and at most n unit roots.

265



Proof) Suppose initially that {Yt}t∈Z is I(1) with innovation process {εt}t∈Z. Then, {∆Yt}t∈Z
is I(0) with innovation process {εt}t∈Z, that is, there exists a one-summable sequence
{Ψj}j∈N and µ ∈ Rn such that

∆Yt = (1−L)Yt = µ+
∞∑
j=0

Ψj ·εt−j = µ+ Ψ(L)εt

for any t ∈ Z, where Ψ(1) =O. Since A(L)Yt = δ+εt and (1−L)δ = 0, we have

(1−L)εt = (1−L)A(L)Yt =A(L)∆Yt =A(1)µ+A(L)Ψ(L)εt,

which implies that A(1)µ= 0 and

(1−z) · In =A(z)Ψ(z)

for any z ∈ C. Therefore,

(1−z)n = |A(z)Ψ(z)|= |A(z)| · |Ψ(z)|.

for any z ∈ C, and |A(z)| can have at most n unit roots.

On the other hand, if |A(z)| has no unit roots, then

O =A(1)Ψ(1)

and |A(1)| 6= 0. By implication, A(1) is nonsingular and Ψ(1) = O, which contradicts
the no MA unit root condition of I(0) processes. Thus, |A(z)| must have at least one
unit root.

Q.E.D.

Since we are interested in I(1) processes, the above lemma shows that we need only consider
the case where |A(z)| has at most n unit roots. The case where |A(z)| has no unit roots (it
has roots outside the unit circle) was already considered in the section on stationary vector
autoregressions.
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5.3.1 VAR Processes with Finite Starting Times

In this section we briefly touch on VAR processes that start from a finite time, say, t0 ∈ Z. We
show that, in this case, there exist appropriate initial values such that the eigenvalue condition
is sufficient to ensure the stationarity of the VAR process; the L2-boundedness condition, which
usually cannot be assumed a priori when it comes to non-stationary processes, can be omitted.

Suppose {Yt}t≥t0 is an n-dimensional time series that follows a mean zero VAR(p) process

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p+εt

for any t≥ t0 +p, where {εt}t∈Z is a white noise process with positive definite covariance matrix
Σ ∈Rn×n. t0 ∈ Z serves as the finite starting time for this VAR process. The companion matrix
is, as usual, given by

F =


Φ1 · · · Φp−1 Φp

In · · · O O
... . . . ...

...
O · · · In O

 ∈ Rnp×np,

and the companion form of the VAR process is

Zt =


Yt
...

Yt−p+1

= FZt−1 +


εt

0
...
0


︸ ︷︷ ︸
ut

for any t≥ t0 +p. We can now show the following result:

Theorem (Stationarity of VAR Processes Started at Finite Time)
Let {Yt}t≥t0 be the VAR(p) process defined above. If the eigenvalues of F are all contained
within the unit circle and the initial values Yt0+p−1, · · · ,Yt0 are determined as

Yt0+p−1
...
Yt0

= Zt0+p−1 =
∞∑
j=0

F j ·ut0+p−1−j .

Then, {Yt}t≥t0 is a stationary VAR(p) process with causal linear process representation

Yt =
∞∑
j=0

Ψj ·εt−j

for any t≥ t0, where {Ψj}j∈N is a one-summable sequence of n×n matrices.
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Proof) We showed when proving the sufficiency of the eigenvalue condition for stationarity
that, if the eigenvalues of F are all contained within the unit circle, then

∞∑
j=0

j ·
∥∥∥F j∥∥∥<+∞.

and In−F is nonsingular. It follows that the vector

∞∑
j=0

F j ·ut−j

is well defined for any t ∈ Z as the almost sure and L2 limit of the sequence

{ m∑
j=0

F j ·ut−j
}
m∈N+

.

As such, the statement

Zt0+p−1 =
∞∑
j=0

F j ·ut0+p−1−j

is well-defined. For any t≥ t0 +p, it now follows that

Zt = FZt−1 +ut

=
t−t0−p∑
j=0

F jut−j +F t−t0+1−pZt0+p−1

=
t−t0−p∑
j=0

F jut−j +
∞∑
j=1

F (t−t0−p)+j ·ut−(t−t0−p)−j

=
∞∑
j=0

F j ·ut−j .

Thus, {Zt}t≥t0+p−1 is a weakly stationary causal linear process with one-summable
coefficients.

Letting Ψj be the n×n matrix in the (1,1) position of F j for any j ∈ N, {Ψj}j∈N is a
one-summable sequence of coefficients such that

Yt =
∞∑
j=0

Ψj ·εt−j .

for any t≥ t0 +p−1. This shows us that {Yt}t≥t0+p−1 has a causal linear process rep-
resentation with one-summable coefficients.

It remains to show that the initial values chosen above have the same linear process
representations. For any j ∈N, by definition Ψj is the n×n matrix in the (1,1) position
of F j .
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Now suppose that, for some 1 ≤ k < p, that the n×n matrix in the (k,1) position of
F j+k−1 equals Ψj . Then, since

F j+k =


Φ1 · · · Φp−1 Φp

In · · · O O
... . . . ...

...
O · · · In O

 ·F
j+k−1,

and the n×n matrix in the (k,1) position of F j+k−1 is Ψj by the inductive hypothesis,
the n×n matrix in the ((k+ 1),1) position of F j+k is Ψj as well.

By induction, for any j ∈ N the first n columns of F j are given as
Ψj

Ψj−1
...

Ψj−p+1

 ,

where we define Ψi =O for any i < 0. Therefore, our initial values can be written as
Yt0+p−1

...
Yt0

=
∞∑
j=0

F j ·ut0+p−1−j =
∞∑
j=0

 Ψjεt0+p−1−j
...

Ψj−p+1 ·εt0+p−1−j



=



∑∞
j=0 Ψj ·εt0+p−1−j∑∞
j=1 Ψj−1 ·εt0+p−1−j

...∑∞
j=p−1 Ψj−(p−1) ·εt0+p−1−j



=



∑∞
j=0 Ψj ·εt0+p−1−j∑∞
j=0 Ψj ·εt0+p−2−j

...∑∞
j=0 Ψj ·εt0−j

 .

This shows that

Yt =
∞∑
j=0

Ψj ·εt−j

for any t ≥ t0, so that {Yt}t≥t0 follows a stationary VAR(p) process that has a causal
linear process representation with one-summable coefficients.

Q.E.D.
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The preceding theorem shows that the L2-boundedness condition need not be assumed a
priori when proving the stationarity of a VAR(p) process if the VAR process is started at some
finite time with appropriate initial values. In this case, the process has the same causal linear
process representation as in the case where it is assumed to be L2-bounded and does not start
at some finite time.

While we defined I(0) processes as doubly infinite processes, that is, processes with time index
Z, we now allow processes started at some finite time to also be I(0) processes. Specifically, we
say that an n-dimensional time series {Yt}t≥t0 started at some finite time t0 ∈ Z is I(0) if

Yt = µ+
∞∑
j=0

Ψj ·εt−j

for any t ≥ t0, where {εt}t∈Z is an m-dimensional i.i.d. process, µ ∈ Rn, and {Ψj}j∈N is a one-
summable sequence of n×m matrices. In light of this extension, the preceding theorem tells us
that the initial values of any intercept-less VAR(p) process started at some finite time, whose
companion matrix has eigenvalues within the unit circle and whose innovation process is i.i.d.,
can be chosen so that the process becomes I(0).

A final comment is that the eigenvalue condition can, as usual, be replaced with the condition
that the roots of

|A(z)|= det(In−Φ1 ·z−·· ·−Φp ·zp)

lie outside the unit circle.
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5.3.2 Error Correction Form and the Granger Representation Theorem

For now, suppose that there is no intercept in the VAR process above, that is, put δ = 0. One
advantage of doing so is that we can apply the result in the previous section and work with
VAR(p) processes started at some finite time.

First, we require a different, more convenient representation of the VAR process, called the
error correction representation. It is derived as follows:

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p+εt

= (Φ1 + · · ·+ Φp)Yt−1 + Φ2(Yt−2−Yt−1) + · · ·+ Φp(Yt−p−Yt−1) +εt

= (In−A(1))Yt−1 +
p∑
j=2

Φj

− j∑
i=2

∆Yt−i+1

+εt

= (In−A(1))Yt−1− (Φ2 + · · ·+ Φp)∆Yt−1−·· ·−Φp ·∆Yt−p+1 +εt

= (In−A(1))Yt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 +εt,

where

Γj =−
p∑

i=j+1
Φi

for 1≤ j ≤ p−1. Rearranging terms reveals that

∆Yt−1 =−A(1)Yt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 +εt

= ΠYt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 +εt,

where we define Π =−A(1). This is called the vector error correction model (VECM) represen-
tation of the original VAR process.

The VECM AR polynomial is defined as

Γ(L) = In−Γ1L−·· ·−Γp−1L
p−1

and satisfies

Γ(L)∆Yt = (1−L)Γ(L) ·Yt
= δ−A(1)Yt−1 +εt = δ+εt−A(1)L ·Yt = (A(L)−A(1)L)Yt.

This implies that

(1−z)Γ(z) =A(z)−A(1)z
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for any z ∈ C, and, for any z 6= 1,

Γ(z) = A(z)−A(1)z
1−z .

Γ(·), being a polynomial function, is continuous on C, so

Γ(1) = lim
z→1

Γ(z) = lim
z→1

A(z)−A(1)z
1−z =− lim

z→1

(
A′(z)−A(1)

)
=−A′(1) +A(1),

where A′(·) is the first derivative of A(·).

Suppose |A(1)| = 0, or equivalently, |A(z)| has a unit root. The n×n matrix A(1), and by
extension Π, has rank 0≤ r < n. We now present a convenient decomposition of Π.

Lemma (Decomposition of Reduced Rank Matrices)
Let Π ∈ Rn×n be a matrix of rank 1 ≤ r ≤ n. Then, there exist matrices α,β ∈ Rn×r of rank r

such that

Π = αβ′.

Proof) Let {v1, · · · ,vr} ⊂ Rn be the basis of the range R(Π) of Π, and define

α=
(
v1 · · · vr

)
;

note that α is an n× r matrix of full rank. Letting {e1, · · · ,en} ⊂ Rn be the standard
basis of Rn and Π1, · · · ,Πn the columns of Π, for any 1≤ i≤ n

Πi = Π ·ei ∈R(Π),

so that there exists an r-dimensional vector bi ∈ Rr such that

Πi = α · bi.

Defining

β =


b′1
...
b′n

 ,

β is an n× r matrix such that

Π =
(
Π1 · · · Πn

)
= αβ′.
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Since α has full rank, α′α is nonsingular, implying that

β′ = (α′α)−1α′Π.

The range of β′ is the same as that of α′Π. Note that, if Πv = 0 for some v ∈ Rn, then
β′v = α′Πv = 0; conversely, if β′v = 0 for some v ∈ Rn, then

Πv = αβ′v = 0.

This indicates that the β′ and Π share the same null space and thus the same nullity;
because they are both linear transformations on Rn, by the dimension theorem they
have the same rank r.

Q.E.D.

In the case when r = 0, we let α = β = 0. Thus, the error correction representation can be
written as

∆Yt = αβ′ ·Yt−1 + Θ1∆Yt−1 + · · ·+ Θp−1∆Yt−p+1 +εt.
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Orthogonal Complements of Full Rank Matrices

We reuiqre addition concepts to understand the representation theorem below.
For any A ∈Rn×r with full rank 0< r < n, we let the orthogonal complement A⊥ ∈Rn×(n−r)

be the matrix satisfying A′A⊥ =O.
If r = 0, so that A is the n× 1 zero vector, we define A⊥ as any nonsingular n×n matrix,

and if r = n, we define A⊥ = 0.
In the case 0< r <n, we can construct A⊥, and thus see that it exists, as follows. Since A has

rank r, the columns {A1, · · · ,Ar} ⊂ Rn of A are linearly independent. Letting V be the vector
subspace of Rn spanned by the columns of A, we can think of the orthogonal complement V ⊥ of
V ; since Rn is a finite dimensional vector space, V ⊕V ⊥ = Rn. This indicates that the sum of
the dimensions of V and V ⊥ must equal the dimension of Rn, which is n. In other words, V ⊥ is
an n−r dimensional vector subspace of Rn, and thus has a basis {B1, · · · ,Bn−r} ⊂Rn. Defining

A⊥ =
(
B1 · · · Bn−r

)
,

A⊥ is a matrix of rank n−r because its columns are linearly independent, and we can immedi-
ately see that

A′⊥A=


B′1
...

B′n−r

(A1 · · · Ar
)

=


B′1A1 · · · B′1Ar

... . . . ...
B′n−rA1 · · · B′n−rAr

=O

because the columns of A⊥ are all contained in the space orthogonal to V . Since the basis of
V ⊥ is not unique, neither is A⊥; in most cases, we use a convenient normalization of A⊥ that
puts as many entries equal to 0 or 1.
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Granger’s Representation Theorem

The following is our main result, called Granger’s representation theorem. The proof is adapted
from Johansen (1991).

Theorem (Granger’s Representation Theorem)
Let {Yt}t∈Z be an n-dimensional time series that follows the VAR(p) process

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p+εt

with error correction representation

∆Yt = Π ·Yt−1 + Γ1 ·∆Yt−1 + · · ·+ Γp−1 ·∆Yt−p+1 +εt

for an n-dimensional i.i.d. process {εt}t∈Z with positive definite covariance Σ ∈ Rn×n. Let A(z)
be the AR polynomial corresponding to the above VAR process, and Γ(z) the VECM AR
polynomial.

Assume the following:

i) |A(z)| has roots on or outside the unit circle.

ii) Π has rank 0≤ r < n with decomposition Π = αβ′, where α,β are full rank n×r matrices.

iii) Letting Ψ = Γ(1), the matrix α′⊥Ψβ⊥ is nonsingular.

Then, there exist appropriate initial values Y0, · · · ,Y1−p such that:

i) Defining

C = β⊥
(
α′⊥Ψβ⊥

)−1
α′⊥,

there exists an absolutely summable seqeunce {Cj}j∈N ⊂ Rn×n such that

Yt = C ·
(

t∑
s=1

εs

)
+C(L)εt−C(L)ε0 +Y0

almost surely for any t ∈ N.

ii) {∆Yt}t∈N and {β′Yt}t∈N are zero-mean I(0) processes.

iii) |A(z)| has exactly 0< n− r ≤ n unit roots, so that there are n− r common trends.

iv) The cointegrating rank is r; in other words, there are exactly r cointegrating relationships.

275



Proof) The Case r = 0
If r = 0, then α = β = 0, so that {∆Yt}t∈Z follows a VAR(p-1) process with AR poly-
nomial Γ(L). α⊥,β⊥ are nonsingular, so by assumption, Γ(1) is nonsingular and thus
|Γ(z)| has no roots outside the unit circle. Furthermore, in this case A(1) =O, and

Γ(z) = A(z)−zA(1)
1−z

so that

|Γ(z)|= |A(z)| · (1−z)−n

for any z 6= 1. Premultiplying both sides by (1−z)n yields

(1−z)n|Γ(z)|= |A(z)|,

and since this holds for z = 1 as well, this holds for any z ∈C. Since |Γ(z)| has no unit
roots, |A(z)| has exactly n unit roots, and because |A(z)| has roots outside or on the
unit circle, |Γ(z)| must have all roots outside the unit circle.

Therefore, we can choose the initial values Yp−1, · · · ,Y0 so that {∆Yt}t∈N follows a
stationary VAR(p-1) process with causal linear process representation

∆Yt = Γ(L)−1εt

for any t ∈N. Here, the MA(∞) coefficients are one-summable, so that {∆Yt}t∈N is an
I(0) process. We denote Ψ(L) = Γ(L)−1. That {β′Yt}t∈N is I(0) is trivial because β = 0.

By the Beveridge-Nelson decomposition, there exists a sequence of absolutely summable
coefficients {Cj}j∈N such that

Yt = Ψ(1)
(

t∑
s=1

εs

)
+C(L)εt−C(L)ε0 +Y0

with probability 1 for any t ∈ N. Here,

Ψ(1) = Γ(1)−1 = β⊥
(
α′⊥Γ(1)β⊥

)−1
α′⊥

since α⊥,β⊥ are nonsingular n×n matrices, which proves the representation part of
the theorem. Finally, since the cointegrating space is the null space of Ψ(1), which is a
nonsingular matrix, the cointegrating space consists only of the zero vector. This shows
us that the cointegrating rank is 0.
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The Case 0< r < n

Now suppose that 0< r < n. Recall that the relationship

A(z) = (1−z)Γ(z) +z ·A(1) = (1−z)Γ(z)−z ·αβ′

holds for any z ∈C between the AR and VECM AR polynomials, in light of the equation

A(L)Yt = Γ(L) ·∆Yt−αβ′ ·Yt−1 = εt.

Pre-multiplying both sides by α′ and then α′⊥ yields the equations

−α′αβ′ ·Yt−1 +α′Γ(L) ·∆Yt = α′εt

α′⊥Γ(L) ·∆Yt = α′⊥εt,

since α′⊥α=O.

To facilitate the proof, we define

ā= a(a′a)−1

for any a ∈ Rn×k of full rank, where 1≤ k ≤ n. Note that aā′ = a(a′a)−1a′ is a matrix
that orthogonally projects any vector v ∈ Rn onto the vector subspace of Rn spanned
by the columns of a. Letting a⊥ be the orthogonal complement of a, since Rn is the
direct sum of the vector space spanned by the columns of a⊥ and that spanned by the
columns of a, which in turn are orthogonal complements, we can see that

a⊥ā⊥
′+aā′ = a⊥(a′⊥a⊥)−1a′⊥+a(a′a)−1a′ = In.

Now define

Zt = β̄′Yt and Xt = β̄′⊥∆Yt

for any t ∈ Z. It follows that

∆Yt = (ββ̄′+β⊥β̄
′
⊥)∆Yt = β ·∆Zt+β⊥ ·Xt,

and substituting this into the two equations above yields

(
−α′αβ′L+α′Γ(L)(1−L)

)
βZt+α′Γ(L)β⊥ ·Xt = α′εt

α′⊥Γ(L)(1−L) ·βZt+α′⊥Γ(L)(1−L)β⊥ ·Xt = α′⊥εt,

where we used the fact that

−α′αβ′ ·Yt−1 =−α′αβ′β(β′β)−1β′ ·Yt−1

=−α′αβ′β · β̄′Yt−1 =−α′αβ′βL ·Zt.
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In matrix form, the equations become

Ã(L)

Zt
Xt

=

 α′
α′⊥

εt,
where we define the polynomial

Ã(z) =

−α′αβ′β ·z+α′Γ(z)(1−z)β α′Γ(z)β⊥
α′⊥Γ(z)(1−z)β α′⊥Γ(z)β⊥

 .
We can now proceed in steps to show each of the claims above:

Claim 1: |A(z)| has exactly n− r unit roots

Note that

Ã(1) =

−α′αβ′β α′Γ(1)β⊥
O α′⊥Γ(1)β⊥

 ,
so that

∣∣∣Ã(1)
∣∣∣= ∣∣α′α∣∣∣∣β′β∣∣∣∣α′⊥Γ(1)β⊥

∣∣.
All three matrices on the right hand side are nonsingular, so

∣∣∣Ã(1)
∣∣∣ 6= 0, meaning that

Ã(z) does not have a unit root.

On the other hand, if z 6= 1, then

Ã(z) =

 α′
α′⊥

[−αβ′ ·z+ Γ(z)(1−z)
](
β β⊥(1−z)−1

)

=

 α′
α′⊥

A(z)
(
β β⊥(1−z)−1

)
,

so that

∣∣∣Ã(z)
∣∣∣=

∣∣∣∣∣∣
 α′
α′⊥

∣∣∣∣∣∣ · |A(z)| ·
∣∣∣(β β⊥

)∣∣∣(1−z)−(n−r).

By the nonsingularity of

 α′
α′⊥

 and
(
β β⊥

)
, this quantity equals 0 if and only if

|A(z)| = 0, and since all the roots of |A(z)| are outside or on the unit circle, if z 6= 1
and

∣∣∣Ã(z)
∣∣∣= 0 then z must lie outside the unit circle. We have shown that all the roots

of Ã(z) are outside the unit circle.
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The preceding analysis also shows that

(1−z)n−r
∣∣∣Ã(z)

∣∣∣=
∣∣∣∣∣∣
 α′
α′⊥

∣∣∣∣∣∣ · |A(z)| ·
∣∣∣(β β⊥

)∣∣∣
for any z 6= 1, and since the equation holds trivially for z = 1, we can say that it holds
for any z ∈ C. Since the roots of

∣∣∣Ã(z)
∣∣∣ all lie oustide the unit circle, it follows that

|A(z)| has exactly n− r roots that equal 1.

Claim 2: {∆Yt}t∈N and {β′Yt}t∈N are mean zero I(0)

Defining Q=

 α′
α′⊥

 and the polynomial B(z) as

B(z) =Q−1Ã(z)

for any z ∈ C, we can see that B(L) is a finite order AR lag polynomial:

Ã(z) =

 α′
α′⊥

A(z)
(
β β⊥

)
−

 α′
α′⊥

zΓ(z)
(
β O

)

=

 α′
α′⊥

[(In−Φ1z−·· ·−Φpz
p)
(
β β⊥

)
−
(
z · In−Γ1z

2−·· ·−Γp−1z
p
)(
β O

)]
,

so that

B(z) =Q−1Ã(z) = In−
p∑
j=1

[
Φj

(
β β⊥

)
−Γj−1

(
β O

)]
zj ,

where we define Γ0 = In.

By design,

B(L)

Zt
Xt

= εt.

Since all the roots of B(z) lie outside the unit circle due to the fact that all the roots
of Ã(z) also lie outside the unit circle, the process {(Z ′t,X ′t)′}t∈N is weakly stationary
for appropriate initial values, and has the causal linear process representationZt

Xt

=B(L)−1εt =
∞∑
j=0

Θj ·εt−j︸ ︷︷ ︸
Θ(L)εt
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for any t ∈ N, where {Θj}j∈N is a one-summable sequence of n× n matrices. Since
β′Yt = (β′β)Zt for any t∈Z, the above result tells us that {β′Yt}t∈N is a mean zero I(0)
process under our initial values, with one-summable coefficient process {(β′β)Θ1,j}j∈N
of r×n matrices, where Θ1,j collects the first r rows of Θj for each j ∈ N.

As for the first difference process,

∆Yt =
(
β(1−L) β⊥

)Zt
Xt

=
∞∑
j=0

(
β(1−L) β⊥

)
Θj ·εt−j

=
∞∑
j=0

Ψj ·εt−j

for any t ∈ N. Since {Ψj}j∈N is a one-summable sequence due to the one-summability
of {Θj}j∈N, by definition {∆Yt}t∈N is a mean zero I(0) process.

Claim 3: Deriving the Granger Representation

The Beveridge-Nelson decomposition now tells us that

Yt = Ψ(1) ·
(

t∑
s=1

εs

)
+C(L)εt−C(L)ε0 +Y0

with probability 1 for any t ∈ N, where the absolutely summable sequence {Cj}j∈N is
defined as

Cj =−
∞∑

i=j+1
Ψi

for any j ∈ N and

Ψ(1) =
∞∑
j=0

Ψj =
(
O β⊥

)
·
∞∑
j=0

Θj

=
(
O β⊥

)
B(1)−1

=
(
O β⊥

)
Ã(1)−1

 α′
α′⊥


=
(
O β⊥

)−α′αβ′β α′Γ(1)β⊥
O α′⊥Γ(1)β⊥

−1 α′
α′⊥


=
(
O β⊥

)−(β′β)−1(α′α)−1 (β′β)−1(α′α)−1α′Γ(1)β⊥ (α′⊥Γ(1)β⊥)−1

O (α′⊥Γ(1)β⊥)−1

 α′
α′⊥


= β⊥

(
α′⊥Γ(1)β⊥

)−1
α⊥.
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Therefore,

Yt = C

(
t∑

s=1
εs

)
+C(L)εt−C(L)ε0 +Y0

with probability 1 for any t ∈ N, where

C = β⊥
(
α′⊥Γ(1)β⊥

)−1
α⊥.

Claim 4: Cointegration Properties of {Yt}t∈Z
The above representation tells us that the null space NC′ of the linear operator C ′ is
the (augmented) cointegration space. Since C ′ = α⊥ (β′⊥Γ(1)′α⊥)−1β′⊥ has rank n− r,
by the dimension theorem the nullity of C ′ is r, so that the cointegrating rank is exactly
r. Furthermore, since

C ′β =O

by the definition of the orthogonal complement of β, the columns of β are r linearly
independent vectors in Rn contained in the null space NC′ . Since NC′ has dimension r,
it follows that the columns of β form a basis of NC′ , and as such they form a cointe-
grating basis for Yt.

Q.E.D.
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Granger’s representation theorem tells us that the cointegration properties of an intercept-
less VAR(p) process {Yt}t∈Z is determined by the rank r of A(1) = −Π, where A(z) is the AR
polynomial. We can consider the following three cases:

i) r = 0
In this case, Π =O and the first-difference process {∆Yt}t∈N follows a stationary VAR(p-
1) process. Thus, we can simply apply the results of the section on stationary vector
autoregressions to study the properties of the first-difference process. This is made possi-
ble because there are no cointegrating relationships among the variables, as seen by the
fact that the cointegrating rank is 0.

ii) 0< r< n
In this case, there are exactly r cointegrating relationships and {Yt}t∈N is an I(1) process
with trend-cycle decomposition

Yt = C

(
t∑

s=1
εs

)
+C(L)εt+Y ∗0 ,

where Y ∗0 contains initial values. C is a matrix of rank n−r, which tells us that there are
n− r common trends driving the dynamics of Yt. Since Π 6=O, we cannot just estimate a
stationary VAR with first differences.

iii) r = n
In this case, Π = −A(1) is nonsingular, meaning that |A(z)| only has roots outside the
unit circle. By implication, {Yt}t∈N is an I(0) process under the appropriate initial values.
Analysis proceeds by estimating the levels VAR using the methods studied in the section
on stationary vector autoregressions.
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5.4 Estimation of VECMs

Suppose {Yt}t∈Z is an n-dimensional time series generated by the VAR(p) process

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p+εt

with VECM representation

∆Yt = Π ·Yt−1 + Γ1 ·∆Yt−1 + · · ·+ Γp−1 ·∆Yt−p+1 +εt.

We assume that the rank 0≤ r < n of Π is known, so that it may be decomposed as Π = αβ′ for
n×r matrices α,β of full rank. Note that we exclude the case r= n because in that case {Yt}t∈N
is weakly stationary and thus different asymptotic rules apply. On the other hand, if 0≤ r < n,
then Granger’s representation theorem shows us that {Yt}t∈N is I(1), and the asymptotic results
follow that of chapter 3.

Suppose the sample size is T , so that we have the sample observations Y1, · · · ,YT . Then, we
define

Y−1 =


Y ′p
...

Y ′T−1

 , ∆Y =


∆Y ′p+1

...
∆Y ′T



Xt =


∆Yt−1

...
∆Yt−p+1

 , for any p+ 1≤ t≤ T

X =


X ′p+1

...
X ′T

 , ε=


ε′p+1

...
ε′T



Γ =


Γ′1
...

Γ′p−1

 .

Then, for any p+ 1≤ t≤ T

∆Yt = Π ·Yt−1 + Γ′ ·Xt+εt,

and stacking these observations yields

∆Y = Y−1 ·Π′+X ·Γ +ε.
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Finally, we denote by A(z) and Γ(z) the AR polynomials corresponding to the VAR in levels
and the VECM, respectively.

5.4.1 Assumptions and Preliminary Asymptotic Results

We make the following assumptions:

A1. Cointegration Properties
We assume that {Yt}t∈Z be an n-dimensional time series that follows the VAR(p) process

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p+εt

with error correction representation

∆Yt = Π ·Yt−1 + Γ1 ·∆Yt−1 + · · ·+ Γp−1 ·∆Yt−p+1 +εt

for an n-dimensional i.i.d. process {εt}t∈Z with positive definite covariance Σ ∈ Rn×n. We
assume the following hold:

i) |A(z)| has roots on or outside the unit circle.

ii) Π has rank 0 ≤ r < n with decomposition Π = αβ′, where α,β are full rank n× r
matrices.

iii) The matrix α′⊥Γ(1)β⊥ is nonsingular.

For notational convenience, we put β⊥ = In when r = 0. The form of α⊥ will be specified
later.

Suppose the initial values have been chosen so that the conclusions of the Granger repre-
sentation theorem hold, namely that {∆Yt}t∈N and {β′Yt}t∈N are mean zero I(0) processes
and that

Yt = C

(
t∑

s=1
εs

)
+C(L)εt+Y ∗0 ,

for any t ∈ N, where Y ∗0 collects initial values, {Cj}j∈N is one-summable and

C = β⊥
(
α′⊥Γ(1)β⊥

)−1
α′⊥.

A2. Nonsingular Population and Sample Moments
By Granger’s representation theorem, {∆Yt}t∈N and {β′Yt}t∈N are mean zero I(0) processes
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given appropriate initial values. Letting G : Z→ Rn×n be the autocovariance function of
the first-difference process, we assume that

G(0) · · · G(p−1)
... . . . ...

G(p−1)′ · · · G(0)


is a positive definite np×np matrix. This implies that the submatrices

G(0) · · · G(p−2)
... . . . ...

G(p−2)′ · · · G(0)


and G(0) of the above matrix are also positive definite.

We also assume that ∆Y,Y−1 and X have linearly independent columns almost everywhere.
This ensures that the matrix 

∆Y ′

Y ′−1

X ′

(∆Y Y−1 X
)

is nonsingular for large enough T .

For later use, we let Gβ :Z→Rn×n as the autocovariance function of {β′Yt}t∈N. We assume
that the variance Gβ(0) of β′Yt is positive definite if r > 0; it equals 0 if r = 0 and β = 0.

A3. I.I.D. Innovations
We assume that the innovation process {εt}t∈Z has finite fourth moments. Since {∆Yt}t∈N
is a one-summable causal linear process with innovation process εt, it follows from one-
summability that {∆Yt}t∈N also has finite fourth moments.

The main asymptotic results concerning these quantities are given below:

285



Theorem (Preliminary Asymptotic Results)
Maintain assumptions A1 to A3. Define the long run variance Σu =CΣC ′ and Σ

1
2
u =CΣ 1

2 , and let
{Wn(r)}r∈[0,1] be the standard n-dimensional Brownian motion. Then, the following convergence
results hold jointly:

1
T

∆Y ′

X ′

(∆Y X
)

p→


G(0) · · · G(p−1)

... . . . ...
G(p−1)′ · · · G(0)


1
T
β′Y ′−1ε

p→O

1
T
β′Y ′−1Y−1β

p→Gβ(0)

1
T
β′Y ′−1

(
∆Y X

)
p→
(
β′Λ0 · · · β′Λp−1

)
1
T
Y ′−1(∆Y ) d→ Λ

(∫ 1

0
Wn(r)dWn(r)′

)
Λ′+ Λ0

1
T
Y ′−1X

d→ ι′p−1
⊗[

Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Λ′
]

+
(
Λ1 · · · Λp−1

)
1
T
Y ′−1ε

d→ Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′

1
T 2Y

′
−1Y−1

d→ Λ
(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′

1
T
Y ′−1Y−1β

d→
[
Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′ (Γ(1)C− In)′+ Λ0−

(
Λ1 · · · Λp−1

)
Γ
]
ᾱ

where

Λh = Σu−
∞∑
j=h

G(j)

for any 0≤ h≤ p−1 and

ᾱ=

α(α′α)−1 if r > 0

O if r = 0
.

In addition, we can obtain the following rate of convergence, which need not hold jointly with
the above:

X ′ε=Op(T 1/2).
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The following matrix equalities also hold:

Σ =G(0)−Λ′0 ·βα′−
(
G(1) · · · G(p−1)

)
Γ

Γ =


G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1


G(1)′

...
G(p−1)′

−


Λ′1
...

Λ′p−1

βα′


Λ0α⊥ =
(
Λ1 · · · Λp−1

)
Γα⊥

Gβ(0)α′ = β′Λ0−β′
(
Λ1 · · · Λp−1

)
Γ.

Proof) Note that, under our assumptions, there exist one-summable coefficients {Ψj}j∈N, such
that

∆Yt = Ψ(L)εt

for any t ∈ N. Define the doubly infinite processes {ut}t∈Z as

ut = Ψ(L)εt

for any t ∈ Z; we have ut = ∆Yt for any t ∈ N. Furthermore, let us define {St}t∈N as

St = Yt−Y0 =
t∑

s=1
∆Ys =

t∑
s=1

us

for any t ∈N. Since {εt}t∈Z has finite fourth moments and is i.i.d., we can see that the
main asymptotic results derived in the previous chapter hold for {St}t∈N as well. For
the sake of completeness, they are enumerated below:

1√
T

T∑
t=1

εt
d→ Σ

1
2Wn(1)

1√
T

T∑
t=1

ut
d→ Λ ·Wn(1)

1
T

T∑
t=1

utu
′
t−h

p→G(h) for any h≥ 0

1
T

T∑
t=h+1

St−1ε
′
t−h

d→ Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′+ Σ for any 0≤ h≤ p−1

1
T

T∑
t=h+1

St−1u
′
t−h

d→ Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Λ′+ Λh for any 0≤ h≤ p−1

1
T 3/2

T∑
t=1

St−1
d→ Λ ·

∫ 1

0
Wn(r)dr
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1
T 2

T∑
t=1

St−1S
′
t−1

d→ Λ
(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′

where Σu = Ψ(1)ΣΨ(1)′, Σ 1
2 is the Cholesky factor of Σ, Λ = Ψ(1)Σ 1

2 , Wn is the stan-
dard n-dimensional Wiener function, and {Wn(r)}r∈[0,1] the corresponding Brownian
motion.

