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Stationary Linear Processes

We start by studying the asymptotic properties of stationary linear processes. After the deriving
more general results, we will study the Vector Autoregressive (VAR) processes. Throughout, we

implicitly let (2,H,[P) be our probability space.

1.1 Asymptotic Theory for Martingales

We state here some central limit theorems and laws of large numbers involving martingale dif-
ference sequences, which are sequences of dependent variables that are uncorrelated with one

another. They are named this way because their partial sum process defines a martingale.

1.1.1 Martingale Difference Arrays

An array {27 }1<i< k(T),TeN. of real random variables is said to be a martingale difference array

with respect to the filtration array {Fr}1<i<p(r) ren, if

o Zry is Fry measurable and integrable for any 7'e€ N4 and 1 <t < k(T

o Forany T'e Ny and 1 <t <k(T),
E[Zry | Fri-1]=0,

where Fr is taken to be the trivial o-algebra.

Before presenting a CLT for martingale difference arrays, we state some preliminary results:



Lemma  The following hold true:

i) For any x € R,

< min (|x\3, ]:U|2> .

22
exp(iz) — | 14+ix— 5

ii) For any z € C,

lexp(2) = (142)| < |2[* exp([2]).

Proof) i) Choose any x € R, and let n € Ny. Since

7

] (z—s)" exp(is)

% (_ni : (z — 5)"*! exp(is)) = (z—s)"exp(is) —

on R, we can see that

/0 (x—s)"exp(is)ds — %4—1 /0 (z— )" exp(is)ds = mx”“,

or equivalently,

/0 (x—s)"exp(is)ds = T_Ha:""'l + %_{_1 /0 (z— )" exp(is)ds.

Putting n =1 reveals that
x

i—i-exp(ix) :x+i-/ (z —s)exp(is)ds,
0

or that
exp(iz) =1+4iz — / (x — s)exp(is)ds.
0

The result for n = 2 now shows us that

x 2 . rx
/ (x —s)exp(is)ds = Ty 3/ (z— s)*exp(is)ds,
0 2 2Jo

or that

x? Q[ 9
exp(iz) =1+iz — 5 2/0 (x —s)“exp(is)ds

We therefore have the upper bound
2
1
exp(iz) — <1 +ir — 2)

< =
-2

/Oz(:c —5)2exp(is)ds|.




To obtain the first bound, note that, if x > 0, then

T 3
S/ (m—s)st:x—.
0 3

/Ox(x —5)2exp(is)ds

On the other hand, if x < 0, then

0 3
S/ (z—s)%ds = T

/Ox(:z — 5)?exp(is)ds

so that

’33\3 3
< —< .

72
exp(iz) — | 14+ix — 5

It is slightly trickier to obtain the second bound. From the relationship

x 2 . rx
/ (x—s)exp(is)ds = Ty 3/ (z—s)?exp(is)ds,
0 2 2Jo

we can see that

2

1 T
< ‘/ (x —s)exp(is)ds +Z
0

2 2

/Ox(a: —5)2exp(is)ds

- ‘; /Ox(:z: — 5)%exp(is)ds

If x >0, then

x z 72
§/ ]a:—s]ds:/ (x—s)ds = —,
0 0 2

/Om(x —s)exp(is)ds

while if x < 0, then

0 0 22
g/ |:U—s|ds:/ (S—QZ)dS:?.

/Oz(x —s)exp(is)ds

Therefore,

1'2

2

1

2
2 sz

<

/Om(:v —5)%exp(is)ds

and we have

< min(|z[*, 2[*).

72
exp(iz) — | 1+ix — 5




ii) Choose any z € C. Then,

o0

2" > 2"
exp(z):Z—'zlJerrZ—'
n:()n' n:2n
2 o0 _n—2
z z

n=2

so that

exp(2) — (142) < |2 -(Z’Z ) (Z’Z_> fexp ).

Q.E.D.



We are now ready to present a CLT for martingale difference arrays:

Theorem (CLT for Martingale Difference Arrays)

Let {Zrt}ren, 1<t<k(T) be a square integrable (or L?) martingale difference array with respect
to the filtration array F = {Fr}1<i<w(1)ren, - Define a%’t =E {Z%,t | }—T,t—l} for any T € N,
and 1 <t <k(T), and let

k(T)
V= Z 0%715
t=1
for any T' € Ny. Assume that:
i) Vi B 1as T — oo,

ii) (The Lindeberg Condition) For any € > 0,

k(T)
lim Y E HZ%A -I{|ZT¢’>€}} —0.

T
—00 =1

Then, we have
k(T)

3" Zry % N(O,1).
t=1

Proof) We proceed in small steps.

Part 1: Bounding V7

We first modify the array {Z7,;}ren, 1<t<k(r) so that the sum of conditional variances

Vr is bounded. Define {Vr}ren, 1<i<i(r) a8

t
2
VT,t = ZUT,S
s=1

for any '€ Ny, 1 <t <k(T'), so that Vy,p =V, and let {Y7;}ren, 1<i<k(r) be defined

as

Yrie=Zre Ly, <o)

for any '€ Ny and 1 <t < k(T'). We now establish some properties of {Y7; }ren, 1<i<k(7):

— Martingale Difference Array
It is clear that {Y7}ren, 1<t<k(7) is @ martingale difference array with respect
to F; for any T'e€ Ny and 1 <t < k(T), since Vg, is Fr;—1-measurable, Y7 is



clearly Fr; measurable, integrable due to the integrability of Z7;, and

ElYrs | Fri—1l =E[Zre | Fri-1] Iy, <2y = 0.

Square Integrable

By the square integrability of Zr, each Y7 is also square integrable. Furthermore,

defining
T
Ly =Y E[Y2, | Frial,
t:lT
since

E [YTQ,t ‘ ]:T7t—1} =K [Z%,t ‘ fT,t—l} ‘I{Vmgz} = U%,t ’ I{VT7t§2},
we can see that
T
I'r= ZJZQF,t 'I{VT,tSQ}'
t=1

This implies that 'y <2 on €.
Analgously to V7, we define

t
FT7t = Zp%,s
s=1
for any T'e Ny and 1 <t < k(7).

Convergence of 't

Moreover,

T
Vo —Tr| =Vp=Tr = 0%, Ly, 2
t=1

T
= (ZU%,t> Lvrs2y = Ve Lvpsay
t=1
By assumption, Vr N 1, and for any 6 > 0,
P (V- Livyszy > 8) SP(Vp>2) <P(Vp—1]> 1),
so that

Jim P (Ve Iy > 6) =0,



This holds for any § > 0, so
Vi Iysay 20
and we have
Ty —Vr 50
as T — oo as well. Therefore, we can conclude that

Iy &1,

— The Lindeberg Condition
For any T'e N4 and € > 0,

Yre <Zry

and thus

2 2
E [YT:t ’ I{‘YT,t’>E}] <E [ZT’t ' I{|ZT¢|>E}}
for 1 <t < k(T), so that

k(T) k(T)
; E |:Y7%7t.I{’YT,t|>6}:| < ; E [Z%,t'f{|zT’t|>e}} :

The right hand side goes to 0 as T'— 00, s0 {Yr:}ren, 1<t<k(r) Satisfies the

Lindeberg condition

K(T)
: 2
lim S E {YTJ : I{‘Ymbe}} = 0.

T—oo -1

We have thus shown that {Y7:}rc N4, 1<t<k(T) Dossesses all the same properties as

{Zr1}ren, 1<t<k(T), With the added property that

ET:E (Y2, | Froa] <2
t=1

for any T' € Ny. Furthermore, since

k(T)
Yru
1

k(T) k(T)
SN Zri- > Zre Ty, 2
t=1 t=1

t=

10



k(T
< (Z ZT,t|) vy soys

t=1

and

k(T)
P ((Z yZT,ty) Tpvpsay > 5) <P(Vp>2)
t=1

for any d > 0, we can see that

k(T) k(T)
N> Zri— > YruBo.
t=1 t=1
Therefore, if we can show that
k(T)
3 Yo % N(0,1),
t=1

then by Slutsky’s theorem, we can prove the claim of the theorem.

Part 2: The Characteristic Function of ngp Yri

To show that the partial sums ng) Yr. converge in distribution to the standard
normal distribution, we make use of the continuity theorem and show that their char-
acteristic functions converge to that of the desired distribution. To that end, denote by
o1 the characteristic function of
k(T)
Sr=> Y,

t=1

For any r € R,

7,2
or(r) —exp (—2>

2
= ‘E [exp(ir- St)] —exp (—2> ‘

T r2
s -t 1) ]

(r-Sp)exp( o0 exp (- ) | “exp( -2

exp(ir - ST)exp 5 exp 5 exp 5
ZF 2 QF

1—exp<r 2T> exp(—r2> exp(z’r-Sﬂexp(r T) —1] .

2

<

+|E

<E E

+

11




Because 'y & 1, by the continuous mapping theorem

2F 2
1—exp<r 2T> exp(—é) )

Furthermore, for any T'€ Ny, 0 <I'r <2 on ), so that the sequence

T‘QFT r2
o (Z2 (),
+

is LP-bounded for any p € [1,400). By implication, the sequence is uniformly integrable,

which, together with the convergence in probability result above, implies that

2F 2
1—exp<r2T exp r2 L—1>0

21‘\ 2
1—exp<T2T exp —% —0

Therefore, it remains to show that

2
‘E [exp(ir-Sﬂexp(r §T> - 1] ‘ —0

or equivalently,

E

as T — co.

as T — oo for the characteristic function of St to converge to that of the standard

normal distribution as T — oco.

Part 3: Decomposing the Second Term

We first express the term

‘IE [exp(z’r -ST)exp <T2§T> — 1]

as a telescoping sum, that is,

QFT
E [exp ir-Sr) exp< )]

k(T) 2 2
r | 7T
=) E l (ir - S;Mexp(r 2T’t> —exp(ir - Stt—1)exp <r§“>] ;

t=1

12



where we define
t
St = Z Yrs
s=1

for 1 <t <Ek(T). For any 1 <t < k(T), using the law of iterated expectations, we can
see that

i) 2y,
E [eXp(ir'ST,t)exp<r 2T’t> —exp(ir-ST,t—l)exp<T;vt1>]

. T . 7"2P?Ft
=E |exp(ir-S7t—1)exp 2’ E |exp(ir-Yr:) —exp| — 2’ ’fﬂt_l .