Therefore,

1
T

∆Y ′

X ′

(∆Y X
)

= 1
T

T∑
t=p+1


ut
...

ut−p+1




ut
...

ut−p+1


′

=


1
T

∑T
t=p+1utu

′
t · · · 1

T

∑T
t=p+1utu

′
t−p+1

... . . . ...
1
T

∑T
t=p+1ut−p+1u

′
t · · · 1

T

∑T
t=p+1ut−p+1u

′
t−p+1


p→


G(0) · · · G(p−1)

... . . . ...
G(p−1)′ · · · G(0)


1
T
Y ′−1ε= 1

T

T∑
t=p+1

Yt−1ε
′
t
d→ Λ

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′

1
T
Y ′−1(∆Y ) = 1

T

T∑
t=p+1

Yt−1(∆Yt)′ =
1
T

T∑
t=p+1

Yt−1u
′
t

d→ Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Λ′+ Λ0

1
T
Y ′−1X =

(
1
T

∑T
t=p+1Yt−1u

′
t−1 · · · 1

T

∑T
t=p+1Yt−1u

′
t−p+1

)
d→ ι′p−1

⊗[
Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Λ′
]

+
(
Λ1 · · · Λp−1

)
1

T 3/2Y
′
−1ιT−p = 1

T 3/2

T∑
t=p+1

Yt−1
d→ Λ ·

∫ 1

0
Wn(r)dr

1
T 2Y

′
−1Y−1 = 1

T 2

T∑
t=p+1

Yt−1Y
′
t−1

= 1
T 2

T∑
t=p+1

St−1S
′
t−1 +Y0

 1
T 2

T∑
t=p+1

St−1

′

+

 1
T 2

T∑
t=p+1

St−1

Y ′0 + T −p
T 2 Y0Y

′
0

d→ Λ
(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′.
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Moreover, since {ut}t∈Z is a causal linear process with absolutely summable coefficients
and iid innovation process with finite fourth moments,

1√
T

T∑
t=1

vec
(
Xtε

′
t

)
= 1√

T

T∑
t=1

vec



ut−1

...
ut−p+1

ε′t
 d→N

[
0,Σ

⊗
Q
]
.

It follows that

1√
T
X ′ε= 1√

T

T∑
t=p+1

Xtε
′
t =Op(1).

By implication,

1
T
X ′ε

p→O.

It remains to show the convergence results for terms invovling β. If r = 0, they hold
trivially because β = 0. Below, we assume that r > 0. Since

C = β⊥(α′⊥Γ(1)β⊥)−1α′⊥,

β′Λ = (β′C)Σ 1
2 =O and therefore

1
T
β′Y ′−1ε

d→O

1
T
β′Y ′−1(∆Y ) d→ β′Λ0

1
T
β′Y ′−1X

d→ β′
(
Λ1 · · · Λp−1

)
.

The limits on the right hand side are all non-random matrices, so it follows that

1
T
β′Y ′−1ε

p→O

1
T
β′Y ′−1(∆Y ) p→ β′Λ0

1
T
β′Y ′−1X

p→ β′
(
Λ1 · · · Λp−1

)
as well.
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Since

∆Y = Y−1 ·βα′+X ·Γ +ε,

premultiplying both sides by Y ′−1 yields

Y ′−1(∆Y ) = (Y ′−1Y−1β)α′+ (Y ′−1X)Γ +Y ′−1ε

This tells us that( 1
T
Y ′−1Y−1β

)
α′ = 1

T
Y ′−1(∆Y )−

( 1
T
Y ′−1X

)
Γ− 1

T
Y ′−1ε.

Since α′α is nonsingular (α has ful rank), we can therefore express 1
T Y
′
−1Y−1β as a

continuous function of the random matrices studied above:

1
T
Y ′−1Y−1β =

[ 1
T
Y ′−1(∆Y )−

( 1
T
Y ′−1X

)
Γ− 1

T
Y ′−1ε

]
ᾱ.

This means that 1
T Y
′
−1Y−1β converges jointly with these quantities, with asymptotic

distribution given via the continuous mapping theorem as

1
T
Y ′−1Y−1β

d→ Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Λ′ᾱ+ Λ0ᾱ−Λ

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′ᾱ

−Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Λ′
p−1∑
i=1

Γi

′ ᾱ−(Λ1 · · · Λp−1
)

Γᾱ

= Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′(Γ(1)C− In)′ᾱ+ Λ0ᾱ−

(
Λ1 · · · Λp−1

)
Γᾱ.

It remains to show the matrix equalities. We first show the equalities for r > 0. Pre-
multiplying( 1
T
Y ′−1Y−1β

)
α′

p→ Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′(Γ(1)C− In)′+ Λ0ᾱ−

(
Λ1 · · · Λp−1

)
Γ

by β′ tells us that

Gβ(0)α′ = β′Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′(Γ(1)C− In)′ᾱ+β′Λ0−β′

(
Λ1 · · · Λp−1

)
Γ

= β′Λ0−β′
(
Λ1 · · · Λp−1

)
Γ.
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Premultiplying both sides of

∆Y = Y−1 ·βα′+X ·Γ +ε,

by X ′ and (∆Y )′ yield

X ′(∆Y ) =X ′Y−1 ·βα′+ (X ′X)Γ +X ′ε

(∆Y )′(∆Y ) = (∆Y )′Y−1 ·βα′+ (∆Y )′X ·Γ + (∆Y )′ε.

Inspecting the last equation, we have

1
T

(∆Y )′ε= 1
T

(∆Y )′(∆Y )−
( 1
T

(∆Y )′Y−1

)
·βα′−

( 1
T

(∆Y )′X
)

Γ.

Taking T →∞ on both sides,

1
T

(∆Y )′ε p→G(0)−
[
Λ
(∫ 1

0
Wn(r)dWn(r)′

)′
Λ′+ Λ′0

]
βα′−

(
G(1) · · · G(p−1)

)
Γ

=G(0)−Λ′0 ·βα′−
(
G(1) · · · G(p−1)

)
Γ.

Meanwhile,

1
T

(∆Y )′ε= αβ′
( 1
T
Y ′−1ε

)
+ Γ′ ·

( 1
T
X ′ε

)
+ 1
T
ε′ε

p→ αβ′ ·Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′+ Σ = Σ,

so the uniqueness of probability limits tells us that

Σ =G(0)−Λ′0 ·βα′−
(
G(1) · · · G(p−1)

)
Γ.

Note that we also have

Γ = (X ′X)−1(X ′(∆Y )−X ′Y−1 ·βα′−X ′ε).

Taking T →∞ in the relation

Γ =
( 1
T
X ′X

)−1( 1
T
X ′(∆Y )−

( 1
T
X ′Y−1

)
·βα′− 1

T
X ′ε

)
tells us that

Γ =


G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1


G(1)′

...
G(p−1)′

−


Λ′1
...

Λ′p−1

βα′
 .
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Meanwhile, premultipyling( 1
T
Y ′−1Y−1β

)
α′ = 1

T
Y ′−1(∆Y )−

( 1
T
Y ′−1X

)
Γ− 1

T
Y ′−1ε.

by α⊥ yields

O =
[ 1
T
Y ′−1(∆Y )−

( 1
T
Y ′−1X

)
Γ− 1

T
Y ′−1ε

]
α⊥,

and taking T →∞ once again yields

O =
[
Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′ (Γ(1)C− In)′+ Λ0−

(
Λ1 · · · Λp−1

)
Γ
]
α⊥.

Since

α′⊥Γ(1)C = α′⊥,

we can see that

(Γ(1)C− In)′α⊥ = α⊥−α⊥ =O,

so that

Λ0α⊥ =
(
Λ1 · · · Λp−1

)
Γα⊥.

When r = 0, the equality

Σ =G(0)−
(
G(1) · · · G(p−1)

)
Γ

follows by premultiplying

εt = ∆Yt−
p−1∑
i=1

Γi ·∆Yt−p+1

by ε′t and taking expectations, while the equality

Γ =


G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

G(1)′
...

G(p−1)′


simply represents the Yule-Walker equations. Meanwhile,

Gβ(0)α′ = β′Λ0−β′
(
Λ1 · · · Λp−1

)
Γ
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holds trivially because α,β are zero vectors. Finally, the equality

Λ0 =
(
Λ1 · · · Λp−1

)
Γ

follows by taking T →∞ on both sides of

1
T
Y ′−1(∆Y )−

( 1
T
Y ′−1X

)
Γ− 1

T
Y ′−1ε=O

and using the fact that C = Γ(1)−1.

Q.E.D.
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5.4.2 The Concentrated Log-Likelihood

As in the section on stationary vector autoregressions, we study the properties of the Gaussian
Quasi-MLEs of the model parameters. Assuming 0 < r < n for now, the parameters of interest
are

α,β,Γ,Σ,

where α,β are full rank n× r matrices. To define a parameter space on which the quasi log
likelihood is differentiable, we must first show that the set of full rank n×r matrices is an open
subset of Rn×r. We can define the set of full rank n× r matrices as

FRn×r = {A ∈ Rn×r |A′A ∈ PSr×r},

where we used the fact that A′A is positive semidefinite and thus has full rank if and only if it
is positive definite. Defining the function f : Rn×r→ Rr×r as

f(A) =A′A

for any A ∈ Rn×r, we can see that

FRn×r = f−1(PSr×r),

that is, FRn×r is the inverse image of the set of all positive definite r× r matrices with respect
to f . Thus, we can show that FRn×r is an open subset of Rn×r if f is continuous with respect to
the metric induced by the trace norm on Rn×r and Rr×r, since we already showed that PSr×r

is an open subset of Rr×r.
The continuity of f follows from the fact that, for any A ∈ Rn×r and ε > 0, if B ∈ Rn×r

satisfies

‖A−B‖<min
(

1, ε

2‖A‖+ 1

)
,

we have

‖f(A)−f(B)‖=
∥∥A′A−B′B∥∥=

∥∥(B−A)′(B−A) +A′(B−A) + (B−A)′A
∥∥

≤ ‖B−A‖2 + 2‖A‖ · ‖B−A‖

≤ (2‖A‖+ 1)‖B−A‖< ε.

Therefore, FRn×r is an open subset of Rn×r with respect to the metric induced by the trace
norm on Rn×r. It now follows easily that the set

R= vec
(
FRn×r

)
is an open subset of Rnr with respect to the euclidean metric (this follows from the same line of
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reasoning used to show that A is an open subset of Rn(n+1)/2).

The full parameter space is then given as

Θ =R2×Rn
2(p−1)×A,

where vec(α) ,vec(β) ∈ R, vec(Γ) ∈ Rn2(p−1) and vech(Σ) ∈ A. Clearly, Θ is an open subset of
R2nr+n2(p−1)+n(n+1)/2. We deonte the vectorized parameters by

a= vec(α) ,

b= vec(β) ,

γ = vec(Γ) ,

σ = vech(Σ) .

The Gaussian (quasi) conditional log-likelihood is, in turn, given as

l(a,b,γ,σ) =−n(T −p)
2 log(2π)− T −p2 log |Σ|

− 1
2

T∑
t=p+1

(∆Yt−αβ′ ·Yt−1−Γ′Xt)′Σ−1(∆Yt−αβ′ ·Yt−1−Γ′Xt)

=−n(T −p)
2 log(2π)− T −p2 log |Σ|− 1

2 tr
[
Σ−1(∆Y −Y−1 ·βα′−X ·Γ)′(∆Y −Y−1 ·βα′−X ·Γ)

]
.

In this section, we concentrate out the parameters one by one until the likelihood is a function
only of β. In what follows, we assume that the MLEs (given other parameters) always exists, so
that we need only inspect the first order conditions.

Concentrating out Γ

The log likelihood can be written as

l(a,b,γ,σ) =−n(T −p)
2 log(2π)− T −p2 log |Σ|

− 1
2

T∑
t=p+1

[
∆Yt−αβ′ ·Yt−1− (In

⊗
X ′t)γ

]′
Σ−1

[
∆Yt−αβ′ ·Yt−1− (In

⊗
X ′t)γ

]
.

Given a,b,σ, the MLE of γ, γ̂T (a,b,σ), must satisfy the first order condition

−
T∑

t=p+1
(In

⊗
Xt)Σ−1

[
∆Yt−αβ′ ·Yt−1− (In

⊗
X ′t)γ̂T (a,b,σ)

]
= 0,
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rearranging which we obtain

γ̂T (a,b,σ) =

In⊗
 T∑
t=p+1

XtX
′
t

−1

vec

 T∑
t=p+1

Xt(∆Yt−αβ′ ·Yt−1)′


= (In
⊗

(X ′X)−1)vec
(
X ′(∆Y )−X ′Y−1 ·βα′

)
= vec

(
(X ′X)−1X ′(∆Y −Y−1 ·βα′)

)
,

analogously to the stationary vector autoregression case. Therefore, the MLE of Γ, Γ̂T (a,b,σ),
becomes

Γ̂T (a,b,σ) = (X ′X)−1X ′(∆Y −Y−1 ·βα′),

and the concentrated log-likelihood is

l−γ(a,b,σ) = l(a,b, γ̂T (a,b,σ),σ)

=−n(T −p)
2 log(2π)− T −p2 log |Σ|

− 1
2 tr

[
Σ−1(∆Y −Y−1 ·βα′−X · Γ̂T (a,b,σ))′(∆Y −Y−1 ·βα′−X · Γ̂T (a,b,σ))

]

=−n(T −p)
2 log(2π)− T −p2 log |Σ|

− 1
2 tr

[
Σ−1(∆Y −Y−1 ·βα′)′MX(∆Y −Y−1 ·βα′)

]
,

where MX = IT−p−X(X ′X)−1X ′ is the residual maker of X. Define the residuals from regressing
∆Y and Y−1 on X as

R∆ =


R′∆,p+1

...
R′∆,T

=MX(∆Y ) and R−1 =


R′−1,p+1

...
R′−1,T

=MX ·Y−1.

Then, since MX is symmetric and idempotent, we can write

l−γ(a,b,σ) =−n(T −p)
2 log(2π)− T −p2 log |Σ|− 1

2 tr
[
Σ−1(R∆−R−1 ·βα′)′(R∆−R−1 ·βα′)

]
=−n(T −p)

2 log(2π)− T −p2 log |Σ|

− 1
2

T∑
t=p+1

(R∆,t−αβ′ ·R−1,t)′Σ−1(R∆,t−αβ′ ·R−1,t).
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Concentrating out α

The concentrated log likelihood can be written in terms of the vector a as

l−γ(a,b,σ) =−n(T −p)
2 log(2π)− T −p2 log |Σ|

− 1
2

T∑
t=p+1

(R∆,t− (R′−1,tβ
⊗

In)a)′Σ−1(R∆,t− (R′−1,tβ
⊗

In)a).

Given b,σ, the MLE of a, âT (b,σ), must satisfy the first order condition

−
T∑

t=p+1
(β′R−1,t

⊗
In)Σ−1(R∆,t− (R′−1,tβ

⊗
In)âT (b,σ)) = 0,

rearranging which we obtain

âT (b,σ) =

 T∑
t=p+1

β′R−1,tR
′
−1,tβ

⊗In

−1

vec

 T∑
t=p+1

R∆,tR
′
−1,tβ


=
(
(β′R′−1R−1β)−1⊗In

)
vec

(
R′∆R−1β

)
= vec

(
R′∆R−1β(β′R′−1R−1β)−1

)
.

Therefore, the MLE of α, α̂T (b,σ), becomes

α̂T (b,σ) =R′∆R−1β(β′R′−1R−1β)−1,

and the concentrated log-likelihood is

l−γ,a(b,σ) = l−γ(âT (b,σ), b,σ)

=−n(T −p)
2 log(2π)− T −p2 log |Σ|

− 1
2 tr

[
Σ−1(R∆−R−1 ·βα̂T (b,σ)′)′(R∆−R−1 ·βα̂T (b,σ)′)

]

=−n(T −p)
2 log(2π)− T −p2 log |Σ|− 1

2 tr
(
Σ−1R′∆MR−1βR∆

)
,

where MR−1β = IT−p−R−1β(β′R′−1R−1β)−1β′R′−1 is the residual maker associated with regres-
sions on R−1β.
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Concentrating out Σ

As we derived in the chapter on stationary vector autoregressions,

∂l−γ,a(b,σ)
∂Σ =−T −p2 Σ−1 + 1

2Σ−1R′∆MR−1βR∆Σ−1

for any Σ ∈ PSn×n. It follows that, given b, the MLE Σ̂T (b) of Σ is

Σ̂T (b) = 1
T −p

R′∆MR−1βR∆,

making the concentrated log-likelihood

l−γ,a,σ(b) = l−γ,a(b, σ̂T (b))

=−n(T −p)
2 (log(2π) + 1)− T −p2 log

∣∣∣Σ̂T (b)
∣∣∣

=−n(T −p)
2 (log(2π) + 1)− T −p2 log

∣∣∣∣ 1
T −p

R′∆MR−1βR∆

∣∣∣∣.
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5.4.3 Maximum Likelihood Estimates when r > 0

Using the concentrated likelihood derived above, we can derive the maximized log-likelihood
and the MLE of β. Afterward, we can use the MLE of β to recover the estimates of α,Γ and Σ
using the formulas derived in the previous section.

For notational convenience, we define the quantities

S∆ = 1
T −p

R′∆R∆

S∆,−1 = 1
T −p

R∆′R−1

S−1 = 1
T −p

R′−1R−1.

Note that S∆ S∆,−1

S′∆,−1 S−1

= 1
T −p

R′∆
R′−1

(R∆ R−1
)

= 1
T −p

∆Y ′

Y ′−1

MX

(
∆Y Y−1.

)

Since MX has rank T −p−n(p−1), for large enough T this is larger than 2n and therefore the
2n×2n random matrix above is almost surely positive definite. It follows that, for large enough
T , S∆ and S−1 are positive definite, and that the Schur complement

S−1−S′∆,−1S
−1
∆ S∆,−1

is also positive definite.

Returning to the concentrated log-likelihood, we have

l−γ,a,σ(b) =−n(T −p)
2 (log(2π) + 1)− T −p2 log

∣∣∣S∆−S∆,−1β(β′S−1β)−1β′S′∆,−1

∣∣∣.
Since S∆−S∆,−1β(β′S−1β)−1β′S′∆,−1 is the Schur complement of the block matrix

 S∆ S∆,−1β

β′S′∆,−1 β′S−1β

 ,
it follows that∣∣∣∣∣∣

 S∆ S∆,−1β

β′S′∆,−1 β′S−1β

∣∣∣∣∣∣= ∣∣β′S−1β
∣∣ · ∣∣∣S∆−S∆,−1β(β′S−1β)−1β′S′∆,−1

∣∣∣
= |S∆| ·

∣∣∣β′S−1β−β′S′∆,−1S
−1
∆ S∆,−1β

∣∣∣.
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Since β′S−1β is positive definite, we now have

l−γ,a,σ(b) =−n(T −p)
2 (log(2π) + 1)− T −p2 log

|S∆| ·
∣∣∣β′S−1β−β′S′∆,−1S

−1
∆ S∆,−1β

∣∣∣
|β′S−1β|

=−n(T −p)
2 (log(2π) + 1)− T −p2 log

∣∣∣β′(S−1−S′∆,−1S
−1
∆ S∆,−1)β

∣∣∣
|β′S−1β|

− T −p2 log |S∆|.

Since the only term with β is the second one, the QMLE of β is the solution to the maximization
problem

max
β∈FRn×r

V (β) = log
∣∣∣β′(S−1−S′∆,−1S

−1
∆ S∆,−1)β

∣∣∣− log
∣∣β′S−1β

∣∣.

Necessary Conditions for Maximization

For any symmetric n×n matrix M , define the function gM :R→ PSr×r as

gM (b) = log
∣∣β′Mβ

∣∣
for any b ∈R, where b= vec(β) for β ∈ FRn×r. Note that

∂β′Mβ

∂x
=
(
∂β

∂x

)′
Mβ+β′M

(
∂β

∂x

)
,

which implies that

∂vec(β′Mβ)
∂x

=
[
(β′M

⊗
Ir)Knr + (Ir

⊗
β′M)

] ∂vec(β)
∂x

and thus

∂vec(β′Mβ)
∂vec(β)′

= (β′M
⊗

Ir)Knr + (Ir
⊗

β′M).

In addition,

∂ log |A|
∂A

=A−1

for any A ∈ PSr×r, so

∂ log |A|
∂vec(A) = vec

(
A−1

)
.
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By the chain rule, it now follows that

∂gM (b)
∂b′

= ∂ log |β′Mβ|
∂vec(β′Mβ)′

· ∂vec(β′Mβ)
∂vec(β)′

= vec
(
(β′Mβ)−1

)′ [
(β′M

⊗
Ir)Knr + (Ir

⊗
β′M)

]
= vec

(
(β′Mβ)−1β′M

)′
Knr + vec

(
Mβ(β′Mβ)−1

)′
= vec

(
Mβ(β′Mβ)−1

)′
.

Therefore,

∂V (β)
∂b

= vec
(
Sβ(β′Sβ)−1−S−1β(β′S−1β)−1

)
,

where we define

S = S−1−S′∆,−1S
−1
∆ S∆,−1.

Therefore, the QMLE β̂T of β must satisfy the first order condition

Sβ̂T (β̂′TSβ̂T )−1 = S−1β̂T (β̂′TS−1β̂T )−1.

Maximizing the Likelihood

Define

ĈT = S
1
2 ′
−1β̂T ,

where S
1
2
−1 is the Cholesky factor of S−1. Then,

S−1β̂T (β̂′TS−1β̂T )−1 = S
1
2
−1 · ĈT (Ĉ ′T ĈT )−1

= Sβ̂T (β̂′TSβ̂T )−1 = S ·S−
1
2 ′
−1 ĈT

[
Ĉ ′T (S−

1
2
−1 · S ·S

− 1
2 ′
−1 )ĈT

]−1
.

Defining

M = S
− 1

2
−1 · S ·S

− 1
2 ′
−1

= In−S
− 1

2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1 ,

which is positive definite since S is, we have

ĈT (Ĉ ′T ĈT )−1 =MĈT (Ĉ ′TMĈT )−1.
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This means that the maximized log-likelihood becomes

l̂T =−n(T −p)
2

(
log(2π) + 1 + 1

n
log |S∆|

)
− T −p2 log

∣∣∣β̂′T (S−1−S′∆,−1S
−1
∆ S∆,−1)β̂T

∣∣∣∣∣∣β̂′TS−1β̂T
∣∣∣

=−n(T −p)
2

(
log(2π) + 1 + 1

n
log |S∆|

)
− T −p2 log

∣∣∣Ĉ ′TMĈT
∣∣∣∣∣∣Ĉ ′T ĈT ∣∣∣ .

We now derive an expression for the rightmost term, and, through that expression, obtain an
estimator for the cointegrating space. To proceed, we require the following algebraic results:

Lemma (Properties of Self-Adjoint Linear Operators)
Let (V,〈·, ·〉) be a finite-dimensional inner product space over the real field, and T ∈ L(V ) a
self-adjoint linear operator on V , that is, a linear operator on V such that

〈Tv,u〉= 〈v,Tu〉

for any v,u ∈ V . Then, the following hold true:

i) The eigenvalues of T are real.

ii) There exists a basis of V consisting of orthonormal eigenvectors of T .

Proof) i) Let λ∈C be an eigenvalue of T with corresponding eigenvector v ∈ V , which must
be non-zero by definition. It then holds that

λ〈v,v〉= 〈λ ·v,v〉= 〈Tv,v〉= 〈v,Tv〉= 〈v,λ ·v〉= λ〈v,v〉

by the bilinearity of the inner product, as well as the definition of self-adjointness
and eigenvectors. Since 〈v,v〉 6= 0 due to the fact that v is non-zero, we have λ= λ,
and thus λ ∈ R.

ii) We proceed by induction on the dimension n of V . Denote the norm induced
by 〈·, ·〉 as ‖·‖. When n = 1, letting {v} be a basis of V , there must exist some
λ∈R such that Tv= λv, since Tv which belongs to V and is thus a scalar multiple
of v. Therefore, { v

‖v‖} is a basis of V that consists of orthonormal eigenvectors of T .

Now suppose that the claim holds for any real inner product space of dimension
n≥ 1 and self-adjoint operator on that space. Suppose that (V,〈·, ·〉) is a real in-
ner product space of dimension n+ 1 and that T is a self-adjoint operator on V .
Choose any eigenvector vn+1 ∈ V of T normalized to have norm 1; there exists a
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λ∈R such that Tvn+1 = λ ·vn+1, in light of the preceding result. Defining the sub-
space W = span({vn+1}) of V , since W and V are both finite-dimensional spaces,
we have V = W

⊕
W⊥, where W⊥ is the orthogonal complement of V . Since W

has dimension 1 (vn+1 is non-zero), and V is an n+1-dimensional space, the fact
that V is the direct sum of W and W⊥ tells us that W⊥ must have dimension n.

Let T̃ ∈ L(W⊥,V ) be the restriction of T on W⊥; since T is self-adjoint on V ,
T̃ must be self-adjoint on W⊥. By the inductive hypothesis, there exists a basis
{v1, · · · ,vn} ⊂ V of W⊥ that is comprised of orthonormal eigenvectors of T̃ . V =
W
⊕
W⊥ tells us once again that {v1, · · · ,vn,vn+1} is a basis of V . Since

〈vn+1,vi〉= 0

for any 1≤ i≤n since vn+1 belongs to the orthogonal complement ofW⊥, ‖vn+1‖=
1 and for any 1≤ i≤ n there exists a λi ∈ R such that

Tvi = T̃ vi = λi ·vi

since vi is an eigenvector of T̃ of norm 1, it follows that {v1, · · · ,vn,vn+1} is a basis
of V comprised of orthonormal eigenvectors of T .

Q.E.D.

Lemma Let {y1, · · · ,yr} ⊂Rn be a linearly independent set of n-dimensional vectors that are
collected into a matrix

y =
(
y1 · · · yr

)
∈ Rn×r

of full rank r. Let A ∈ Rn×n be a positive definite matrix, and suppose that

y(y′y)−1 =Ay(y′Ay)−1

holds. Then, the vector space V = span({y1, · · · ,yr}) is invariant under A, that is, Av ∈ V for
any v ∈ V . In addition, there exists an n×r matrix E whose columns are orthogonal eigenvectors
of A, and a nonsingular matrix P ∈ Rr×r, such that y = EP .

Proof) We first show that V is invariant under A. The orthogonal projection (as a linear
operator) onto V is defined as

projV = y(y′y)−1y′;
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we can easily see that, for any v ∈ Rn,

(v−y(y′y)−1y′v)′y = 0.

Choose any v ∈ V . Since there exists an a ∈ Rr such that v = y ·a, it follows that

projV (v) = y(y′y)−1y′v = v.

Now note that

projV (Av) = y(y′y)−1y′Av = y(y′y)−1(y′Ay)a.

Since

y(y′y)−1y′Ay =Ay

by assumption, we have

projV (Av) = y(y′y)−1(y′Ay)a =Ay ·a =Av.

Therefore, Av ∈ V and the subspace V is invariant under A.

Let T be the left multiplication transformation corresponding to A, and T̃ its restriction
to V . Since A, and by extension T , is invariant on V , it follows that T̃ is a linear operator
on V . Furthermore, it is self-adjoint because A is a symmetric matrix; by the previous
lemma, there exists a basis {e1, · · · ,er} ⊂ V of V that is comprised of orthonormal
eigenvectors of T and thus of A. Defining

E =
(
e1 · · · er,

)
since {y1, · · · ,yr} is a basis of V and thus contained in V , there exists a vector Pi ∈ Rr

such that

yi = E ·Pi

for each 1≤ i≤ r. Defining

P =
(
P1 · · · Pr

)
,

it follows that y = EP .

To see that P is non-singular, note that, by the same reasoning as above, there exists
a Λ ∈ Rr×r such that

E = yΛ.
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Thus,

Ir = E′E = E′yΛ = (E′E)PΛ = PΛ,

where the first equality follows because the columns of E are orthonormal. This shows
us that Λ = P−1.

Q.E.D.

Since

ĈT (Ĉ ′T ĈT )−1 =MĈT (Ĉ ′TMĈT )−1,

everywhere on Ω, the preceding lemma tells us that, for any outcome ω ∈ Ω, there exist or-
thonormal eigenvectors e1, · · · ,er of M and a nonsingular r× r matrix P such that

ĈT =
(
e1 · · · er

)
︸ ︷︷ ︸

E

P.

Letting µi ∈ R be the eigenvalue of M corresponding to ei (it is real because the eigenvalues of
symmetric matrices are real), it follows that

M ·E = E ·


µ1 · · · 0
... . . . ...
0 · · · µr


and thus ∣∣∣Ĉ ′TMĈT

∣∣∣∣∣∣Ĉ ′T ĈT ∣∣∣ = |P
′E′MEP |
|P ′E′EP |

=
∣∣E′ME

∣∣=
∣∣∣∣∣∣∣∣∣


µ1 · · · 0
... . . . ...
0 · · · µr


∣∣∣∣∣∣∣∣∣=

r∏
i=1

µi.

Finally, note that the eigenvalues µ1, · · · ,µr are solutions to the equation

0 = |M −µ · In|=
∣∣∣∣(1−µ) · In−S

− 1
2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1

∣∣∣∣
=
∣∣∣(1−µ) ·S−1−S′∆,−1S

−1
∆ S∆,−1

∣∣∣∣∣∣S−1
−1

∣∣∣.
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Thus, the maximized log-likelihood must be equal to

l̂T =−n(T −p)
2

(
log(2π) + 1 + 1

n
log |S∆|

)
− T −p2 log

∣∣∣Ĉ ′TMĈT
∣∣∣∣∣∣Ĉ ′T ĈT ∣∣∣

=−n(T −p)
2

(
log(2π) + 1 + 1

n
log |S∆|

)
− T −p2

r∑
i=1

log
(
1− λ̂i

)

for the r largest solutions λ̂1 ≥ ·· · ≥ λ̂r > 0 that solve the equation
∣∣∣λ ·S−1−S′∆,−1S

−1
∆ S∆,−1

∣∣∣= 0.

Note that 1≥ λ̂1 ≥ ·· · ≥ λ̂r > 0 are the r largest sample canonical correlations between R∆ and
R−1 (for more details, consult section 2.1 in the factor model text). Heuristically, in the case
that there are no lagged differences (no X), this means that the cointegrating vectors in β̂T

must be determined so that the sample correlation between ∆Y and Y−1 is maximized. This is
in accordance to our usual conception of cointegration that Y−1 must drive long run changes in
∆Y if the variables in Yt are cointegrated.

It remains to obtain a tractable expression for the cointegrating basis β̂T . We saw above
that the columns of ĈT = S

1
2 ′
−1β̂T at the maximum can be chosen to be any linearly independent

eigenvectors corresponding to the eigenvalues 1− λ̂1, · · · ,1− λ̂r of M . To simplify things, note
first that, for any eigenvector v of M with eigenvalue µ, the quantity v is an eigenvector of the
positive definite matrix S

− 1
2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1 with eigenvalue 1−µ; this follows by noting

that

Mv = v−S−
1
2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1 ·v = µ ·v,

so that we have

S
− 1

2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1 ·v = (1−µ)v.

Thus, it follows that the columns of ĈT = S
1
2 ′
−1β̂T can be chosen to be orthonormal eigenvectors

of S−
1
2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1 corresponding to its r largest eigenvalues λ̂1 ≥ ·· · ≥ λ̂r > 0. Note

that we have imposed the normalization

Ĉ ′T ĈT = β̂′TS−1β̂T = Ir.
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Summary of QMLE Values

Given the quantities

R∆ =MX(∆Y ) = ∆Y −X(X ′X)−1X ′(∆Y )

R−1 =MX ·Y−1 = Y−1−X(X ′X)−1X ′Y−1

S∆ = 1
T −p

R′∆R∆

S−1 = 1
T −p

R′−1R−1

S∆,−1 = 1
T −p

R′∆R−1,

the Gaussian QMLEs of the model parameters are given as follows:

β̂T = S
− 1

2 ′
−1

(
Ĉ1,T · · · Ĉr,T

)
,

where Ĉ1,T , · · · , Ĉr,T are orthonormal eigenvectors of S−
1
2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1

corresponding to its r largest eigenvalues λ̂1 ≥ ·· · ≥ λ̂r > 0

α̂T =R′∆R−1β̂T (β̂′TR′−1R−1β̂T )−1

Σ̂T = S∆−S∆,−1β̂T
(
β̂′TS−1β̂T

)−1
β̂′TS

′
∆,−1

Γ̂T = (X ′X)−1X ′
(
∆Y −Y−1 · β̂T α̂′T

)
.

The maximized log-likelihood is

l̂T =−n(T −p)
2

(
log(2π) + 1 + 1

n
log |S∆|

)
− T −p2

r∑
i=1

log
(
1− λ̂i

)
.

Note that, if the eigenvalues of S−1
−1S

′
∆,−1S

−1
∆ S∆,−1 are distinct, then β̂T is unique up to sign

changes in its columns.
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5.4.4 Maximum Likelihood Estimates when r = 0

So far, we have studied the (quasi) maximum likelihood estimates of the model when 0< r < n.
The case when r = 0, that is, when there is no cointegrating relationships, is much simpler to
analyze. r = 0 is equivalent to the claim that Π = αβ′ =O, so that the VECM becomes a VAR
in first-differences:

∆Yt = Γ1 ·∆Yt−1 + · · ·+ Γp−1 ·∆Yt−p+1 +εt.

Therefore, the maximized log-likelihood is the same as in the stationary VAR case, given by

l̂T =−n(T −p)
2

(
log(2π) + 1 + 1

n
log |S∆|

)
,

and the QMLEs of Γ and Σ are

Γ̂T = (X ′X)−1X ′∆Y

Σ̂T = S∆ = 1
T −p

(
∆Y −X · Γ̂T

)′(
∆Y −X · Γ̂T

)
.

Since the assumptions on the first-difference process {∆Yt}t∈Z and the innovation process {εt}t∈Z
are identical to those for stationary vector autoregressions, the asymptotic results proved there
continue to hold; specifically,

Σ̂T
p→ Σ

√
T
(
vec

(
Γ̂T
)
−vec(Γ)

)
d→N

[
0,Σ

⊗
Q
]
,

where

Q=


G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)

 .
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5.4.5 Specifying α⊥

When studying the asymptotic properties of the QMLEs derived above, it is conveninent to
choose the following specific form for the orthogonal complement α⊥. Assuming that r > 0,
define

Pα(M) = α(α′M−1α)−1α′M−1

for any positive definite matrix M . Since the matrices In−Pα(Σ) and Pα(Σ) are idempotent,
their rank equals their traces, so that

rank(In−Pα(Σ)) = tr(In−Pα(Σ)) = n− r.

Consider the matrix

Σ−1(In−Pα(Σ)).

This matrix clearly has rank n− r, and

Σ−1(In−Pα(Σ)) = Σ−1−Σ−1α(α′Σ−1α)−1α′Σ−1

shows us that Σ−1(In−Pα(Σ)) is positive semidefinite. Therefore, it has the eigendecompsition

Σ−1(In−Pα(Σ)) = PDP ′

for orthogonal matrix P ∈ Rn×n and diagonal matrix D with diagonal entries equal to the
eigenvalues of Σ−1(In−Pα(Σ)), which are non-negative; the last r entries in D are 0. Denoting

D =

D̃ O

O O

 ,
where D̃ ∈ R(n−r)×(n−r) collects the non-zero elements of D, define

α⊥ = P

D̃ 1
2

O

 ∈ Rn×n−r.