Therefore, using the fact that I'r; is bounded above by 2 on €2, we have

‘E lexp(ir -St) exp<r2§T)] -1

k(T) 2,2
< eXP<T2) > E‘E lexp(ir-Yr,) | Fri—1] —exp (—th> ‘
=1

2

Part 4: Finding an Upper Bound for the Second Term

For any 1 <t < k(T), the previous lemma tells us that

. 7”2/’2Tt
E [eXp(ZT . YTﬂg) ’ fT,t—l] —|1- T’ 5

SE[

2y2
. . Ty
exp(ir-Yr¢) — (1 +ir-Yp, — : ) “]—"T,t_ll

<E [min(]er]?’, !TYT,t\Q) | ‘/_-.Tvt_li| :

It can now be seen that, for any € > 0,

) Tza%t
Elexp(ir-Yr) | Fri—i]—(1— 5 :

<SErYeal® Ty, jco | Fraoa | +E[IrYeal* Ty oo | Fraa
{|vr,|<e} {|Yr.i|>r

§€|T‘3'E )jg,t‘l Yo .| <e “;T,tfl 7“2'E )7%t'1 Yr 4| >e |-;T,t71
{|Yr.|<e} {|Yr,e|>e}

3
<elr*pry 17 E [YT27t'I{IYT,t|>e} |]:Tvt‘1} '

13



Similarly, the second result in the previous lemma implies
oxn | — 7”2;0%“,1% (1= TQP%,t
Plm 2 2

where we used the fact that

r 2

2
20 t <T2PQT¢>
-exp 5

r 2\ 2 2
< — . T
4 eXp(T )p * (1<g?/§%’1 )p ,s) ’

<

pry <Tr <2,

By implication,

) sz%t
Elexp(ir-Yry) | Fri—1] —exp —T’

4

3 2 2 2 r 2 2 2
<er| PrytT ‘E {YT,t 'I{|YT¢|>6} |-7:T,t—1} +Z€Xp<7‘ ) PTy” <1§I;1§ak)§T)pT,S> )

and as such

‘E lexp(ir -St) exp<r2§T)1 -1

(T)
<exp (r2>6\7“]3-E [['r]+exp (7’2)1“2-% E {Yr_,%t : I{’Ym|>€}} +exp (2r2) r—4E lI‘T- max p?pvs]
t=1

4 1<s<k(T)
2 3 2\ 2 i 2 2 r 2
<20m(?) e exp () 3B [V L o] (o) B e ]
S— t=1 - =
! II IIT

Part 5: The Convergence of the Second Term

The Lindeberg condition ensures that I/ converges to 0.

As for 111, note that

2 2 2
PT,s = E {YT,S ) I{‘YT,S|§€} | ]:T,s—l} +E [YTst ‘I{]ymbe} | ]:T,s—l}

2 2
<e+E [YTvs.I{‘YT,SPE} | ]:T75,1]
k(T)

< €2+ tz_:l E [ng,t : I{|YT,t|>6} | ‘FT,tfl}

14



for any 1 < s <k(T), so

k(T)

2 2 2
1§I§1§al§ET)pT’S <e+ ; E [YT,t I{’YT’JX} | fT,t—l} )

It follows that

k(T)
2 2 2
E |}<I;1<ak)%T) pTﬁ] <€t tz::l E [YT,t ’ I{|YT,t|>€}j| !

and by the Lindeberg condition,

limsupE | max p? <2
T L§ssk(T)pT’S] -

Therefore, the limit supremum of the term I71 is bounded above by exp(2r?) % €2, 50

that
2
E [exp(ir - ST)exp (r ;Tﬂ -1

Since this holds for any € > 0, it follows that

2
lim ‘E lexp(ir-Sﬂexp(T §T>] — 1‘ =0.

T—o00

limsup
T—o0

Zexp(r2) r?. e+exp<2r2) T; . 62‘| :

‘We have shown that

lim
T—o0

7,2
S

and because r € R was chosen arbitrarily, by the continuity theorem we may conclude
that

Sy % N(0,1).

Q.E.D.

15



1.1.2 Martingale Difference Sequences

We now turn our attention to martingale difference sequences instead of arrays. A sequence
{Y;}tez of n-dimensional random vectors is said to be an n-dimensional martingale difference
sequence (MDS) with respect to the filtration F = {F; |t € Z} if:

o Y, is Fy-measurable and integrable for any t € Z
e E[Y}]=0forany t € Z

o ForanyteZ,

E[Y; | Fi_1] = 0.

Given an n-dimensional MDS {Y;}icz, it can easily be seen that {a/Y;}1ez is a univariate
MDS for any « € R™. Furthermore, given an univariate MDS {y; }+c7 with respect to the filtration
F={F,|te€Z}, we can always define a martingale difference array by defining

ZT,t =1y; and ]:T,t =F

for any T'e Ny and 1 <t <T =k(T).

To obtain a workable version of the martingale difference array CLT for martingale difference

sequences, we require the following law of large numbers, adapted from Andrews (1988).

Theorem (A Martingale WLLN)
Let {Y;}tcz be an n-dimensional martingale difference sequence with respect to the filtration
F ={Fi ez such that {|Y¢|? |t € Z} is uniformly integrable for some 1 < p < 2. Then,

Proof) Choose any € > 0. By uniform integrability,
lim supE ||V Iy, ] =0,

b—o0 te7,

so there exists a B > 0 such that
upE ||Y;|P- I ey
. < )
iep [! f {\Yt\f’>3}} < 1)
FOI' any t € Z, deﬁne

et =Y Iyyp<py and

ur =Y Lyyip>py-

16



Then, Y; = e; +u, and we have
E[Yi’ft_l] :0:E[et|]—}_1}+E[ut\.7-}_1].

Furthermore, the sequence {e; — E[e; | Fi_1]}iez defines an n-dimensional MDS with

respect to F, since both e; and Ele; | F;—1] are integrable random vectors and

E[et —E[et ‘ th—l] ‘ ./T'.t_ﬂ =

For any T'€ N4, we now have

1 T T
fZYt Z Elet | Fe-1])|| + = ZHUt E[ug | Fi- 1]”
=1 llp t=1
T 1 T
=3 (ee—Elec| Foal)|| + 73 (el + NE L | Fical])
t=1 P t:l

by Minkowski’s inequality. Note that, for any random vector X € LP(H,P), Jensen’s
inequality implies that

(E|X[P)? <E|X]?,

so that || X[|, <[[X]|l,. Likewise, the conditional version of Jensen’s inequality tells us

that, for any t € Z,

1

1B [ue | Fealll, = (E[E[ug | Fea][?)»
1

< (Efue|”)? =[],

It follows that

T

= (e —Ele| Fi)

t=1

1 T
72V

2 T
Pt +T2Hut||p

2 t=1

<

p

Since

u =Y Iy, P> By

by assumption we have

Elu” =E ||V Ijyips sy

17



and as such

3=

€

sup ||ue]|, < ( supE ||Yi|P - Iy e < -,
S [Juell, (teZ U i Iy >B}} 1
which implies

<
p

+€
2.
2

1 T T
ES S SR E )
t=1 t=1

On the other hand, since martingale difference sequences are pairwise uncorrelated,

2

Eli(et—E[eﬂftq]) —LZ |et [6t’~7:t 1”
Tt:1 T2t:1
< = S B [(ed] + [Eler | Fi-])?]
t=1

IA
’ﬂ‘_u
™=

letlly +IEfet | Felll,)?

(Minkowski’s inequality)

—~

Conditional version of Jensen’s inequality)
By definition,
2 2 2 P 2
Ele[*=E [|Yt! 'I{\Yt\PSB}} < BrP(|Vi|" <B) < Bv,
so we have

<2BP €
_ \/7 2'

ZYt

1
Choose N € Ny so that 25% < g for any T'> N; this N depends on B and ¢, and

because our choice of B depends only on €, so does N. We can now see that, for any
T>N,

< €.

1 X
—§Y
Tt:lt

p

This holds for any € > 0, so by definition

. 1
N P I

H )
t=1

p
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Q.E.D.

We now state and prove a CLT for (possibly multivariate) martingale difference sequences:

Theorem (CLT for Martingale Difference Sequences)
Let {Y;}tcz be an n-dimensional martingale difference sequence with respect to the filtration

F ={Fi}tez. Suppose {Y;}1cz satisfies the following properties:
i) {|Y:| |t € Z} is LP-bounded for some p > 2.

ii) There exists a positive definite matrix @ € R™*" such that
1 I
72 VY 5 Q.
t=1

Then, as T'— o0,

Proof) We make use of the Cramer-Wold device to show this result. Choose any non-zero
a € R") and define Z; = o'Y; for any ¢t € Z. As stated earlier, {Z;}+cz is a univariate
MDS with respect to F satisfying

1 & 1 &
U%:TZZf:a'<TZEE'>a£>a’Qa:UQ.
t=1 t=1

Here, 02 > 0 becausae @ is positive definite and « is non-zero. Furthermore, {Z;};cz is

LP-bounded, since
E|Z” < |af” - E[Y3|”

for any ¢ € Z by the Cauchy-Schwarz inequality.

Defining

i
oVT

for any T'€ Ny and 1 <t <T = k(T), we obtain the martingale difference array
{Zrt}ren, 1<t<k(r) With respect to the filtration array {Fr; |T € N,1 <t <k(T)}.
This martingale difference array is clearly square integrable, due to the LP-boundedness
of {Z;}1ez and the fact that p > 2. We now verify the conditions of the CLT for mar-

tingale difference arrays:

ZT,t = and fTﬂg = .Ft
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— Convergence of Sum of Variances

For any T' € N, define

Vi = ET:E 2301 Fraa| = ﬁ ET:E (22| Fia.
t=1 t=1
We saw earlier that
1T
a% = T ; Zt2 B 52

2
If we can show that Z—g —Vr LN 0, then we will obtain the desired result Vp 2.

To this end, define
_ 72 2
=2} ~E[2} | Fia

for any t € Z. {x;}1e7 defines a martingale difference sequence with respect to the

filtration F, since each z; is clearly JF;-measurable, integrable with mean 0, and
Elz; | Fi] =E[22 | Fia| —~E[27 | Fia| = 0.
We noted above that {Z;},cz was LP-bounded; because p > 2, we can see that

b
2

E|Zt\p:E‘Zt2

for any ¢ € Z, which tells us that {Z?}cz is L2-bounded, where £ > 1. By impli-
cation, it is uniformly integrable, which implies that {z;};cz is also a uniformly
integrable martingale difference sequence. By the martingale WLLN proved ear-

lier,

1

M|

T
Ll
Z.’L‘t — 0,
t=1

from which it can be inferred that

2 2 1 d 2 1 d p
o2 —o VT:TZ(Zt—E[Zt | Fia]) = > @ B0,
t=1 t=1

Therefore,

— The Lindeberg Condition

20



We can also show that {Zr}ren, 1<i<k(r) satisfies the Lindeberg condition. By
the LP-boundedness of {Z;};c7, there exists an M < +o0 such that

E|ZP < M
for any t € Z, which implies that
k(T) 1 k@
E|Zrsff = ——5 Y E|Zf <o PT'7%.
t=1 oPT2 {5

Since £ > 1, taking T'— oo on both sides yields

k(T)
li E|Z7 4P =
A, 2 BlZrel” =0,

which is actually equivalent to Lyapunov’s condition.

It now remains to show that Lyapunov’s condition implies Lindeberg’s. For any
€ >0, if |Z74| > €, then

| Zra P = | Zal? | Z0alP 2 > | Zpa* - 72,

since p — 2 > 0; this means that

—2 2
N2l Iy 15y SN2l A 2y 5y < 127l

Therefore,
k(T) k(T)
2 2—
S B[220 7y, 0] < €7 D EIZnP,
t=1 t=1
so taking T'— oo on both sides yields

] (T)
. 2 -
fim, 2 E 122 Tz, 159 =0

We have thus seen that the two conditions in the CLT for martingale difference arrays

are satisfied. As per that theorem, then, we can conclude that

1 I k(T) 4
—=>_Z1=Y, Zp; = N(0,1).
oVT t=1 t=1
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By Slutsky’s theorem, this then implies that

1 & d
7ZZt _>N(0502)7
VT 3

or equivalently, for some n-dimensional normally distributed random vector Z with

variance @,

1 & 1 &y
o | —= Y| =— Zy = d Z.

Thish holds for any non-zero o« € R, so by the Cramer-Wold device,

T
\}TZYAZW[O@]-
t=1

Q.E.D.
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1.2 Asymptotic Theory for Stationary Processes

The previous section derived asymptotic results for martingale difference sequences, which are
fundamentally dependent but uncorrelated sequences. In time series analysis, we must also often
deal with processes that are correlated, so we present here some asymptotic results for stationary

processes that are possibly serially correlated.

1.2.1 Stationary Processes
An n-dimensional process {Y; }1¢7 is said to be a strictly stationary process if, for any ¢ € Z and

0<m <--- <7, the distribution of

(Kf+T17"' 7YVt+Tk)

does not depend on ¢. This implies that any strictly stationary process {Y; };cz is identically dis-
tributed, since we can take 71 =0 and see that the distribution of Y; =Y}, ., is the same across
all . Compared to an i.i.d. process, we are strengthening the identical distribution condition to

compensate for relaxing the independence condition.

There is a weaker form of stationarity that is frequently observed. Let {Y;};cz be an n-

dimensional process. We say that it is weakly stationary if:

e Mean Stationarity

{Y:}1ez is an L' process, and there exists a u € R" such that E[Y;] = p for any t € Z

o Covariance Stationarity
{Yi}tez is an L? process, and there exists a function I': Z — R™*" such that, for any

t,7 € Z, we have

Cov[V;, Y] = E [(Yi —E[Y})) (Vir —E[Y;])'] = T'(7).

The function T is called the autocovariance function of {Y;}sez, and each I'(7) the autoco-

variances of the process. Note that, for any 7 € Z,
D(r) =E (Y —p)(Yier —p)'] = (B [(Yi—r =) (Vi = )']) =T (=),

that is, I'(—7) =T'(7)". We usually assume that the variance, I'(0), of {Y;}+cz is positive definite.
A weakly stationary process that we often encounter are white noise processes, which are

essentially pairwise uncorrelated processes with mean zero. An n-dimensional process {e;}+cz is
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said to be an n-dimensional white noise process if it has mean 0 and

, Y ifr=0
E [gtgtf‘r] =
O otherwise

for any ¢,7 € Z and some Y € R™*". It is trivially weakly stationary.

1.2.2 m-dependent Processes

Given a dependent process {Y; }1cz, we want to find conditions under which it satisfies a form of
the CLT. One such condition is stationarity; even though it is not independent, {Y;};cz should
retain some form of the identical distribution property. A second is limited dependence, that is,
the degree to which any two entries in {Y;}:cz are dependent must fall to 0 as the number of
observatitons between the entries increases. We will investigate one form of limited dependence,

m-dependence, in this section.

An n-dimensional process {Y;}:cz is said to be m-dependent for some m € N if, for any
t € Z, the collections {Y; | s <t} and {Y; | s > t+m} are independent. In other words, if {Y;}icz
is an m-dependent process, then any set of variables in {Y;}¢cz that are more than m periods

apart are independent.

In most applications, we wish to relax the assumption that observations more than m periods
apart are independent, and just assume uncorrelatedness. One way to do this is through the
concept of weak m-dependence, which is a generalization of martingale difference sequences. An

n-dimensional process {Y; }1ez is said to be weakly m-dependent if
o {Yi}iez is integrable with mean zero

o Letting F be the filtration generated by {Y;}iez,
E[Y; | Fi—m] =0

for any t € Z.

This is a weaker form of m-dependence because any two observations of a weakly m-
dependent process that are at least m periods apart are uncorrelated; to see this, note that,

for any k > m,
EYY, ] =E[E[Y; | Fiom] - Y] =0,

where the first equality follows because Y;_j is Fi_,-measurable. Note that any m-dependent

process {Y; }ez is also weakly m-dependent.
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We say that the n-dimensional process {Y;};cz is second-order weakly m-dependent if
o {Yi}tez is square integrable

e For any 7 € N, the elements of {V;Y;_; —E [V}Y/ ] },ez that are more than m + 7-periods

apart are uncorrelated.

Again, m-dependence implies second order weak m-dependence. To see this, let {Y;}:cz be
a square integrable and m-dependent process. Then the elements of the sequence {Y;Y/ | —
E[Y;Y;_,]}tez are m+7-dependent for any 7 € N; this is because, for any ¢ € Z, the elements of
Y, Y;—; are independent of those of Y;.x, Y11 by m-dependence for any k> m + 7.

We refer to weak m-dependence as first order weak m-dependence, to differentiate it from

second-order m-dependence.

1.2.3 CLT for Stationary and m-dependent Processes

The main goal in this section is to show that any weakly stationary process {Y;}icz that is
weakly m-dependent in both the first and second orders satisfies a version of the CLT. Note

that this includes, as a special case, the CLT for weakly stationary and m-dependent processes.

We first require a lemma before continuing. The setting is given as follows: we have a double
sequence {Yry}7 ren, such that {Yri}ren, converges weakly to some Y}, for any k€ N,. We

also know that {Y}}ren, converges weakly to some Y. Graphically, we have

Yiin Y2 Yis

Yo1 Yoo Yog

Y31 Y3 Ys3
N

Y1 Y2 YE}, — Y

Intuitively, a diagonal argument of sorts would seem to suggest that {Yj}ren, converges weakly
to Y. The lemma confirms this intuition by stating that, if there exists a process {Xr}ren,
that is diagonal to {Y74}7en, at the limit, then {X7}7cn, should converge weakly to Y. The

specific definition of ”"diagonal at the limit” is given as

lim (hmsupIP’(\XT—YTk\ > e)) =0

k—=oco \ T—oo

for any € > 0. Heuristically, this tells us that X7 — Y7, = 0 when the limits on T and k are taken

sequentially, so that, for large T', X1 represents an element of the sequence {Y7}ren. -
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The formal statement and proof are given below:

Lemma (Diagonal Argument for Weak Convergence)

Let {Y7r}1ren, be a sequence of n-dimensional random vectors such that:
i) For any k € N4, there exists a random vector Y} such that Yy 4, Y, as T — .
ii) There exists a random vector Y such that Yy LY as k— oo.

iii) There exists a process { X7 }ren, of n-dimensional random vectors such that, for any € > 0,

lim <limsupIP’(|XT —Yri| > e)) =0.

k=00 \ T—oo

Then, X7 3 Y as T — oco.

Proof) By the continuity theorem, we can reduce weak convergence to the pointwise con-
vergence of the corresponding characteristic functions. For any n-dimensional random
vector X, we denote by ¢x : R™ — C the characteristic function of X. The assumptions

above then tell us that, for any r € R™,
lim ¢y, (1) =@y, (r) forany ke N,
T—o0
klggo ey, (r) = ey (r).
Note that, for any r € R”,
o7 (1) = @y (1)| < l@x7 (1) =@y, (T + [0y, (r) — oy, (1) + oy, (r) — ey (r)].

Thus, if we can show that

lim (limsup 0 (1) = Oy (7«)) 0,

k—=oco \ T—oo

then taking T'— oo and k — oo successively to the above inequality implies that

limsup |px, (1) — ey (r)| =0,

T—o00

which would imply that ¢x, (r) = ¢y (r) and thus complete the proof.

We now use the third assumption above to show that limy_, o (limsupy_, o |9x, (1) — @y, (1)) =
0. By definition, for any »r € R® and T,k € N,

lox7 (1) — vy (1) = |E [exp (i - 7' X7) ] — E [exp (i - 'Yy )] |
< Elexp(i-r'Xp) —exp(i-r'Yry)]|.
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Choose any € > 0. By the uniform continuity of the mapping x +— exp(i-7'z) on R",
there exists a § > 0 such that

lexp(i-r'z) —exp(i-r'y)| <e
for any x,y € R™ such that |z —y| < d. Therefore,

lexp (i - 7' X7) —exp(i-1'Ypy)| = |exp(i-r' Xp) —exp(i-r'Yry)| T X Vi[> 8}
+exp(i-r' Xr) —exp(i-r'Yrr) | Iy xp— vy <6)

< |exp(z’ ) TIXT) - exp(z’ ) r,YTk)| 'I{|XT—YTk\>5} te- I{\XT—YTMSS}
<2 I{|XT*YT1¢\>5} te I{\XT*YTHS;}’
which implies that

Elexp(i-r'X7) —exp(i-r'Yry)| <2-P(|Xp— Y| > ) +e-P(| X — Yri| <6)
< 2-P(|XT*YT;€| > 5)+6.

Due to the assumption that

lim (limsupIP’(|XT —Yri| > 5)) =0,

k=00 \ T—oo

taking T'— oo and k — oo successively yields

lim sup (hmsup lox7 (1) — Qv (7")|) <e.

k—o0 T—o0

This holds for any € > 0, so we have

lim (hmsup lox, (1) — v, (r)) =0,

k—=oo \ T—oo

which completes the proof.

Q.E.D.

We can now present the CLT for stationary m-dependent processes. The basic idea of the
proof is simple. Given a stationary m-dependent process {Y; };cz, we can divide the partial sum
Z?zl Y; into two blocks. The first block is the sum of the collections of & > m consecutive elements
of {Y:}iez separated by m observations, while the second collects the sum of the observations
that separate the entries in the first block. Since the entries of the first blocks are independent,
we can apply the CLT for iid processes to show that it converges to a normal distribution, while
the entries in the second block comprise m observations each and are also independent (k > m),

so that we can show that it converges to 0 using Chebyshev’s inequality.
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The formal statement and proof are given below:

Theorem (CLT for Stationary m-dependent Processes)

Let {Y;}scz be a mean zero L*-bounded n-dimensional process that is weakly stationary and

weakly m-dependent in both the first and second orders. Let {Y;};cz have the autocovariance

function I' : Z — R™ "™, and assume that the sum of the autocovariances is positive definite.