We can then see that

α⊥α
′
⊥ = Σ−1(In−Pα(Σ))

α′⊥α⊥ = D̃.

By implication,

α⊥α
′
⊥α= Σ−1(In−Pα(Σ))α=O
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and thus

α′⊥α= D̃−1O =O,

so that α⊥ truly does act like the orthogonal complement of α. Another important property
that this α⊥ possesses is that, because

Σα⊥α′⊥ = In−Pα(Σ),

and the matrix on the right hand side is idempotent,

Σα⊥(α′⊥Σα⊥)α′⊥ = Σα⊥α′⊥,

which implies that

α′⊥Σα⊥ = In−r.

When r = 0, we define

α⊥ = Σ−
1
2 ′,

the inverse of the Cholesky factor of Σ.

Define the n− r-dimensional Brownian motion {B(s)}s∈[0,1] as

B(s) = α′⊥Σ
1
2 ·Wn(s)

for any s ∈ [0,1], where {Wn(s)}s∈[0,1] is the standard n-dimensional Wiener process. Since
α′⊥Σα⊥ = In−r, it follows that {B(s)}s∈[0,1] has variance In−r and therefore is identically dis-
tributed to the standard n− r-dimensional Wiener process. This establishes that

α′⊥Σ
1
2 ·Wn(s)∼Wn−r(s)

under our choice of α⊥.
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5.4.6 Consistency of QMLEs

Now that the QMLEs have been derived, we can study their asymptotic properties. We start
with the r largest sample canonical correlations λ̂1, · · · , λ̂r of R∆ and R−1, and then make our
way back up to Σ̂T and Γ̂T .

Note first that the canonical correlations, being real ordered eigenvalues of the positive
definite matrix S

− 1
2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1 , are continuous functions of S−

1
2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1

(for a formal proof of this result, consult section 1.2.3 in the factor model text). This ensures
that λ̂1, · · · , λ̂r are well-defined random variables, and that we can use the continuous mapping
theorem to derive the asymptotic distribution of the canonical correlations. Formally, we will
denote

(λ̂1, · · · , λ̂r) = eigrn

(
S
− 1

2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1

)
,

so that eigrn(·) is a function that extracts the r largest eigenvalues from an n×n matrix with
real ordered eigenvalues.

The quantities S∆,S−1,S∆,−1 defined above have the following asymptotic properties:

Lemma (Asymptotic Results for QMLE)
Under assumptions A1 to A3, the following convergence results hold jointly:

S∆
p→ µ∆

1
T −p

S−1
d→ Λ

(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′

1
T −p

β′⊥S−1β⊥
d→ (β′⊥β⊥)(α′⊥Γ(1)β⊥)−1

(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)
(β′⊥Γ(1)′α⊥)−1(β′⊥β⊥)

( 1
T −p

β′⊥S−1β⊥

)−1
=Op(1)

S−1β =Op(1)

β′S−1β
p→ µ−1

S∆,−1
d→ µ∆,−1 + Λ

(∫ 1

0
Wn(r)dWn(r)′

)′
Λ′

−
(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′

...
Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′


S∆,−1β

p→ µ∆,−1β

β′S∆,−1 =Op(1)
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S′∆,−1α⊥
d→ Λ

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′α⊥,

where

µ∆ =G(0)−
(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

G(1)′
...

G(p−1)′



µ−1 =Gβ(0)−β′
(
Λ1 · · · Λp−1

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ′1
...

Λ′p−1

β

µ∆,−1 = Λ′0−
(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ′1
...

Λ′p−1

 .

µ∆,µ−1 and µ∆,−1 are related to one another as

µ∆ = Σ +µ∆,−1βα
′ and µ−1α

′ = β′µ′∆,−1.

Proof) We can recover the probability limit of S∆ as

S∆ = 1
T −p

R′∆R∆ = 1
T −p

(∆Y )′MX(∆Y )

= 1
T −p

(∆Y )′(∆Y )−
( 1
T −p

(∆Y )′X
)( 1

T −p
X ′X

)−1( 1
T −p

(∆Y )′X
)′

p→G(0)−
(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

G(1)′
...

G(p−1)′

= µ∆.

Note that µ∆ is the Schur complement of the positive definite matrix
G(0) · · · G(p−1)

... . . . ...
G(p−1)′ · · · G(0)

 ,

so that it is also positive definite.

Likewise, we can conclude that

β′S−1β = 1
T −p

β′R′−1R−1β = 1
T −p

β′Y ′−1MXY−1β
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= 1
T −p

β′Y ′−1Y−1β−
( 1
T −p

β′Y ′−1X

)( 1
T −p

X ′X

)−1( 1
T −p

β′Y ′−1X

)′

p→Gβ(0)−β′
(
Λ1 · · · Λp−1

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ′1
...

Λ′p−1

β = µ−1.

We also have

S∆,−1 = 1
T −p

(∆Y )′MXY−1

= 1
T −p

(∆Y )′Y−1−
( 1
T −p

(∆Y )′X
)( 1

T −p
X ′X

)−1( 1
T −p

Y ′−1X

)′
d→ Λ

(∫ 1

0
Wn(r)dWn(r)′

)′
Λ′+ Λ′0

−
(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′

...
Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′



−
(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ′1
...

Λ′p−1

 .

When r > 0, using the fact that

Γ =


G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

G(1)′
...

G(p−1)′

−


G(0) · · · G(p−2)
... . . . ...

G(p−2)′ · · · G(0)


−1

Λ′1
...

Λ′p−1

βα′,

the above limit can also be reformulated as

S∆,−1
d→ Λ

(∫ 1

0
Wn(r)dWn(r)′

)′
Λ′+ Λ′0−Γ′


Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′

...
Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′



−αβ′
(
Λ1 · · · Λp−1

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′

...
Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′



−
(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ′1
...

Λ′p−1


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= Γ(1)′Λ
(∫ 1

0
Wn(r)dWn(r)′

)′
Λ′+ Λ′0

−αβ′
(
Λ1 · · · Λp−1

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′

...
Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′



−
(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ′1
...

Λ′p−1

 .

It now follows easily that

S∆,−1β
p→

Λ′0−
(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ′1
...

Λ′p−1


β

= µ∆,−1β

since β′Λ =O, where the convergence in distribution changes into convergence in prob-
ability because the limit is non-random. Similarly,

β′S∆,−1
d→ β′Λ′0−β′

(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ′1
...

Λ′p−1



−β′
(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′

...
Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′

 .

where the convergence this time is in distribution.

If r > 0, then

Λ′Γ(1)′α⊥ = Σ
1
2 ′C ′Γ(1)α⊥

= Σ
1
2 ′α⊥(β′⊥Γ(1)′α⊥)−1β′⊥Γ(1)′α⊥

= Σ
1
2 ′α⊥,

while if r = 0, because Λ = CΣ 1
2 = Γ(1)−1Σ 1

2 and α⊥ = In, we still have Λ′Γ(1)′α⊥ =
Σ 1

2 ′α⊥. Therefore,

S′∆,−1α⊥
d→ Λ

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′α⊥+ Λ0α⊥
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−
(
Λ1 · · · Λp−1

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

G(1)′
...

G(p−1)′

α⊥

= Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′α⊥+ Λ0α⊥−

(
Λ1 · · · Λp−1

)
Γα⊥

= Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′α⊥,

where the last equality follows because

Λ0α⊥ =
(
Λ1 · · · Λp−1

)
Γα⊥.

Meanwhile,

1
T −p

S−1 = 1
(T −p)2Y

′
−1MXY−1

= 1
(T −p)2Y

′
−1Y−1−

( 1
(T −p)3/2Y

′
−1X

)( 1
T −p

X ′X

)−1( 1
(T −p)3/2Y

′
−1X

)′
d→ Λ

(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′,

since 1
(T−p)3/2Y

′
−1X = op(1). Pre- and post-multiplying both sides by β⊥ implies

1
T −p

β′⊥S−1β⊥
d→ β′⊥Λ

(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′β⊥.

Here,

β⊥Λ = (β′⊥β⊥)(α′⊥Γ(1)β⊥)−1α′⊥Σ
1
2 ,

so that

1
T −p

β′⊥S−1β⊥
d→ (β′⊥β⊥)(α′⊥Γ(1)β⊥)−1

(∫ 1

0
B(s)B(s)′ds

)
(β′⊥Γ(1)′α⊥)−1(β′⊥β⊥),

where we define B(s) = α′⊥Σ 1
2 ·Wn(s) for any s ∈ [0,1]. Since B(s)∼Wn−r(s), we can

see that

1
T −p

β′⊥S−1β⊥
d→ (β′⊥β⊥)(α′⊥Γ(1)β⊥)−1

(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)
(β′⊥Γ(1)′α⊥)−1(β′⊥β⊥).

Clearly, the limit has full rank n− r, so that
( 1
T −p

β′⊥S−1β⊥

)−1
=Op(1).
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We can also see that

S−1β = 1
T −p

Y ′−1MXY−1β

= 1
T −p

Y ′−1Y−1β−
( 1
T −p

Y ′−1X

)( 1
T −p

X ′X

)−1( 1
T −p

β′Y ′−1X

)′
d→
[
Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′ (Γ(1)C− In)′+ Λ0−

(
Λ1 · · · Λp−1

)
Γ
]
ᾱ

−

β′(Λ1 · · · Λp−1
)

G(0) · · · G(p−2)
... . . . ...

G(p−2)′ · · · G(0)


−1

Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′

...
Λ
(∫ 1

0 W
n(r)dWn(r)′

)′
Λ′



′

−

β′(Λ1 · · · Λp−1
)

G(0) · · · G(p−2)
... . . . ...

G(p−2)′ · · · G(0)


−1

Λ′1
...

Λ′p−1



′

.

Therefore, we can conclude that S−1β =Op(T ).

The relationship between µ∆ and µ∆,−1 can be seen by noting that

Σ =G(0)−Λ′0βα′−
(
G(1) · · · G(p−1)

)
Γ

=G(0)−Λ′0 ·βα′−
(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

G(1)′
...

G(p−1)′



−
(
G(1) · · · G(p−1)

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

Λ′1
...

Λ′p−1

βα′

= µ∆−µ∆,−1βα
′.

The relationship between µ−1 and µ∆,−1 follows from

µ−1α
′ =Gβ(0)α′−β′

(
Λ1 · · · Λp−1

)


G(0) · · · G(p−2)
... . . . ...

G(p−2)′ · · · G(0)


−1

G(1)′
...

G(p−1)′

−Γ


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= β′

Λ0−
(
Λ1 · · · Λp−1

)
G(0) · · · G(p−2)

... . . . ...
G(p−2)′ · · · G(0)


−1

G(1)′
...

G(p−1)′




= β′µ′∆,−1.

Q.E.D.

Suppose r > 0. Note that  µ−1 µ∆,−1β

β′µ′∆,−1 µ∆


is the probability limit ofβ′S−1β S∆,−1β

β′S′∆,−1 S∆

=

β′Y ′−1

(∆Y )′

( 1
T −p

MX

)Y−1β

∆Y

 .
If we assume that the smallest eigenvalue of this matrix is bounded below at a level greater than
0, it follows that  µ−1 µ∆,−1β

β′µ′∆,−1 µ∆


must also be positive definite. By impliction, µ−1, µ∆ and the Schur complement µ−1−β′µ′∆,−1µ

−1
∆ µ∆,−1β

must also be positive definite.
If r = 0, then we can still assume that µ∆ is positive definite.

We can also show that Pα(µ∆) and Pα(Σ) are related in the following manner:

Lemma (Relationship between Pα(µ∆) and Pα(Σ) )
Under assumptions A1 to A3, if r > 0, then the following hold true:

Pα(Σ) = Pα(µ∆) and Σ−1 (In−Pα(Σ)) = µ−1
∆ (In−Pα(µ∆)) .

Proof) The above results make use of the fact that

µ∆ = Σ +µ∆,−1βα
′ = Σ +αµ−1α

′.

First we show that Pα(Σ) = Pα(µ∆). To this end, note that

µ−1
∆ = Σ−1−Σ−1αµ−1α

′µ−1
∆ ;
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this can be seen by direct verification through the identity µ∆ = Σ+αµ−1α
′. It follows

that

α′µ−1
∆ α= α′Σ−1α−α′Σ−1αµ−1α

′µ−1
∆ α

α′µ−1
∆ = α′Σ−1−α′Σ−1αµ−1α

′µ−1
∆ ;

direct verification via the first equation leads us to the conclusion that

(
α′µ−1

∆ α
)−1

=
(
α′Σ−1α

)−1
+µ−1.

Therefore,

α
(
α′µ−1

∆ α
)−1

α′µ−1
∆ = α

[(
α′Σ−1α

)−1
+µ−1

][
α′Σ−1−α′Σ−1αµ−1α

′µ−1
∆

]
= α

[(
α′Σ−1α

)−1
α′Σ−1 +µ−1α

′Σ−1−µ−1α
′µ−1

∆ −µ−1α
′Σ−1αµ−1α

′µ−1
∆

]
= Pα(Σ) +

(
αµ−1α

′)Σ−1− (αµ−1α
′)−1µ−1

∆ − (αµ−1α
′)Σ−1(αµ−1α

′)µ−1
∆

= Pα(Σ) +
[
(αµ−1α

′)−1Σ−1 + In
][
In− (αµ−1α

′)−1µ−1
∆

]
− In.

Since αµ−1α
′ = µ∆−Σ, we can see that

(αµ−1α
′)−1Σ−1 = µ∆Σ−1− In

(αµ−1α
′)−1µ−1

∆ = In−Σµ−1
∆ ,

so that

Pα(µ∆) = α
(
α′µ−1

∆ α
)−1

α′µ−1
∆ = Pα(Σ).

It remains to show that

Σ−1 (In−Pα(Σ)) = µ−1
∆ (In−Pα(µ∆)) .

Since Pα(µ∆) = Pα(Σ), we can see that

µ−1
∆ (In−Pα(µ∆)) = µ−1

∆ −µ
−1
∆ Pα(Σ)

= µ−1
∆ −µ

−1
∆ α

(
α′µ−1

∆ α
)−1

α′︸ ︷︷ ︸
Pα(µ∆)′

µ−1
∆

= Σ−1−Σ−1(αµ−1α
′)µ−1

∆ −Pα(Σ)′µ−1
∆

= Σ−1−Σ−1(αµ−1α
′)µ−1

∆ −Σ−1α
(
α′Σ−1α

)−1
α′µ−1

∆

= Σ−1−Σ−1α

[
µ−1 +

(
α′Σ−1α

)−1
]
α′µ−1

∆
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= Σ−1−Σ−1α
(
α′µ−1

∆ α
)−1

α′µ−1
∆︸ ︷︷ ︸

Pα(µ∆)

= Σ−1−Σ−1Pα(Σ) = Σ−1 (In−Pα(Σ)) .

Q.E.D.

The preceding results allow us to prove a consistency result for the sample canonical corre-
lations λ̂1, · · · , λ̂r obtained as the r largest solutions to the eigenvalue equation

∣∣∣λS−1−S′∆,−1S
−1
∆ S∆,−1

∣∣∣= 0.

Theorem (Consistency of Eigenvalues)
Maintain assumptions A1 to A3. Let λ̂1 ≥ ·· · ≥ λ̂n > 0 be the real ordered solutions to the
eigenvalue equation

∣∣∣λS−1−S′∆,−1S
−1
∆ S∆,−1

∣∣∣= 0.

If r > 0, then

(λ̂1, · · · , λ̂n) p→ (λ1, · · · ,λr,0, · · · ,0),

where λ1 ≥ ·· · ≥ λr ≥ 0 are the ordered eigenvalues that solve the problem
∣∣∣λµ−1−β′µ′∆,−1µ

−1
∆ µ∆,−1β

∣∣∣= 0.

On the other hand, if r = 0, then

(λ̂1, · · · , λ̂n) p→

0, · · · ,0︸ ︷︷ ︸
n

 .

Proof) The Case r = 0
We first prove the result for the case r = 0. In this case, because β⊥ = In, we have

( 1
T −p

S−1

)−1
=Op(1),
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and by implication,

S−1
−1 = 1

T −p

( 1
T −p

S−1

)−1
= op(1).

Since λ̂1, · · · , λ̂n are the solutions to the equation∣∣∣∣λ · In−S− 1
2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1

∣∣∣∣= 0,

and

S
− 1

2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1 = op(1),

by the continuity of ordered eigenvalues λ̂1, · · · , λ̂n converge in probability to the solu-
tions of the equation

|λ · In|= 0,

that is, to the n-dimensional zero vector.

The Case r > 0
Recall that, if r > 0, we assumed that µ−1 µ∆,−1β

β′µ′∆,−1 µ∆


is positive definite. Thus, λ1, · · · ,λr are the eigenvalues of the positive definite matrix

µ
− 1

2
−1 β

′µ′∆,−1µ
−1
∆ µ∆,−1βµ

− 1
2 ′
−1 ,

so that λ1, · · · ,λr are real, ordered and non-zero.

For any λ ∈ R, defining MT = (β′⊥S−1β⊥)− 1
2 , the inverse of the Cholesky factor of

β′⊥S−1β⊥, we have

∣∣(β,β⊥)′
∣∣ · ∣∣∣λS−1−S′∆,−1S

−1
∆ S∆,−1

∣∣∣ · |(β,β⊥)|

=

∣∣∣∣∣∣
 β′
β⊥

(λS−1−S′∆,−1S
−1
∆ S∆,−1

)(
β β⊥

)∣∣∣∣∣∣
=

∣∣∣∣∣∣λ
 β′S−1β β′S−1β⊥

β′⊥S−1β β′⊥S−1β⊥

−
 β′S′∆,−1S

−1
∆ S∆,−1β β′S′∆,−1S

−1
∆ S∆,−1β⊥

β′⊥S
′
∆,−1S

−1
∆ S∆,−1β β′⊥S

′
∆,−1S

−1
∆ S∆,−1β⊥

∣∣∣∣∣∣
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=

∣∣∣∣∣∣λ
 β′S−1β β′S−1β⊥M

′
T

MTβ
′
⊥S−1β MTβ

′
⊥S−1β⊥M

′
T

−
 β′S′∆,−1S

−1
∆ S∆,−1β β′S′∆,−1S

−1
∆ S∆,−1β⊥M

′
T

MTβ
′
⊥S
′
∆,−1S

−1
∆ S∆,−1β MTβ

′
⊥S
′
∆,−1S

−1
∆ S∆,−1β⊥M

′
T

∣∣∣∣∣∣
×

∣∣∣∣∣∣
Ir O

O M−1
T

∣∣∣∣∣∣.
Since (β,β⊥)′ and MT are nonsingular matrices, it follows that the solutions to the
eigenvalue equation

∣∣∣λS−1−S′∆,−1S
−1
∆ S∆,−1

∣∣∣= 0 are solutions to the equation

∣∣∣∣∣∣λ
 β′S−1β β′S−1β⊥M

′
T

MTβ
′
⊥S−1β MTβ

′
⊥S−1β⊥M

′
T

−
 β′S′∆,−1S

−1
∆ S∆,−1β β′S′∆,−1S

−1
∆ S∆,−1β⊥M

′
T

MTβ
′
⊥S
′
∆,−1S

−1
∆ S∆,−1β MTβ

′
⊥S
′
∆,−1S

−1
∆ S∆,−1β⊥M

′
T

∣∣∣∣∣∣= 0.

The preceding result tells us that
( 1
T −p

β′⊥S−1β⊥

)−1
=Op(1),

so that

(
β′⊥S−1β⊥

)−1 = 1
T −p

( 1
T −p

β′⊥S−1β⊥

)−1
= op(1),

implying that

MT =
(
β′⊥S−1β⊥

)− 1
2 = op(1)

as well by the continuity of the Cholesky operation. Therefore, β′S−1β β′S−1β⊥M
′
T

MTβ
′
⊥S−1β MTβ

′
⊥S−1β⊥M

′
T

 p→

µ−1 O

O In−r


and β′S′∆,−1S

−1
∆ S∆,−1β β′S′∆,−1S

−1
∆ S∆,−1β⊥M

′
T

MTβ
′
⊥S
′
∆,−1S

−1
∆ S∆,−1β MTβ

′
⊥S
′
∆,−1S

−1
∆ S∆,−1β⊥M

′
T


p→

β′µ′∆,−1µ
−1
∆ µ∆,−1β O

O O

 .
By the continuity of real ordered eigenvalues and the continuous mapping theorem,
(λ̂1, · · · , λ̂n) should converge in probability to the solutions of the eigenvalue equation∣∣∣∣∣∣λ
µ−1 O

O In−r

−
β′µ′∆,−1µ

−1
∆ µ∆,−1β O

O O

∣∣∣∣∣∣=
∣∣∣λµ−1−β′µ′∆,−1µ

−1
∆ µ∆,−1β

∣∣∣ · |λ · In−r|.
This equation has exactly r non-zero solutions, denoted λ1 ≥ ·· · ≥ λr, and n− r solu-
tions equal to 0.
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Q.E.D.

While the uniqueness of the ordered sample canonical correlates allows us to obtain probabil-
ity limits for them, the potential non-uniqueness of the corresponding eigenvectors of S−

1
2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1

makes it more difficult to obtain limiting results for β̂T . Fortunately, we can establish that the
cointegrating space, at the very least, is consistently estimated, in a sense to be discussed below.

First we decompose β̂T as the sum of the projections of β̂T onto the space spanned by the
columns of β and its orthogonal complement; specifically, we let

β̂T = β (β′β)−1β′β̂T︸ ︷︷ ︸
x̂T

+β⊥ (β′⊥β⊥)−1β′⊥β̂T︸ ︷︷ ︸
ŷT

.

Since the column space of β is the (augmented) cointegrating space, we can say that the coin-
tegrating space is consistently estimated if ŷT = op(1), that is, if the projection of β̂T onto the
orthogonal complement of the cointegrating space vanishes as T →∞. In other words, the coin-
tegrating space is consistently estimated if β̂T belongs to the cointegrating space (the column
space of β) with probability 1 as T →∞.

To show this consistency result, we require more preliminary asymptotic results. First, define

S(λ) = λS−1−S′∆,−1S
−1
∆ S∆,−1

for any λ ∈ R. Note that, since λ̂1, · · · , λ̂n are the solutions to the equation |S(λ)| = 0, S(λ̂i) is
singular for any 1≤ i≤ n.

Lemma (Rates of Convergence of Eigenvectors)
Maintain assumptions A1 to A3, and suppose that r > 0. Then, the following results hold:

i) β̂T =Op(1), x̂T =Op(1) and x̂−1
T =Op(1).

ii) ŷT =Op(T−1) and β′S(λ̂i)β · x̂i,T =Op(T−1) for any 1≤ i≤ r.

iii) For any 1≤ i≤ r,

β′⊥S(λ̂i)β · x̂i,T =−β′⊥
( 1
T −p

Y ′−1ε

)
µ−1

∆ µ∆,−1βx̂i,T +op(1).

Proof) We proceed in steps.

Step 1: β̂T =Op(1)
We first show that β̂T =Op(1). This follows from the normalization condition

β̂′TS−1β̂T = Ir.
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We transform S−1 in the same manner as in the preceding theorem; defining MT =
(β′⊥S−1β⊥)−1 as above, so that MT = op(1), note that

ζ =

 β′S−1β β′S−1β⊥M
′
T

MTβ
′
⊥S−1β MTβ

′
⊥S−1β⊥M

′
T

=

Ir O

O MT

 β′
β′⊥

S−1
(
β β⊥

)Ir O

O MT

 .
Letting LL′ = ζ be the Cholesky decomposition of ζ, we can now see that

β̂′TS−1β̂T = β̂′T

 β′
β′⊥

−1Ir O

O M−1
T

LL′
Ir O

O M−1
T

(β β⊥

)−1
β̂T = Ir,

or, defining

δ̂T = L′

Ir O

O M−1
T

(β β⊥

)−1
β̂T ,

we have

δ̂′T δ̂T = Ir.

This means that the columns of δ̂T are orthonormal and have norm 1 for any T ∈N+,
so that

∥∥∥δ̂T ∥∥∥≤√r and thus δ̂T =Op(1). Furthermore,

β̂T =
(
β β⊥

)Ir O

O MT

(L′)−1 · δ̂T ,

where Ir O

O MT

=Op(1)

because MT = op(1). Furthermore, since

ζ
p→

µ−1 O

O In−r

 ,
a nonsingular matrix, ζ−1 =Op(1) and (L′)−1, being the Cholesky factor of ζ−1, is also
Op(1). Therefore, β̂T is the product of a nonrandom matrix

(
β β⊥

)
and three Op(1)

matrices, so that it is also Op(1).

Since x̂T = (β′β)−1β′β̂T , by implication x̂T =Op(1) as well.
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Step 2: ŷi,T =Op(T−1)
Recall that the columns of

ĈT = S
1
2 ′
−1β̂T = S

1
2 ′
−1

(
β̂1,T · · · β̂r,T

)
are eigenvectors of S−

1
2
−1 S

′
∆,−1S

−1
∆ S∆,−1S

− 1
2 ′
−1 corresponding to the eigenvalues λ̂1, · · · , λ̂r.

Therefore, for any 1≤ i≤ r,

S
− 1

2
−1 S

′
∆,−1S

−1
∆ S∆,−1 · β̂i,T = λ̂i ·S

1
2 ′
−1β̂i,T ,

or equivalently,

S(λ̂i) · β̂i,T =
[
λ̂iS−1−S′∆,−1S

−1
∆ S∆,−1

]
β̂i,T = 0.

For any 1≤ i≤ r,

β̂i,T = βx̂i,T +β⊥ŷi,T

and the equations

β′S(λ̂i)β · x̂i,T +β′S(λ̂i)β⊥ · ŷi,T = 0

β′⊥S(λ̂i)β · x̂i,T +β′⊥S(λ̂i)β⊥ · ŷi,T = 0

hold. From the asymptotic results for QMLE and the consistency results for the eigen-
values shown above,

β′S(λ̂i)β = λ̂i ·β′S−1β−β′S′∆,−1S
−1
∆ S∆,−1β =Op(1),

β′S(λ̂i)β⊥ = λ̂i ·β′S−1β⊥−β′S′∆,−1S
−1
∆ S∆,−1β⊥ =Op(1)

β′⊥S(λ̂i)β = λ̂i ·β′⊥S−1β−β′⊥S′∆,−1S
−1
∆ S∆,−1β =Op(1)

1
T
β′⊥S(λ̂i)β⊥ = λ̂i ·

β′⊥S−1β⊥
T

− 1
T
β′⊥S

′
∆,−1S

−1
∆ S∆,−1β⊥

d→ λi ·β′⊥Λ
(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′β⊥,

where λi > 0 is the ith largest solution to the equation
∣∣∣λµ−1−β′µ′∆,−1µ

−1
∆ µ∆,−1β

∣∣∣= 0.
By implication,

( 1
T
β′⊥S(λ̂i)β⊥

)−1
=Op(1)

as well.
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We showed above that x̂T =Op(1). Therefore,

T ŷi,T =−
( 1
T
β′⊥S(λ̂i)β⊥

)−1
β′⊥S(λ̂i)β · x̂i,T =Op(1),

which tells us that

ŷi,T =Op(T−1).

By implication,

β′S(λ̂i)β · x̂i,T =−β′S(λ̂i)β⊥ · ŷi,T =Op(T−1)

as well.

Step 3: x̂−1
T =Op(1)

Using the normalization condition, we can see that

Ir = β̂′TS−1β̂T = (βx̂T +β⊥ŷT )′S−1 (βx̂T +β⊥ŷT )

= x̂′T ·β′S−1β · x̂T + x̂′T ·β′S−1β⊥ · ŷT + ŷ′T ·β′⊥S−1β · x̂T + ŷ′T ·β′⊥S−1β⊥ · ŷT .

Since ŷT =Op(T−1) and x̂T =Op(1),

x̂′T ·β′S−1β⊥ · ŷT = x̂′T ·
( 1
T
β′S−1β⊥

)
·T ŷT = op(1)

since β′S−1 =Op(1). Similarly,

ŷ′T ·β′⊥S−1β⊥ · ŷT = T ŷ′T ·
( 1
T 2β

′
⊥S−1β⊥

)
·T ŷT = op(1)

since β′⊥S−1β⊥ =Op(T ). It follows that

Ir = β̂′TS−1β̂T = x̂′T ·β′S−1β · x̂T +op(1).

It follows that

x̂′T ·β′S−1β · x̂T
p→ Ir.

Because the determinant is a continuous function, by the continuous mapping theorem
we have

|x̂T |2 ·
∣∣β′S−1β

∣∣ p→ |Ir|= 1.
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|β′S−1β|
p→ |µ−1|> 0, so

|x̂T |
p→
( 1
|µ−1|

) 1
2
> 0.

The elements of the adjugate of a matrix A are polynomials of the elements of A.
Therefore, the adjugate of a random matrix that is bounded in probability is also
bounded in probability. We just showed that 1

|x̂T | =Op(1), so

x̂−1
T = 1

|x̂T |
adj(x̂T ) =Op(1).

Step 4: An Expression for β′⊥S(λ̂i)β · x̂i,T
The final result follows by noting that

β′⊥S
′
∆,−1−β′⊥S−1βα

′ = β′⊥

[ 1
T −p

Y ′−1MX(∆Y −Y−1 ·βα′)
]

= β′⊥

[ 1
T −p

Y ′−1MX(X ·Γ +ε)
]

= β′⊥

( 1
T −p

Y ′−1ε

)
−β′⊥

( 1
T −p

Y ′−1X

)( 1
T −p

X ′X

)−1( 1
T −p

X ′ε

)
.

Since 1
T−pX

′ε= op(1),

β′⊥S
′
∆,−1−

(
β′⊥S−1β

)
α′ = β′⊥

( 1
T −p

Y ′−1ε

)
+op(1).

The asymptotic results for QMLE tell us that

α′ = µ−1
−1(µ∆,−1β)′,

and β′S−1β and S∆,−1β is consistent for µ−1 and µ∆,−1β, so

β′⊥S
′
∆,−1−β′⊥S−1β(β′S−1β)−1β′S′∆,−1 = β′⊥

( 1
T −p

Y ′−1ε

)
+op(1),

where we used the fact that S−1β is Op(1). Therefore, for any 1≤ i≤ r,

β′⊥S(λ̂i)β · x̂i,T = λ̂i ·β′⊥S−1β · x̂i,T −β′⊥S′∆,−1S
−1
∆ S∆,−1β · x̂i,T

= λ̂i ·β′⊥S−1β · x̂i,T −β′⊥S−1β(β′S−1β)−1β′S′∆,−1S
−1
∆ S∆,−1β · x̂i,T

−β′⊥
( 1
T −p

Y ′−1ε

)
S−1

∆ S∆,−1β · x̂i,T +op(1)
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= β′⊥S−1β
(
β′S−1β

)−1
[
λ̂i ·β′S−1β−β′S′∆,−1S

−1
∆ S∆,−1β

]
· x̂i,T

−β′⊥
( 1
T −p

Y ′−1ε

)
S−1

∆ S∆,−1β · x̂i,T +op(1)

= β′⊥S−1β
(
β′S−1β

)−1
β′S(λ̂i)β · x̂i,T

−β′⊥
( 1
T −p

Y ′−1ε

)
S−1

∆ S∆,−1β · x̂i,T +op(1).

We saw above that β′S(λ̂i)β · x̂i,T =Op(T−1) and thus op(1), so that

β′⊥S(λ̂i)β · x̂i,T =−β′⊥
( 1
T −p

Y ′−1ε

)
S−1

∆ S∆,−1β · x̂i,T +op(1).

Finally, since S−1
∆

p→ µ−1
∆ and S∆,−1β

p→ µ∆,−1β, we have

β′⊥S(λ̂i)β · x̂i,T =−β′⊥
( 1
T −p

Y ′−1ε

)
µ−1

∆ µ∆,−1β · x̂i,T +op(1).

Q.E.D.

The preceding lemma can be directly used to establish several consistency results:

Theorem (Consistency of Parameter Estimates)
Maintain assumptions A1 to A3, and suppose that r > 0. Then, the following hold true:

i) The cointegration space is consistently estimated:

β⊥ŷT =Op(T−1).

ii) Π̂T = α̂T · β̂′T is a consistent estimator for Π:

Π̂T
p→Π = αβ′.

iii) Σ̂T is a consistent estimator for Σ:

Σ̂T
p→ Σ.

iv) Γ̂T is a consistent estimator for Γ:

Γ̂T
p→ Γ.

Proof) i) This follows immediately from the preceding lemma. Heuristically, it tells us that
the projection of β̂T on the orthogonal complement of β vanishes as T →∞, so
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that, for large T , β̂T lies in the cointegrating space with probability close to 1.

ii) Note that

β̂T = βx̂T +β⊥ŷT ,

so that

β̂T x̂
−1
T −β = β⊥ŷT x̂

−1
T =Op(T−1),

since ŷT =Op(T−1) and x̂T =Op(1). Therefore,

Π̂T = α̂T β̂
′
T =

( 1
T −p

R′∆R−1

)
β̂T

[
β̂′T

( 1
T −p

R′−1R−1

)
β̂T

]−1
β̂′T

= S∆,−1β̂T
(
β̂′TS−1β̂T

)−1
β̂′T

= S∆,−1β̂T x̂
−1
T

(
x̂−1′
T β̂′TS−1β̂T x̂

−1
T

)−1
x̂−1′
T β̂′T

p→ µ∆,−1βµ
−1
−1β

′ = αβ′ = Π.

iii) Similarly to the preceding result,

Σ̂T = S∆−S∆,−1β̂T
(
β̂′TS−1β̂T

)−1
β̂′TS

′
∆,−1

= S∆−S∆,−1β̂T x̂
−1
T

(
x̂−1′
T β̂′TS−1β̂T x̂

−1
T

)−1
x̂−1′
T β̂′TS

′
∆,−1

p→ µ∆−µ∆,−1βµ
−1
−1β

′µ∆,−1

= Σ +µ∆,−1βα
′−µ∆,−1βα

′ = Σ.

iv) Finally, using the consistency of Π̂T , we can see that

Γ̂T = Γ + (X ′X)−1X ′Y−1
(
Π′− Π̂′T

)
+ (X ′X)−1X ′ε

= Γ +
( 1
T
X ′X

)−1( 1
T
X ′Y−1

)(
Π′− Π̂′T

)
+
( 1
T
X ′X

)−1( 1
T
X ′ε

)
p→ Γ,

since
(

1
TX

′X
)−1

=Op(1), 1
TX

′Y−1 =Op(1), Π′− Π̂′T = op(1) and 1
TX

′ε= op(1).

Q.E.D.
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That β̂T x̂−1
T −β =Op(T−1) can also be expressed as

β̂T −βx̂T =Op(T−1).