Then,

%Tw::liniNPLirml

j=—m

Proof) Define V.=3"""_ T(j). For any k € N such that k > m, define the process {Ay;}icz

j=-m

and {By;}icz as

Ak =Y 1)(krmyr1 T+ Y (i-0m

Byi = Ykt (i—1ym+1+ -+ Yi(ktm)-

for any i € Z. Note that the entries comprising {Ay;}icn, are separated by m obser-

vations, which are collected in { By ;}ien, -

We will decompose the partial sum of the Y; into two blocks, the first one being the
partial sum of the Ay ; and the second of By ;. Afterward, we show that the first block
converges in distribution while the second one converges in probability to 0. We now

proceed in steps:

Step 1: Asymptotic Results for the First Block
Let G be the filtration generated by {Y;}:cz and F that generated by {Aj;}icz. By

first order weak m-dependence, we have
E[Y: | Fi—m] =0

for any ¢t € Z. We now show that { A ; }icz is an MDS with respect to G. The integrability
of { Ay, ; }iez follows from that of {Y; }+cz, and it is G-adapted by definition. Furthermore,
it has mean 0 for any ¢ € Z since each Y; has mean zero. Finally, for any i € Z, since

Gi C Fi(ktm);—m for any j € N, we can see that

s

I
A

E[Agiv1|Gi]=) E [Yi(kerHj | gi}

J

o

E {E {Y;(k-‘rm)-&-j |fi(1c+m)+j—m] | gi} =0.
1

J

Thus, by definition, {Aj;}icz is an MDS with respect to G.
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The assumption that {Y;}+cz has bounded fourth moments implies that { Ay ;}icz does
as well. In addition, since {Y;}cz is second-order weak m-dependent, for any 7 € N
elements of the sequence {Y;Y; _—T'(7)}scz that are more than m + 7 periods apart
are uncorrelated. Thus, for any 1 < j <k and 7 € N chosen so that j —7 > 0, the sequence
Y1) (k4m) 5 Yi—1) (ktm)+j—r — L (T) }iez is pairwise uncorrelated; each adjacent pair

of entries in the sequence are k+m periods apart, where k+m > m—+7.

Since {Y(i—1)(k+m)+j Y(i=1)(k+m)+j—r — L (T) }iez also has bounded second moments due
to the boundedness of the fourth moments of {Y;}cz, by the WLLN for uncorrelated

sequences with finite second moments, we have

1 T
r DY tm) V() (b i—r =2 D7)
=1
as r — oQ.

From the additivity of convergence in probability, it now follows that

EZAMA%
T - '
=1
k 1 r
!/
= Z s Z Y(i—l)(k+m)+jy(i—1)(k+m)+g

ﬁ\H

k r T
1
+Zl ZYZ 1) k+m)+JY(/z 1) (k+m)+j— 1+ Zy(z 1) (k4+m)+j— 1Y(Z 1)(k+m)+]]
]:1 =1

z 1

JF
—_

_l’_

TZYZ 1) k+m)+kY(z_1)(k:+m e ey Zyl 1)(k+m)+1Y(z 1)(k+m)+k1
z 1

0)+ Z —ihr

]*—m

where we used the fact that I'(7) = O for any 7 > m. Here, the right hand side is a posi-
tive semidefinite matrix because it equals the positive semidefinite matrix E [Aszﬁm]
Defining V}, € R™*"™ as

Vie= k:—l—m +Zk+m N+TE)).

Since Vi — V as k — 0o, Vi is a positive definite function, and the determinant is a
continuous function on the space of n x n matrices, for large enough k the determinant
of V. is positive. This indicates, by the positive semidefiniteness of Vj, that Vj is pos-
itive definite, and by extension that the probability limit of + -2 ie1 Ak, zAk ; 1s positive
definite.

So far, for large enough k > m, we have shown that {Aj ;}icz is an MDS with respect
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to G that:

— Has bounded fouth moments

— Satsifies

10
*ZAk,i ?cz = kT'(0 Z —7DT
r i=1 j=—m

where kT'(0) + >, (k—[j[)T'(j) is a positive definite n x n matrix.

Therefore, by the MDS CLT, we have

1 < d
72Ak,z‘_>Xka
VIS
as r — oo, where
X, ~N |0, kT(0 Z — )T
j=—m

Step 2: Partitioning the Partial Sum of Y}

Now choose any T' € N, such that T > k +m. Denoting 7 = | -L-| € N, define Xy,

k+m
and Zry as

1 T
X1y, = 7ZA]€7,
Zrk = —= Z ki

= ﬁ (YT(Hm)H +-- +YT> .

Since r < kJer <r+1, we have r(k+m) <T and T < r(k+m)+ (k+m), so that
T —r(k+m) < k+m. This indicates that Crj comprises at most k+m — 1 entries.

By construction,
VT Yr=—=>"Yi = Xpi+ Zri+ Cry.

r—o0as T — 0o, soas T — o0,

\}TZ:IAIH = \\? < ZAk z)
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d 1
=
k+m

Xp~ N[0,Vi].

We already showed above that Vi, — V as k — oco. Defining X as a random vector such

that X ~ N [0,V], the characteristic function of \/ﬁX r converges to that of X as

k — oo, which implies, by the continuity theorem, that —-

\/kaiX as k — oo.

Step 3: Convergence of the Second Block

We have so far shown that

d
XTk_> Xk as T'— oo

1
vVk+m

1
in>X as k — oo.

vVk+m

It remains to show that

lim <1imsupIP> (‘\/T-Y/T —XTk’ > e)) =0

T—o00

for any € > 0 to be able to apply the previous lemma and conclude that /7 - Y7 LY'¢

To this end, note that
VT -Yr — Xri = Zri + Cry.

Z7y is the sum of mean zero random vectors, so it also has mean zero. Furthermore, the
entries in the process { By ;}icz are separated by k > m observations, so by the weak

m-dependence of {Y; }1ez, { Bk, }iez is pairwise uncorrelated. This implies that

2

1 T
E|Zri|* = E' > B
VT4
1 T
= —Ztr (Var [Bg.]) -
T 7

The variance of each By ; is identical due to weak stationarity, and equal to
m—1
Var [By ] =mD(0)+ Y (m—|j]) [T(7) +T(j)].

J=1

It follows that, for any € > 0,

€ 4
P (|ZTk| > 2) < :QEIZTIJQ
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m—1
:;tr( 0)+ > (m=1i| +F(J)/]),

Jj=1

so taking T'— oo on both sides yields

T—o0

4 1 m—1
limsup P |ZTk\> < tr { mL(0)+ Y (m—1j]) () +T()] |-
e k+m =

By a similar line of reasoning, since there are never more than k+m entries comprising

Cry, taking T'— oo on both sides of
1
E|Cri|* = =gt (Var [Y}(Hm)ﬂ +oF YTD ;
yvields Cpy 2 0. Putting the results together, we have

hmsupIP’(‘f Yo — XTk‘ > e) <limsupP <\ZTk| > ) —Himsup]P) <’0Tk‘ > ;)

T—o0 T—o00

m—1
gj;-kjm ( 0+ > (m—[jih| +F(H)

Jj=1

Therefore, taking k — oo on both sides gives us the result

lim (hmsupP(‘f Yo — XTk.‘ >e>> =0.

k—=oo \ Tooo

This holds for any € > 0, so by the previous lemma,

VT Y7 % X ~NJ0,V].

Q.E.D.
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1.2.4 Application: GMM Estimation under Serially Correlated Errors

The CLT for m-dependent processes derived above is quite useful when studying GMM esti-
mation under limited serial correlation. The exposition in this section is based on Cumby et al
(1983).

The General Model

We consider the following general model. Let {Y;};cz be an n-dimensional process and © a
convex and open subset of R¥. For L > k, let g : R" x © — R” be a function such that, for any
x € R, g(x,-) is differentiable. Letting 6y denote the true parameter value, suppose that the

moment condition
E[g(Y},QO)] =0

holds for any ¢t € Z. Then, the GMM estimator of 8 is found as the minimizer of the objective

function
T ! T
Qr(0) = (Zg(nﬁ)) Wr (Zg(Yt,e)),
t=1 t=1

where {Wr}ren, is a sequence of L x L random matrices that converge in probability to some
positive definite W € RE*L,

Suppose Or is the GMM estimator of 6. Then, the first order condition for minimization tells
us that

A T A\ T
10Qrtn) _ (Z 39(;”;;9T>) Wy (zgm,éT)) ~o.

t=1 t=1

The asymptotic distribution of the GMM estimator (assuming that it exists in ©) is derived

on the basis of the following assumptions:

1) Population Moment Condition
There exists a continuous function g : R™ x © — R”, continuously differentiable with respect

to its second argument, such that, for any t € Z,

E[g(Y:,00)] = 0.

2) Weighting Matrix

There exists a sequence {Wr}ren . of positive definite L x L matrices that converges in
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probability to the positive definite L x L matrix W.

3) Consistency of GMM Estimator
Assume that the GMM estimator is consistent for 6y, that is, O7 = 6.

4) Consistency of First Derivative

There exists a full rank matrix G € RE** such that, for any consistent estimator 7 of 6,

5) CLT for Sample Moment Condition
The process {g(Y;,6p) }+cz satisfies the CLT

T
\}ngm,eo) 4 N{o,V]
t=1

for some positive definite L x L matrix V.

Under these assumptions, we know that the GMM estimator has the following asymptotic

distribution:

VT (07 —60) 5 N [0,(GWG) ' GWVWG(GEWE) ™,

where V' =377 T'(j). This result utilizes the stochastic mean value theorem; for details,

consult the document on that topic.

We also showed that the optimal weighting matrix is W* =V ~!, in which case the asymptotic

variance becomes

plim [VT (07— 60)| = (G'V &)
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2SLS Estimation

The preceding result can be applied to an instrumental variables regression framework as follows.

Let {yt}iez and {X;}1ez be a univariate and k-dimensional process, respectively, such that
Yy = X{Bo+u

for any ¢ € Z and some 3y € R¥, where the error process {u;};cz is a mean zero weakly stationary
m-~dependent process with bounded fourth moments and autocovariance function v :Z — R. We
let © =R* be the open and convex parameter space. Suppose that, while X; and u; are correlated,

we instead have the moment conditions
E [Ztut] =0

for some L-dimensional process {Z;}ic7z where L > k.
To derive the 2SLS estimator of BT, we cast this regression model into a GMM framework.

Define the n =1+ k+ L -dimensional process {Y; };cz as
Yi = (yi, Xy, Z;)'
for any t € Z, and the function g:R"” x © — R’ as
9((y,x,2),8) = z(y—2'B)

for any (y,z,2z) € R™ and § € ©. g is a continuous function on R™ x © with derivative

89((3/5?/2)75) R

with respect to 5. Note that each entry in g—ﬂg, is continuous on R” x O, so that g is continuously

differentiable with respect to 8. The moment conditions can now be written as

E[g(Y:, Bo)] = 0.

Given a sequence {Wr}ren, of L x L matrices that converges to some postive definite weight
matrix W, the GMM objective function is defined as

/ T
Qr(B) = (Zg(n,m) Wr (ng,@’))

t=1 t=1
T ! T

— <ZZt(yt—Xt/,3)> Wr (Z&(%—Xéﬁ)) :
t=1 t=1
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Letting Br be the GMM estimator of B, the first order condition for minimization tells us that
10Qr(Br) _ (v - 5
537[3 = Zthé Wr ZZt(yt - X{BT) =0,
t=1 t=1
or that

e[ ()] (oo

t=1 t=1

(S (S)| (St ()

t=1 t=1 t=1 t=1

= Bo+

To derive the asymptotic properties of BT, we make the following assumptions:

1) Backward-Looking Exogeneity
We strengthen the identification condition by assuming that u; is independent of the cur-

rent and past values of the instrument, that is, of Z;, Z;_1,---.