This is reminiscent of the result in factor models that the factor estimates are consistent only for
a rotation of the true factors. As in factor models, because the cointegrating relationships are
non-unique, our estimates of the cointegrating relationships collected in β̂T is consistent only
for a rotation of the true cointegrating basis β. In this sense, too, is the cointegrating space
consistently estimated.
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5.4.7 Testing for the Cointegrating Rank

Here we state and derive the limiting distribution of two test statistics designed to test for the
cointegrating rank r. To this end, we first derive the limiting distribution of the last n−r sample
canonical correlations, λ̂r+1, · · · , λ̂n, under the assumption that the true cointegration rank is
0< r < n.

It turns out that λ̂r+1, · · · , λ̂n converge at a rate of T to their limiting distributions. The
formal statement and proof are given below:

Theorem (Asymptotic Distribution of Eigenvalues)
Maintain assumptions A1 to A3. Then,

(T λ̂r+1, · · · ,T λ̂n) d→ (η1, · · · ,ηn−r),

where η1 ≥ ·· · ≥ ηn−r are the ordered eigenvalues that solve the equation∣∣∣∣∣λ ·
∫ 1

0
Wn−r(s)Wn−r(s)′ds−

(∫ 1

0
Wn−r(s)dWn−r(s)′

)(∫ 1

0
Wn−r(s)dWn−r(s)′

)′∣∣∣∣∣= 0,

or equivalently, the ordered eigenvalues of the positive definite valued random matrix

(∫ 1

0
Wn−r(s)dWn−r(s)′

)′(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)−1(∫ 1

0
Wn−r(s)dWn−r(s)′

)
.

In addition,

T

 n∑
i=r+1

λ̂i

 d→ tr
[(∫ 1

0
Wn−r(s)dWn−r(s)′

)′(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)−1(∫ 1

0
Wn−r(s)dWn−r(s)′

)]
.

Proof) The Case r = 0
Again, we deal with the case where there is no cointegrating relationships, so that r= 0.
In this case, T λ̂1 ≥ ·· · ≥ T λ̂n > 0 are the ordered solutions to the eigenvalue equation∣∣∣∣λ( 1

T
S−1

)
−S′∆,−1S

−1
∆ S∆,−1

∣∣∣∣= 0.

Letting F be the weak limit of S∆,−1, the continuous mapping theorem tells us that
T λ̂1 ≥ ·· · ≥ T λ̂n > 0 converge weakly to the solutions of the equation∣∣∣∣λ ·Γ(1)−1Σ

1
2

(∫ 1

0
Wn(s)Wn(s)′ds

)
Σ

1
2 ′Γ(1)−1′−F ′µ−1

∆ F

∣∣∣∣= 0.

Since µ∆ = Σ and α⊥ = Σ− 1
2 ′ when r = 0, the above equation can be written as∣∣∣∣λ ·Γ(1)−1Σ

1
2 ′
(∫ 1

0
Wn(s)Wn(s)′ds

)
Σ

1
2 Γ(1)−1′−F ′α⊥α′⊥F

∣∣∣∣= 0.
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Since F ′α⊥ and

Γ(1)−1Σ
1
2

(∫ 1

0
Wn(r)dWn(r)′

)

are both limits of S′∆,−1α⊥ when r = 0, the uniqueness of weak limits tells us that they
are identically distributed and thus that T λ̂1, · · · ,T λ̂n converge weakly to the solutions
of the equation∣∣∣∣λ ·Γ(1)−1Σ

1
2

(∫ 1

0

W
n(s)Wn(s)′ds

)
Σ

1
2 ′Γ(1)−1′−Γ(1)−1Σ

1
2

(∫ 1

0

W
n(r)dWn(r)′

)(∫ 1

0

W
n(r)dWn(r)′

)′
Σ

1
2 ′Γ(1)−1′

∣∣∣∣ = 0,

or equivalently, the equation∣∣∣∣∣λ ·
∫ 1

0
Wn(s)Wn(s)′ds−

(∫ 1

0
Wn(r)dWn(r)′

)(∫ 1

0
Wn(r)dWn(r)′

)′∣∣∣∣∣= 0.

The Case r > 0
Note that (T λ̂n)−1 ≥ ·· · ≥ (T λ̂1)−1 > 0 are the ordered solutions to the equation∣∣∣∣ 1T S−1−η ·S′∆,−1S

−1
∆ S∆,−1

∣∣∣∣= 0.

As above, we can use the fact that
(
β β⊥

)
is nonsingular to conclude that (T λ̂n)−1 ≥

·· · ≥ (T λ̂1)−1 > 0 are also the ordered solutions to the eigenvalue equation∣∣∣∣∣∣
 β′S−1β

T
β′S−1β⊥

T
β′⊥S−1β

T

β′⊥S−1β⊥
T

−µ ·
 β′S′∆,−1S

−1
∆ S∆,−1β β′S′∆,−1S

−1
∆ S∆,−1β⊥

β′⊥S
′
∆,−1S

−1
∆ S∆,−1β β′⊥S

′
∆,−1S

−1
∆ S∆,−1β⊥

∣∣∣∣∣∣= 0.

Note that β′S′∆,−1S
−1
∆ S∆,−1β β′S′∆,−1S

−1
∆ S∆,−1β⊥

β′⊥S
′
∆,−1S

−1
∆ S∆,−1β β′⊥S

′
∆,−1S

−1
∆ S∆,−1β⊥


d→

β′µ′∆,−1µ
−1
∆ µ∆,−1β β′µ′∆,−1µ

−1
∆ F

F ′µ−1
∆ µ∆,−1β F ′µ−1

∆ F

 ,
a positive definite matrix, where F is the limiting distribution of S∆,−1β⊥, and likewise, β′S−1β

T
β′S−1β⊥

T
β′⊥S−1β

T

β′⊥S−1β⊥
T

 p→

O O

O β′⊥Λ
(∫ 1

0 W
n(r)Wn(r)′dr

)
Λ′β⊥

 .
By the continuity of ordered eigenvalues,

(
(T λ̂n)−1, · · · ,(T λ̂1)−1

)
converge in distribu-

tion to the ordered solutions of the equation
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∣∣∣∣∣∣
O O

O β′⊥Λ
(∫ 1

0 W
n(r)Wn(r)′dr

)
Λ′β⊥

−η ·
β′µ′∆,−1µ

−1
∆ µ∆,−1β β′µ′∆,−1µ

−1
∆ F

F ′µ−1
∆ µ∆,−1β F ′µ−1

∆ F

∣∣∣∣∣∣= 0.

The matrix on the right is positive definite, so the solutions to this equation are non-
negative and real valued (they are the eigenvalues of a positive semidefinite matrix). If
η > 0 is a non-zero solution to the above equation, it is also a solution to the equation

0 =
∣∣η ·β′µ′∆,−1µ

−1
∆ µ∆,−1β

∣∣
×
∣∣∣∣β′⊥Λ

(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′β⊥−η ·F ′

[
µ−1

∆ −µ
−1
∆ µ∆,−1β

(
β′µ′∆,−1µ

−1
∆ µ∆,−1β

)−1
β′µ′∆,−1µ

−1
∆

]
F

∣∣∣∣.
Since the first term is always non-zero, it follows that any non-zero solutions to the
eigenvalue equation of interest must also solve the equation∣∣∣∣β′⊥Λ

(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′β⊥−η ·F ′

[
µ−1

∆ −µ
−1
∆ µ∆,−1β

(
β′µ′∆,−1µ

−1
∆ µ∆,−1β

)−1
β′µ′∆,−1µ

−1
∆

]
F

∣∣∣∣= 0.

This equation has n− r positive roots, so the equation

∣∣∣∣∣∣
O O

O β′⊥Λ
(∫ 1

0 W
n(r)Wn(r)′dr

)
Λ′β⊥

−η ·
β′µ′∆,−1µ

−1
∆ µ∆,−1β β′µ′∆,−1µ

−1
∆ F

F ′µ−1
∆ µ∆,−1β F ′µ−1

∆ F

∣∣∣∣∣∣= 0

must have n− r positive solutions and r solutions equal to 0. It follows that

(
(T λ̂r)−1, · · · ,(T λ̂1)−1

)
p→ (0, · · · ,0),

where the convergence is in probability because the limit is non-random.

It remains to find the non-zero roots to the above equation. Note that

µ−1
∆ −µ

−1
∆ µ∆,−1β

(
β′µ′∆,−1µ

−1
∆ µ∆,−1β

)−1
β′µ′∆,−1µ

−1
∆

= µ−1
∆ −µ

−1
∆ αµ−1

(
µ−1α

′µ−1
∆ αµ−1

)−1
µ−1α

′µ−1
∆

= µ−1
∆

(
In−α

(
α′µ−1

∆ α
)−1

α′µ−1
∆

)
= µ−1

∆ (In−Pα(µ∆))−1 = Σ−1 (In−Pα(Σ))−1 = α⊥α
′
⊥

where the last two equality follows from results shown earlier. Therefore, the non-zero
solutions to the eigenvalue equation are also solutions to the equation∣∣∣∣β′⊥Λ

(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′β⊥−η ·F ′α⊥α⊥′F

∣∣∣∣= 0.

Since β′⊥F ′α⊥ and

β′⊥Λ
(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′α⊥

are both limits of S′∆,−1α⊥, the uniqueness of weak limits tells us that they are identi-

332



cally distributed and thus that (T λ̂n)−1, · · · ,(T λ̂r+1)−1 converge weakly to the solutions
of the equation∣∣∣∣∣β′⊥Λ

(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′β⊥−η ·β′⊥Λ

(∫ 1

0
Wn(s)dWn(s)′

)
Σ

1
2 ′α⊥α

′
⊥

(∫ 1

0
Wn(s)dWn(s)′

)′
Λ′β⊥

∣∣∣∣∣= 0.

Since

β⊥Λ
(∫ 1

0
Wn(s)dWn(s)′

)
Σ

1
2 ′α⊥ ∼ (β′⊥β⊥)(α′⊥Γ(1)β⊥)−1

(∫ 1

0
Wn−r(s)dWn−r(s)′

)

β′⊥Λ
(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′β⊥ ∼ (β′⊥β⊥)(α′⊥Γ(1)β⊥)−1

(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)
(β′⊥Γ(1)′α⊥)−1(β′⊥β⊥),

we can say that (T λ̂n)−1, · · · ,(T λ̂r+1)−1 converge weakly to the solutions η̃1 ≥ ·· · ≥
η̃n−r > 0 of the equation∣∣∣∣∣
∫ 1

0
Wn−r(s)Wn−r(s)′ds−η ·

(∫ 1

0
Wn−r(s)dWn−r(s)′

)(∫ 1

0
Wn−r(s)dWn−r(s)′

)′∣∣∣∣∣= 0.

Letting η1 ≥ ·· · ≥ ηn−r > 0 be the ordered solutions to the equation∣∣∣∣∣λ ·
∫ 1

0
Wn−r(s)Wn−r(s)′ds−

(∫ 1

0
Wn−r(s)dWn−r(s)′

)(∫ 1

0
Wn−r(s)dWn−r(s)′

)′∣∣∣∣∣= 0,

since ηi = 1
η̃i

for any 1≤ i≤ n−r, it follows from the continuous mapping theorem that
the first claim of the theorem holds true.

To see the second claim, note that the trace of a positive definite matrix is given as the
sum of its eigenvalues. Therefore, since η1 ≥ ·· · ≥ ηn−r > 0 are the ordered eigenvalues
of the positive-definite valued random matrix

(∫ 1

0
Wn−r(s)dWn−r(s)′

)′(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)−1(∫ 1

0
Wn−r(s)dWn−r(s)′

)
,

we can see that

T

(
n∑

i=r+1
λ̂i

)
d→
n−r∑
i=1

ηi

= tr

[(∫ 1

0
Wn−r(s)dWn−r(s)′

)′(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)−1(∫ 1

0
Wn−r(s)dWn−r(s)′

)]
.

Q.E.D.

We now consider two tests for the cointegrating rank.
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The Trace Test

Initially, consider testing the null hypothesis

H0 : rank(Π)≤ r < n

against the alternative hypothesis

H1 : rank(Π)> r

for some 0≤ r < n. The likelihood ratio test statistic is given as

L̂RT =−2
[
sup
H0

l(α,β,Π,Σ)− sup
H1

l(α,β,Π,Σ)
]

= n(T −p)
(

log(2π) + 1 + 1
n

log |S∆|
)

+ (T −p)
r∑
i=1

log
(
1− λ̂i

)
−
[
n(T −p)

(
log(2π) + 1 + 1

n
log |S∆|

)
+ (T −p)

n∑
i=1

log
(
1− λ̂i

)]

=−(T −p)
n∑

i=r+1
log
(
1− λ̂i

)
.

Suppose the null hypothesis is true. The stochastic version of a second order Taylor approxima-
tion around 0 tells us that

log
(
1− λ̂i

)
=−λ̂i−

1
2 λ̃

2
i ,

where λ̃i is a convex combination of 0 and λ̂i. Since T λ̂i =Op(1), it follows that

(T −p)λ̂2
i = T −p

T 2 (T λ̂i)2 = op(1)

and, by implication, (T −p)λ̃2
i = op(1) as well. Therefore,

L̂RT = (T −p)
n∑

i=r+1
λ̂i+

1
2

n∑
i=r+1

(T −p)λ̃2
i

= (T −p)
n∑

i=r+1
λ̂i+op(1).

Slutsky’s theorem now tells us that

L̂RT
d→ tr

[(∫ 1

0
Wn−r(s)dWn−r(s)′

)′(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)−1(∫ 1

0
Wn−r(s)dWn−r(s)′

)]
.

This is called the trace test due to the form of the limiting distribution.
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The Maximum Eigenvalue Test

An alternative to the trace test considers testing the null hypothesis

H0 : rank(Π) = r

against the alternative hypothesis

H1 : rank(Π) = r+ 1

sequentially for r = 0, · · · ,n−1, stopping only when the null can no longer be rejected. In this
case, the likelihood ratio test statistic is given as

L̂RT =−2[l(α,β,Π,Σ |H0)− l(α,β,Π,Σ |H1)]

= n(T −p)
(

log(2π) + 1 + 1
n

log |S∆|
)

+ (T −p)
r∑
i=1

log
(
1− λ̂i

)

−
[
n(T −p)

(
log(2π) + 1 + 1

n
log |S∆|

)
+ (T −p)

r+1∑
i=1

log
(
1− λ̂i

)]
=−(T −p) log

(
1− λ̂r+1

)
.

Suppose the null is true. Relying on the same second degree Taylor approximation as before tells
us that

L̂RT = (T −p)λ̂r+1 +op(1) d→ η1,

where η1 is the largest eigenvalue of

(∫ 1

0
Wn−r(s)dWn−r(s)′

)′(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)−1(∫ 1

0
Wn−r(s)dWn−r(s)′

)
.

This is called the maximum eigenvalue test, again due to the form of the limiting distribution.
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5.4.8 Asymptotic Distribution of QMLEs

Here we derive the asymptotic distribution of the QMLEs of β,Π and Γ. We first use a previous
result to establish the limit of β̂T , or at least a rotation of it.

Theorem (Asymptotic Distribution of Cointegrating Relationships)
Maintain assumptions A1 to A3, and suppose that r > 0. Then,

T
(
β̂T x̂

−1
T −β

)
d→ β⊥

(∫ 1

0
Bn−r(s)Bn−r(s)′ds

)−1 ∫ 1

0
Bn−r(s)dV n(s)′,

where {Bn−r(s)}s∈[0,1] and {V n(s)}s∈[0,1] are n−r and n-dimensional Brownian motions defined
as

Bn−r(s) = (β′⊥β⊥)(α′⊥Γ(1)β⊥)−1 ·Wn−r(s)

V n(s) = µ−1
(
β′µ′∆,−1µ

−1
∆ µ∆,−1β

)−1
β′µ′∆,−1µ

−1
∆ Σ

1
2 ·Wn(s)

for any s ∈ [0,1].

Proof) For any 1≤ i≤ r, recall that

β̂i = β · x̂i,T +β⊥ŷi,T

and

β′⊥S(λ̂i)β · x̂i,T +β′⊥S(λ̂i)β⊥ · ŷi,T = 0

Therefore,

T
(
β̂i−βx̂i,T

)
= T ·β⊥ŷi,T

=−β⊥
( 1
T
β′⊥S(λ̂i)β⊥

)−1
β′⊥S(λ̂i)β · x̂i,T .

We saw above that

1
T
β′⊥S(λ̂i)β⊥

d→ λi ·β′⊥Λ
(∫ 1

0
Wn(r)Wn(r)′dr

)
Λ′β⊥,

where λi > 0 is the ith largest solution to
∣∣∣λµ−1−β′µ′∆,−1µ

−1
∆ µ∆,−1β

∣∣∣= 0;

by implication,

( 1
T
β′⊥S(λ̂i)β⊥

)−1
d→ λ−1

i (β′⊥β⊥)−1(β′⊥Γ(1)′α⊥)
(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)−1
(α′⊥Γ(1)β⊥)(β′⊥β⊥)−1.
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It was also shown that

β′⊥S(λ̂i)β · x̂i,T =−β′⊥
( 1
T −p

Y ′−1ε

)
µ−1

∆ µ∆,−1βx̂i,T +op(1).

Therefore,

T
(
β̂i−βx̂i,T

)
= β⊥

( 1
T
β′⊥S(λ̂i)β⊥

)−1
β′⊥

( 1
T −p

Y ′−1ε

)
µ−1

∆ µ∆,−1β · x̂i,T +op(1)

= β⊥(β′⊥β⊥)−1(β′⊥Γ(1)′α⊥)
(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)−1
(α′⊥Γ(1)β⊥)(β′⊥β⊥)−1β′⊥

×
( 1
T −p

Y ′−1ε

)
µ−1

∆ µ∆,−1β · x̂i,Tλ−1
i +op(1).

Defining

Dr =


λ1 · · · 0
... . . . ...
0 · · · λr,


we can now see that

T
(
β̂T −βx̂T

)
= β⊥(β′⊥β⊥)−1(β′⊥Γ(1)′α⊥)

(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)−1
(α′⊥Γ(1)β⊥)(β′⊥β⊥)−1β′⊥

×
( 1
T −p

Y ′−1ε

)
µ−1

∆ µ∆,−1β · x̂TD−1
r +op(1).

Recall that, for any 1≤ i≤ r,

β′S(λ̂i)β · x̂i,T = β′S−1β · x̂i,T λ̂i−β′S′∆,−1S
−1
∆ S∆,−1β · x̂i,T = op(1).

Since

β′S−1β · λ̂i−µ−1 ·λi = op(1)

β′S′∆,−1S
−1
∆ S∆,−1β−β′µ′∆,−1µ

−1
∆ µ∆,−1β = op(1)

and x̂i,T =Op(1), we have

µ−1 · x̂i,Tλi−β′µ′∆,−1µ
−1
∆ µ∆,−1β · x̂i,T = op(1)

as well, so that

µ−1 · x̂TDr−β′µ′∆,−1µ
−1
∆ µ∆,−1β · x̂T = op(1).
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x̂T =Op(1) and x̂−1
T =Op(1), so that

x̂TD
−1
r x̂−1

T
p→
(
β′µ′∆,−1µ

−1
∆ µ∆,−1β

)−1
µ−1.

This reveals that

T
(
β̂T x̂

−1
T −β

)
= β⊥(β′⊥β⊥)−1(β′⊥Γ(1)′α⊥)

(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)−1
(α′⊥Γ(1)β⊥)(β′⊥β⊥)−1β′⊥

×
( 1
T −p

Y ′−1ε

)
µ−1

∆ µ∆,−1β · x̂TD−1
r x̂−1

T +op(1)

= β⊥(β′⊥β⊥)−1(β′⊥Γ(1)′α⊥)
(∫ 1

0
Wn−r(s)Wn−r(s)′ds

)−1
(α′⊥Γ(1)β⊥)(β′⊥β⊥)−1β′⊥

×
( 1
T −p

Y ′−1ε

)
µ−1

∆ µ∆,−1β
(
β′µ′∆,−1µ

−1
∆ µ∆,−1β

)−1
µ−1 +op(1).

Finally, we know that

1
T −p

Y ′−1ε
d→ Λ

(∫ 1

0
Wn(r)dWn(r)′

)
Σ

1
2 ′,

so

β′⊥

( 1
T −p

Y ′−1ε

)
µ−1

∆ µ∆,−1β
(
β′µ′∆,−1µ

−1
∆ µ∆,−1β

)−1
µ−1

d→ (β′⊥β⊥)(α′⊥Γ(1)β⊥)−1
(∫ 1

0
Wn−r(s)dWn(s)′

)
Σ

1
2 ′µ−1

∆ µ∆,−1β
(
β′µ′∆,−1µ

−1
∆ µ∆,−1β

)−1
µ−1.

Therefore,

T
(
β̂T x̂

−1
T −β

)
d→ β⊥

(∫ 1

0
Bn−r(s)Bn−r(s)′ds

)−1 ∫ 1

0
Bn−r(s)dV n(s)′,

where the processes {Bn−r(s)}s∈[0,1] and {V n(s)}s∈[0,1] are the n−r and n-dimensional
Brownian motions defined above.

Q.E.D.
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Estimating Structural Break Points
Bai and Perron (1998)

In this paper, the authors estimate multiple break points at once under the assumption of struc-
tural changes in regression coefficients, and also present a way to test for the number of break
points. In this chapter we deal with the former problem, namely the estimation of multiple break
points through simultaneous and sequential means.

Assuming that there are m break points T1, · · · ,Tm in the sample, so that there are m+1 regimes,
the model in question is given as

yt = x′t︸︷︷︸
1×p

· β︸︷︷︸
p×1

+ z′t︸︷︷︸
1×k

· δj︸︷︷︸
k×1

+ut

for any Tj−1 + 1 ≤ t ≤ Tj and 1 ≤ j ≤m+ 1, where T0 = 0 and Tm+1 = T . Due to the presence
of regime-independent coefficients β, this is a model of partial structural change; if p= 0, then
every slope coefficient becomes regime-dependent.
Our objective is to estimate the structural break dates T1, · · · ,Tm. The true dates and parametes
are denoted with the superscript 0.

There exists a convenient way to organize the data. Define Y = (y1, · · · ,yT )′, X = (x1, · · · ,xT )′,
U = (u1, · · · ,uT )′ and

Z̄ = diag(Z1, · · · ,Zm+1) where Zi =


z′Tj−1+1

...
z′Tj

 for any 1≤ j ≤m+ 1,

with δ = (δ1, · · · , δm+1)′.
Then, the model can be expressed in matrix form as

Y︸︷︷︸
T×1

= X︸︷︷︸
T×p

β︸︷︷︸
p×1

+ Z̄︸︷︷︸
T×k(m+1)

δ︸︷︷︸
k(m+1)×1

+ U︸︷︷︸
T×1

.
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6.1 Estimation of the Break Points

To estimate the break points T1, · · · ,Tm, the authors use a least squares method. Specifically, for
some q > 0, denote by Bq,T the set of all potential break dates {Tj}= (T1, · · · ,Tm) in {1, · · · ,T}
such that |Tj−Tj−1| ≥ q for 1 ≤ j ≤ m+ 1. For any {Tj} ∈ Bq,T , define the sum of squared
deviations given break points {Tj} as

ST ({Tj},β,δ) =
m+1∑
j=1

Tj∑
t=Tj−1+1

(yt−x′tβ−z′tδj)2

= (Y −Xβ− Z̄δ)′(Y −Xβ− Z̄δ).

The minimizers of the above function with respect to β,δ are given by the least squares estimates
β̂({Tj})
δ̂({Tj})

=

X ′X X ′Z̄

Z̄ ′X Z̄ ′Z̄

−1X ′
Z̄ ′

Y,
which implies that

β̂({Tj}) =
(
X ′MZ̄X

)−1
X ′MZ̄Y

δ̂({Tj}) =
(
Z̄ ′MX Z̄

)−1
Z̄ ′MXY,

where MZ̄ and MX are the residual makers associated with Z̄ and X.
Defining V ({Tj}) = (X,Z̄), the concentrated sum of squared deviations is then given by

S̃T ({Tj}) = ST ({Tj}, β̂({Tj}), δ̂({Tj}) = Y ′MV ({Tj})Y.

We define our break point estimators {T̂j} = (T̂1, · · · , T̂m) as the solutions to the minimzation
problem

min
{Tj}∈Bq,T

S̃T ({Tj}) = Y ′MV ({Tj})Y

subject to W = (X,Z̄).

Our estimators of β and δ are then given by

β̂ = β̂({T̂j})

δ̂ = δ̂({T̂j}).
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6.2 Assumptions

The following are the assumptions made to ensure that the estimators of the break points are
consistent and well-behaved estimators.

Formally, we assume the following:

(1) Existence of Break Fractions
We assume that there exist fractions 0< λ0

1 < · · ·< λ0
m < 1 such that

T 0
j = bTλ0

jc

for any 1≤ j ≤m and T ∈N+.
It follows that

T 0
j

T
≤ λ0

j <
T 0
j

T
+ 1
T

for any T ∈N+, impyling that T 0
j

T

p→ λ0
j as T →∞ for each 1≤ j ≤m+ 1.

(2) Asymptotic Properties of Sample Covariances
Denote wt = (x′t,z′t)′ for any t∈N+, and define W = (w1, · · · ,wT )′. Let W̄ 0 be the diagonal
partition of W at the true break points T 0

1 , · · · ,T 0
m, that is,

W̄ 0 = diag(W 0
1 , · · · ,W 0

m+1) where W 0
i =


w′
T 0
j−1+1
...

w′
T 0
j

 for any 1≤ i≤m+ 1.

Then, we assume that, for any 1≤ j ≤m+ 1,

1
T 0
j −T 0

j−1
W 0′
j W

0
j = 1

T 0
j −T 0

j−1

T 0
j∑

t=T 0
j−1+1

wtw
′
t
p→Q0

j =

Q0
j,x Q0

j,xz

Q0
j,zx Q0

j,z


for some positive definite (p+k)× (p+k) matrix Q0

j .
By implication,

1
T

T∑
t=1

wtw
′
t =

m+1∑
j=1

T 0
j −T 0

j−1
T

·

 1
T 0
j −T 0

j−1

T 0
j∑

t=T 0
j−1+1

wtw
′
t


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for any T ∈N+; as such, we can conclude that

1
T

T∑
t=1

wtw
′
t
p→
m+1∑
j=1

(
λ0
j −λ0

j−1

)
Q0
j :=Q,

where Q is positive definite because each Q0
j is.

(3) Identification Condition for Break Points
We assume that there exists some l0 > 0 and ρmin > 0 such that, for any l > l0 and 1≤ j ≤
m+ 1, the minimum eigenvalues of

Aj−1,l = 1
l

T 0
j−1+l∑

t=T 0
j−1+1

wtw
′
t and A∗jl = 1

l

T 0
j∑

t=T 0
j −l

wtw
′
t

are greater than or equal to ρmin. In other words, the matrices Aj−1,l and A∗jl are positive
definite matrices that are bounded away from 0.

(4) Nonsingularity of Regressors
For any i < l such that l− i≥ k,

Bil =
l∑
t=i

ztz
′
t

is nonsingular.

(5) Uncorrelated Errors
Since we are interested in investigating structural breaks when the regressors include lagged
versions of the dependent variable, we assume that the error process {ut}t∈Z is a Martingale
Difference Sequence (MDS) with respect to the filtration

F = {Ft | t ∈ Z}

on Z where

Ft = σ ({ws}s∈Z∪{us}s≤t)
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for each t ∈ Z, such that

sup
t∈Z

E|ut|4+c <+∞

for some c > 0.
Furthermore, by the definition of an MDS E [ut] = 0, and we assume that E

[
u2
t | Ft−1

]
= σ2

for any t ∈ Z.

(6) An FCLT for Martingale Difference Sequences
Let the stochastic process {vt}t∈Z be defined as

vt = wtut

for any t ∈ Z. We assumed above that {ut}t∈Z is an MDS with respect to the filtration F ;
since vt = wtut is Ft-measurable for any t ∈ Z by the definition of Ft, and

E [vt | Ft−1] = wt ·E [ut | Ft−1] (wt is Ft−1-measurable)

= wt ·0 = 0, (MDS property of ut)

it follows that {vt}t∈Z is also an MDS with respect to F .
For any 1 ≤ i, j ≤ p+ k, {Vij,t = (u2

t −σ2)witwjt}t∈Z is a mutually uncorrelated sequence
of random variables with finite mean; to see uncorrelatedness, note that, for any t,s ∈ Z
such that s < t,

E [Vij,tVij,s] = E [E [Vij,t | Ft−1] ·Vij,s]

= E
[(
E
[
u2
t | Ft−1

]
−σ2

)
witwjtVij,s

]
= 0,

and for finite mean, note that

E [Vij,t] = E
[(
E
[
u2
t | Ft−1

]
−σ2

)
witwjt

]
= 0.

It follows from the WLLN for uncorrelated sequences that

1
T

T∑
t=1

Vij,t
p→ 0,

and because this holds for any 1≤ i, j ≤ p+k, we have

1
T

T∑
t=1

(u2
t −σ2)wtw′t

p→O.
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Finally,

σ2 · 1
T

T∑
t=1

wtw
′
t
p→ σ2Q

by assumption (2), so we have

1
T

T∑
t=1

vtv
′
t = 1

T

T∑
t=1

u2
twtw

′
t
p→ σ2Q.

Therefore, it makes sense to assume that {vt}t∈Z follows some sort of FCLT result. Specif-
ically, define the stochastic processes {ST (r)}r∈[0,1] and with continuous paths as

ST (r) = 1√
T

bTrc∑
t=1

vt+
1√
T

(Tr−bTrc)vbTrc+1

for any r∈ [0,1]. Letting ST be the random function in Cp+k[0,1] corresponding to {ST (r)}r∈[0,1],
we assume that

ST
d→ σQ

1
2 ·W p+k,

where Q 1
2 is the Cholesky factor of Q.

Defining {VT (r)}r∈[0,1] as the process collecting the lower k rows of {ST (r)}r∈[0,1] and VT

the random function corresponding to {VT (r)}r∈[0,1], it follows that

VT (r) = 1√
T

bTrc∑
t=1

ztut+
1√
T

(Tr−bTrc)zbTrc+1ubTrc+1

for any r ∈ [0,1] and

VT
d→Bk

for some k-dimensional random function Bk corresponding to a Brownian motion process.
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(7) Uniform Convergence of Sample Covariances
Assuming that the regressor zt contains lagged values of the dependent variable, so that
{zt}t∈Z is not strictly exogenous, our break point estimators are found by solving the
minimzation problem

min
{Tj}∈BεT,T

S̃T ({Tj}) = Y ′MV ({Tj})Y

subject to W = (X,Z̄)

for some ε > 0.

We assume that

1
T

bTrc∑
t=bTsc+1

ztz
′
t
p→ Ω(r)−Ω(s)

uniformly on the set of all (r,s) ∈ [0,1]2, where Ω(0) = O, Ω(r)−Ω(s) is positive definite
for any 0≤ s < r ≤ 1, and

sup
(v,u)∈[0,1]2, v−u≥ε

∥∥∥(Ω(v)−Ω(u))−1
∥∥∥<+∞.

Note that, for any T ∈N+ such that T ≥ k−1
ε , 1

T

∑bTrc
t=bTsc+1 ztz

′
t is positive definite for any

(r,s) ∈ [0,1]2 such that r−s≥ ε by assumption (4), since

bTrc−bTsc ≥ Tr+ 1−Ts= T (r−s) + 1≥ εT + 1≥ k

in this case.

345



6.3 Preliminary Results

The following are results that Bai and Perron establish prior to the proof:

i) Rate of Convergence of X0′
j MZjX

0
j

For any 1≤ j ≤m+ 1, define X0
1 , · · · ,X0

m+1 and Z0
1 , · · · ,Z0

m+1 as

X0
j =


x′
T 0
j−1+1
...
x′
T 0
j

 and Z0
j =


z′
T 0
j−1+1
...
z′
T 0
j


for any 1≤ j ≤m+ 1, so that W 0

j = (X0
j ,Z

0
j ).

Choose any 1≤ j ≤m+ 1, and note that

X0′
j MZ0

j
X0
j

T
= 1
T
X0′
j X

0
j −

1
T
X0′
j Z

0
j

( 1
T
Z0′
j Z

0
j

)−1 1
T
Z0′
j X

0
j

=
T 0
j −T 0

j−1
T

· 1
T 0
j −T 0

j−1

T 0
j∑

t=T 0
j−1+1

xtx
′
t

−
T 0
j −T 0

j−1
T

 1
T 0
j −T 0

j−1

T 0
j∑

t=T 0
j−1+1

xtz
′
t


 1
T 0
j −T 0

j−1

T 0
j∑

t=T 0
j−1+1

ztz
′
t


−1 1

T 0
j −T 0

j−1

T 0
j∑

t=T 0
j−1+1

ztx
′
t

 .
By assumption (1),

T 0
j

T

p→ λ0
j

as T →∞ for any 1≤ j ≤m+ 1. This, together with assumption (2), implies that

X0′
j MZ0

j
X0
j

T

p→ (λ0
j −λ0

j−1)
(
Q0
j,x−Q0

j,xz ·Q
0,−1
j,z ·Qj,zx

)
,

where the right hand side is nonsingular due to the nonsingularity of Qj . Therefore,

X0′
j MZ0

j
X0
j

T
and

X0′
j MZ0

j
X0
j

T

−1

are Op(1).
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ii) The Sizes of Submatrices
Let there be full rank matrices S1,V1 with m and n columns, respectively, and r rows.
Now let S,V be full rank matrices with the same number of columns as S1,V1, but now
with r+s rows. We will show that S′MV S−S′1MV1S1 is positive semidefinite.

To this end, let the matrices S2,V2, with the same number of columns as S1,V1, collect the
lower s rows of S and V . Choose any α ∈ Rm, and define y = Sα ∈ Rr+s, y1 = S1α ∈ Rr

and y2 = S2α ∈ Rs, so that y = (y′1,y′2)′.
We approach this problem in terms of projections. Defining

b̂= (V ′V )−1V ′y and b̂1 = (V ′1V1)−1V ′1y1,

it is easy to see that V b̂ is the projection of y on the column space of V and V1b̂1 the
projection of y1 on the column space of V1. By definition,

∣∣∣y1−V1b̂1
∣∣∣2 = inf

b∈Rn
|y1−V1b|2.

Note that

∣∣∣y−V b̂∣∣∣2 =

∣∣∣∣∣∣
y1−V1b̂

y2−V2b̂

∣∣∣∣∣∣
2

=
∣∣∣y1−V1b̂

∣∣∣2 +
∣∣∣y2−V2b̂

∣∣∣2 ≥ ∣∣∣y1−V1b̂
∣∣∣2.