2) Relevance Condition
There exists a full rank matrix Q.. € RE%* such that

1 T
TZZth 2 Q..
t=1

Similarly, there exists a positive definite matrix Q.. € RF*% such that

1 T
TZthg %Q...
t=1

3) Stationarity and Limited Dependence of Errors
The process { Ziut }iez is a weakly stationary L*-bounded and m-dependent process with

autocovariance function I': Z — REXL,

The first two conditions are standard for GMM models. The third assumption is unique to
a model with serially correlated errors. We take a brief moment to justify its inclusion.

Initially, the assumption that {Z,u;}icz is stationary is standard in the literature. Andrews
(1991) points out that, if it is non-stationary, then the standard asymptotic results do not hold
and we must make use of the asymptotic theory of unit root processes, which is detailed in
a later section. Even heuristically, both the error process {u;}icz and the instrument process

{Z;}1ez are likely to be stationary if y; is stationary and we use lagged values of stationary time
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series as our instruments. It follows naturally that their product, {Z;u;}+cz, should reasonably
be stationary as well.

The more troublesome assumption is that of m-dependence. Realistically, a weaker form of
limited dependence could be used, such as the strong mixing or mixingale assumption to be
introduced below. However, m-dependence can be justified in a number of situations that arise

naturally in economics; here we present a few.

e Non-Serially Correlated Errors
Suppose initially that the errors are not serially correlated. In this case, assumption 3) can
be relaxed, since we can show that {Zju;}iez is a MDS when the error process is iid and
the instruments have bounded fourth moments (this is similar to the line of reasoning we
use to study VAR models; consult the section on Vector autoregressions for details). Since
martingale difference sequences are pairwise uncorrelated, we can slightly strengthen this
result and assume that {Z;u;}ez is independent, then we are essentially assuming that

{Zyuy }rez is O-dependent.

e m-dependent Errors
Suppose now that the errors are serially correlated but exhibit limited dependence, namely
m-~dependence. This situation arises frequently in the literature, for instance, when model-
ing rational expectations models (as in Cumby et al. (1983)), or more generally when the

error process follows a finite order MA process.

To see how the m-dependence of the errors can be extended to the m-dependence of
{Ziui }rez, we show that {Ziui}iez is in fact weakly m-dependent when the errors are

m-~dependent.

Note initially that {Ziu;}iez is a mean zero process by the identification assumption.
Define the filtration F = {F; |t € Z} as

Fo= v e,
for any t € Z. Then, {Z;u;}+cz is an F-adapted process with mean zero such that
E[Ztut ’ ]:t—m] = Zt‘E[Ut | ft—m] =0

where the first equality follows because Z; is Fi-measurable, and the second equality be-
cause u; is independent of F;_,, due to the backward looking exogeneity and m-dependence
assumptions. The filtration generated by {Zju;}iez is contained in F due to the F-
adaptedness of {Zju;}ez, so by definition it is weakly m-dependent in the first order.

Thus, it is not too much of a stretch, in this case, to assume the stronger condition that

{Zyu } ez is m-dependent.

In any case, the assumption that {Z;u;}iez is a stationary m-dependent process is not too
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unreasonable when modeling serially correlated errors. In light of the content in the previous

section, assumption 3 implies that

Zztut—uvlo Z I(j ]

j=—m

Now we show that, under the above assumptions, the GMM estimator of 3 is consistent and
asymptotically normal.

We already saw that the first assumption in the general model is satisfied. In addition, since

" dg(v3,8)

1
= Z Zi X|
T & a8

for any 8 € ©, for any sequence {S7}ren . such that3r & By, we have

T
Z )/t 6T ZZtXt — sz

as T'— oo. This shows us that the fourth assumption in the general model is satisfied.

We also showed above that

3\

T
Z (Y2, B0) = \/TZZ( Xﬂo ZZtut

4N {0, i r@)] :

j=—m

Thus, the final assumption in the general model is also satisfied. This actually implies that
1 X
= > Zu 50,
t=1
which in turn tells us that
. 1T 1 I -1 | X |z
BT_/BO = 7ZXtZt/ WT 7ZZtX£ 7ZXtZ£ WT —ZZtut
T~ T 4~ T 4~ T 4
t=1 t=1 t=1 t=1
-1

The GMM estimator of 3 is consistent, so that the third assumption in the general model is also
satisfied.

Since all 5 assumptions in the general model are satisfied, we can see that, as per the
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conclusion of the general model,

VT (Br—fo) 5 N {m(@;chzm QLW ( > TG ) WQe (QmeQm)_ll .

j=—m

The optimal weighting matrix is now seen to be

- (_i r(j)) ,

under which the asymptotic distribution of the 2SLS estimator becomes

-1

-1
VT (Br—p) 5 N |0, Q;w<2 F(j)) Quz

j=—m

To obtain the asymptotic variance and, indeed, to compute BT, we require a consistent estimator
-1

W of (ZJ__mF( j)) . This can be achieved by defining W 1 as a consistent estimator of the

I'(j) using the HAC method laid out in Andrews (1991).

However, we run into another problem at this point. The construction of W ! requires the

long run variance 7t

2SLS residuals, which themselves depend on Wyp. To resolve this issue, ﬁT and Wy can be com-

puted iteratively according to the following algorithm:

Step 0: Loading initial value
Put

1 T
Wy = 1Ip, or TZ:ZtZé.

This becomes our weighting matrix for the Oth iteration.

Step 1: Computing 2SLS Estimator
For any ¢ € N, given the weighting matrix Wj(f ~Y at the i — 1th iteration, we compute
the 7th 2SLS estimator

-1

, T , T T , T
BY = KZ thg) Wiy (Z thgﬂ (Z thg) Wiy (Z Ztyt>
t=1 t=1 t=1 t=1

and procure the ith residual process

i) =y — X;By

Step 2: Computing Weighting Matrix
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m
j=-m

Compute the ith weighting matrix as the consistent estimator of 3 I'(j) given the

residuals obtained above; one possible candidate is
(i = (L
=1 _ 1 J are o/
() =10 + L (&) (Ew+00y)
where k(-) is an appropriate chosen kernel, St is the truncation lag window and
Aoy LN 00
F(j) = f Z Ztﬁztz ﬁtz_th/—j
t=j+1

for0<j;<T-1.

Step 3: Convergence Criterion
If some convergence criterion is met (usually conerning the distance between the iterates
of the 2SLS estimator or the weighting matrix) then terminate the process. Otherwise,

return to step 1.
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1.2.5 Mixing Processes

So far, we have shown that, if a weakly stationary process satisfies certain moment conditions
and its entries are independent with observations that are sufficiently far away, then it satisfies
a form of the CLT. However, the assumption that the dependence between the entries peters
out so rapidly is unrealistic; indeed, it is not even by satisfied the most basic AR processes. In
this section, we introduce a weaker form of limited dependence; simply put, it allows entries in

the process to be independent ”at the limit”.

Let {Y;}tez be an n-dimensional process. For any sub o-algebra F and G of H, define o(F,G)

as

a(F,G)= sup [P(ANB)—P(A)P(B)| € [0,+oc].
A€F,BeG

Defining F*_ = 0{Y},Yi_1,---} and For = 0{Yir, Yoqry1,---} for any k € Z and 7 € Ny,
define

a(T) =supa (fﬁoo,f,ﬁT) € [0,4+00].
kEZ

We say that {Y;}ez is a-mixing, or strong mixing, if
lim a(7) =0.

T—00

That is, the dependence of any two groups of entries in {Y; };cz that are 7 periods apart uniformly

decreases to 0 as 7 — oo. If {Y; }4¢z is strictly stationary, then we can equivalently define

a(rT) =« (fgoo,ffo> :
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1.3 Linear Processes and the Wold Representation

In this section we study (possibly multivariate) weakly stationary time series, with a focus on
causal linear processes and the Wold representation theorem. Throughout, we let the matrix

norm ||-|| be the trace norm (for more on trace norms, refer to the notes on factor models).

1.3.1 Multidimensional L? Spaces

For any p € [1,+00) and a measure space (E,&,u), we define the n-dimensional LP-norm of
a measurable function f: E — R™ as the LP-norm of the non-negative measurable function
|f| : E— R4, that is,

10, = 1510, = \f\pduy.

[[[l,,, satifies Holder’s and Minkowski’s inequalities because |[|-[|, does: for any p,q € (1,400)

such that 1= %+ %, and measurable f,g: F — R",

||f’g||1Z/Elf’gldMS/EInglduS|||f|||p'|||g|||q=Hf\ln,p~\|9Hn,q

by the Cauchy-Schwarz inequality and the univariate version of Holder’s inequality.

Similarly, for any p € [1,400) and measurable f,g: E — R",

1+ 9l < MFI+1glll, < TN, + gl = 171 5+ gl -

Let L (€, p) be the collection of all £-measurable function f: E'— R" such that || f],, , < +oc.

LP (&, ) is clearly a vector space over the real field.

Multidimensional LP Norms are Norms

We can also see that [|-||,, , is a norm on L} (&, ), given that we identify u-almost everywhere

equal functions:

o For any f e LE(E,u), suppose Hmep = 0. Then, |f| =0 p-almost everywhere on E, which
implies that f =0 p-almost everywhere on E. Conversely, if f =0 p-almost everywhere on
E, then |f[ =0 p-a.e. and thus | f[|, , = 0.
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o Forany z€R and f e LE(E,n),

1z Fll = W2l 1M = 21 11 -

o Forany f,g€ L?I)L(gvl‘L%

1+ 9llnp < MAI+1glll, < N F 1 p + gl

Multidimensional LP Spaces are Banach Spaces

We can see that the space (L} (E,u),||[,,,) is a Banach space, just as in the univariate case:
this follows easily from the Riesz-Fischer theorem for the univariate case. Choose any sequence
{fk}tren, that is Cauchy in (LL(E,p), |||, ,)- For any 1 <i <n, the sequence of coordinates
{fit }ren. is a Cauchy sequence in the Banach space (LP(E, ), H-Hp), so there exists a g; € LP(E, )
such that

Jim || fik = gill, = 0.

Define g = (g1, ,9n)- Then, because g is measurable and

n
<>_llgill, < +oo,
p =1

191l = lllglll, <

n
> lgil
=1

we can see that g € LP (€, ). Furthermore,
n
k=l < Dl fir—aill,
i=1
for any k € N4, so we have
I —g|l, . =0

and thus f, 25 g. This shows us that (Lh (& 1), I1l,,,,) is a Banach space.
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Multidimensional L? Space is a Hilbert Space

Finally, we can define an inner product on the space (L5(E, n), |- Hn’p). Define the function (-, )p 2
LH(E,p) x Lh(E,p) = R as

<f,g>n,2=[Ef’gdu

for any f,g € L5(E,pn); this is well-defined, since

n,2 < +o00.