Suppose that
∣∣∣y−V b̂∣∣∣2 < ∣∣∣y1−V1b̂1

∣∣∣2. Then,

∣∣∣y1−V1b̂
∣∣∣2 ≤ ∣∣∣y1−V1b̂

∣∣∣2 +
∣∣∣y2−V2b̂

∣∣∣2 =
∣∣∣y−V b̂∣∣∣2 < ∣∣∣y1−V1b̂1

∣∣∣2,
which contradicts the assumption above that

∣∣∣y1−V1b̂1
∣∣∣2 is the infimum of |y1−V1b|2 over

the set of all n-dimensional vectors b. Therefore, it must be the case that
∣∣∣y1−V1b̂1

∣∣∣2 ≤ ∣∣∣y−V b̂∣∣∣2.
Since

∣∣∣y1−V1b̂1
∣∣∣2 = (y1−V1b̂1)′(y1−V1b̂1) = y′1MV1y1

and
∣∣∣y−V b̂∣∣∣2 = y′MV y, we finally have the inequality

α′(S′MV S−S′1MV1S1)α= y′MV y−y′1MV1y1

=
∣∣∣y−V b̂∣∣∣2− ∣∣∣y1−V1b̂1

∣∣∣2 ≥ 0.

This holds for any α ∈ Rm, so S′MV S−S′1MV1S1 is positive semidefinite.
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iii) Rate of Convergence of X ′MZ̄X over Bε,T,T
We will now show that

sup
{Tj}∈BεT,T

∥∥∥∥∥
(
X ′MZ̄X

T

)−1∥∥∥∥∥=Op(1).

under the stated assumptions.

Choose any {Tj} ∈BεT,T , so that 0<T1 < · · ·<Tm < 1 and Tj−Tj−1 ≥ εT for any 1≤ j ≤
m+1, and construct Z̄ as the diagonal partition of Z = (z1, · · · ,zT )′ according to {Tj}. It
follows that

PZ̄ = Z̄(Z̄ ′Z̄)−1Z̄ ′,

where Z̄ ′Z̄ is invertible for T large enough so that εT > k due to assumption (4). Using
block matrix operations, we now have

PZ̄ =


Z1 · · · O
... . . . ...
O · · · Zm+1



Z ′1Z1 · · · O

... . . . ...
O · · · Z ′m+1Zm+1


−1

Z ′1 · · · O
... . . . ...
O · · · Z ′m+1



=


Z1(Z ′1Z1)−1Z ′1 · · · O

... . . . ...
O · · · Zm+1(Z ′m+1Zm+1)−1Z ′m+1

= diag
(
PZ1 , · · · ,PZm+1

)
.

and as such,

MZ̄ = IT −PZ̄ = diag
(
MZ1 , · · · ,MZm+1

)
.

Define

Xj =


x′Tj−1+1

...
x′Tj


for any 1≤ j ≤m+ 1, so that

X ′MZ̄X =
(
X ′1 · · · X ′m+1

)
MZ1 · · · O

... . . . ...
O · · · MZm+1




X1
...

Xm+1

=
m+1∑
j=1

X ′jMZjXj .
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Let R1, · · · ,Rm+1 be the regimes under {Tj}, that is,

Rj = {Tj−1 + 1, · · · ,Tj}

for any 1≤ j ≤m+ 1. Let R0
1, · · · ,R0

m+1 be the true regimes.
Suppose that none of the true regimes are contained in a single regime under {Tj}, that
is, suppose that, for any 1≤ j ≤m+ 1, there does not exist an 1≤ i≤m+ 1 such that

R0
j ⊂Ri.

In this case, because T 0
0 = T0 = 1, T 0

1 ≥ T1 +1, since otherwise R0
1 will be contained in R1.

Now suppose, for some 1 ≤ j < m+ 1, that T 0
j ≥ Tj + 1. Then, it must be the case that

T 0
j+1 ≥ Tj+1 +1, since otherwise, the regime R0

j+1 = {T 0
j +1, · · · ,T 0

j+1} would be contained
in Rj+1 = {Tj+1, · · · ,Tj+1}.
By induction, T 0

m+1 = T ≥ Tm+1 + 1 = T + 1, a contradiction. Therefore, it must be the
case that there exists at least one 1≤ j ≤m+ 1 and 1≤ i≤m+ 1 such that R0

j ⊂Ri.
This implies that Ti−1 + 1 ≤ T 0

j−1 + 1 < T 0
j ≤ Ti, so that (X0

j ,Z
0
j ) is contained within

(Xi,Zi). By the above result on submatrices, it follows that

X ′iMZiXi−X0′
j MZ0

j
X0
j

is positive semidefinite, and because each X ′lMZlXl is positive semidefinite, we can see
that

X ′MZ̄X−X
0′
j MZ0

j
X0
j =

m+1∑
l=1

X ′lMZlXl−X0′
j MZ0

j
X0
j

is also positive semidefinite.
Since X0

jMZ0
j
X0
j is a positive definite matrix, this implies that X ′MZ̄X must have full

rank (otherwise, there exists a vector α such that α′X ′MZ̄α = 0 < α′X0
jMZ0

j
X0
j α, a con-

tradiction). Therefore, X ′MZ̄X is nonsingular and by extension positive definite.
Furthermore, the above implies that

X0′
j MZ0

j
X0
j

T

−1

−
(
X ′MZ̄X

T

)−1

is positive semidefinite, and as such the maximum eigenvalue of
(
X0′
j MZ0

j
X0
j

)−1
is larger

than or equal to that of (X ′MZ̄X)−1. Since the operator norm of positive semidefinite
matrices is equal to their maximum eigenvalue, it follows that

∥∥∥∥∥
(
X ′MZ̄X

T

)−1∥∥∥∥∥≤
∥∥∥∥∥∥∥
X0′

j MZ0
j
X0
j

T

−1
∥∥∥∥∥∥∥.
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The above holds for any {Tj} ∈BεT,T for some 1≤ j ≤m+ 1, so we have

sup
{Tj}∈BεT,T

∥∥∥∥∥
(
X ′MZ̄X

T

)−1∥∥∥∥∥≤ max
1≤j≤m+1

∥∥∥∥∥∥∥
X0

jMZ0
j
X0
j

T

−1
∥∥∥∥∥∥∥.

We saw above that, for each 1≤ j ≤m+ 1,
X0

jMZ0
j
X0
j

T

−1

=Op(1),

so it follows that

sup
{Tj}∈BεT,T

∥∥∥∥∥
(
X ′MZ̄X

T

)−1∥∥∥∥∥=Op(1).
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iv) Rate of Convergence of X ′MZ̄Z̄
0 over BεT,T

We will show here that

sup
{Tj}∈BεT,T

∥∥∥∥∥X ′MZ̄Z̄
0

T

∥∥∥∥∥=Op(1).

Choose any {Tj} ∈ BεT,T , and let Z̄ be the diagonal partition of Z according to {Tj}.
Then, the residual maker MZ̄ = IT − Z̄(Z̄ ′Z̄)−1Z̄ ′ is symmetric and idempotent, so that
it is positive semidefinite (its eigenvalues are either 1 or 0 due to idempotence) with
rank(MZ̄) = tr(MZ̄) = T − (p+k)> 0 for large enough T . Therefore, the operator norm of
MZ̄ is equal to its largest eigenvalue, which is 1, and it follows that

∥∥∥∥∥X ′MZ̄Z̄
0

T

∥∥∥∥∥≤ 1
T
‖X‖ ·

∥∥∥Z̄0
∥∥∥≤ tr

( 1
T
X ′X

) 1
2

tr
( 1
T
Z̄0′Z̄0

) 1
2
.

This holds for any {Tj} ∈BεT,T , so

sup
{Tj}∈BεT,T

∥∥∥∥∥X ′MZ̄Z̄
0

T

∥∥∥∥∥≤ tr
( 1
T
X ′X

) 1
2

tr
( 1
T
Z̄0′Z̄0

) 1
2
.

Since

1
T
X ′X =

m+1∑
j=1

T 0
j−1−T 0

j

T

 1
T 0
j−1−T 0

j

T 0
j∑

t=T 0
j−1+1

xtx
′
t

 p→
m+1∑
j=1

(
λ0
j −λ0

j−1

)
Q0
j,x

and similarly,

1
T
Z0′
j Z

0 =
T 0
j−1−T 0

j

T

 1
T 0
j−1−T 0

j

T 0
j∑

t=T 0
j−1+1

ztz
′
t

 p→
(
λ0
j −λ0

j−1

)
Q0
j,z

for any 1≤ j ≤m+ 1 by assumption (2), together with the condition

∥∥∥∥ 1
T
Z̄0′Z̄

∥∥∥∥≤ m+1∑
j=1

∥∥∥∥ 1
T
Z0′
j Z

0
j

∥∥∥∥
we can see that 1

TX
′X and 1

T Z̄
0′Z̄0 are Op(1). It follows that

sup
{Tj}∈BεT,T

∥∥∥∥∥X ′MZ̄Z̄
0

T

∥∥∥∥∥=Op(1).
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v) Rate of Convergence of PZ̄U over BεT,T

We will show here that

sup
{Tj}∈BεT,T

|PZ̄U |
2 =Op(1).

First note that, for any {Tj} ∈BεT,T , we can write

|PZ̄U |
2 = U ′PZ̄U = U ′Z̄(Z̄ ′Z̄)−1Z̄ ′U

=
( 1√

T
Z̄ ′U

)′( 1
T
Z̄ ′Z̄

)−1( 1√
T
Z̄ ′U

)
,

so that

U ′PZ̄U =
∣∣U ′PZ̄U ∣∣
≤
∣∣∣∣ 1√
T
Z̄ ′U

∣∣∣∣2 ·
∥∥∥∥∥
( 1
T
Z̄ ′Z̄

)−1
∥∥∥∥∥.

We now examine the terms on the right hand side one by one.

Step 1: The
∣∣∣ 1√

T
Z̄ ′U

∣∣∣2 Ordinate
Since

Z̄ ′U =


Z ′1 · · · O
... . . . ...
O · · · Z ′m+1



u1
...
uT

=


∑T1
t=1 ztut

...∑T
t=Tm+1 ztut

 ,

we have

∣∣∣∣ 1√
T
Z̄ ′U

∣∣∣∣2 =
m+1∑
j=1

∣∣∣∣∣∣ 1√
T

Tj∑
t=Tj−1+1

ztut

∣∣∣∣∣∣
2

=
m+1∑
j=1

∣∣∣∣VT (TjT
)
−VT

(
Tj−1
T

)∣∣∣∣2,
where the last equality follows because T Tj

T = bT Tj
T c for any 0≤ j ≤m+ 1.

Define the set

Jε = {(v,u) ∈ [0,1]2 | v−u≥ ε}.

By the way in which we defined BεT,T , Tj −Tj−1 > εT , which implies Tj
T −

Tj−1
T > ε; as
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such,
∣∣∣∣ 1√
T
Z̄ ′U

∣∣∣∣2 ≤ (m+ 1) · sup
(v,u)∈Jε

|VT (v)−VT (u)|2.

Because this holds for any {Tj} ∈BεT,T , we in fact have

sup
{Tj}∈BεT,T

∣∣∣∣ 1√
T
Z̄ ′U

∣∣∣∣2 ≤ (m+ 1) · sup
(v,u)∈Jε

|VT (v)−VT (u)|2.

We now show that the function of VT defined above is continuous on Cn[0,1], and therefore
that the term itself is Op(1) by the FCLT assumption and the continuous mapping theorem.

Let the function g : Cn[0,1]→ R+ be defined as

g(f) = sup
(v,u)∈Jε

|f(v)−f(u)|

for any f ∈ Cn[0,1].
Now choose any f,h ∈ Cn[0,1], and assume without loss of generality that

g(f) = sup
(v,u)∈Jε

|f(v)−f(u)|> sup
(v,u)∈Jε

|h(v)−h(u)|= g(h).

Then, define f̄ : Jε→ R+ as

f̄(v,u) = |f(v)−f(u)|

for any (v,u) ∈ Jε. Jε is closed and bounded, so it is compact, and f̄ is a continuous
function on the compact set Jε; by the extreme value theorem, there exists a (v∗,u∗) ∈ Jε
such that

|f(v∗)−f(u∗)|= f̄(v∗,u∗) = sup
(v,u)∈Jε

f̄(v,u) = sup
(v,u)∈Jε

|f(v)−f(u)|.

Therefore,

|g(f)−g(h)|= g(f)−g(h) = sup
(v,u)∈Jε

|f(v)−f(u)|− sup
(v,u)∈Jε

|h(v)−h(u)|

= |f(v∗)−f(u∗)|− sup
(v,u)∈Jε

|h(v)−h(u)|

≤ |f(v∗)−f(u∗)|− |h(v∗)−h(u∗)|

≤ |f(v∗)−f(u∗)− (h(v∗)−h(u∗))|

≤ |f(v∗)−h(v∗)|+ |f(u∗)−h(u∗)| ≤ 2 · ‖f −h‖C .
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Therefore, g is Lipschitz continuous on Cn[0,1], and by the continuous mapping theorem,

sup
(v,u)∈Jε

|VT (v)−VT (u)|2 = g(VT ) d→ g(W k) = sup
(v,u)∈Jε

∣∣∣W k(v)−W k(u)
∣∣∣2.

It follows that

sup
(v,u)∈Jε

|VT (v)−VT (u)|2 =Op(1)

and as such that

sup
{Tj}∈BεT,T

∣∣∣∣ 1√
T
Z̄ ′U

∣∣∣∣2 =Op(1).

Step 2: The
∥∥∥∥( 1

T Z̄
′Z̄
)−1

∥∥∥∥ Ordinate
Because

1
T
Z̄ ′Z̄ =


1
T Z
′
1Z1 · · · O
... . . . ...
O · · · 1

T Z
′
m+1Zm+1

 ,

we have

( 1
T
Z̄ ′Z̄

)−1
=


(

1
T Z
′
1Z1

)−1
· · · O

... . . . ...
O · · ·

(
1
T Z
′
m+1Zm+1

)−1


and thus

∥∥∥∥∥
( 1
T
Z̄ ′Z̄

)−1
∥∥∥∥∥≤

m+1∑
j=1

∥∥∥∥∥∥∥
 1
T

Tj∑
t=Tj−1+1

ztz
′
t

−1
∥∥∥∥∥∥∥

≤ (m+ 1) · sup
(v,u)∈Jε

∥∥∥∥∥∥∥
 1
T

bTvc∑
t=bTuc+1

ztz
′
t

−1
∥∥∥∥∥∥∥,

where the inverse functions exist for large enough T by assumption (4) because we restrict
our attention to (v,u) ∈ [0,1]2 such that v−u≥ ε. This holds for any {Tj} ∈BεT,T , so

sup
{Tj}∈BεT,T

∥∥∥∥∥
( 1
T
Z̄ ′Z̄

)−1
∥∥∥∥∥≤ (m+ 1) · sup

(v,u)∈Jε

∥∥∥∥∥∥∥
 1
T

bTvc∑
t=bTuc+1

ztz
′
t

−1
∥∥∥∥∥∥∥.
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By assumption (7), which states that

1
T

bTrc∑
t=bTsc+1

ztz
′
t
p→ Ω(r)−Ω(s)

as T →∞ uniformly on Jε,

(m+ 1) sup
(v,u)∈Jε

∥∥∥∥∥∥∥
 1
T

bTvc∑
t=bTuc+1

ztz
′
t

−1
∥∥∥∥∥∥∥

p→ (m+ 1) sup
(v,u)∈Jε

∥∥∥(Ω(v)−Ω(u))−1
∥∥∥,

where the inverse matrices on the right hand side exist because v−u≥ varepsilon, which
means Q(v)−Q(u) is positive definite by assumption (7).
Since the value on the right hand side above is assumed to be finite, we can conclude that

sup
{Tj}∈BεT,T

∥∥∥∥∥
( 1
T
Z̄ ′Z̄

)−1
∥∥∥∥∥=Op(1).

It now follows that

sup
{Tj}BεT,T

|PZ̄U |
2 ≤

(
sup

{Tj}∈BεT,T

∣∣∣∣ 1√
T
Z̄ ′U

∣∣∣∣2
)(

sup
{Tj}∈BεT,T

∥∥∥∥∥
(
q

T
Z̄ ′Z̄

)−1
∥∥∥∥∥
)
,

and as such that

sup
{Tj}BεT,T

|PZ̄U |
2 =Op(1).
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vi) Rate of Convergence of X ′PZ̄U and Z̄0′PZ̄U over BεT,T
We will show here that

sup
{Tj}∈BεT,T

∣∣∣∣ 1√
T
X ′PZ̄U

∣∣∣∣, sup
{Tj}∈BεT,T

∣∣∣∣ 1√
T
Z̄0′PZ̄U

∣∣∣∣=Op(1).

This follows easily from the preceding result.
Note that ∣∣∣∣ 1√

T
X ′PZ̄U

∣∣∣∣≤ |PZ̄U | ·∥∥∥∥ 1√
T
X

∥∥∥∥
for any {Tj} ∈BεT,T . Thus,

sup
{Tj}∈BεT,T

∣∣∣∣ 1√
T
X ′PZ̄U

∣∣∣∣≤ (sup{Tj}∈BεT,T |PZ̄U |) · tr(X ′XT
) 1

2

We already know that both terms on the right hand side are Op(1), so that

sup
{Tj}∈BεT,T

∣∣∣∣ 1√
T
X ′PZ̄U

∣∣∣∣=Op(1).

Likewise,

sup
{Tj}∈BεT,T

∣∣∣∣ 1√
T
Z̄0′PZ̄U

∣∣∣∣≤ (sup{Tj}∈BεT,T |PZ̄U |) · tr
(
Z̄0′Z̄0

T

) 1
2

,

and by the same reasoning as above,

sup
{Tj}∈BεT,T

∣∣∣∣ 1√
T
Z̄0′PZ̄U

∣∣∣∣=Op(1).
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6.4 Consistency of the Break Fraction Estimators

We first prove that the estimators 0< λ̂1 < · · ·< λ̂m < 1 of the break fractions, which are defined
as

λ̂j = T̂j
T

for any 1≤ j ≤m, are consistent for the true break fractions λ0
1, · · · ,λ0

m.
This is shown in several steps:

6.4.1 Step 1: Convergence of the Sum of Squared Differences

For any 1≤ t≤ T , define ût and dt as

ût = yt−x′tβ̂−z′tδ̂j and

dt = x′t

(
β̂−β0

)
+z′t

(
δ̂j− δ0

l

)
for any 1 ≤ t ≤ T such that T̂j−1 + 1 ≤ t ≤ T̂j and T 0

l−1 + 1 ≤ t ≤ T 0
l for some 1 ≤ j ≤ m+ 1,

1 ≤ l ≤m+ 1. That is, ût is the residual for the tth observation and dt the difference between
the fitted values and their true counterparts.
By definition, β̂({T 0

j }) and δ̂({T 0
j }) minimize the sum of squared deviations

ST ({T 0
j },β,δ) =

m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

(yt−x′tβ−z′tδj)2

with respect to β,δ. Therefore,

S̃T ({T 0
j }) = ST ({T 0

j }, β̂({T 0
j }), δ̂({T 0

j }))≤ ST ({T 0
j },β0, δ0) =

T∑
t=1

u2
t .

In addition, by definition {T̂j} is the minimizer of S̃T ({Tj}) on BεT,T . Since {T 0
j } ∈ BεT,T due

to our assumption that

λ0
j −λ0

j−1 > ε

for any 1≤ j ≤m+ 1, it follows that

T∑
t=1

û2
t = S̃T ({T̂j})≤ S̃T ({T 0

j })≤
T∑
t=1

u2
t .
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Note that ut− ût = dt for any 1≤ t≤ T . By implication,

T∑
t=1

u2
t ≥

T∑
t=1

û2
t =

T∑
t=1

u2
t +

T∑
t=1

d2
t −2 ·

T∑
t=1

utdt,

so that

0≤ 1
T

T∑
t=1

d2
t ≤ 2 · 1

T

T∑
t=1

utdt.

An easy consequence is that ∣∣∣∣∣ 1T
T∑
t=1

utdt

∣∣∣∣∣= 1
T

T∑
t=1

utdt.

We wll now show that this term converges to 0 in probability.

Define Ẑ1, · · · , Ẑm+1 as

Ẑj =


z′
T̂j−1+1

...
z′
T̂j


for any 1≤ j ≤m+1, and let Z̄∗ = diag

(
Ẑ1, · · · , Ẑm+1

)
. Let Z0

1 , · · · ,Z0
m+1 and Z̄0 be the popu-

lation counterparts.
Note that

T∑
t=1

utdt =
(

T∑
t=1

utx
′
t

)
(β̂−β0) +

m+1∑
j=1

 T̂j∑
t=T̂j−1+1

utz
′
t

 δ̂j−m+1∑
j=1

 T 0
j∑

t=T 0
j−1+1

utz
′
t

δ0
j

= U ′X(β̂−β0) +U ′


Ẑ1 · δ̂1

...
Ẑm+1 · δ̂m+1

−U ′


Z0
1 · δ1
...

Z0
m+1 · δm+1


= U ′X(β̂−β0) +U ′Z̄∗δ̂−U ′Z0δ0,

so we have

1
T

T∑
t=1

utdt = 1
T
U ′X(β̂−β0) + 1

T
U ′Z̄∗δ̂− 1

T
U ′Z0δ0.
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For any fixed {Tj} ∈ BεT,T , let Z̄ be the diagonal partition of Z under {Tj}. Now we have the
following results:

• sup
{Tj}∈BεT,T

∣∣∣ 1
T U
′X(β̂({Tj})−β0)

∣∣∣= op(1)

By definition,

β̂({Tj}) =
(
X ′MZ̄X

)−1
X ′MZ̄Y

= β0 +
(
X ′MZ̄X

)−1
X ′MZ̄Z̄

0δ0 +
(
X ′MZ̄X

)−1
X ′MZ̄U.

It follows that

1
T
U ′X

(
β̂({Tj})−β0

)
= 1
T
U ′X

(
X ′MZ̄X

)−1
X ′MZ̄Z̄

0δ0 + 1
T
U ′X

(
X ′MZ̄X

)−1
X ′MZ̄U.

The first term above is majorized as

∣∣∣∣ 1T U ′X (X ′MZ̄X
)−1

X ′MZ̄Z̄
0δ0
∣∣∣∣≤ ∣∣∣∣ 1T U ′X

∣∣∣∣ ·
∥∥∥∥∥
(
X ′MZ̄X

T

)−1∥∥∥∥∥ ·
∥∥∥∥∥X ′MZ̄Z̄

0

T

∥∥∥∥∥ · ∣∣∣δ0
∣∣∣,

so that

sup
{Tj}∈BεT,T

∣∣∣∣ 1T U ′X (X ′MZ̄X
)−1

X ′MZ̄Z̄
0δ0
∣∣∣∣

≤
∣∣∣∣ 1T X ′U

∣∣∣∣ ·
(

sup
{Tj}∈BεT,T

∥∥∥∥∥
(
X ′MZ̄X

T

)−1∥∥∥∥∥
)
·
(

sup
{Tj}∈BεT,T

∥∥∥∥∥X ′MZ̄Z̄
0

T

∥∥∥∥∥
)
·
∣∣∣δ0
∣∣∣,

We already saw that all the terms on the right hand side are Op(1), except for
∣∣∣ 1
TX

′U
∣∣∣.

This term can be majorized as

∣∣∣∣ 1T X ′U
∣∣∣∣=

∣∣∣∣∣ 1T
T∑
t=1

xtut

∣∣∣∣∣≤
∣∣∣∣ 1√
T
ST (1)

∣∣∣∣,
and because

ST (1) d→N
(
0,σ2Q

)
by assumption (6) and the continuous mapping theorem, we can see that∣∣∣∣ 1T X ′U

∣∣∣∣= op(1).

Therefore,

sup
{Tj}∈BεT,T

∣∣∣∣ 1T U ′X (X ′MZ̄X
)−1

X ′MZ̄Z̄
0δ0
∣∣∣∣= op(1).
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On the other hand, the second term is majorized as

∣∣∣∣ 1T U ′X (X ′MZ̄X
)−1

X ′MZ̄U

∣∣∣∣≤ ∣∣∣∣ 1T U ′X
∣∣∣∣ ·
∥∥∥∥∥
(
X ′MZ̄X

T

)−1∥∥∥∥∥ ·
∣∣∣∣X ′MZ̄U

T

∣∣∣∣,
so that

sup
{Tj}∈BεT,T

∣∣∣∣ 1T U ′X (X ′MZ̄X
)−1

X ′MZ̄U

∣∣∣∣
≤
∣∣∣∣ 1T X ′U

∣∣∣∣ ·
(

sup
{Tj}∈BεT,T

∥∥∥∥∥
(
X ′MZ̄X

T

)−1∥∥∥∥∥
)
·
(

sup
{Tj}∈BεT,T

∣∣∣∣X ′MZ̄U

T

∣∣∣∣
)
.

The first term is op(1), and the second is Op(1). As for the third term,
∣∣∣∣X ′MZ̄U

T

∣∣∣∣≤ ∣∣∣∣ 1T X ′U
∣∣∣∣+ ∣∣∣∣ 1T X ′PZ̄U

∣∣∣∣
for any {Tj} ∈BεT,T , so that

sup
{Tj}∈BεT,T

∣∣∣∣X ′MZ̄U

T

∣∣∣∣≤ ∣∣∣∣ 1T X ′U
∣∣∣∣+ 1√

T

(
sup

{Tj}∈BεT,T

∣∣∣∣ 1√
T
X ′PZ̄U

∣∣∣∣
)

;

both terms are op(1), so

sup
{Tj}∈BεT,T

∣∣∣∣X ′MZ̄U

T

∣∣∣∣= op(1).

It follows that

sup
{Tj}∈BεT,T

∣∣∣∣ 1T U ′X (X ′MZ̄X
)−1

X ′MZ̄U

∣∣∣∣= op(1).

Putting these two results together,

sup
{Tj}∈BεT,T

∣∣∣∣ 1T U ′X
(
β̂({Tj})−β0

)∣∣∣∣= op(1).
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• sup
{Tj}∈BεT,T

∣∣∣ 1
T U
′
(
Z̄δ̂({Tj})− Z̄0δ0

)∣∣∣= op(1)

Using the fact that

δ̂({Tj}) =
(
Z̄ ′MX Z̄

)−1
Z̄ ′MXY

=
(
Z̄ ′MX Z̄

)−1
Z̄ ′MX Z̄

0δ0 +
(
Z̄ ′MX Z̄

)−1
Z̄ ′MXU,

we can see that

1
T
U ′
(
Z̄δ̂({Tj})− Z̄0δ0

)
= 1
T
U ′Z̄

(
Z̄ ′MX Z̄

)−1
Z̄ ′MX Z̄

0δ0 + 1
T
U ′Z̄

(
Z̄ ′MX Z̄

)−1
Z̄ ′MXU −

1
T
U ′Z̄0δ0

Note that

W̄ ′W̄ =

X ′
Z̄ ′

(XZ̄)=

X ′X X ′Z̄

Z̄ ′X Z̄ ′Z̄

 ,
so that the lower (2,2) block matrix in W̄ ′W̄ is given in two different ways:

(
Z̄ ′MX Z̄

)−1
=
(
Z̄ ′Z̄

)−1
+
(
Z̄ ′Z̄

)−1
Z̄ ′X

(
X ′MZ̄X

)−1
X ′Z̄

(
Z̄ ′Z̄

)−1
.

This implies that

Z̄
(
Z̄ ′MX Z̄

)−1
Z̄ ′MX =

[
IT +PZ̄X

(
X ′MZ̄X

)−1
X ′
]
PZ̄MX ,

and as such that

1
T
U ′Z̄

(
Z̄ ′MX Z̄

)−1
Z̄ ′MX

(
Z̄0δ0 +MXU

)
= 1
T
U ′
[
IT +PZ̄X

(
X ′MZ̄X

)−1
X ′
]
PZ̄MX

(
Z̄0δ0 +MXU

)
=
( 1√

T
U ′PZ̄MX + 1√

T
U ′PZ̄X

(
X ′MZ̄X

)−1
X ′PZ̄MX

)( 1√
T
Z̄0 · δ0 +MX ·

1√
T
U

)
.

Each term is majorized as follows:

∣∣∣∣ 1√
T
U ′PZ̄MX

∣∣∣∣≤ 1√
T

(
sup

{Tj}∈BεT,T

∣∣U ′PZ̄ ∣∣
)

∣∣∣∣ 1√
T
U ′PZ̄X

(
X ′MZ̄X

)−1
X ′PZ̄MX

∣∣∣∣≤ 1√
T

(
sup

{Tj}∈BεT,T

∣∣U ′PZ̄ ∣∣
)
·
∥∥∥∥ 1√

T
X

∥∥∥∥2

×
(

sup
{Tj}∈BεT,T

∥∥∥∥∥
(
X ′MZ̄X

T

)−1∥∥∥∥∥
)
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∣∣∣∣ 1√
T
Z̄0 · δ0

∣∣∣∣≤ ∥∥∥∥ 1√
T
Z̄0
∥∥∥∥ · ∣∣∣δ0

∣∣∣∣∣∣∣MX ·
1√
T
U

∣∣∣∣≤ ∣∣∣∣ 1√
T
U

∣∣∣∣.
The only term whose rates of convergence are unknown is 1√

T
U . But this can be easily

seen to be Op(1); for any δ > 0,

P
(∣∣∣∣∣ 1T

T∑
t=1

u2
t −σ2

∣∣∣∣∣> δ

)
≤ 1
δ2E

∣∣∣∣∣ 1T
T∑
t=1

(u2
t −σ2)

∣∣∣∣∣
2

= 1
T 2δ2

T∑
t=1

T∑
s=1

E
[
(u2
t −σ2)(u2

s−σ2)
]

= 1
T 2δ2

T∑
t=1

E
[
(u2
t −σ2)2

]
({u2

t −σ2}t∈Z is an MDS with respect to F)

≤ 1
T 2δ2

T∑
t=1

E
[
u4
t

]
≤ 1
Tδ2

(
sup
t∈Z

E
[
u4
t

])
.

Since supt∈ZE
[
u4
t

]
<+∞ by assumption,

lim
T→∞

P
(∣∣∣∣∣ 1T

T∑
t=1

u2
t −σ2

∣∣∣∣∣> δ

)
= 0,

and because this holds for any δ > 0,

∣∣∣∣ 1√
T
U

∣∣∣∣2 = 1
T

T∑
t=1

u2
t
p→ σ2.

Therefore,
∣∣∣ 1√

T
U
∣∣∣=Op(1), and we can conclude that

sup
{Tj}∈BεT,T

∣∣∣∣ 1√
T
U ′PZ̄MX

∣∣∣∣= op(1)

sup
{Tj}∈BεT,T

∣∣∣∣ 1√
T
U ′PZ̄X

(
X ′MZ̄X

)−1
X ′PZ̄MX

∣∣∣∣= op(1)∣∣∣∣ 1√
T
Z̄0 · δ0

∣∣∣∣=Op(1)∣∣∣∣MX ·
1√
T
U

∣∣∣∣=Op(1).

By implication,

sup
{Tj}∈BεT,T

∣∣∣∣ 1T U ′Z̄
(
Z̄ ′MX Z̄

)−1
Z̄ ′MX

(
Z̄0δ0 +MXU

)∣∣∣∣= op(1).
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Finally,

∣∣∣∣ 1T U ′Z̄0δ0
∣∣∣∣≤

∣∣∣∣∣ 1T
T∑
t=1

ztut

∣∣∣∣∣ · ∣∣∣δ0
∣∣∣.

Here, ∣∣∣∣∣ 1T
T∑
t=1

ztut

∣∣∣∣∣≤ 1√
T
|ST (1)|,

where ST (1) =Op(1), so we have ∣∣∣∣ 1T U ′Z̄0δ0
∣∣∣∣= op(1)

as well.

Putting all the pieces together,

sup
{Tj}∈BεT,T

∣∣∣∣ 1T U ′
(
Z̄δ̂({Tj})− Z̄0δ0

)∣∣∣∣
≤ sup
{Tj}∈BεT,T

∣∣∣∣ 1T U ′Z̄
(
Z̄ ′MX Z̄

)−1
Z̄ ′MX

(
Z̄0δ0 +MXU

)∣∣∣∣+ ∣∣∣∣ 1T U ′Z̄0δ0
∣∣∣∣= op(1).
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Therefore, we are able to conclude that

sup
{Tj}∈BεT,T

∣∣∣∣ 1T U ′X(β̂({Tj})−β0) + 1
T
U ′Z̄δ̂({Tj})−

1
T
U ′Z0δ0

∣∣∣∣= op(1),

and because {T̂j} ∈BεT,T , it follows that

∣∣∣∣∣ 1T
T∑
t=1

utdt

∣∣∣∣∣=
∣∣∣∣ 1T U ′X(β̂−β0) + 1

T
U ′Z̄∗δ̂− 1

T
U ′Z0δ0

∣∣∣∣= op(1).

For any δ > 0,

P
(∣∣∣∣∣ 1T

T∑
t=1

d2
t

∣∣∣∣∣> δ

)
= P

(
1
T

T∑
t=1

d2
t > δ

)

≤ P
(

1
T

T∑
t=1

utdt > δ

)
= P

(∣∣∣∣∣ 1T
T∑
t=1

utdt

∣∣∣∣∣> δ

)
,

and because the rightmost term goes to 0 as T →∞ by the definition of an op(1) process,

lim
T→∞

P
(∣∣∣∣∣ 1T

T∑
t=1

d2
t

∣∣∣∣∣> δ

)
= 0.

This holds for any δ > 0, so

1
T

T∑
t=1

d2
t
p→ 0.
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6.4.2 Step 2: Deriving a Contradiction from Inconsistency

In this section we will use the convergence result proven above to show that, if

min
1≤l≤m

∣∣∣λ̂l−λ0
j

∣∣∣ p→ 0

does not hold for some 1≤ j ≤m, then we have a contradiction. To make the notation clearer,
we explicitly state the dependence of the break fraction estimators λ̂j on the sample size T , as
λ̂T,j .
We again proceed in steps:

The Implication of Inconsistency

Suppose, for some 1≤ j ≤m, that

min
1≤l≤m

∣∣∣λ̂T,l−λ0
j

∣∣∣ p

6→ 0

By the definition of convergence in probability, there exists an η > 0 such that η < ε
2 and

P
(

min
1≤l≤m

∣∣∣λ̂T,l−λ0
j

∣∣∣> η

)
6→ 0,

as T →∞, and this in turn means that there exists a ε0 > 0 such that, for any T̄ ∈N+, there
exists a T ≥ T̄ such that

P
(

min
1≤l≤m

∣∣∣λ̂T,l−λ0
j

∣∣∣> η

)
≥ ε0.

This means that there exists a subsequence N of N+ such that

P
(

min
1≤l≤m

∣∣∣λ̂T,l−λ0
j

∣∣∣> η

)
≥ ε0.

for any T ∈N .

Characteristics of the Interval [T (λ0
j −η),T (λ0

j +η)]

We now investigate how large T must be for T 0
j to be the only true break point to fall in

[T (λ0
j −η),T (λ0

j +η)].
Since we assumed η < ε

2 ,

λ0
j −η > λ0

j −
ε

2 > λ0
j−1,

365



which in turn implies that

T
(
λ0
j −η

)
> Tλ0

j−1 ≥ bTλ0
j−1c= T 0

j−1.

Likewise,

λ0
j +η < λ0

j + ε

2 < λ0
j+1−

ε

2 ,

which implies that

T
(
λ0
j +η

)
< T ·λ0

j+1−T
ε

2;

for T such that T ε
2 > 1, or T > 2

ε , we now have

T
(
λ0
j +η

)
< T ·λ0

j+1−1≤ T 0
j+1.

This shows us that

[T (λ0
j −η),T (λ0

j +η)]⊂ [T 0
j−1 + 1,T 0

j+1]

if T > 2
ε .

Since

T 0
j = bTλ0

jc ∈ [Tλ0
j ,Tλ

0
j + 1),

if Tη > 1, then

Tλ0
j + 1< T

(
λ0
j +η

)
,

so that

T 0
j ∈ [T (λ0

j −η),T (λ0
j +η)].

Since T > 1
η implies T > 2

ε , it follows that, for any T > 1
η , T 0

j is the only true break point to be
contained in

[T (λ0
j −η),T (λ0

j +η)].
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Deriving the Contradiction

For T ∈N such that T > 1
η , let ω be an outcome contained in the event

m⋂
l=1
{
∣∣∣λ̂T,l−λ0

j

∣∣∣> η} ∈ H.

In this case,

λ̂T,l(ω) /∈ [λ0
j −η,λ0

j +η],

for any 1≤ l ≤m, and because

λ̂T,l(ω) = T̂T,l(ω)
T

for each 1≤ l ≤m, we have

T̂T,l(ω) /∈ [T (λ0
j −η),T (λ0

j +η)].

for any 1≤ l≤m. In other words, no estimated break point falls in the interval [T (λ0
j−η),T (λ0

j +
η)] under outcome ω.

Suppose that the above interval is contained in the ith regime under ω, so that

T̂i−1(ω) + 1≤ T (λ0
j −η)< T (λ0

j +η)≤ T̂i(ω).

Then, for any t ∈ [T (λ0
j − η),T (λ0

j + η)], since t ≤ Tλ0
j implies t ≤ T 0

j and t ≥ Tλ0
j + 1 implies

t > T 0
j , we have

dt(ω) =

xt(ω)′(β̂T (ω)−β0) +zt(ω)′(δ̂T,i(ω)− δ0
j ) if t ∈ [T (λ0

j −η),Tλ0
j ]

xt(ω)′(β̂T (ω)−β0) +zt(ω)′(δ̂T,i(ω)− δ0
j+1) if t ∈ [Tλ0

j + 1,T (λ0
j +η)]

.

Denoting [T (λ0
j − η),Tλ0

j ] = A1 and [Tλ0
j + 1,T (λ0

j + η)] = A2, and suppressing the dependence
on the outcome ω for notational brevity, we have

1
T

T∑
t=1

d2
t ≥

1
T

∑
t∈A1

d2
t + 1

T

∑
t∈A2

d2
t

= η ·

 β̂T −β0

δ̂T,i− δ0
j

′
 1
Tη

T 0
j∑

t=T 0
j −Tη

wtw
′
t


 β̂T −β0

δ̂T,i− δ0
j



+η ·

 β̂T −β0

δ̂T,i− δ0
j+1

′
 1
Tη

T 0
j +Tη∑

t=T 0
j +1

wtw
′
t


 β̂T −β0

δ̂T,i− δ0
j+1

 .
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For any d-dimensional vector α and a conformable positive semidefinite matrix A, letting A =
PDP ′ be the eigendecomposition of A,

α′Aα= α′PDP ′α=
d∑
i=1

Di ·
(
P ′α

)2
i

≥
(

min
1≤i≤d

Di

)( d∑
i=1

(
P ′α

)2
i

)

=
(

min
1≤i≤d

Di

)∣∣P ′α∣∣2 =
(

min
1≤i≤d

Di

)
· |α|2.

Here, min1≤i≤dDi is the smallest eigenvalue of A.
By the identification condition for the break points (assumption (3)), given that Tη > l0, the
minimum eigenvalues of

1
Tη

T 0
j∑

t=T 0
j −Tη

wtw
′
t and 1

Tη

T 0
j +Tη∑

t=T 0
j +1

wtw
′
t

are bounded below by ρmin > 0. Therefore,

1
T

T∑
t=1

d2
t ≥ η ·ρmin


∣∣∣∣∣∣
 β̂T −β0

δ̂T,i− δ0
j

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
 β̂T −β0

δ̂T,i− δ0
j+1

∣∣∣∣∣∣
2


≥ 1
2η ·ρmin ·

∣∣∣∣∣∣
 β̂T −β0

δ̂T,i− δ0
j

−
 β̂T −β0

δ̂T,i− δ0
j+1

∣∣∣∣∣∣
2

= 1
2η ·ρmin

∣∣∣δ0
j+1− δ0

j

∣∣∣2.

Define C = 1
2η ·ρmin > 0.

Since the above holds for any T ∈N such that T >max
(

1
η ,

l0
η

)
on the set

m⋂
l=1
{
∣∣∣λ̂T,l−λ0

j

∣∣∣> η},

it follows that

P
(
m⋂
l=1
{
∣∣∣λ̂T,l−λ0

j

∣∣∣> η

)
≤ P

(
1
T

T∑
t=1

d2
t >C

∣∣∣δ0
j+1− δ0

j

∣∣∣2) .
Since

m⋂
l=1
{
∣∣∣λ̂T,l−λ0

j

∣∣∣> η}= { min
1≤l≤m

∣∣∣λ̂T,l−λ0
j

∣∣∣> η}
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and

P
(

min
1≤l≤m

∣∣∣λ̂T,l−λ0
j

∣∣∣> η

)
≥ ε0

for any T ∈N , it follows that

ε0 ≤ P
(

1
T

T∑
t=1

d2
t >C

∣∣∣δ0
j+1− δ0

j

∣∣∣2)

for any large enough T in the subsequence N of N+. This contradicts the fact that

1
T

T∑
t=1

d2
t
p→ 0,

so it must be the case that

min
1≤l≤m

∣∣∣λ̂T,l−λ0
j

∣∣∣ p→ 0

for any 1≤ j ≤m.
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6.4.3 Step 3: Matching Estimators with True Break Fractions

Finally, it remains to show that, for any 1 ≤ j ≤m, λ̂j is the break fraction estimator that is
consistent for λ0

j . To make the proof simpler, we prove the result for the case where there are
three breaks, that is, m= 3.

We showed above that, for any 1≤ j ≤ 3,

min
1≤l≤3

∣∣∣λ̂l−λ0
j

∣∣∣ p→ 0,

so that, by definition,

lim
T→∞

P
(

min
1≤l≤3

∣∣∣λ̂l−λ0
j

∣∣∣> δ

)
= 0,

or equivalently,

lim
T→∞

P
(

min
1≤l≤3

∣∣∣λ̂l−λ0
j

∣∣∣≤ δ)= 1

for any δ > 0 and 1 ≤ j ≤ 3. This property allows us to first prove the consistency of λ̂1, and
then proceed forward until we reach λ̂3.

Preliminary Results

Defining

{∣∣∣λ̂l−λ0
j

∣∣∣≤ ε

2
}

=AT,lj

for 1≤ l, j ≤ 3, we will show that

P(AT,lj)→ 0

as T →∞ for any 1≤ l, j ≤m such that l > j.

• AT,31

If
∣∣∣λ̂3−λ0

1

∣∣∣≤ ε
2 , then

ε

2 ≥
∣∣∣λ̂3−λ0

1

∣∣∣≥ λ̂3−λ0
1

implies

λ̂3 ≤ λ0
1 + ε

2 < λ0
3−

3
2ε < λ0

3.
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This means that

λ̂1 < λ̂2 < λ̂3 < λ0
3,

so that

min
1≤l≤3

∣∣∣λ̂l−λ0
3

∣∣∣= ∣∣∣λ̂3−λ0
3

∣∣∣≥ ∣∣∣λ0
3−λ0

1

∣∣∣− ∣∣∣λ̂3−λ0
1

∣∣∣
> 2ε− ε2 = 3

2ε.

Therefore,

AT,1 ⊂
{

min
1≤l≤3

∣∣∣λ̂l−λ0
3

∣∣∣> 3
2ε
}
,

and as such

P(AT,1)≤ P
(

min
1≤l≤3

∣∣∣λ̂l−λ0
3

∣∣∣> 3
2ε
)
.

The right hand side goes to 0 as T →∞, so it follows that P(AT,1)→ 0 as well.

• AT,32

Now suppose that
∣∣∣λ̂3−λ0

2

∣∣∣≤ ε
2 . Then,

ε

2 ≥
∣∣∣λ̂3−λ0

2

∣∣∣≥ λ̂3−λ0
2,

so that

λ̂3 ≤ λ0
2 + ε

2 < λ0
3−

ε

2 < λ0
3.

As above, this implies that

min
1≤l≤3

∣∣∣λ̂l−λ0
3

∣∣∣= ∣∣∣λ̂3−λ0
3

∣∣∣≥ ∣∣∣λ0
3−λ0

2

∣∣∣− ∣∣∣λ̂3−λ0
2

∣∣∣
> ε− ε2 = ε

2 ,

and as such,

P(AT,2)≤ P
(

min
1≤l≤3

∣∣∣λ̂l−λ0
3

∣∣∣> ε

2

)
.

Again, this implies P(AT,2)→ 0 as T →∞.
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• AT,21

Suppose that
∣∣∣λ̂2−λ0

1

∣∣∣< ε
2 . Then,

ε

2 ≥
∣∣∣λ̂2−λ0

1

∣∣∣≥ λ̂2−λ0
1,

so that

λ̂2 ≤ λ0
1 + ε

2 < λ0
2−

ε

2 < λ0
2.

As above, this means that

λ̂1 < λ̂2 < λ0
2,

so that
∣∣∣λ̂2−λ0

2

∣∣∣< ∣∣∣λ̂1−λ0
2

∣∣∣.
Note that

∣∣∣λ̂2−λ0
2

∣∣∣> ∣∣∣λ0
2−λ0

1

∣∣∣− ∣∣∣λ̂2−λ0
1

∣∣∣> ε− ε2 = ε

2 .

If, in addition,
∣∣∣λ̂3−λ0

2

∣∣∣> ε
2 , then

min
1≤j≤3

∣∣∣λ̂j−λ0
2

∣∣∣= min
(∣∣∣λ̂2−λ0

2

∣∣∣, ∣∣∣λ̂3−λ0
2

∣∣∣)> ε

2 .

Putting these results together, we can see that

AT,21 ⊂
{

min
1≤j≤3

∣∣∣λ̂j−λ0
2

∣∣∣> ε

2
}
∪AT,32,

so that

P(AT,21)≤ P
(

min
1≤j≤3

∣∣∣λ̂j−λ0
2

∣∣∣> ε

2

)
+P(AT,32) .

We already saw that the last term on the right converges to 0, and the first term on the right
also converges to 0 by the result derived in the previous section, so P(AT,21)→ 0 as T →∞.
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The Consistency of λ̂1

Choose any 0< δ ≤ ε
2 . We first state the following decomposition:

P
(

min
1≤j≤3

∣∣∣λ̂j−λ0
1

∣∣∣≤ δ)=
3∑
j=1

P
({∣∣∣λ̂j−λ0

1

∣∣∣≤ δ}∩{∣∣∣λ̂j−λ0
1

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
1

∣∣∣}) .
For j = 2,3,

P
({∣∣∣λ̂j−λ0

1

∣∣∣≤ δ}∩{∣∣∣λ̂j−λ0
1

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
1

∣∣∣})≤ P
(∣∣∣λ̂j−λ0

1

∣∣∣≤ ε

2

)
=AT,j1,

where the right hand side goes to 0 as T →∞. Therefore,

P
({∣∣∣λ̂j−λ0

1

∣∣∣≤ δ}∩{∣∣∣λ̂j−λ0
1

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
1

∣∣∣})→ 0

as T →∞.
Since

P
(

min
1≤j≤3

∣∣∣λ̂j−λ0
1

∣∣∣≤ δ)→ 1

as T →∞, together with the preceding result it must be the case that

P
({∣∣∣λ̂1−λ0

1

∣∣∣≤ δ}∩{∣∣∣λ̂1−λ0
1

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
1

∣∣∣})→ 1

as T →∞. Finally, because

P
({∣∣∣λ̂1−λ0

1

∣∣∣≤ δ}∩{∣∣∣λ̂1−λ0
1

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
1

∣∣∣})≤ P
(∣∣∣λ̂1−λ0

1

∣∣∣≤ δ) ,
and the left hand side goes to 1 as T →∞, we have

P
(∣∣∣λ̂1−λ0

1

∣∣∣≤ δ)→ 1

as T →∞.

If δ > ε
2 , then

P
(∣∣∣λ̂1−λ0

1

∣∣∣≤ ε

2

)
≤ P

(∣∣∣λ̂1−λ0
1

∣∣∣≤ δ) ,
where the left hand side goes to 1 as T →∞, so

P
(∣∣∣λ̂1−λ0

1

∣∣∣≤ δ)→ 1

as T →∞.
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We have seen that, for any δ > 0,

P
(∣∣∣λ̂1−λ0

1

∣∣∣≤ δ)→ 1

as T →∞. Thus, by definition,

λ̂1
p→ λ0

1.

The Consistency of λ̂2

Choose any 0< δ ≤ ε
2 . As above, we first state the decomposition

P
(

min
1≤j≤3

∣∣∣λ̂j−λ0
2

∣∣∣≤ δ)=
3∑
j=1

P
({∣∣∣λ̂j−λ0

2

∣∣∣≤ δ}∩{∣∣∣λ̂j−λ0
2

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
2

∣∣∣}) .
As above,

P
({∣∣∣λ̂3−λ0

2

∣∣∣≤ δ}∩{∣∣∣λ̂3−λ0
2

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
2

∣∣∣})≤ P
(∣∣∣λ̂3−λ0

2

∣∣∣≤ ε

2

)
=AT,32,

where the right hand side goes to 0 as T →∞. Therefore,

P
({∣∣∣λ̂3−λ0

2

∣∣∣≤ δ}∩{∣∣∣λ̂3−λ0
2

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
2

∣∣∣})→ 0

as T →∞.

If
∣∣∣λ̂1−λ0

2

∣∣∣≤ δ, then

∣∣∣λ̂1−λ0
1

∣∣∣≥ ∣∣∣λ0
2−λ0

1

∣∣∣− ∣∣∣λ̂1−λ0
2

∣∣∣> ε− δ ≥ ε

2 ,

so that

P
(∣∣∣λ̂1−λ0

2

∣∣∣≤ δ)≤ P
(∣∣∣λ̂1−λ0

1

∣∣∣> ε

2

)
.

By the consistency result proved above,

P
(∣∣∣λ̂1−λ0

1

∣∣∣> ε

2

)
→ 0

as T →∞, so that

P
(∣∣∣λ̂1−λ0

2

∣∣∣≤ δ)→ 0
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as T →∞ and therefore

P
({∣∣∣λ̂1−λ0

2

∣∣∣≤ δ}∩{∣∣∣λ̂1−λ0
2

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
2

∣∣∣})→ 0

as well.

These results, together with the property that

P
(

min
1≤j≤3

∣∣∣λ̂j−λ0
2

∣∣∣≤ δ)→ 1

as T →∞, imply that

lim
T→∞

P
({∣∣∣λ̂2−λ0

2

∣∣∣≤ δ}∩{∣∣∣λ̂2−λ0
2

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
2

∣∣∣})= 1.

Again, this allows us to deduce that

lim
T→∞

P
(∣∣∣λ̂2−λ0

2

∣∣∣≤ δ)= 1.

If δ > ε
2 , then

P
(∣∣∣λ̂2−λ0

2

∣∣∣≤ ε

2

)
≤ P

(∣∣∣λ̂2−λ0
2

∣∣∣≤ δ) ,
where the left hand side goes to 1 as T →∞, so

P
(∣∣∣λ̂2−λ0

2

∣∣∣≤ δ)→ 1

as T →∞.

We have seen that, for any δ > 0,

P
(∣∣∣λ̂2−λ0

2

∣∣∣≤ δ)→ 1

as T →∞. Thus, by definition,

λ̂2
p→ λ0

2.
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The Consistency of λ̂3

Choose any 0< δ ≤ ε
2 . As above, we first state the decomposition

P
(

min
1≤j≤3

∣∣∣λ̂j−λ0
3

∣∣∣≤ δ)=
3∑
j=1

P
({∣∣∣λ̂j−λ0

3

∣∣∣≤ δ}∩{∣∣∣λ̂j−λ0
3

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
2

∣∣∣}) .
If
∣∣∣λ̂2−λ0

3

∣∣∣≤ δ, then

∣∣∣λ̂2−λ0
2

∣∣∣≥ ∣∣∣λ0
3−λ0

2

∣∣∣− ∣∣∣λ̂2−λ0
3

∣∣∣> ε− δ ≥ ε

2 ,

so that

P
(∣∣∣λ̂2−λ0

3

∣∣∣≤ δ)≤ P
(∣∣∣λ̂2−λ0

2

∣∣∣> ε

2

)
.

By the consistency result proved above,

P
(∣∣∣λ̂2−λ0

2

∣∣∣> ε

2

)
→ 0

as T →∞, so that

P
(∣∣∣λ̂2−λ0

3

∣∣∣≤ δ)→ 0

as T →∞ and therefore

P
({∣∣∣λ̂2−λ0

3

∣∣∣≤ δ}∩{∣∣∣λ̂2−λ0
3

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
3

∣∣∣})→ 0

as well.
Likewise, the consistency of λ̂1 for λ0

1 implies that

P
({∣∣∣λ̂1−λ0

3

∣∣∣≤ δ}∩{∣∣∣λ̂1−λ0
3

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
3

∣∣∣})→ 0.

By implication,

P
({∣∣∣λ̂3−λ0

3

∣∣∣≤ δ}∩{∣∣∣λ̂3−λ0
3

∣∣∣= min
1≤l≤3

∣∣∣λ̂l−λ0
3

∣∣∣})→ 1,

which implies that

lim
T→∞

P
(∣∣∣λ̂3−λ0

3

∣∣∣≤ δ)= 1.

We can deal with the case δ > ε
2 as above, so λ̂3 is consistent for λ0

3.
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6.5 The Rate of Convergence of the Break Date Estimators

So far, we have shown that the break fraction estimators are consistent for the true break
fractions, that is, λ̂j

p→ λj as T →∞ for any 1 ≤ j ≤m. We are now interested in the rate of
convergence of the break dates; that is, the rate of convergence of

T̂j−T 0
j = T

(
λ̂j−λj

)
for each 1≤ j ≤m. It will turn out that the above quantity is Op(1), or equivalently, that λ̂j−λj
converges to 0 at the same rate as 1

T .

As above, we prove the result for the case where there are three breaks, that is, when m = 3,
and prove that T̂2−T 0

2 is bounded in probability. The proofs for T̂1−T 0
1 and T̂3−T 0

3 will then
be seen to be similar to that for T̂2−T 0

2 , so that we are done.
In addition, we will assume that the model is one of pure structural breaks (p = 0) in order to
simplify the proof.
We once again proceed in steps.

6.5.1 Step 1: Obtaining a Probability Bound

We want to show that T̂2−T 0
2 is Op(1); in other words, that for any η > 0, there exists a C > 0

and T̄ ∈N+ such that

P
(∣∣∣T̂2−T 0

2

∣∣∣>C
)
< η

for any T ≥ T̄ . To this end, we first derive an upper bound for the probability P
(∣∣∣T̂2−T 0

2

∣∣∣>C
)

for any C > 0.

For any ζ > 0, define the set

Vζ =
{

(T1,T2,T3) ∈BεT,T
∣∣∣∣∣∣Tj−T 0

j

∣∣∣≤ ζT for any 1≤ j ≤ 3
}
.

For any 1≤ j ≤ 3, if
∣∣∣λ̂j−λ0

j

∣∣∣< ζ, then, because T 0
j = bTλ0

jc,

T̂j−T 0
j ≤ T λ̂j−Tλ0

j ≤
∣∣∣T (λ̂j−λ0

j )
∣∣∣< Tζ,

and

T 0
j − T̂j ≤ Tλ0

j −T λ̂j + 1≤ T
(∣∣∣λ̂j−λ0

j

∣∣∣+ 1
T

)
< Tζ

for large enough T , so that
∣∣∣T 0
j − T̂j

∣∣∣≤ ζT
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for large enough T . Therefore, for large T ,

3∑
j=1

P
(∣∣∣λ̂j−λ0

j

∣∣∣≤ ζ)−2≤ P

 3⋂
j=1

{∣∣∣λ̂j−λ0
j

∣∣∣≤ ζ}


≤ P
(
(T̂1, T̂2, T̂3) ∈ Vζ

)
which implies that

lim
T→∞

P
(
(T̂1, T̂2, T̂3) ∈ Vζ

)
= 1

by the consistency of the break fractions λ̂1, · · · , λ̂3.

Now we can start constructing the upper bound. For any C > 0, note that

P
(∣∣∣T̂2−T 0

2

∣∣∣>C
)

= P
(
T̂2−T 0

2 >C
)

+P
(
T̂2−T 0

2 <−C
)
.

Because the two terms on the right hand side are symmetric, we focus on the last term. Define

Vε(C) =
{

(T1,T2,T3) ∈BεT,T
∣∣∣∣∣∣Tj−T 0

j

∣∣∣≤ ζT, T2−T 0
2 <−C

}
.

Clearly, Vζ(C)⊂ Vζ , and

P
(
T̂2−T 0

2 <−C
)
≤ P

(
{T̂2−T 0

2 <−C}∩{(T̂1.T̂2, T̂3) ∈ Vζ}
)

+P
(
{T̂2−T 0

2 <−C}∩{(T̂1.T̂2, T̂3) /∈ Vζ}
)

≤ P
(
(T̂1.T̂2, T̂3) ∈ Vζ(C)

)
+P

(
(T̂1.T̂2, T̂3) /∈ Vζ

)
.

We focus on bounding the first term. Recall that S̃T (T1,T2,T3) is the least squares sum of squared
residuals given the break points (T1,T2,T3) ∈ BεT,T . By definition, the estimators (T̂1, T̂2, T̂3)
minimize this SSR, so

S̃T (T̂1, T̂2, T̂3)≤ S̃T (T̂1,T
0
2 , T̂3),

or equivalently,

S̃T (T̂1, T̂2, T̂3)− S̃T (T̂1,T
0
2 , T̂3)≤ 0.

If (T̂1.T̂2, T̂3) ∈ Vζ(C), then T̂2−T 0
2 <−C < 0 and

S̃T (T̂1, T̂2, T̂3)− S̃T (T̂1,T
0
2 , T̂3)

T 0
2 − T̂2

≤ 0,

which implies that

min
(T1,T2,T3)∈Vζ(C)

S̃T (T1,T2,T3)− S̃T (T1,T
0
2 ,T3)

T 0
2 −T2

≤ 0.
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Therefore,

P
(
(T̂1.T̂2, T̂3) ∈ Vζ(C)

)
≤ P

(
min

(T1,T2,T3)∈Vζ(C)

S̃T (T1,T2,T3)− S̃T (T1,T
0
2 ,T3)

T 0
2 −T2

≤ 0
)
,

and we can bound P
(
T̂2−T 0

2 <−C
)

above by

P
(
T̂2−T 0

2 <−C
)
≤ P

(
min

(T1,T2,T3)∈Vζ(C)

S̃T (T1,T2,T3)− S̃T (T1,T
0
2 ,T3)

T 0
2 −T2

≤ 0
)

+P
(
(T̂1.T̂2, T̂3) /∈ Vζ

)
.

From the result derived above,

lim
T→∞

P
(
(T̂1.T̂2, T̂3) /∈ Vζ

)
= 0,

so there exists a T̄ ∈N+ such that

P
(
(T̂1.T̂2, T̂3) /∈ Vζ

)
<
η

4

for any T ≥ T̄ .
We need only show that there exists a C > 0 such that

P
(

min
(T1,T2,T3)∈Vζ(C)

S̃T (T1,T2,T3)− S̃T (T1,T
0
2 ,T3)

T 0
2 −T2

≤ 0
)
<
η

4

for large T to conclude that

P
(
T̂2−T 0

2 <−C
)
<
η

2

for some C > 0 and large T .
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6.5.2 Step 2: Decomposing the Difference of SSRs

For any C > 0, choose any (T1,T2,T3) ∈ Vζ(C), and denote λj = Tj
T for j = 1,2,3. Define

SSR1 = S̃T (T1,T2,T3)

SSR2 = S̃T (T1,T
0
2 ,T3)

SSR3 = S̃T (T1,T2,T
0
2 ,T3).

Then, we can write

S̃T (T1,T2,T3)− S̃T (T1,T
0
2 ,T3) = SSR1−SSR2

= (SSR1−SSR3)− (SSR2−SSR3) .

Note that each term that comprises the rightmost term is the difference in SSRs of a model with
3 breaks and one with an additional break. Thus, the problem reduces to one of comparing two
models, one a restricted version of the other.

Asymptotic Properties of the Model with an Additional Break

Under the break points T1,T2,T
0
2 ,T3, the model can be written as

Y = Z̄∗δ0∗+U,

where Z̄∗ is the diagonal partition of Z in accordance to T1,T2,T
0
2 ,T3, that is,

Z̄∗ = diag(Z∗1 ,Z∗2 ,Z∗∆,Z∗3 ,Z∗4 )

for

Z∗1 =


z′1
...
z′T1

 , Z∗2 =


z′T1+1

...
z′T2

 , Z∗∆ =


z′T2+1

...
z′
T 0

2

 , Z∗3 =


z′
T 0

2 +1
...
z′T3

 , Z∗4 =


z′T3+1

...
zT .

 ,

and δ0∗= (δ0′
1 , δ

0′
2 , δ

0′
2 , δ

0′
3 , δ

0′
4 )′, where δ0

2 is repeated once because T2 is categorized into the second
regime in the true model.
The estimator δ̂∗ = (δ̂∗′1 , δ̂∗′2 , δ̂∗′∆, δ̂∗′3 , δ̂∗′4 )′ of δ∗ satisfies

δ̂∗ = (Z̄∗′Z̄∗)−1Z̄∗′Y.

Let Z̄0∗ = diag
(
Z0

1 ,Z
0
2 ,Z

0
∆,Z

0
3 ,Z

0
4
)

be the diagonal partition of Z according to the true break
dates with T2 between the first and second true break dates, specifically the break dates
T 0

1 ,T2,T
0
2 ,T

0
3 . We choose ζ > 0 small enough so that T 0

1 < T2. In this case, the true model
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is written as

Y = Z̄0∗δ0∗+U,

and we can expand δ̂∗ as

δ̂∗ = (Z̄∗′Z̄∗)−1Z̄∗′Y

= (Z̄∗′Z̄∗)−1Z̄∗′Z̄0∗ · δ0∗+ (Z̄∗′Z̄∗)−1Z̄∗′U

= δ0∗+
( 1
T
Z̄∗′Z̄∗

)−1( 1
T
Z̄∗′U

)
+
( 1
T
Z̄∗′Z̄∗

)−1 [ 1
T
Z̄∗′

(
Z̄0∗− Z̄∗

)]
.

1
T Z̄
∗′U is op(1) because

1
T

bTrc∑
t=bTsc+1

ztut = 1√
T

(VT (r)−VT (s)) p→ 0

for any 0≤ s < r ≤ 1 by assumption (6), and
(

1
T Z̄
∗′Z̄∗

)−1
is Op(1) because

 1
T

bTrc∑
t=bTsc+1

ztz
′
t

−1
p→ (Ω(r)−Ω(s))−1

for any 0≤ s < r ≤ 1.

In addition, we can see that

min(T1,T
0
1 ){ O O O O O∣∣T1−T 0

1
∣∣{ x −x O O O

T2−max(T1,T
0
1 )
{

O O O O O

T 0
2 −T2 { O O O O O

min(T 0
3 −T 0

2 ,T3−T2)
{

O O O O O∣∣T 0
3 −T3

∣∣{ O O O y −y
T −max(T 0

3 ,T3){ O O O O O


= Z̄0∗− Z̄∗,

where the values on the left hand side refer to the number of rows associated with each row of
blocks and x, y denote non-zero elements. Therefore,

∥∥∥∥ 1√
T

(
Z̄0∗− Z̄∗

)∥∥∥∥2
≤ 2

 1
T

max(T1,T 0
1 )∑

t=min(T1,T 0
1 )+1

z′tzt+
1
T

max(T3,T 0
3 )∑

t=min(T3,T 0
3 )+1

z′tzt

 .
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Since the first term on the right hand side can be written as

∣∣∣λ0
1−λ1

∣∣∣ ·
 1∣∣T 0

1 −T1
∣∣

max(T1,T 0
1 )∑

t=min(T1,T 0
1 )+1

z′tzt

 ,
where the latter is Op(1) and

∣∣λ0
1−λ1

∣∣= 1
T

∣∣T 0
1 −T1

∣∣≤ ζ, and the same holds for the second term,
we can see that ∥∥∥∥ 1√

T

(
Z̄0∗− Z̄∗

)∥∥∥∥2
= ζ ·Op(1).

Therefore, we can see that

∣∣∣δ̂∗− δ0∗
∣∣∣≤ ∥∥∥∥∥

( 1
T
Z̄∗′Z̄∗

)−1
∥∥∥∥∥ ·
∣∣∣∣ 1T Z̄∗′U

∣∣∣∣+
∥∥∥∥∥
( 1
T
Z̄∗′Z̄∗

)−1
∥∥∥∥∥ ·
∥∥∥∥ 1
T
Z̄∗′Z̄∗

∥∥∥∥ 1
2
·
∥∥∥∥ 1√

T

(
Z̄0∗− Z̄∗

)∥∥∥∥
= op(1) +

√
ζ ·Op(1) =

√
ζ ·Op(1).

In other words, for small ζ > 0, large C > 0 (the large C is so that
(

1
T Z
∗′
∆Z
∗
∆

)−1
is not too large)

and large T , δ̂∗j is close to δ0
j for j = 1,2,∆,3,4.
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Difference in SSRs via Restricted Linear Regression

The model with break points T1,T2,T3 can be viewed as a special case of the above unrestricted
model subject to the restriction δ∆ = δ3. In other words, SSR(T1,T2,T

0
2 ,T3) and SSR(T1,T2,T3)

are the sum of squared residuals from the unrestricted model above and the model subject to
the restriction

Rδ∗ = 0,

where R is an k×5k full rank matrix defined as

R=
(
O O Ik −Ik O

)
.

The estimator of δ∗ subject to the restriction Rδ∗ = 0 solves the constrained minimization
problem

min
δ∗∈R5k

1
2
(
Y − Z̄∗δ∗

)′(
Y − Z̄∗δ∗

)
subject to Rδ∗ = 0.

The Lagrangian for this problem is

L= 1
2
(
Y − Z̄∗δ∗

)′(
Y − Z̄∗δ∗

)
−µ′Rδ∗,

where µ is a k-dimensional vector of Lagrangian multipliers. Letting δ̃∗ be the estimator of δ
under the restricted model, we have the f.o.c.

Z̄∗′
(
Y − Z̄∗δ̃∗

)
=R′µ,

so that

δ̃∗ = δ̂∗−
(
Z̄∗′Z̄∗

)−1
R′µ.

Premultiplying the f.o.c. above by R
(
Z̄∗′Z̄∗

)−1
, we can see that

R
(
Z̄∗′Z̄∗

)−1
R′µ=R

(
Z̄∗′Z̄∗

)−1
Z̄∗′Y −Rδ̃∗

=R
(
Z̄∗′Z̄∗

)−1
Z̄∗′Y,

since Rδ̃∗ = 0, and as such that

µ=
[
R
(
Z̄∗′Z̄∗

)−1
R′
]−1

Rδ̂∗.
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Therefore,

δ̃∗ = δ̂∗−
(
Z̄∗′Z̄∗

)−1
R′
[
R
(
Z̄∗′Z̄∗

)−1
R′
]−1

Rδ̂∗.

Using this formula, we can express SSR1−SSR3 as

SSR1−SSR3 =
(
Y − Z̄∗δ̃∗

)′(
Y − Z̄∗δ̃∗

)
−
(
Y − Z̄∗δ̂∗

)′(
Y − Z̄∗δ̂∗

)
= δ̃∗′Z̄∗′Z̄∗δ̃∗− δ̂∗′Z̄∗′Z̄∗δ̂∗+ 2Y ′Z̄∗

(
δ̂∗− δ̃∗

)
= δ̂∗′R′

[
R
(
Z̄∗′Z̄∗

)−1
R′
]−1

Rδ̂∗.

Under the R defined above,

Rδ̂∗ = δ̂∗∆− δ̂∗3 ,

and because

(
Z̄∗′Z̄∗

)−1
=


(Z∗′1 Z∗1 )−1 · · · O

... . . . ...
O · · · (Z∗′4 Z∗4 )−1

 ,

we can see that [
R
(
Z̄∗′Z̄∗

)−1
R′
]−1

=
[(
Z∗′∆Z

∗
∆
)−1 +

(
Z∗′3 Z

∗
3
)−1

]−1
.

Therefore, the difference in sum of squares can be written even more compactly as

SSR1−SSR3 =
(
δ̂∗3− δ̂∗∆

)′ [(
Z∗′∆Z

∗
∆
)−1 +

(
Z∗′3 Z

∗
3
)−1

]−1(
δ̂∗3− δ̂∗∆

)
.