L 17gln =175l < 112 g

(-,-)n,2 is an inner product on L5(&, ), given that we identify functions equal p-a.e.:

o Forany z € R and f,g,h € LE(E, 1),

(2 f+g,hna = /E (2 f+g) hdu=z- /E Fhdp+ /E ghdp =z (f,hna+ (g, R)na.

o For any f,g € LH(E, ),

<f,g>n,2=[Ef’gdu=[Eg’fdu=<g,f>n,2-

» Forany f € Ly(€,p),
(f. fhna = /E | F[2dp > 0.

If (f, f)n2 =0, then |£|* =0 p-a.e. and thus f =0 p-a.c.

H||n2 is the norm induced by (-,")n2, so (L2(&,p),(-,-)n,2) is a Hilbert space over the real
field. Below, for notational brevity, we denote
LZY)L(EHM) :Lp(gnu’)v ”Hn,p: H”p and <'7'>n,2: <'7'>2

when the dimension n is determined.
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1.3.2 Linear Processes

We first show that we can construct autocorrelated weakly stationary processes given a white

noise process and a sequence of coefficients that satisfy weak regularity conditions:

Theorem (Convergence of Linear Processes under Square Summability)
Let {et}tez be an n-dimensional white noise process with variance ¥ € R"*", and {V,},cz a

sequence of n X n real matrices such that

[e.9]
> tr(20)) < foo.

j=—o00

Then, for any p € R™ and t € Z, the partial sum process

{n+ f: ey}

j:—m m€N+

is L? and converges in L? to some random vector Y;.
The L2 process {Y; }1ez defined as above is weakly stationary with mean x and autocovariance
function I' : Z — R™*"™ defined as

oo
L(r)= > ;5
j=—o00

for any 7 € Z.

Proof) For any t € Z and m € N, define

m
Yiu=p+ Z W;-grj.

j=—m

Note that E[Y,:] = u. For any 7 € Z and m € N, we have

m m

E (Yt — 1) Vmier )] = 30 Y U-Eler el , ] -V

j=—mi=—m

For any m, k € N, such that m > k, note that

—k—1 m 2

Vit = Viell3 = E[Vit = Vi P = E| Y Tjoej+ > Ujoe
Jj=-—m j=k+1
—k—1 m
= Y w(wse)+ Y o (ene)).

j=—m j=k+1

The right hand side goes to 0 as m,k — 0o, so it follows that {Yi,,;}men, is Cauchy in
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L?(H,P). Because (L%(H,P),(-,-)2) is a Hilbert space, there exists a Y; € L?(#,P) such
that

L2
Ymt — th

as m — oQ.

It remains to show that {Y;}:cz is weakly stationary.

For any t € Z and m € N,
[E[Y:] = pf = [E[Y;] = E[Ynd]| SE[Y; = Yonr| < [JY; = Yol
by Jensen’s inequality, so taking m — oo on both sides shows us that
[E[Y:] —ul =0,

that is, E[Y;] = p. Therefore, {Y;}tcz is mean stationary.

Define Z, =Y, —pand Z,y =Yy —p for any t € Z and m € No. Forany t € Z, Tt € Z,
and m e N4,

B [ZniZpir | ~ B[22, | < Bl Zme = 20)(Zimr — Zes)' | + Bl Ze(Zim—r = Z |

+B||(Zmi = Z0) 7, |

SE[|Zmt — Zi| | Zimg—r — Zt—r || + E| Z4] - | Zint—r — Z1—+]]
+E{Zmt = Zil - 1 Ze—+ ]

<N Zmt—Zilly 1 Zmp—r — Zi—rlly + 1 Zello 1 Zmp—r — Zi—1 |5
N Zmt = Zillo - | Ze—~ 1|55

where the second inequality follows from the trace norm inequality and the third from

Holder’s inequality. Therefore, taking m — oo on both sides yields

i B (207, ] =E[270.].

The existence of the limit is proved alongside the fact that the limit is E[Z,Z]_.].

Given the value of E [ Zrnt Lyt — T} for large m, we can see that

Cov D/t?}/t—T] =E [ZtZt/ ‘r]

Z Z\Il ‘Elerjer_, 4] W= Z\I}Z\IJ

Jj=—001=—00 j=—00

Therefore, {Y;}1ez is also covariance stationary and has the specified autocovariance
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function.

Q.E.D.

In light of the above theorem, we can define a new class of weakly stationary processes.
An n-dimensional process {Y;}icz is said to be a linear process if it satisfies the following

conditions:

o There exists a square-summable sequence {W;};cz of n x n matrices, that is,

o
>t (W)30;) < foo.

j=—o00

o There exists a u € R" and an n-dimensional white noise process {&;}cz with covariance

matrix ¥ such that

Vi=p+¥(L)er=p+ Y, Ve

j==o0

for any t € Z, where Z‘;‘;_OO Vg4 j is the L2-limit of the corresponding partial sum pro-

Ccess.

If =0 above, then we call {Y;};cz a zero-mean linear process.

The previous theorem shows us that {Y; },c7z is a weakly stationary process with mean p and

autocovariance

L(r)= Y U;5¥; .

j=—o00

for any T € Z.

Let {Y;}+ez be an n-dimensional linear process with mean p € R™, innovation process {&; }1ez

and square summable linear filter {V,} cz. We say that {Y;}scz is a causal linear process if
V; =0 forany j<O0.

This means that Y; is a function only of the current and past innovations; in this case, we write

o0
Y; :M+Z‘I/j'€t—j,
=0

where the equality denotes the L?-convergence of the partial sum process.
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A stronger condition than square summability is absolute summability, which states that

o
Z H\I/JH < +00.
j=—00
Under the absolute summability of {¥;};cz, the convergence of

{n+ i ey

j=——m meNL

to Y; holds both in L? and almost surely. We establish these claims below:

Lemma (Absolute Summability implies Square Summability)
Let {¥;},cz be an absolutely summable sequence of n x n real matrices. Then, it is also square

summable under any positive definite covariance matrix X € R™*™,

Proof) Suppose that

Z H\I/]H < +00.
j=—o00
Then, note that
0< Y o (0n9)) = 3 tr(2-()1,))
j=—00 j=—o00
< 3 Izl v <is)- (AZ \wju?) .
J=—00 J=—00

For any m € N,

m
> 1)

m
< max ||W; > v,
> < max 15 (jzzmn J|)
2
o0
< DYl <Aoo
j=—00

Therefore,

[ee]
> I? < 400
j=—o00
and we have
[ee]
>t (U30)) < foo.
Jj=—00

Q.E.D.
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Theorem (Convergence of Linear Processes under Absolute Summability)
Let {&;}tcz be an n-dimensional mean-zero square integrable and weakly stationary time series
with absolutely summable autocovariance function G : Z — R™". Let {V¥;},cz a sequence of

n x n real matrices such that
o
Z ”\I’jH < +o00.
Jj=—00
Then, for any p € R™ and ¢ € Z, the partial sum process

{n+ i ey )

j=—m meN4

is in L? and converges almost surely and in L? to some random vector Y;.
The L? process {Y; }1cz defined as above is weakly stationary with mean y and autocovariance
function I' : Z — R™*"™ defined as

I(r)= i i \I/Z'~G(T+j—i)-\1/;

t=—00j=—00

for any 7 € Z.

Proof) Step 1: Almost Sure Convergence

For any t € Z and m € N, define

m
Yt = p+ Z \Ilj-e’ft_j.

j=—m

Define ¢ as the counting measure on Z, and the function f:7Z x Q — [0,+00) as

fU,w) =¥ e—j(w)|

for any (j,w) € Z x Q. Since f is a non-negative measurable function relative to the

product o-algebra on Z x €2, by Fubini’s theorem for non-negative functions,

E

j==o00

3 yxpj-etj|] - /Q /Z F(r,w)de(7)dP(w)

:/Z/Qf(r,w)dﬂ”(w)d(:(ﬂ

)
— Y B
Jj=—00
) ) 00
< D0 Il lleejlly = tr(GO)2 - | D (1]l | < oo
j=—oo j=—o0
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By the finiteness property of non-negative functions, it now follows that
o
Z ’\I/j -Et_j’ < +00
Jj=—00
almost surely, which implies that the series
o0
> Tier
j=—00
converges almost surely. Define Y; as
oo
Yi= ) Ujery
j=—00

on the subset of {2 on which the series converges, and 0 otherwise. Then, Y; is a random

vector such that

as m — oQ.

Step 2: Mean Square Convergence

To see that the convergence is in L? as well, we follow the steps of the previous theorem

almost step for step. For any m,k € Ny such that m >k,

—k—1 m
Yot = Yaelly = || D e+ Y Ve
j=—m Jj=k+1 9
—k—1 m
< Dl lee—slly+ > 1950 llee—slly
j=-m j=k+1
1
<te(G(O)2 Y vl
k<|j|l<m

Since {¥;},cz is absolutely summable, sending m,k — oo on both sides yields

lim ||Y — Yiel|o = 0.

m,k—00

This tells us that {Yut}men . is Cauchy in the L? metric, and by the completeness of

2
the n-dimensional L? space, there exists a Z; € L? (H,P) such that Y, = Zp as m — 00.
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Step 3: Equivalence between L? and Almost Sure Limit

It remains to prove that Z; = Y;. Note that

E|Y; — Zi| <E|Z: — Yot | + E|Yo — Vi
S HZt_YthQ +E’Ymt _}/t’

for any m € N4. Since

Yt = Yi| < [Yie| + Ve

<D eV <20 > e

j=—m j=—o0

for any m € N, where

00
]E|: Z |\I/j'€t7j| < 400,

j=—o0

and Y,y 23 Y; as m — oo, by the DCT we have

lim E|Y — Y| =0.
m—0o0

Thus,
E|Y; - Z| =0,
and Y; = Z; almost surely.
Step 4: Mean Stationarity
For any t € Z and m € Ny,
E Yol = u,

and since
|/$_E[Y;‘/]| gE‘Ymt_YH S HYmt_}/t”%

sending m — oo shows us that E[Y;] = u; {Y;}tez is a mean ergodic L? process.
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Step 5: Covariance Stationarity
Finally, for any ¢,7 € Z and m € N,
E [(Ymt - N)(Ym,t—r - M)/] = Z Z \I]i ' G(T +j - Z) 27

i=—mj=—m

since

2 2 (Z I; H) (i \|G<j>u)<+oo,

E (Yot — i) (Yin,t—r — p)'] converges to

[e.o]

> i Ui G(r+j—i)-

1=—00 j=—00

as m — oQ.

We saw in the proof of the previous theorem that
i E (Yt — 1) (Yona—r — )] = E[(¥ = ) (Ve — ') :=T(7)

2
since Y, =N Y; for any t € Z. Therefore,

=> > U-Gr+j—i)V
1=—00 j=—00

and thus {Y;}4cz is weakly stationary.