By a symmetric argument, because SSR2 is the model with break points T1,T
0
2 ,T3, we have

SSR2−SSR3 =
(
δ̂∗2− δ̂∗∆

)′ [(
Z∗′∆Z

∗
∆
)−1 +

(
Z∗′2 Z

∗
2
)−1

]−1(
δ̂∗2− δ̂∗∆

)
.
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6.5.3 Step 3: Rate of Convergence of the Difference in SSRs

From the result above, we can see that

S̃T (T1,T2,T3)− S̃T (T1,T
0
2 ,T3) = (SSR1−SSR3)− (SSR2−SSR3)

=
(
δ̂∗3− δ̂∗∆

)′ [(
Z∗′∆Z

∗
∆
)−1 +

(
Z∗′3 Z

∗
3
)−1

]−1(
δ̂∗3− δ̂∗∆

)
−
(
δ̂∗2− δ̂∗∆

)′ [(
Z∗′∆Z

∗
∆
)−1 +

(
Z∗′2 Z

∗
2
)−1

]−1(
δ̂∗2− δ̂∗∆

)
.

Since

(
δ̂∗2− δ̂∗∆

)′ [(
Z∗′∆Z

∗
∆
)−1 +

(
Z∗′2 Z

∗
2
)−1

]−1(
δ̂∗2− δ̂∗∆

)
≥
(
δ̂∗2− δ̂∗∆

)′
Z∗′∆Z

∗
∆

(
δ̂∗2− δ̂∗∆

)
,

we can further bound the above quantity below by

S̃T (T1,T2,T3)− S̃T (T1,T
0
2 ,T3)

≥
(
δ̂∗3− δ̂∗∆

)′ [(
Z∗′∆Z

∗
∆
)−1 +

(
Z∗′3 Z

∗
3
)−1

]−1(
δ̂∗3− δ̂∗∆

)
−
(
δ̂∗2− δ̂∗∆

)′
Z∗′∆Z

∗
∆

(
δ̂∗2− δ̂∗∆

)
.

Note that

1
T 0

2 −T2

[(
Z∗′∆Z

∗
∆
)−1 +

(
Z∗′3 Z

∗
3
)−1

]−1
=
[(

Z∗′∆Z
∗
∆

T 0
2 −T2

)−1
+
(
Z∗′3 Z

∗
3

T 0
2 −T2

)−1]−1

=
[(

Z∗′∆Z
∗
∆

T 0
2 −T2

)−1
+ T 0

2 −T2
T3−T 0

2
·
(
Z∗′3 Z

∗
3

T3−T 0
2

)−1]−1

.

The eigenvalues of

Z∗′∆Z
∗
∆

T 0
2 −T2

= 1
T 0

2 −T2

T 0
2∑

t=T2+1
ztz
′
t

are bounded below by ρmin, so that the eigenvalues of

(
Z∗′∆Z

∗
∆

T 0
2 −T2

)−1

are bounded above by ρ−1
min. Likewise, the eigenvalues of

T 0
2 −T2
T3−T 0

2
·
(
Z∗′3 Z

∗
3

T3−T 0
2

)−1

are bounded above by ρ−1
min ·

T 0
2−T2
T3−T 0

2
, and because two positive definite matrices are simultaneously

diagonalizable, this means that the eigenvalues of

(
Z∗′∆Z

∗
∆

T 0
2 −T2

)−1
+ T 0

2 −T2
T3−T 0

2
·
(
Z∗′3 Z

∗
3

T3−T 0
2

)−1
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are bounded above by

ρ−1
min

(
T 0

2 −T2
T3−T 0

2
+ 1
)

= ρ−1
min ·

T3−T2
T3−T 0

2
.

In other words, the eigenvalues of

1
T 0

2 −T2

[(
Z∗′∆Z

∗
∆
)−1 +

(
Z∗′3 Z

∗
3
)−1

]−1

are bounded below by

ρmin ·
T3−T 0

2
T3−T2

.

As such,

S̃T (T1,T2,T3)− S̃T (T1,T
0
2 ,T3)

T 0
2 −T2

≥ ρmin
T3−T 0

2
T3−T2

·
∣∣∣δ̂∗3− δ̂∗∆∣∣∣2−(δ̂∗2− δ̂∗∆)′ Z∗′∆Z∗∆T 0

2 −T2

(
δ̂∗2− δ̂∗∆

)
.

We saw above that

δ̂∗j − δ0
j =

√
ζ ·Op(1),

for any j = 1,2,∆,3,4, where δ0
∆ = δ0

2 . In addition,

Z∗′∆Z
∗
∆

T 0
2 −T2

=Op(1)

by assumption, so that

(
δ̂∗2− δ̂∗∆

)′ Z∗′∆Z∗∆
T 0

2 −T2

(
δ̂∗2− δ̂∗∆

)
= ζ ·Op(1).

Finally,

T3−T 0
2 =

∣∣∣T3−T 0
2

∣∣∣≥ T 0
3 −T 0

2 −
∣∣∣T3−T 0

3

∣∣∣≥ (T 0
3 −T 0

2

)
− ζT

and

T3−T2 ≤
∣∣∣T3−T 0

3

∣∣∣+ ∣∣∣T2−T 0
2

∣∣∣+(T 0
3 −T 0

2

)
≤
(
T 0

3 −T 0
2

)
+ 2ζT,
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so that

T3−T 0
2

T3−T2
≥ (λ0

3−λ0
2)− ζ

(λ0
3−λ0

2) + 2ζ

and

ρmin
T3−T 0

2
T3−T2

·
∣∣∣δ̂∗3− δ̂∗∆∣∣∣2 ≥ ρmin ·

(λ0
3−λ0

2)− ζ
(λ0

3−λ0
2) + 2ζ ·

∣∣∣δ0
3− δ0

2

∣∣∣2 + ζ ·Op(1).

Putting all the pieces together, we have

S̃T (T1,T2,T3)− S̃T (T1,T
0
2 ,T3)

T 0
2 −T2

≥ ρmin ·
(λ0

3−λ0
2)− ζ

(λ0
3−λ0

2) + 2ζ ·
∣∣∣δ0

3− δ0
2

∣∣∣2 + 2 · ζ ·Op(1).

The first term does not depend on T and very little on ζ, provided that it is small. Thus, for
small ζ, large C and large T , there is a large probability that

S̃T (T1,T2,T3)− S̃T (T1,T
0
2 ,T3)

T 0
2 −T2

> 0,

and by implication a small probability that

S̃T (T1,T2,T3)− S̃T (T1,T
0
2 ,T3)

T 0
2 −T2

≤ 0,

which is precisely what we intended to show.
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Testing for Multiple Structural Breaks
Bai and Perron (1998)

Here we consider two ways to test for multiple structural breaks. The first one tests the null of
no breaks against the alternative of r breaks, while the second sequentially tests the null of r
against the alternative of r+ 1 breaks.

7.1 Testing the Null of No Breaks against the Alternative of m
Breaks

We wish to test the null hypothesis

H0 : There are no structural breaks

against the alternative hypothesis

H1 : There are exactly m structural breaks.

Under the framework of the structural break model studied in the previous chapter, we can view
these hypotheses as representing a restricted model and an unrestricted model, respectively,
where there are km restrictions

δ̄ := δ1 = δj ,

for 2≤ j ≤m+ 1, so that there are no structural breaks under the null.

To obtain a tractable test statistic for testing H0 against H1, define the set

Λε =
{

(λ1, · · · ,λm) ∈ [0,1]m | |λj−λj−1|> ε and λj = n

d
for some n ∈N+ for any 1≤ j ≤m+ 1

}
.

for some d ∈N+ and small ε > 0, where we put λ0 = 0 and λm+1 = 1 as in the previous chapter.
The second requirement, that each λj be a rational number with divisor d, is, strictly speaking,
not required, but has been included to facilitate the proof and enable an exacty grid search.
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Suppose that (λ1, · · · ,λm) ∈ Λε represents a collection of true break fractions in the sample.
Then, letting the break points be given as T1, · · · ,Tm, where Tj = bTλjc for any 1≤ j ≤m, the
model can be written as

yt = x′tβ+z′tδj +ut

for any Tj−1 + 1≤ t≤ Tj and 1≤ j ≤m+ 1, or in matrix form as

Y =Xβ+ Z̄δ+U,

where Z̄ is the diagonal partition of Z = (z1, · · · ,zT )′ according to the break points T1, · · · ,Tm,
and δ = (δ′1, · · · , δ′m+1)′, as we defined in the previous chapter.
In this case, the alternative hypothesis H1 can be viewed as an unrestricted version of the above
model, and the null hypothesis H0 can be viewed as imposing the following linear restrictions
on the model:

H0 : Rδ = 0

for the km×k(m+ 1) full rank matrix

R=


Ik −Ik · · · O O
...

... . . . ...
...

O O · · · Ik −Ik

 .

Therefore, granted that (λ1, · · · ,λm) are the true (potential) break fractions, the problem of
testing whether there are 0 or m structural breaks reduces to testing for the linear restrictions
Rδ = 0.
We can naturally think of the following F statistic:

FT (λ1, · · · ,λm,k) = (SSR0−SSRm)/km
SSRm/(T − (m+ 1)k−p) ,

where SSR0 is the sum of squared residuals under the restricted model of no structural breaks,
SSRm is the sum of squared residuals under the unrestricted model in which the break dates
are given by T1, · · · ,Tm, T − (m+ 1)k− p is the degrees of freedom in the unrestricted model
(there are m+ 1 regimes during which the k-dimensional coefficient of zt changes, along with
p coefficients corresponding to the regime-independent exogenous variables xt), and km is the
number of restrictions.

Under the null hypothesis, there are no structural breaks, so to consider all potential break
points, our test statistic takes the form

supFT (m;k) = sup
(λ1,··· ,λm)∈Λε

FT (λ1, · · · ,λm,k).
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If the test statistic is large, then it means that there is evidence supporting the structural break
model under at least one set of structural break points over the model with no breaks, and
therefore we can reject the null of no breaks.

7.1.1 Computation of the Test Statistic

For any (λ1, · · · ,λm) ∈ Λε, our formulation of F (λ1, · · · ,λm,k) is given in terms of the sum of
squared residuals under the restricted and unrestricted models.
The fact that the null reduces to a set of linear restrictions allows us to use only estimators from
the unrestricted model to compute F (λ1, · · · ,λm,k).

We first consider the unrestricted model. The estimator of β and δ from the unrestricted model
are given by

β̂
δ̂

=

X ′X X ′Z̄

Z̄ ′X Z̄ ′Z̄

−1X ′Y
Z̄ ′Y

 ,
and by the FWL Theorem, we have

β̂ =
(
X ′MZ̄X

)−1
X ′MZ̄Y = β+

(
X ′MZ̄X

)−1
X ′MZ̄U

δ̂ =
(
Z̄ ′MX Z̄

)−1
Z̄ ′MXY = δ+

(
Z̄ ′MX Z̄

)−1
Z̄ ′MXU.

Note that the estimator of δ is found as the OLS estimator in the transformed model

MXY =MX Z̄δ+MXU.

In contrast, the estimator of δ in the restricted model solves the restricted minimization problem

min
δ∈R(m+1)k

1
2
(
MXY − (MX Z̄)δ

)′(
MXY − (MX Z̄)δ

)
subject to Rδ = 0.

The Lagrangian for this problem is

L= 1
2
(
MXY − (MX Z̄)δ

)′(
MXY − (MX Z̄)δ

)
−µ′ ·Rδ,

where µ is a km-dimensional vector of Lagrangian multipliers. The restricted estimator δ̃ of δ
satisfies the first order condition

Z̄ ′MX

(
MXY − (MX Z̄)δ̃

)
=R′µ
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and the constraint Rδ̃ = 0. We can now see that

δ̃ = δ̂− (Z̄ ′MX Z̄)−1R′µ.

Premultiplying the f.o.c. by R
(
Z̄ ′MX Z̄

)−1
yields

R
(
Z̄ ′MX Z̄

)−1
Z̄ ′MXY −Rδ̃ =

(
R
(
Z̄ ′MX Z̄

)−1
R′
)
·µ,

where R
(
Z̄ ′MX Z̄

)−1
is nonsingular because R is of full rank.

Therefore,

δ̃ = δ̂−
(
Z̄ ′MX Z̄

)−1
R′
[
R
(
Z̄ ′MX Z̄

)−1
R′
]−1

R
(
Z̄ ′MX Z̄

)−1
Z̄ ′MXY

= δ̂−
(
Z̄ ′MX Z̄

)−1
R′
[
R
(
Z̄ ′MX Z̄

)−1
R′
]−1

R δ̂.

Using the formula above, we can now derive a closed form expression for SSR0−SSRm:

SSR0−SSRm =
(
MXY −MX Z̄ · δ̃

)′(
MXY −MX Z̄ · δ̃

)
−
(
MXY −MX Z̄ · δ̂

)′(
MXY −MX Z̄ · δ̂

)
= δ̃′Z̄ ′MX Z̄δ̃− δ̂′Z̄ ′MX Z̄δ̂

∗−2Y ′MX Z̄ ·
(
δ̃− δ̂

)
= δ̂′R′

[
R
(
Z̄ ′MX Z̄

)−1
R′
]−1

Rδ̂.

The test statistic can now be expressed entirely in terms of estimators derived from the unre-
stricted model as:

FT (λ1, · · · ,λm,k) = (SSR0−SSRm)/km
SSRm/(T − (m+ 1)k−p)

=
(
T − (m+ 1)k−p

km

)
·
δ̂′R′

[
R
(
Z̄ ′MX Z̄

)−1
R′
]−1

Rδ̂

SSRm
.
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7.1.2 Assumptions

To derive the asymptotic distribution of the sup F test statistic above, we need only retain
assumptions (5) to (7) above.

Specifically, we assume the following; note that we retain the definiton of wt = (x′t,z′t)′ we made
above.

(1) Uniform Convergence of Sample Covariances
We assume that there exists a positive definite matrix Q ∈ Rk×k such that

1
T

bTrc∑
t=bTsc+1

wtw
′
t
p→ (r−s)Q

uniformly on the set of all (r,s) ∈ [0,1]2 such that s < r, and that

l∑
t=i

wtw
′
t

is nonsingular for any i < l such that i− l ≥ k+p.
Note that this both strengthens assumption (7) above and includes assumption (2) and
(4) above as a special case. In addition, this assumption precludes trending regressors.
We allow Q to be decomposed as

Q=

Qx Qxz

Qzx Qz

 ,
where the dimensions of the submatrices are conformable with xt,zt.

(2) Uncorrelated Errors
We assume that the error process {ut}t∈Z is a Martingale Difference Sequence (MDS) with
respect to the filtration

F = {Ft | t ∈ Z}

on Z where

Ft = σ ({ws}s∈Z∪{us}s≤t)

for each t ∈ Z, such that

sup
t∈Z

E|ut|4+c <+∞
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for some c > 0.
Furthermore, by the definition of an MDS E [ut] = 0, and we assume that E

[
u2
t | Ft−1

]
= σ2

for any t ∈ Z.

(3) An FCLT for Martingale Difference Sequences
Let the stochastic process {vt}t∈Z be defined as

vt = wtut

for any t ∈ Z. As we showed in the previous chapter, the preceding assumption implies
that {vt}t∈Z is an MDS with respect to the filtration F such that

1
T

T∑
t=1

(u2
t −σ2)wtw′t

p→O.

Furthermore, assumption (1) implies that

σ2 · 1
T

T∑
t=1

wtw
′
t
p→ σ2Q,

so we have

1
T

T∑
t=1

vtv
′
t = 1

T

T∑
t=1

u2
twtw

′
t
p→ σ2Q.

Therefore, as in the previous chapter, it makes sense to assume that {vt}t∈Z follows some
sort of FCLT result. Specifically, define the stochastic processes {ST (r)}r∈[0,1] and with
continuous paths as

ST (r) = 1√
T

bTrc∑
t=1

vt+
1√
T

(Tr−bTrc)vbTrc+1

for any r∈ [0,1]. Letting ST be the random function in Cp+k[0,1] corresponding to {ST (r)}r∈[0,1],
we assume that

ST
d→ σQ

1
2 ·W p+k,

where Q 1
2 is the Cholesky factor of Q.
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It follows that, letting {AT (r)}r∈[0,1] and {BT (r)}r∈[0,1] be defined as

AT (r) = 1√
T

bTrc∑
t=1

xtut+
1√
T

(Tr−bTrc)
(
xbTrc+1 ·ubTrc+1

)

BT (r) = 1√
T

bTrc∑
t=1

ztut+
1√
T

(Tr−bTrc)
(
zbTrc+1 ·ubTrc+1

)

for any r ∈ [0,1], the FCLT results

AT
d→ σQ

1
2
x ·W p

BT
d→ σQ

1
2
z ·W k

hold by the continuous mapping theorem, where Q
1
2
x and Q

1
2
z are the Cholesky factors of

Qx and Qz.
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7.1.3 The Asymptotic Distribution of the Test Statistic

In this section we derive the asymptotic distribution of the sup F test statistic defined above.
To this end, we show that FT (λ1, · · · ,λm;k) converges to some distribution that is a function of
(λ1, · · · ,λm) uniformly in Λε, and as such that the supremum statistic converges to the supre-
mum of those distributions over Λε.

First fix some (λ1, · · · ,λm)∈Λε. We will investigate the asymptotic properties of F (λ1, · · · ,λm;k).
For the sake of completeness, we reiterate the definition of FT (λ1, · · · ,λm;k):

FT (λ1, · · · ,λm;k) = (SSR0−SSRm)/km
SSRm/(T − (m+ 1)k−p)

Asymptotic Properties of the Unrestricted Model

We have already derived the least squares estimators β̂ and δ̂ of β and δ under the unrestricted
model as

β̂ = β+
(
X ′MZ̄X

)−1
X ′MZ̄U

δ̂ = δ+
(
Z̄ ′MX Z̄

)−1
Z̄ ′MXU.

Denoting γ̂ = (β̂′, δ̂′)′ and γ = (β′, δ′)′,

γ̂ =
(
W̄ ′W̄

)−1
W̄ ′Y = γ+

(
W̄ ′W̄

)−1
W̄ ′U,

where we defined W̄ earlier.
Define D = diag(λ1,λ2−λ1, · · · ,1−λm) ∈ Rm×m. Since

1
T
W̄ ′W̄ =



1
T

∑T
t=1xtx

′
t

1
T

∑T1
t=1xtz

′
t

... 1
T

∑T
t=Tm+1xtz

′
t

1
T

∑T1
t=1 ztx

′
t

1
T

∑T1
t=1 ztz

′
t

... O
...

... . . . ...
1
T

∑T
t=Tm+1 ztx

′
t O · · · 1

T

∑T
t=Tm+1 ztz

′
t


,

by assumption (1)

1
T
W̄ ′W̄

p→


Qx λ1 ·Qxz

... (1−λm) ·Qxz
λ1 ·Qzx λ1 ·Qz

... O
...

... . . . ...
(1−λm) ·Qzx O · · · (1−λm) ·Qz


=

 Qx (ι′mD)⊗Qxz

(Dιm)⊗Qzx D
⊗
Qz

= Q̄,
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where ιm is the m-dimensional vector comprised of 1s, and Q̄ is positive definite.
Furthermore,

1√
T
W̄ ′U =



1√
T

∑T
t=1xtut

1√
T

∑T1
t=1 ztut
...

1√
T

∑T
t=Tm+1 ztut

=


AT (1)
BT (λ1)

...
BT (1)−BT (λm)

 ,

so by assumption (3),

1√
T
W̄ ′U

d→



σQ
1
2
x ·W p(1)

σQ
1
2
z ·W k(λ1)

...
σQ

1
2
z

(
W k(1)−W k(λm)

)


= σ

(
Q

1
2
x ·W p(1)

)
=

σQ 1
2
x ·W p(1)
B∗



as T →∞. By the continuous mapping theorem and Slutsky’s theorem, we now have

√
T (γ̂−γ) =

( 1
T
W̄ ′W̄

)−1 1√
T
W̄ ′U

d→ Q̄−1

σQ 1
2
x ·W p(1)
B∗

 ,
or that

√
T (γ̂−γ) =Op(1).

By implication, γ̂−γ = op(1), that is, γ̂ is consistent for γ.

The scaled sum of squared residuals SSRm is decomposed as

1
T
SSRm = 1

T

(
Y −W̄ γ̂

)′(
Y −W̄ γ̂

)
= 1
T

(
W̄ (γ− γ̂) +U

)′(
W̄ (γ− γ̂) +U

)
= (γ− γ̂)′

( 1
T
W̄ ′W̄

)
(γ− γ̂) + 2(γ− γ̂)′

( 1
T
W̄ ′U

)
+ 1
T
U ′U.

We saw above that 1
T W̄

′W̄ is Op(1) and 1
T W̄

′U and γ̂ − γ are op(1). In addition, because
{u2

t −σ2}t∈Z is an MDS with respect to F , it is an uncorrelated sequence, which means that

E
∣∣∣∣ 1T U ′U −σ2

∣∣∣∣2 = E
∣∣∣∣∣ 1T

T∑
t=1

(u2
t −σ2)

∣∣∣∣∣
2

= 1
T 2

T∑
t=1

E
[
(u2
t −σ2)

]2
≤ 1
T

(
sup
t∈Z

E|ut|4
)
.
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Since supt∈ZE|ut|4 <+∞ by assumption, we can conclude that

E
∣∣∣∣ 1T U ′U −σ2

∣∣∣∣2→ 0

as T →∞ and thus that

1
T
U ′U

p→ σ2.

Therefore,

1
T
SSRm

p→ σ2,

and likewise,

1
T − (m+ 1)k−pSSRm

p→ σ2,

where the left hand side is the denominator of F (λ1, · · · ,λm;k).
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Decomposing the Difference of Sum of Squared Residuals

To investigate the asymptotic properties of

F ∗T = SSR0−SSRm,

we introduce a convenient decomposition of the sum of squared residuals.

i) The Unrestricted Model
As usual, we start with the sum of squared residuals under the unrestricted model. Note
that SSRm can be written as

SSRm =
(
Y −Xβ̂− Z̄δ̂

)′(
Y −Xβ̂− Z̄δ̂

)
=
m+1∑
j=1

Tj∑
t=Tj−1+1

(yt−x′tβ̂−z′j δ̂j)2,

where δ̂j is the part of δ̂ estimating δj . Defining

DU (j,j) =
Tj∑

t=Tj−1+1
(yt−x′tβ̂−z′j δ̂j)2

for 1 ≤ j ≤ m+ 1, which is the sum of squared residuals under the unrestricted model
computed using only the data from the jth regime, we can write

SSRm =
m+1∑
j=1

DU (j,j).

It remains to be seen ho to compute each DU (j,j).

Define X1, · · · ,Xm+1, Y1, · · · ,Ym+1 and U1, · · · ,Um+1 as

Xj =


x′Tj−1+1

...
x′Tj

 , Yj =


yTj−1+1

...
yTj

 , and Uj =


uTj−1+1

...
uTj


for 1≤ j ≤m+ 1. Then,

Z̄ ′X =


Z ′1 · · · O
... . . . ...
O · · · Z ′m+1

X =


∑T1
t=1 ztx

′
t

...∑T
t=Tm+1 ztx

′
t

 :=


Z ′1X1

...
Z ′m+1Xm+1

 ,
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so that

X ′X X ′Z̄

Z̄ ′X Z̄ ′Z̄

=


X ′X X ′1Z1 · · · X ′m+1Zm+1

Z ′1X1 Z ′1Z1 · · · O
...

... . . . ...
Z ′m+1Xm+1 O · · · Z ′m+1Zm+1

 ,

and

X ′Y
Z̄ ′Y

=


X ′Y

Z ′1Y1
...

Z ′m+1Ym+1

 .

By definition, the least squares estimators β̂ and δ̂ of β and δ satisfy

X ′X X ′Z̄

Z̄ ′X Z̄ ′Z̄




β̂

δ̂1
...

δ̂m+1

=

X ′Y
Z̄ ′Y

 ,

so for any 1≤ j ≤m+ 1, we have

(
Z ′jXj Z ′jZj

) β̂
δ̂j

= Z ′jYj ,

or

δ̂j = (Z ′jZj)−1Z ′j

(
Yj−Xj β̂

)
.

For any 1≤ j ≤m+ 1,

Yj =Xjβ+Zjδj +Uj

where

δj = δ1

under the null hypothesis. Since

β̂ = β+ (X ′MZ̄X)−1X ′MZ̄U,
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it follows that

δ̂j = (Z ′jZj)−1Z ′j

(
Yj−Xj β̂

)
= δj + (Z ′jZj)−1Z ′jXj(β− β̂) + (Z ′jZj)−1Z ′jUj

and thus

DU (j,j) =
Tj∑

t=Tj−1+1
(yt−x′tβ̂−z′tδ̂j)2

=
(
Yj−Xj β̂−Z ′j δ̂j

)′(
Yj−Xj β̂−Z ′j δ̂j

)
=
(
Xj(β− β̂) +Z ′j(δj− δ̂j) +Uj

)′(
Xj(β− β̂) +Z ′j(δj− δ̂j) +Uj

)
=
∣∣∣(ITj−Tj−1−Zj(Z ′jZj)−1Z ′j

)
Xj(β− β̂) +

(
ITj−Tj−1−Z ′j(Z ′jZj)−1Z ′j

)
Uj
∣∣∣2

=
∣∣∣MZj

(
Uj−Xj(X ′MZ̄X)−1X ′MZ̄U

)∣∣∣2.
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ii) The Restricted Model

We now decompose SSR0 so that each piece has a similar representation as DU (j,j).
Define X1,j , Z1,j , Y1,j , and U1,j as

X1,j =


x′1
...
x′Tj

 , Z1,j =


z′1
...
z′Tj

 , Y1,j =


y1
...
yTj

 and U1,j =


u1
...
uTj


for 1≤ j ≤m+1. That is, X1,j , Z1,j , Y1,j , and U1,j collect the observations of the respective
variables up to regime j.

Recalling that β̃ and δ̃ are the least squares estimators of β and δ under the restricted
model,

δ̃j = δ̃1

for any 1≤ j ≤m+1 due to the restriction Rδ̃= 0, and the sum of squared residuals under
the restricted model is given by

SSR0 =
T∑
t=1

(yt−x′tβ̃−z′tδ̃1)2 =
(
Y −Xβ̃−Zδ̃1

)′(
Y −Xβ̃−Zδ̃1

)
.

We now derive an expression for SSR0.

By definition, β̃ and δ̃ are solutions to the minimization problem

min
β∈Rp,δ∈R(m+1)k

1
2
(
Y −Xβ− Z̄δ

)′(
Y −Xβ− Z̄δ

)
= 1

2

m+1∑
j=1

Tj∑
t=Tj−1+1

(yt−x′tβ−z′tδj)2

subject to δj = δ1 for any 1≤ j ≤m+ 1.

Substituting the constraints into the objective function, our goal reduces to solving the
minimization problem

min
β∈Rp,δ1∈Rk

1
2

T∑
t=1

(yt−x′tβ−z′tδ1)2 = 1
2 (Y −Xβ−Zδ1)′ (Y −Xβ−Zδ1) .

Therefore, X ′X X ′Z

Z ′X Z ′Z

 β̃
δ̃1

=

X ′Y
Z ′Y

 .
It follows that

β̃ = (X ′MZX)−1X ′MZY = β+ (X ′MZX)−1X ′MZU
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and

δ̃1 = (Z ′Z)−1Z ′(Y −Xβ̃),

and because

Y =Xβ+Zδ1 +U

under the null hypothesis, we have

δ̃1 = δ1 + (Z ′Z)−1Z ′X(β− β̃) + (Z ′Z)−1Z ′U.

Substituting this into the formula for SSR0, we have

SSR0 =
(
Y −Xβ̃−Zδ̃1

)′(
Y −Xβ̃−Zδ̃1

)
=
(
X(β− β̃) +Z(δ1− δ̃1) +U

)′(
X(β− β̃) +Z(δ1− δ̃1) +U

)
=
∣∣∣(IT −Z(Z ′Z)−1Z ′

)
X(β− β̃) +

(
IT −Z(Z ′Z)−1Z ′

)
U
∣∣∣2

=
∣∣∣MZ

(
U −X(X ′MZX)−1X ′MZU

)∣∣∣2.

Analogously, define

DR(1, j) =
∣∣∣MZ1,j

(
U1,j−X1,j(X ′MZX)−1X ′MZU

)∣∣∣2
for any 1≤ j ≤m+ 1. Then, SSR0 =DR(1,m+ 1), so that

SSR0 =
m∑
j=1

(
DR(1, j+ 1)−DR(1, j)

)
+DR(1,1).

402



Therefore, we can see that

F ∗T = SSR0−SSRm

=
m∑
j=1

(
DR(1, j+ 1)−DR(1, j)

)
+DR(1,1)−

m+1∑
j=1

DU (j,j)

=
m∑
j=1

(
DR(1, j+ 1)−DR(1, j)−DU (j+ 1, j+ 1)

)
+DR(1,1)−DU (1,1).

Defining

F ∗T,j =DR(1, j+ 1)−DR(1, j)−DU (j+ 1, j+ 1)

and

F ∗T,0 =DR(1,1)−DU (1,1)

for 1≤ j ≤m, we will now study the asymptotic properties of F ∗T,j and F ∗T,0.
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The Convergence Properties of F ∗T,j for 1≤ j ≤m

For this part, fix 1≤ j ≤m, and define

VT = (X ′MZX)−1X ′MZU and V̄T = (X ′MZ̄X)−1X ′MZ̄U.

Noting that

U ′1,j+1U1,j+1 = U ′1,jU1,j +U ′j+1Uj+1

X ′1,j+1X1,j+1 =X ′1,jX1,j +X ′j+1Xj+1

Z ′1,j+1Z1,j+1 = Z ′1,jZ1,j +Z ′j+1Zj+1

X ′1,j+1Z1,j+1 =X ′1,jZ1,j +X ′j+1Zj+1

X ′1,j+1U1,j+1 =X ′1,jU1,j +X ′j+1Uj+1

Z ′1,j+1U1,j+1 = Z ′1,jU1,j +Z ′j+1Uj+1,

and defining

Sj = Z ′1,jU1,j =
Tj∑
t=1

ztut

Hj = Z ′1,jZ1,j =
Tj∑
t=1

ztz
′
t

Kj = Z ′1,jX1,j =
Tj∑
t=1

ztx
′
t

Lj =X ′1,jX1,j =
Tj∑
t=1

xtx
′
t

Mj =X ′1,jU1,j =
Tj∑
t=1

xtut,

we can see that

F ∗T,j =DR(1, j+ 1)−DR(1, j)−DU (j+ 1, j+ 1)

=
∣∣∣MZ1,j+1 (U1,j+1−X1,j+1VT )

∣∣∣2− ∣∣∣MZ1,j (U1,j−X1,jVT )
∣∣∣2− ∣∣∣MZj (Uj−Xj δV T )

∣∣∣2
= (U1,j+1−X1,j+1VT )′MZ1,j+1 (U1,j+1−X1,j+1VT )− (U1,j−X1,jVT )′MZ1,j (U1,j−X1,jVT )

− (Uj+1−Xj+1VT )′MZj (Uj+1−Xj+1VT )

= U ′1,j+1MZ1,j+1U
′
1,j+1−2 ·V ′TX ′1,j+1MZ1,j+1U1,j+1 +V ′TX

′
1,j+1MZ1,j+1X1,j+1VT

−U ′1,jMZ1,jU
′
1,j + 2 ·V ′TX ′1,jMZ1,jU1,j−V ′TX ′1,jMZ1,jX1,jVT

−U ′j+1MZj+1U
′
j+1 + 2 · V̄ ′TX ′j+1MZj+1Uj+1− V̄ ′TX ′j+1MZj+1Xj+1V̄T

= U ′1,j+1U
′
1,j+1−2 ·V ′TX ′1,j+1U1,j+1 +V ′TX

′
1,j+1X1,j+1VT
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−U ′1,jU ′1,j + 2 ·V ′TX ′1,jU1,j−V ′TX ′1,jX1,jVT

−U ′j+1U
′
j+1 + 2 · V̄ ′TX ′j+1Uj+1− V̄ ′TX ′j+1Xj+1V̄T

−S′j+1H
−1
j+1Sj+1 + 2 ·V ′TK ′j+1H

−1
j+1Sj+1−V ′TK ′j+1H

−1
j+1Kj+1VT

+S′jH
−1
j Sj−2 ·V ′TK ′jH−1

j Sj +V ′TK
′
jH
−1
j KjVT

+ (Sj+1−Sj)′ (Hj+1−Hj)−1 (Sj+1−Sj)−2 · V̄ ′T (Kj+1−Kj)′ (Hj+1−Hj)−1 (Sj+1−Sj)

+ V̄ ′T (Kj+1−Kj)′ (Hj+1−Hj)−1 (Kj+1−Kj) V̄T

= 2 ·
(
V̄T −VT

)′
(Mj+1−Mj) +V ′T (Lj+1−Lj)VT − V̄ ′T (Lj+1−Lj) V̄T

−S′j+1H
−1
j+1Sj+1 + 2 ·V ′TK ′j+1H

−1
j+1Sj+1−V ′TK ′j+1H

−1
j+1Kj+1VT

+S′jH
−1
j Sj−2 ·V ′TK ′jH−1

j Sj +V ′TK
′
jH
−1
j KjVT

+ (Sj+1−Sj)′ (Hj+1−Hj)−1 (Sj+1−Sj)−2 · V̄ ′T (Kj+1−Kj)′ (Hj+1−Hj)−1 (Sj+1−Sj)

+ V̄ ′T (Kj+1−Kj)′ (Hj+1−Hj)−1 (Kj+1−Kj) V̄T .

There are a total of 12 terms in the above expression; we study each in detail.
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For T ≥ d, Tλj is an integer, so by assumption (3),
 1√

T
Mj

1√
T
Sj

= 1√
T

X ′1,j
Z ′1,j

U1,j = 1√
T

bTλjc∑
t=1

vt = ST (λj)

d→ σQ
1
2 ·W p+k(λj),

and by assumption (1), we have 1
T Lj

1
TK

′
j

1
TKj

1
THj

= 1
T

∑Tj
t=1xtx

′
t

∑Tj
t=1xtz

′
t∑Tj

t=1 ztx
′
t

∑Tj
t=1 ztz

′
t

= 1
T

bTλjc∑
t=1

wtw
′
t
p→ λj ·Q

and  1
T (Lj+1−Lj) 1

T (Kj+1−Kj)′
1
T (Kj+1−Kj) 1

T (Hj+1−Hj)

= 1
T

bTλj+1c∑
t=bTλjc+1

wtw
′
t
p→ (λj+1−λj) ·Q.