Q.E.D.
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The assumption of absolutely summable coefficients thus allows us to extend the result of
the previous theorem to arbitrary weakly stationary innovation processes. In particular, the
absolute summability of the autocovariances of the underlying innovation process implies that
the linear process constructed using the process is also weakly stationary. A useful shorthand

for this result is

(o]
Yi=p+Y(L)e :=p+ Z U;-egi_j,

j=—00

where V(L) is the lag polynomial written as

e .
> ;L.

j=—o0

If ¥(L) and O(L) are two lag polynomials corresponding to the absolutely summable coefficients
{¥;}jez and {©;};cz and satisfy

\I/(L)@(L)Et = &,

then we denote
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1.3.3 Ergodicity of Linear Processes

Here we present two law of large numbers for linear processes dealing with first and second
moments, respectively.
We first state a mean ergodicity result for arbitrary weakly stationary processes satisfying cer-

tain regularity conditions:

Theorem (Mean Ergodicity of Weakly Stationary Processes)
Let {Y; }+ez be an n-dimensional weakly stationary process with mean p € R™ and autocovariance

function I' : Z — R™*™. Suppose that {Y};}:cz has trace summable autocovariances, that is,

o0

Z tr (I'(7)) < +o0.

T=—00

Then, the sample mean of {Y;};cz converges in L? to yu, that is,

Proof) For any T € N, define

and note that

T t=1s=1
1 T T
:ﬁZZm(P(t—s))
t=1s=1
<1i[ i tr(F(T))] =2 fj tr (T'(r))
N T2 t=1 LT=—0o0 TT=—00 .

Since the sum on the right is finite by assumption, taking T"— oo on both sides yields
_ 2
lim E)YT - u] =0,
T—00

and by definition Y7 L—2> 7
Q.E.D.

The following utilizes the preceding result to derive an ergodicity result for linear processes

under absolute summability.
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Theorem (Mean Ergodicity of Linear Processes)
Let {&}tcz be an n-dimensional white noise process with positive definite covariance matrix
Y e R™" {V,},cz an absolutely summable sequence of n x n matrices, and {Y;};cz the causal

linear process defined, for any ¢t € Z and some p € R", as
[ee]
Y, =u+ Z \Ifj *Et—j-
j=—00

Let I': Z — R™™™ be the autocovariance function of {Y;}¢cz. Then,

> IP@] < 400

T=—00

and

Proof) By the results in the previous section, we know that {Y;};cz is a weakly stationary

process with mean g and

o
()= > ;5

j=—o0

for any 7 € Z. We can easily establish the trace summability of the autocovariances:

i tr (D(7)) < i i tr(\lsz\l/;_T)

T=—00 T=—00 j=—00

[o.¢] [o.¢]
<=l Y |||

T=—00j=—00

2
SHEII-( > H‘I’jll) < +oo.

j=—o0

This in turn implies the absolute summability of the autocovariances, since for any

symmetric matrix A € R™*"
1A|| = tr (A’4) % < tr(A).

Finally, by the preceding theorem, we can see that

Q.E.D.
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The next result concerns the ergodicity of linear processes for second moments, under a few

different regularity conditions imposed on the innovation process.

Theorem (Covariance Ergodicity for Linear Processes)
Let {&:}tcz be an n-dimensional white noise process with positive definite covariance matrix
Y e R™" {W;}jez an absolutely summable sequence of n x n matrices, and {u;}ez the mean

zero linear process defined as
oo
Ut = E \I’j “Et—j
j=—00

for any t € Z. Let T' : Z — R™ " be the autocovariance function of {u;}ez, which is absolutely
summable due to the absolute summability of {¥;};cz. Suppose {€}icz is i.i.d. Then, for any
h >0,

T
1
T ZUtu;_h ﬁ) F(h)
t=1

Proof) Choose some h > 0. Then, for any 7' € N4 we can write

1 T 1 T 00 00
T ZUtU;_h = T Z Z Z ‘I’kf‘?t—kdf—h—l\l’l
t=1 t=1k=—o00l=—00
0o 0o 1 T
= k_z _Z Uy (T Z&f—lﬁ;_h—l) v,
=—o0l=—00 t=1

where the equality holds almost surely due ot the absolute summability of {¥;};cz.
We know that

[e.o]

P(h) =Efuuy )= Y D> WE[errei ] ¥,
k=—o0l=—00 —
Nkl

where

S ifk=h+l
O iftk#h+l

Ekl _

by the uncorrelatedness of {¢;}cz, so that

1 T [e's] (e%s) 1 T
TZUtU;_h—F(h)‘ = Z Z \I/k (T Zst—ké—}/ﬁ—h—l_zkl> \I/;
t=1 t=1

k=—ocol=—0

T
< — — \II . \I] . l / 72]471
< 0D -1 Tzﬁt—k€t_h_z

t=1

k=—ocol=—00 =
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almost surely. Defining

1 X
/ kl
T E :Et—ketfhfl -2
t=1

Ayt =

for any k,l € Z and T' € N, we can write

[ee) oo
< > 2 1wl 1wl [ Awr

k=—o0l=—00

1 T
T > ugu_p, —T(h)
t=1

almost surely, and by Fubini’s theorem for non-negative integrands,

o0 o0
< S0 I 1Bl Al

k=—o00l=—00

1 T
E|l= Zutu;_h —TI'(h)
=

Let ¢ be the counting measure on Z2. Defining the function fr:7Z? — R as

fr(k, ) = 19k - (1@ - Ef Agr

for any k,l € Z, we can write

>3 Il 1l Bl Aul = [ frde

k=—oc0l=—00

Note that, for any k,l € Z,

E|| AT

< A S Bl + ]
t=1

< 2”2le <23
This tells us that, defining g: Z> — R, as
g(k, 1) = 2[| | - [ @] - [|Z]]
for any k,l € Z, we have

|fT| < g,

for any T' € N4, and ¢ satisfies

/Zzgdcz2||2\l'< >y Hwkn-nwln)

k=—o00l=—00

2
=2HZH~< > H‘Ika) < oo

k=—o00
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by the absolute summability of {¥;};ecz.

Suppose each E|| Ay 7| converges to 0 as T'— oco. Then,
lim fr(k,0)=0
T—o0

for any k,l € Z, so that, by the DCT,

lim/ deC:O
T—o00.J72

and because E % Z?:l upy_p, — I’(h)’ is dominated by [,» frdc for any T'€ N, we have

T
. 1
lim IE|T ;utu;_h - F(h)‘ =0,

T—o0

that is,

1 T ;LA
T ZUtutih — P(h)
t=1

As such, it remains to see that each E||Ay; r|| does indeed converge to 0. Given k,l € Z,

we can consider two cases.

i) k=h+1
Then,

| Akl =

'ﬂ \

2_: EtkEt_k — )H
SL27

T
Z Ezt k‘g_]t k— Ezy)

||M:

for any T'€ N4. Choose any 1 <i,j <n. Because {£;&} }1ez is i.1.d. and E[gse}] = X
for any t € Z, {eiejt — Xij ez is a uniformly integrable process, which in turn
implies that it is L'-bounded. Furthermore, since {eiejt — Lijhrez is i.d, with
mean 0, it is also a martingale difference sequence with respect to the filtration it
generates, and by the WLLN for martingale difference sequences, we can conclude
that

T

1 Ll

T > (eig—k€jp—k — Sij) = 0.
=1

This holds for any 1 <14,j <n, and
1T

n n
ElAurl <) ) E T > (eip—kja—t — Sij)|,
t=1

i=1j=1
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so we have
El|Ag,r| —0

as T — oo.

i) k#h+1
Then,

T
Z Eit—kEj,t—h—1
t=1

Akl < ZZ

for any T'e N,. For any 1 <1i,j <n, the sequence {&; ;_r€;j¢—h—1}tez has mean 0.
Assume without loss of generality that k < h+1, and let F be the filtration on
Z generated by {e;_j}+cz. Then, for any t € Z, since €;4_p—; is F;—1-measurable
(t—h—1l<t—k), we have

Eleit—reji—n—t | Fi—1] = Elei -k | Fim1] - €j1—n—i
=Eleii—#] €jt-n1=0,
where the second inequality follows because €;_j is independent of F;_1. By defi-

nition, {€z‘,t—k€j,t—h—l}tez is a martingale difference sequence with respect to F.

Furthermore, because €;;_x and ;;_,_; are independent for any ¢ € Z,
2 2 2\ _
Eleit—k€ji—h—t]” = <E|5i,t—k| ) (E|€j,t—h—l| ) =X < +oo,

so that {€; +—r€jt—n—i}iez is L?-bounded and thus uniformly integrable.

We can now apply the WLLN for martingale difference sequences to conclude that

T

1 Lt
T Zgi,tfkfj,tfhfl — 0,
t=1
and since
n n 1 T
E|| A, 7| < ZZE‘T Zei,t—kéj,t—h—l ;
i=1j=1 t=1
we have
EHAkl,TH —0

as T — oo as well.

Q.E.D.
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1.3.4 The Wold Representation

In this section we provide a rationale for focusing on linear processes. It is shown that any weakly
stationary time series that satisfies some light regularity conditions can be written as the sum
of a linear process and a predictable process, the latter whose definition will be stated shortly.
This result, called the Wold representation theorem, provides the theoretical justification for
studying linear processes, and is also why we like to focus on vector autoregressions; they are

simply linear processes with appropriately truncated lags.

We first introduce some definitions. Let {u1,--- ,ur} C L?(H,P) be a collection of n-dimensional
square integrable random vectors, and X € L?(#,P) another n-dimensional random vector. Usu-
ally, when we refer to the projection of X on the span of {uj,---,ur}, we refer to the linear
combination of {u1,---,ur} that best approximates X in the L?-norm. In what follows, we call

the linear projection of X on the span of {uj,---,ur} the random vector

X1
p(X|u17"'vuT): ’

A

Xn

where, for each 1 <17 <mn, X; is the orthogonal projection of X; on V', and the vector space V is
defined as the span of the collection of (univariate) random variables {u; |1 <i<n,1 <t <T}.
Since X; is contained in the univariate L?-space for each 1 <4 < n, the linear projection P(X |
ug,---,up) is itself a square integrable n-dimensional random vector.

From the properties of orthogonal projections onto linear subspaces spanned by a finite set,

we can see that there exist matrices Aq,---, Ap € R™"™ such that
R T
P(X |uy, - ur)= ZAt-ut.
t=1

Clearly, p(X | uy,-++ ,ur) is a more precise approximation to X than the orthogonal projection
of X on the span of {uj,---,ur}. Note that linear projections and orthogonal projections are

identical when n = 1.

The same idea can be extended to the span of infinite sets as well. For any collection

{us}en, C L*(H,P) of n-dimensional square integrable random vectors, we define

projXi
P(X‘ul,’LLg,-“): )

pTOjWXn

where

W =span({uy | 1 <i<n,t € Ny});
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the only difference with the finite case is that each coordinate of X is projected onto the closure
of W instead of W itself. The reason for this, made clearer below, is that only when we project

onto the closure of W is a unique orthogonal projection guaranteed to exist.

We first show some preliminary results concerning linear projections, using a limit result

that holds for arbitrary Hilbert spaces.