Furthermore,

√
TVT =

( 1
T
X ′MZX

)−1 1√
T
X ′MZU

=

 1
T

T∑
t=1

xtx
′
t−
(

1
T

T∑
t=1

xtz
′
t

)(
1
T

T∑
t=1

ztz
′
t

)−1(
1
T

T∑
t=1

xtz
′
t

)′−1

×

 1√
T

T∑
t=1

xtut−
(

1
T

T∑
t=1

xtz
′
t

)(
1
T

T∑
t=1

ztz
′
t

)−1(
1√
T

T∑
t=1

ztut

)
d→ σ ·

(
Qx−QxzQ−1

z Qzx
)−1

(
Q

1
2
x ·W p(1)−QxzQ

− 1
2 ′

z ·W k(1)
)

=A∗

as T →∞ by assumptions (1) and (3), where

Qx−QxzQ−1
z Qzx

is nonsingular because Q is positive definite.
Similarly,

√
T V̄T =

( 1
T
X ′MZ̄X

)−1 1√
T
X ′MZ̄U

=
[

1
T

T∑
t=1

xtx
′
t−
( 1
T
X ′Z̄

)( 1
T
Z̄ ′Z̄

)−1
(

1
T

T∑
t=1

Z̄ ′X

)]−1

×
[

1√
T

T∑
t=1

xtut−
( 1
T
X ′Z̄

)( 1
T
Z̄ ′Z̄

)−1( 1√
T
Z̄ ′U

)]
d→
(
Q−1
x −

(
ι′mDιm

)⊗
QxzQ

−1
z Qzx

)−1
(
σQ

1
2
x ·W p(1)−

(
ι′m
⊗

QxzQ
−1
z

)
·B∗

)
.

406



Since

ι′mDιm = λ1 + (λ2−λ1) + · · ·+ (1−λm) = 1

and

(
ι′m
⊗

QzxQ
−1
z

)
B∗ = σ ·QzxQ

− 1
2 ′

z

(
W k(λ1) + (W k(λ2)−W k(λ1)) + · · ·+ (W k(1)−W k(λm))

)
= σ ·QzxQ

− 1
2 ′

z W k(1),

the weak limit above can be expressed as

√
T V̄T

d→ σ ·
(
Q−1
x −QxzQ−1

z Qzx
)−1

(
Q

1
2
x ·W p(1)−QxzQ

− 1
2 ′

z ·W k(1)
)

=A∗.

Thus,
√
TVT and

√
T V̄T converge weakly to the same limit.

We can then write F ∗T as

F ∗T,j = 2 ·
√
T
(
V̄T −VT

)′
(AT (λj+1)−AT (λj)) +

(√
TVT

)′ 1
T

bTλj+1c∑
t=bTλjc+1

xtx
′
t

(√TVT)

−
(√

T V̄T
)′ 1

T

bTλj+1c∑
t=bTλjc+1

xtx
′
t

(√T V̄T)′

−BT (λj+1)′
 1
T

bTλj+1c∑
t=1

ztz
′
t

−1

BT (λj+1)

+
(√

TVT
)′
·

 1
T

bTλj+1c∑
t=1

xtz
′
t

 1
T

bTλj+1c∑
t=1

ztz
′
t

−12 ·BT (λj+1)−

 1
T

bTλj+1c∑
t=1

xtz
′
t

′(√TVT)


+BT (λj)′
 1
T

bTλjc∑
t=1

ztz
′
t

−1

BT (λj)

−
(√

TVT
)′
·

 1
T

bTλjc∑
t=1

xtz
′
t

 1
T

bTλjc∑
t=1

ztz
′
t

−12 ·BT (λj)−

 1
T

bTλjc∑
t=1

xtz
′
t

′(√TVT)


+ (BT (λj+1)−BT (λj))′
 1
T

bTλj+1c∑
t=bTλjc+1

ztz
′
t

−1

(BT (λj+1)−BT (λj))

−2 ·
(√

T V̄T
)′ 1

T

bTλj+1c∑
t=bTλjc+1

xtz
′
t

 1
T

bTλj+1c∑
t=bTλjc+1

ztz
′
t

−1

(BT (λj+1)−BT (λj))

+
(√

T V̄T
)′ 1

T

bTλj+1c∑
t=bTλjc+1

xtz
′
t

 1
T

bTλj+1c∑
t=bTλjc+1

ztz
′
t

−1 1
T

bTλj+1c∑
t=bTλjc+1

xtz
′
t

′(√T V̄T)
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which converges in distribution to

F ∗j =−σ2λ−1
j+1 ·W

k(λj+1)′W k(λj+1) +A∗′QxzQ
−1
z

[
2σQ

1
2
z ·W k(λj+1)−λj+1 ·QzxA∗

]
+σ2λ−1

j ·W
k(λj)′W k(λj)−A∗′QxzQ−1

z

[
2σQ

1
2
z ·W k(λj)−λj ·QzxA∗

]
+σ2 (λj+1−λj)−1 ·

(
W k(λj+1)−W k(λj)

)′(
W k(λj+1)−W k(λj)

)
−2 ·A∗′QxzQ−1

z

(
σQ

1
2
z

(
W k(λj+1)−W k(λj)

))
+ (λj+1−λj) ·A∗′QxzQ−1

z QzxA
∗

=−σ2λ−1
j+1 ·W

k(λj+1)′W k(λj+1) +σ2λ−1
j ·W

k(λj)′W k(λj)

+σ2 (λj+1−λj)−1
(
W k(λj+1)−W k(λj)

)′(
W k(λj+1)−W k(λj)

)

= σ2

λj+1λj(λj+1−λj)
[−λj(λj+1−λj) ·W k(λj+1)′W k(λj+1) +λj+1(λj+1−λj) ·W k(λj)′W k(λj)

+λj+1λj ·
(
W k(λj+1)−W k(λj)

)′(
W k(λj+1)−W k(λj)

)
]

= σ2

λj+1λj(λj+1−λj)
[
λ2
j ·W k(λj+1)′W k(λj+1)−2 ·λj+1λj ·W k(λj+1)′W k(λj) +λ2

j+1 ·W k(λj)′W k(λj)
]

= σ2

λj+1λj(λj+1−λj)
·
∣∣∣λj ·W k(λj+1)−λj+1 ·W k(λj)

∣∣∣2.
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The Convergence Properties of F ∗T,0

Now we turn to the asymptotic properties of the term

F ∗T,0 =DR(1,1)−DU (1,1).

In this case, since

Y1,1 = Y1, X1,1 =X1, Z1,1 = Z1, and U1,1 = U1,

we can see that

F ∗T,0 =
∣∣∣MZ1,1 (U1,1−X1,1VT )

∣∣∣2− ∣∣∣MZ1

(
U1−X1V̄T

)∣∣∣2
= (U1−X1VT )′MZ1 (U1−X1VT )−

(
U1−X1V̄T

)′
MZ1

(
U1−X1V̄T

)
= (V̄T −VT )′X ′1MZ1X1(V̄T −VT ) + 2 · (U1−X1VT )′MZ1X1(V̄T −VT )

=
[√
T (V̄T −VT )

]′[ 1
T
X ′1X1−

( 1
T
X ′1Z1

)( 1
T
Z ′1Z1

)−1( 1
T
X ′1Z1

)′][√
T (V̄T −VT )

]
+ 2 ·

[ 1√
T
U1−

( 1
T
X1

)(√
TVT

)]′
MZ1

[√
T (V̄T −VT )

]

≤
∣∣∣√T (V̂T −VT)∣∣∣2 ·

∥∥∥∥∥ 1
T
X ′1X1−

( 1
T
X ′1Z1

)( 1
T
Z ′1Z1

)−1( 1
T
X ′1Z1

)′∥∥∥∥∥
+ 2 ·

∣∣∣∣ 1√
T
U1−

( 1
T
X1

)(√
TVT

)∣∣∣∣ · ∣∣∣√T (V̄T −VT )
∣∣∣.

Since

1
T
X ′1X1−

( 1
T
X ′1Z1

)( 1
T
Z ′1Z1

)−1( 1
T
X ′1Z1

)′
p→Qx−QxzQ−1

z Qzx

and

∣∣∣∣ 1√
T
U1−

( 1
T
X1

)(√
TVT

)∣∣∣∣2 ≤ 2 · 1
T
U ′1U1 + 2 ·

 1
T

T1∑
t=1

x′txt

 · ∣∣∣√TVT ∣∣∣2,
where

2 · 1
T
U ′1U1 + 2 ·

 1
T

T1∑
t=1

x′txt

 · ∣∣∣√TVT ∣∣∣2 p→ 2λ1 ·
(
σ2 + tr(Qx) |A∗|2

)
,

it follows that all the terms aside from
√
T
(
V̄T −VT

)
are Op(1). Since

√
T
(
V̄T −VT

)
= op(1),

we can see that

F ∗T,0 = op(1).
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The Weak Limit of FT (λ1, · · · ,λm;k)

We have seen that

F ∗T,j
d→ F ∗j

for any 1≤ j ≤m and that F ∗T,0 = op(1) under the null. Therefore,

F ∗T =
m∑
j=1

(
DR(1, j+ 1)−DR(1, j)−DU (j+ 1, j+ 1)

)
+DR(1,1)−DU (1,1)

=
m∑
j=1

F ∗T,j +F ∗T,0

d→
m∑
j=1

F ∗j = σ2
m∑
j=1

∣∣∣λj ·W k(λj+1)−λj+1 ·W k(λj)
∣∣∣2

λj+1λj(λj+1−λj)

under H0. Putting this together with the asymptotic properties of SSRm, we can see that, under
H0,

FT (λ1, · · · ,λm;k) = 1
km
· F ∗T
SSRm/(T − (m+ 1)k−p)

d→ 1
km

m∑
j=1

∣∣∣λj ·W k(λj+1)−λj+1 ·W k(λj)
∣∣∣2

λj+1λj(λj+1−λj)
.

For any 1≤ j ≤m, define

F̄j =

∣∣∣λj ·W k(λj+1)−λj+1 ·W k(λj)
∣∣∣2

λj+1λj(λj+1−λj)
.

Note that

λj ·W k(λj+1)−λj+1 ·W k(λj) = λj
(
W k(λj+1)−W k(λj)

)
+ (λj−λj+1) ·W k(λj)

∼N
[
0,
(
λ2
j · (λj+1−λj) + (λj+1−λj)2 ·λj

)
· Ik
]

=N [0,λj+1λj(λj+1−λj) · Ik]

since W k(λj+1)−W k(λj) and W k(λj) are independent Gaussian random vectors with mean zero
and covariance matrix (λj+1−λj) · Ik and λj · Ik. Therefore,

F̄j =
(
λj ·W k(λj+1)−λj+1 ·W k(λj)

)′
(λj+1λj(λj+1−λj) · Ik)−1

(
λj ·W k(λj+1)−λj+1 ·W k(λj)

)
is a chi squared random variable with k degrees of freedom.
As such, the weak limit ∑m

j=1
F̄j
m of k ·FT (λ1, · · · ,λm;k) is the sum of m dependent chi squared

variables with k degrees of freedom, each divided by the number of breaks m.
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The Weak Limit of the Supremum Statistic

Now we are in a position to derive the limit of the test statistic under the null. For any
(λ1, · · · ,λm) ∈ Λε, we saw that each FT (λ1, · · · ,λm;k) can be expressed as a continuous func-
tion of VT , V̄T ,AT ,BT and the mapping

r 7→ 1
T

bTrc∑
t=1

wtw
′
t,

all of which converge uniformly in [0,1]. This indicates that

supFT (m;k) = sup
(λ1,··· ,λm)∈Λε

FT (λ1, · · · ,λm;k)

d→ sup
(λ1,··· ,λm)∈Λε

 1
km

m∑
j=1

∣∣∣λj ·W k(λj+1)−λj+1 ·W k(λj)
∣∣∣2

λj+1λj(λj+1−λj)


under H0.

We only provide a heuristic reasoning for the consistency of the above test statistic.
If the alternative is true, that is, if there truly are m breaks in the model, then at the true break
fractions λ1, · · · ,λm, the sum of squared residuals SSR0 subject to the restriction that there are
no breaks will be much larger than SSRm. Therefore, the supremum of the F statistics over the
collection Λε will also be much greater than 0, provided that the true fractions are contained in
Λε. This means that the sup F statistic will then be large and thus more likely to reject the null.
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7.1.4 Double Maximum Tests

So far, we have studied the asymptotic distribution of the sup F test statistic under the null,
where the alternative is that there are m breaks. However, we may wish not to specify the
number of breaks under the alternative. In this case, we can choose a large enough M ∈N+ to
serve as the maximum possible number of breaks and test the null hypothesis

H0 : There are no breaks

against the alternative

H1 : There are at most M breaks

using the double maximum statistic

Dmax FT (M,a1, · · · ,aM ;k) = max
1≤m≤M

am · (supFT (m;k))

= max
1≤m≤M

am ·
(

sup
(λ1,··· ,λm)∈Λε

FT (λ1, · · · ,λm;k)
)
,

where a1, · · · ,aM > 0 are exogenous weights assigned to each possible number of breaks. If
a1 = · · ·= aM = 1, then we call the above statistic the uniform double maximum test statistic.
Under H0, the asymptotic distribution of the test statistic follows directly from the above deriva-
tion; since

sup
(λ1,··· ,λm)∈Λε

FT (λ1, · · · ,λm;k) d→ sup
(λ1,··· ,λm)∈Λε

 1
km

m∑
j=1

∣∣∣λj ·W k(λj+1)−λj+1 ·W k(λj)
∣∣∣2

λj+1λj(λj+1−λj)


for any 1≤m≤M under the null of no breaks, and because the maximum over a finite set is a
continuous function, by the continuous mapping theorem

Dmax FT (M,a1, · · · ,aM ;k) d→ max
1≤m≤M

am ·

 sup
(λ1,··· ,λm)∈Λε

 1
km

m∑
j=1

∣∣∣λj ·W k(λj+1)−λj+1 ·W k(λj)
∣∣∣2

λj+1λj(λj+1−λj)




under H0.

Heuristically, the consistency of the test follows because, if the true model has 1≤m≤M breaks,
then the sup F statistic corresponding to the alternative of m breaks will be large, and as such
the maximum of the sup F statistics corresponding to each possible number of breaks will also
be large, making it likely that the null will be rejected.
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7.2 Sequentially Testing for Breaks

In the previous section, we studied testing the null of no breaks against the alternative of m
breaks, or at most M breaks. Here we study how to test sequentially for m breaks against m+1
breaks for m≥ 0. To test for no breaks against the alternative of a single break, we can simply
use the test devised above, so we focus on the case where m≥ 1.

The intuition behind the test is to test for a break in each of the m+ 1 regimes under the null
hypothesis, or the assumption that there are m breaks. Taking the maximum difference in sum
of squared residuals from putting an additional break in each of the m+1 regimes now becomes
our test statistic, since if the maximum is large, then it means that a huge reduction in SSR can
be achieved by placing an additional break in between two extant breaks.

Formally, the test statistic given the hypotheses

H0 : There are m breaks v.s. H1 : There are m+ 1 breaks

is given by

FT (m+ 1 |m) = 1
σ̂2

(
SSR(T̂1, · · · , T̂m)− min

1≤j≤m+1
inf

λ∈Λj,η
SSR(T̂1, · · · , T̂j−1,bTλc, T̂j , · · · , T̂m)

)

= 1
σ̂2 max

1≤j≤m+1
sup
τ∈Λj,η

(
SSR(T̂1, · · · , T̂m)−SSR(T̂1, · · · , T̂j−1, τ, T̂j , · · · , T̂m)

)
,

where

Λj,η =
{
λ ∈ [0,1] | λ− λ̂j−1

λ̂j− λ̂j−1
∈ [η,1−η]

}
for some η > 0, so that the additional break τ = bTλc is not chosen too close to some existing
break, σ̂2 is a consistent estimator of the error variance σ2, and T̂1, · · · , T̂m are the break dates
estimated via least squares.

To derive the asymptotic distribution of the above test statistic, we assume that the difference
between the estimated break dates and the true break dates do not diverge, that is,

T̂j−T 0
j =Op(1)

for any 1≤ j ≤m under H0. This simply states that the estimated break fractions converge to
the true break fractions at rate T .
We assume the above in addition to assumptions (1) to (3) above, and, for simplicity, that the
model is one of a pure structural break.

413



7.2.1 The Asymptotic Distribution of the Test Statistic

The basic idea of the proof is the same as that of the test for no breaks against m breaks, that
is, to decompose the sum of squared residuals into the sum of SSRs in each regime.
The pure structural break model assumption above implies that the model is given by

yt = z′tδ
0
j +ut if T 0

j−1 + 1≤ t≤ T 0
j

for the true parameter δ0 = (δ0′
1 , · · · , δ0′

m)′ under the null hypothesis H0.
We again proceed in steps.

The SSR under m breaks

Letting T̂1, · · · , T̂m be the break dates estimated via least squares, the estimated coefficients δ̂
are given by

δ̂ =
(
Z̄ ′Z̄

)−1
Z̄ ′Y

and the estimator of each δ̂j by

δ̂j = (Z ′jZj)−1Z ′jYj

=

 T̂j∑
t=T̂j−1+1

ztz
′
t


−1

T̂j∑
t=T̂j−1+1

ztyt,

where

Z̄ = diag(Z1, · · · ,Zm+1)

is the diagonal partition of Z according to the breaks T̂1, · · · , T̂m, and Y = (Y ′1 , · · · ,Y ′m+1)′ is a
similar partition for Y .
The sum of squared residuals under m breaks is then given by

SSR(T̂1, · · · , T̂m) =
(
Y − Z̄δ̂

)′(
Y − Z̄δ̂

)
= Y ′MZ̄Y.

Because λ̂j
p→ λ0

j for any 1≤ j ≤m, we can assume that, under large T ,
∣∣∣λ̂j−λ0

j

∣∣∣< ε

2

with large probability for every 1 ≤ j ≤ m, so that each λ̂j lies between λ0
j−1 and λ0

j+1 (the
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distance between each true break fraction is larger than ε).
Letting Z̄0 be the diagonal partition of Z according to the true break points T 0

1 , · · · ,T 0
m, we have

Y = Z̄0δ0 +U,

and as such

SSR(T̂1, · · · , T̂m)−U ′MZ̄U = Y ′MZ̄Y −U
′MZ̄U

= δ0′Z̄0′MZ̄Z̄
0δ0 + 2 · δ0′Z̄0′MZ̄U

= δ0′
(
Z̄0− Z̄

)′
MZ̄

(
Z̄0− Z̄

)
δ0 + 2 · δ0′

(
Z̄0− Z̄

)′
MZ̄U.

Note that, for large T ,

∥∥∥∥ 1
T

(
Z̄0− Z̄

)∥∥∥∥2
≤ 1
T

m+1∑
j=1

∣∣∣T̂j−T 0
j

∣∣∣( max
1≤t≤T

|zt|2
)

with large probability. For any δ > 0, because T̂j−T 0
j =Op(1) for any 1≤ j ≤m,

m+1∑
j=1

∣∣∣T̂j−T 0
j

∣∣∣=Op(1)

and there exists a C > 0 such that, for large T ,

P

m+1∑
j=1

∣∣∣T̂j−T 0
j

∣∣∣>C


is small for large T . Additionally, by assumption

M = sup
t∈Z

E|zt|4 <+∞.

Then, we can see that

P
( 1
T

max
1≤t≤T

|zt|2 >
δ

C

)
≤

T∑
t=1

P
( 1
T
|zt|2 >

δ

C

)

≤
T∑
t=1

C2

δ2 ·
1
T 2E|zt|

4

≤
(
M · C

2

δ2

)
1
T
,

and as such

P
(∥∥∥∥ 1

T

(
Z̄0− Z̄

)∥∥∥∥2
> δ

)
≤ P

m+1∑
j=1

∣∣∣T̂j−T 0
j

∣∣∣>C

+P
( 1
T

(
max

1≤t≤T
|zt|2

)
>
δ

C

)
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≤ P

m+1∑
j=1

∣∣∣T̂j−T 0
j

∣∣∣>C

+
(
M · C

2

δ2

)
1
T

is small for large T . Thus, we can conclude that

lim
T→∞

P
(∥∥∥∥ 1

T

(
Z̄0− Z̄

)∥∥∥∥2
> δ

)
= 0.

This holds for any δ > 0, so
∥∥∥∥ 1
T

(
Z̄0− Z̄

)∥∥∥∥2
p→ 0.

We saw previously that

1√
T
U =Op(1),

so

SSR(T̂1, · · · , T̂m)−U ′MZ̄U = op(1).
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The SSR with an aditional break

Choose any 1≤ i≤m and λτ ∈ Λi,η. Denote τ = bTλτc.
Because λ̂j

p→ λ0
j for any 1≤ j ≤m, we can assume that, under large T ,

∣∣∣λ̂j−λ0
j

∣∣∣< εη

with large probability for any 1≤ j ≤m. Since

λ̂i−1 +
(
λ̂i− λ̂i−1

)
η ≤ λτ ≤ λ̂i−

(
λ̂i− λ̂i−1

)
η,

this means that

λτ −λ0
i−1 ≥

(
λ̂i− λ̂i−1

)
η+ λ̂i−1−λ0

i−1

> εη−εη = 0,

so that λ0
i−1 <λτ with large probability for large T . Similarly, λτ <λ0

i with large probability for
large T .

Letting

Z̄∗ = diag(Z∗1 , · · · ,Z∗i−1,Z
∗
∆,Z

∗
i , · · · ,Z∗m+1)

be the diagonal partition of Z under the break points T̂1, · · · , T̂i−1, τ, T̂i, · · · , T̂m and

Y = (Y ∗′1 , · · · ,Y ∗′i−1,Y
∗′

∆ ,Y
∗′
i , · · · ,Y ∗′m+1)

a similar partition of Y according to the above break points, we can see that

Zj = Z∗j and Yj = Y ∗j

for any 1≤ j ≤ i−1 and i+ 1≤ j ≤m, while

Zi =

Z∗∆
Z∗i

 and Yi =

Y ∗∆
Y ∗i

 .
The sum of squared residuals under the above break points is given by

SSR(T̂1, · · · , T̂i−1, τ, T̂i, · · · , T̂m) = Y ′MZ̄∗Y.

Letting Z̄0∗ be the partition of Z under the ”true” break points T 0
1 , · · · ,T 0

i−1, τ,T
0
i , · · · ,T 0

m, and
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defining

δ0∗ =



δ0
1
...

δ0
i−1

δ0
∆
δ0
i
...
δ0
m


,

where δ0
∆ = δ0

i , we have

Y = Z̄0∗δ0∗+U

and as such

SSR(T̂1, · · · , T̂i−1, τ, T̂i, · · · , T̂m)−U ′MZ̄∗U = δ0∗′Z̄0∗′MZ̄∗Z̄
0∗δ0∗+ 2 · δ0∗′Z̄0∗′MZ̄∗U

= δ0∗′
(
Z̄0∗− Z̄∗

)′
MZ̄∗

(
Z̄0∗− Z̄∗

)
δ0∗+ 2 · δ0∗′

(
Z̄0∗− Z̄∗

)′
MZ̄∗U.

Since the squared norm of the difference Z̄0∗− Z̄∗ is, as before, a sum of

m∑
j=1

∣∣∣T̂j−T 0
j

∣∣∣
elements, 1

T

(
Z̄0∗− Z̄∗

)
= op(1) and

SSR(T̂1, · · · , T̂i−1, τ, T̂i, · · · , T̂m)−U ′MZ̄∗U = op(1).

418



Decomposing the Difference of Sum of Squared Residuals

Define

F ∗T = U ′MZ̄U −U
′MZ̄∗U.

We have

U ′MZ̄U =
m∑
j=1

U ′jZj(Z ′jZj)−1Z ′jUj ,

where

Uj =


uT̂j−1+1

...
uT̂j


for 1≤ j ≤m, and likewise,

U ′MZ̄∗U =
i−1∑
j=1

U ′jMZjUj +
m∑

j=i+1
U ′jMZjUj

+U∗′∆MZ∗∆
U∗∆ +U∗′i MZ∗i

U∗i ,

where

U∗∆ =


uT̂i−1+1

...
uτ

 and U∗i =


uτ+1

...
uT̂i

 .

Seeing as how

Ui =

U∗∆
U∗i

 ,
we have

F ∗T = U ′iMZiUi−U∗′∆MZ∗∆
U∗∆−U∗′i MZ∗i

U∗i

= U ′iUi−U ′iZ0
i

(
Z ′iZi

)−1
Z ′iUi−U∗′∆U

∗
∆ +U∗′∆Z

∗
∆
(
Z∗′∆Z

∗
∆
)−1

Z∗′∆U
0∗
∆

−U∗′i U∗i +U∗′i Z
∗
i

(
Z∗′i Z

∗
i

)−1
Z∗′i U

∗
i

=−U ′iZi
(
Z ′iZi

)−1
Z ′iUi+U0∗′

∆ Z∗∆
(
Z∗′∆Z

∗
∆
)−1

Z∗′∆U
∗
∆

+U∗′i Z
∗
i

(
Z∗′i Z

∗
i

)−1
Z∗′i U

∗
i

=−
(
ST (λ̂i)−ST (λ̂i−1)

)′(
MT (λ̂i)−MT (λ̂i−1)

)−1(
ST (λ̂i)−ST (λ̂i−1)

)
+
(
ST (λτ )−ST (λ̂i−1)

)′(
MT (λτ )−MT (λ̂i−1)

)−1(
ST (λτ )−ST (λ̂i−1)

)
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+
(
ST (λ̂i)−ST (λτ )

)′(
MT (λ̂i)−MT (λτ )

)−1(
ST (λ̂i)−ST (λτ )

)
.

Define

MT (λ) = 1
T

bTλc∑
t=1

ztz
′
t

for any λ ∈ [0,1].

Note that
∣∣∣ST (λ̂i)−ST (λ0

i )
∣∣∣≤ 1√

T

∣∣∣T̂i−T 0
i

∣∣∣( max
1≤t≤T

|zt|
)
.

For any δ > 0 and ζ > 0, because T̂i−T 0
i =Op(1), there exists a C > 0 such that, for large T ,

P
(∣∣∣T̂i−T 0

i

∣∣∣>C
)
<
ζ

2 .

Additionally, by assumption

M = sup
t∈Z

E|zt|4 <+∞.

Then, we can see that

P
( 1√

T
max

1≤t≤T
|zt|>

δ

C

)
≤

T∑
t=1

P
( 1√

T
|zt|>

δ

C

)

≤
T∑
t=1

C4

δ4 ·
1
T 2E|zt|

4

≤
(
M · C

4

δ4

)
1
T
,

and as such

P
(∣∣∣ST (λ̂i)−ST (λ0

i )
∣∣∣> δ

)
≤ P

(∣∣∣T̂i−T 0
i

∣∣∣>C
)

+P
( 1√

T

(
max

1≤t≤T
|zt|
)
>
δ

C

)
≤ ζ

2 +
(
M · C

4

δ4

)
1
T

< ζ

for large T . Thus, we can conclude that

P
(∣∣∣ST (λ̂i)−ST (λ0

i )
∣∣∣> δ

)
< ζ
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for large T that depends only on δ and ζ, so by definition

lim
T→∞

P
(∣∣∣ST (λ̂i)−ST (λ0

i )
∣∣∣> δ

)
= 0.

This holds for any δ > 0, so
∣∣∣ST (λ̂i)−ST (λ0

i )
∣∣∣ p→ 0.

It follows then that

ST (λ̂i)−ST (λ̂i−1) =
(
ST (λ̂i)−ST (λ0

i )
)

+
(
ST (λ0

i )−ST (λ0
i−1)

)
+
(
ST (λ̂i−1)−ST (λ0

i−1)
)

d→ σQ
1
2 ·
(
W k(λ0

i )−W k(λ0
i−1)

)
by assumption (3). Similar arguments establish that

ST (λτ )−ST (λ̂i−1) d→ σQ
1
2 ·
(
W k(λτ )−W k(λ0

i−1)
)

and

ST (λ̂i)−ST (λτ ) d→ σQ
1
2 ·
(
W k(λ0

i )−W k(λτ )
)
.

Similarly,
∥∥∥MT (λ̂i)−MT (λ0

i )
∥∥∥≤ 1

T

∣∣∣T̂i−T 0
i

∣∣∣( max
1≤t≤T

|zt|2
)
,

and by the same line of reasoning as above, we have
∥∥∥MT (λ̂i)−MT (λ0

i )
∥∥∥ p→ 0.

It follows then that,

MT (λ̂i)−MT (λ̂i−1) =
(
MT (λ̂i)−MT (λ0

i )
)

+
(
MT (λ0

i )−MT (λ0
i−1)

)
+
(
MT (λ̂i−1)−MT (λ0

i−1)
)

p→ (λ0
i −λ0

i−1) ·Q

by assumption (1), which tells us that

(
MT (λ̂i)−MT (λ̂i−1)

)−1 p→ 1
λ0
i −λ0

i−1
Q−1.

Similar arguments allow us to establish that

(
MT (λ̂i)−MT (λτ )

)−1 p→ 1
λ0
i −λτ

Q−1
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and

(
MT (λτ )−MT (λ̂i−1)

)−1 p→ 1
λτ −λ0

i−1
Q−1.

Therefore, F ∗T converges in distribution to

σ2


∣∣∣W k(λ0

i )−W k(λτ )
∣∣∣2

λ0
i −λτ

+

∣∣∣W k(λτ )−W k(λ0
i−1)

∣∣∣2
λτ −λ0

i−1
−

∣∣∣W k(λ0
i )−W k(λ0

i−1)
∣∣∣2

λ0
i −λ0

i−1

 ,
which is identically distirbuted to

F ∗(λτ ) = σ2


∣∣∣W k(λ0

i −λτ )
∣∣∣2

λ0
i −λτ

+

∣∣∣W k(λτ −λ0
i−1)

∣∣∣2
λτ −λ0

i−1
−

∣∣∣W k(λ0
i −λ0

i−1)−W k(λτ −λ2
i−1)

∣∣∣2
λ0
i −λ0

i−1

 .
Noting that

1√
λ0
i −λ0

i−1

W k(λ0
i −λτ )∼W k(1),

and, defining

µ=
λτ −λ0

i−1
λ0
i −λ0

i−1
.

that

1√
λτ −λ0

i−1

W k(λτ −λ0
i−1)∼ µ−

1
2 ·W k(µ)

and

1
λ0
i −λτ

(
W k(λ0

i −λ0
i−1)−W k(λτ −λ2

i−1)
)
∼ (1−µ)−

1
2 ·
(
W k(1)−W k(µ)

)

the weak limit can be rewritten as

F ∗(λτ )∼ σ2


∣∣∣W k(1)−W k(µ)

∣∣∣2
1−µ +

∣∣∣W k(µ)
∣∣∣2

µ
−W k(1)2


= σ2

µ(1−µ)

[
µ ·
(
W k(1)−W k(µ)

)′(
W k(1)−W k(µ)

)
+ (1−µ) ·W k(µ)′W k(µ)−µ(1−µ)W k(1)′W k(1)

]
= σ2

µ(1−µ)
[
W k(µ)′W k(µ)−2µW k(1)′W k(µ) +µ2 ·W k(1)′W k(1)

]
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= σ2 ·

∣∣∣W k(µ)−µ ·W k(1)
∣∣∣2

µ(1−µ) .
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The Weak Limit of the Difference of SSRs

We have seen above that

[
SSR(T̂1, · · · , T̂m)−SSR(T̂1, · · · , T̂i−1, τ, T̂i, · · · , T̂m)

]
−
[
U ′MZ̄∗U −U

′MZ̄∗U
]

= op(1),

and that

F ∗T = U ′MZ̄∗U −U
′MZ̄∗U

d→ F ∗(λτ ).

Therefore,

FT,i(λτ ) = SSR(T̂1, · · · , T̂m)−SSR(T̂1, · · · , T̂i−1, τ, T̂i, · · · , T̂m) d→ F ∗(λτ ).

This holds uniformly for any λτ ∈ Λi,η, so

sup
λ∈Λi,η

|FT,i(λ)−F ∗(λ)| d→ 0.

as T →∞. Given any outcome, for any T ∈N+, because Λi,η is a compact set and FT,i and F ∗

have finitely many discontinuities,∣∣∣∣∣ sup
λ∈Λi,η

FT,i(λ)− sup
λ∈Λi,η

F ∗(λ)
∣∣∣∣∣≤ sup

λ∈Λi,η
|FT,i(λ)−F ∗(λ)|,

which implies that

sup
λ∈Λi,η

FT,i(λ)− sup
λ∈Λi,η

F ∗(λ) d→ 0

as well.

Because

λ̂j
p→ λ0

j

for any 1≤ j ≤m, we can see that

P
(
Λi,η 6= Λ0

i,η

)
→ 0

as T →∞, where

Λ0
i,η =

{
λ ∈ [0,1] |

λ−λ0
i−1

λ0
i −λ0

i−1
∈ [η,1−η]

}
.

For any outcome ω ∈ Ω, F ∗ is a continuous function on the compact set [0,1] due to the fact
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that the Wiener process has continuous paths. If Λi,η = Λ0
i,η, then

sup
λ∈Λi,η

F ∗(λ) = sup
λ∈Λ0

i,η

F ∗(λ),

which tells us that, for any δ > 0,

P

∣∣∣∣∣∣ sup
λ∈Λi,η

F ∗(λ)− sup
λ∈Λ0

i,η

F ∗(λ)

∣∣∣∣∣∣> δ

≤ P
(
Λi,η 6= Λ0

i,η

)
.

The latter goes to 0 as T →∞, so that

lim
T→∞

P

∣∣∣∣∣∣ sup
λ∈Λi,η

F ∗(λ)− sup
λ∈Λ0

i,η

F ∗(λ)

∣∣∣∣∣∣> δ

= 0.

This holds for any δ > 0, so

sup
λ∈Λi,η

F ∗(λ) p→ sup
λ∈Λ0

i,η

F ∗(λ).

By implication,

sup
λ∈Λi,η

FT,i(λ) d→ sup
λ∈Λ0

i,η

F ∗(λ).

Since

sup
λ∈Λ0

i,η

F ∗(λ)∼ σ2 · sup
η≤µ≤1−η

∣∣∣W k(µ)−µ ·W k(1)
∣∣∣2

µ(1−µ) ,

we finally have

sup
λ∈Λi,η

FT,i(λ) d→ σ2 · sup
η≤µ≤1−η

∣∣∣W k(µ)−µ ·W k(1)
∣∣∣2

µ(1−µ) .

Finally, we can see that

FT (m+ 1 |m) = max
1≤i≤m+1

sup
τ∈Λi,η

[
SSR(T̂1, · · · , T̂m)−SSR(T̂1, · · · , T̂i−1, τ, T̂i, · · · , T̂m)

]
d→ max

1≤i≤m+1
sup

η≤µ≤1−η

∣∣∣W k(µ)−µ ·W k(1)
∣∣∣2

µ(1−µ) ,

where the right hand side is the maximum of m+ 1 independent supremums over chi-squared
random variables with k degrees of freedom.
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