Lemma (Limiting Behavior of Projections in Hilbert Spaces)
Let (V,(:,-)) be an arbitrary Hilbert space over the real field, ||-|| the norm induced by (:,-), and
d the metric induced by ||-||. Let {Wj}ren, be an increasing sequence of linear subspaces of V/,
and denote the union of these subpsaces by W =J, Wi. Fix some x € V', and for each k € N,
let there exists a unique orthogonal projection y of x onto W.

Then, the sequence {yy }ren, converges in d to some y € W, where y is the unique orthogonal

projection of x on W.

Proof) We first establish that there exists a unique orthogonal projection of z onto W. It is
immediately clear that W is closed. To establish that it is a linear subspace of V over
the real field, choose any w,z € W and a € R. Then, there exist sequences {wy }ren,
and {2 }ren, that are contained in W and converge in d to w and z. For any k € Ny,
there exist my,mo € Ny such that wy € Wy,, and z, € Wi,,; since {Wi,}men, is an

increasing sequence of linear subspaces of V,
a-wg+ 2L € Wmax(ml,mz) cW.

Thus, {a-wy + zx}ken, is a sequence in W that converges in d to a-w+ z; since W
is closed, a-w+ z € W, which establishes that W is closed under linear combinations.
Furthermore, the zero vector is contained in each W, (since they are linear subspaces)

and therefore in W as well, proving that W is a linear subspace of V.

W is a closed and convex (this follows from linearity) subset of the Hilbert space V.
By the Hilbert projection theorem, there exists a unique y € W such that y is the

orthogonal projection of z on W, that is,
lz—yl| <|lz—2| VzeW.

It remains to prove that this y is the limit of the sequence {yx}ren, -

Note that
W={JWs
k
the inclusion W C {J, Wy, holds because |J, Wy is a closed set containing W, while
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the fact that W,W for any k € N, implies the reverse inclusion. Since y € W, and
{Wk}ke N, is an increasing sequence of subsets of V, this means that there exists an
N € N, such that y € W}, for any k > N. For any k> N, choose z;, € W}, such that

| I<:
ol < =
Y=zl <3

it is possible to make this choice because y € Wj,. For k < N, choose any 2, € W}; then,

the sequence {21 }ren, satisfies
2k €W, Vke Ny and zp—y ind

For any k € N, z; € W), and y;, is defined as the orthogonal projection of  on Wy, so

we have the inequality
2 =yl < llz— 2.

Furthermore, because each y, € W), C W and y is the unique orthogonal projection of
xon W,

lz—yll < [lz— k-

In other words, ||z —y| < ||z —ykl| < |z — 2| for any k € N4, so sending k — oo on
both sides yields

Jim [f = g = [l —y]|.
— 00

Likewise, defining v, = I € W for any k € N,

1 1
o=yl <l —vell < 5lle =yl + 5 12— g
for any k € Ny, so sending k — oo on both sides yields

Timn |z = g = =g
—00

Now we use the parallelogram law on inner product spaces to show that y, — y in the

metric d. By the parallelogram law, for any k£ € N,

ety

)

2wx—%W+awm—mF=nm—yW+4ﬂx

so that rearranging terms yields

lyk = yl1* = 2+ [|lz = yull* +2- lz = y||* = 4[|z —vg]|*.
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Sending k — oo on both sides then yields
. 2
khm llye —y||“ =0,
—00
so that yr — vy in the metric d.
Q.E.D.
Corollary  Let {us}tez C L2(H,P) and X € L2(#H,P). Then, for any t € Z,
N L2 A~
P(X | Uty 7ut—k:) _>P(X | utaut—la'”)

as k — oco.

Proof) Fix any t € Z. For any k € N, define the linear subspace
Wi = span ({ui;—j | 1 <i<n,0<j <k})

of the univariate L? space L?(H,P). Then, {W}}ren . is an increasing sequence of linear

subspaces such that

W:UWk:span({uiyt,j |1<i<n,jeN}).
k

For any 1 <i<mn, let X, be the orthogonal projection of X; onto W in the L?-norm,
and let Xi(k) denote the orthogonal projection of X; onto W}, in the L?-norm for any
k € N.. By definition,

i %,
P(X Jue, ) = | Vke Ny and P(X |upupi,-)=]| :
(k) L2 % . .
By the lemma above, X, = X; for each 1 <7 < n. Since

HP(X |y ug1,--) = P(X | g, ’ut*k)Hn, ‘

P(X Jugu—1, ) — P(X’ut""’ut*k)mz

by Minkowski’s inequality and the definition of the n-dimensional L?-norm, taking

k — oo on both sides yields

2

A L A
P(X [ ug, - ug) = P(X | ug,up—1,-+).

Q.E.D.
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The next result shows us how to find the coefficients of linear projections on finite sets.

Lemma Let {uy, - ,up} C L?(H,P) be a sequence of n-dimensional square integrable random

vectors such that

Y ifi=j

E[umﬁ: O ifi#j

for some positive definite n x n matrix ¥, and let X € L?(H,P) be an n-dimensional square

integrable random vector. Then,

h
P(X [u,+ up) = DB [X | 27
j=1

Proof) There exist Ay,---, A € R™*™ such that
. h
P(X | Uy ,Uh) :ZAj-Uj.
j=1

Since each coordinate of P(X |uy,---,up) is the orthogonal projection of X; onto the

linear subspace
W =span ({u;s | 1 <i<n,1<t<h}),

by the characterization of orthogonal projections we have

E (X = P(X |ug, - up))uf| = O

for any 1 < j < h. This implies that
E [Xu;} =E [P(X | uy, - ,up) -u/} = ZAZIE [ulu
for any 1 < j < h, which implies that
A h
P(X [ur,o ) = Y B [X )| 27y,
j=1
Q.E.D.

We now state and prove the main result of this section:
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Theorem (Wold Representation Theorem)
Let {X;}tez be an n-dimensional square integrable and weakly stationary process with mean

zero and autocovariance function I' : Z — R™®*™. Assume that

e Rnhx nh

is nonsingular for any h € N, and that X, — ]S(Xt | X¢—1,X¢—2,--) has positive definite variance
for some t € Z.
Then, there exists an n-dimensional white noise process {; }+cz with positive definite covari-

ance matrix ¥ € R™*" and a sequence {¥;};en of n x n matrices such that
oo
> (03 W)) < oo
j=0
and
o)
Xi=Y Ve j+m,
j=0

for any t € Z, where {n, }+cz satisfies

P(nt ’ Xt—laXt—2;"‘) =Tt

Proof) We first start by constructing the white noise process {&;}sez. This process is defined
as the difference of X; and the linear projection of X; on past values Xy 1, X o, --;
it thus collects the one-period ahead linear forecast errors. Then, the linear process
part of X is constructed as the linear projection of X; on these projection errors. In
effect, X} is represented as a collection of updates following projection errors (the linear

process part) and a part corresponding to the projection (7;).

Step 1: Constructing the White Noise Process

As stated above, ¢; is defined as the one-period ahead linear forecast error of Xy, that

is,
er =X — P(X; | Xt 1, Xi_2,--).

The difficult part is showing that {e;}+cz is a white noise process with positive definite

covariance matrix.
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For any t € Z, we established above that
P(X¢ | Xim1, Xi-a, )
is the L?-limit of the sequence {p(Xt | Xt—1,---, X¢—n) tnen, - This implies that
ent =Xe—P(Xy | Xeo1, Xoon) L Xi—P(Xy | Xi-1,Xp—0, ) =&

as h — oco. By the definition of the linear projection as a collection of orthogonal pro-

jections of the coordinates of X;, we have
E [5h,t'XzLi] =0
for any 1 <i<h and h € Ny, and likewise,
Ele-X;_;] =0
for any i € V..

Fix h € N, and note that there exist Agfft), e ,Aght) € R™ "™ guch that

h
P(X¢ | Xomr o X)) = S AN - X,

=1
Then, for any 1 < j <h,
h h
O=E {Eh,thfj] =K [Xt : Xzfj} - ZAz(,t) ‘E {Xt—i : Xz—j]
=1
=T(j) = DAL TG ).

i=1

Collecting these equations, we end up with the equation

(o) ~o I(h—1)
(a7 - a) | = )
L'(h—1) r'(0)
'(0) I'(h—1)
By assumption, the matrix nh x nh matrix : . : is non-singular,
L'(h—1) (o)
so the coefficients are given as
-1
r'(0) I'(h—1)
(A} A =(rw - )
'(h—1) (o)
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This implies that Agﬁ) does not depend on the time ¢; we denote AZ(»Z) = Agh) for any
1 <i < h. We can now show that {e;}cz is a white noise process as follows:
— Mean of ¢;
For any t € Z,
L
Elend=> A" E[X, ] =0,
i=1
L2
and because e, ; =+ g4 as h — 00,
E[€t] = lim ]E[tht] =0.
h—o00
— Covariance of ¢;_, and X,
Forany t€Z, 7€ Z and h € Ny,
E[Xiehy .| —E[Xe XI_] B[ Xe P(Xos | Xy Xigs)|
h
=T(r) =Y T(r+i)- A"
i=1
-1
'(0) I'(h—1) r(y
=0(r)= (P(r+1) - T(r+h)) :
'(h—1) (o) r'(h)

Note that G\ depends only on 7 and h. The left hand side converges to E [ X} - /]

L? .
as h — oo because €, —+ €4—, so it follows that

lim GW =G, :=D(r)-E[X;-_.],

>
h—o0

and we can see that E[X;-&,__| does not depend on t.

As a special case,

E [X;-&)] = T(0) — Go.

— The Covariance of ¢; and ¢, t # s
First note that, for any h € N4 and t,s € Z such that ¢t < s,

h
E [P(Xt | X1, Xop) .a;} —S AN .E[X, ] = 0.
=1
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N 2 A
Since P(X; | Xi—1, -+, X¢—n) L P(X: | Xt—1,Xt—2,--+) as h — oo, the equality

above implies that
E|P(X: | Xp1,Xpg,+) ] = lim B|[P(X, | Xp,+, Xy n) -] = 0.
h—o0
Now choose any t,s € Z, and assume without loss of generality that ¢ < s. Since
E[eel] = E [Xiel] B [P(X; | Xi1,Xia,0+) €]
and E[X;e.] = O by the property of linear projections, we have
E[e]] = O.

{et}tez is a pairwise uncorrelated sequence.

— The Variance of ¢;

For any ¢t € Z and h € N4, note that

E[ee)] =B [X-ef] ~E | P(X0 | Xio1, Xioa,+-) ¢
—E[X;-}] =T(0)—Gp:=3,

s

where the second equality uses the result that E {p(Xt | Xio1, Xe—9,++) '6/} =0
for any t < s.

We have shown that {e;};cz is a white noise process with covariance matrix ¥ € R™*".

Since X is the covariance matrix of every X; — P (Xt | X¢—1,X¢—2, ), which we assumed

to be positive definite, X is positive definite.

Step 2: Constructing the Linear Process

Now that we have the desired white noise process {&;}+c7, we now construct the linear

process part of Xj.

For any t € Z and h € N, define

A

KZP(Xt|€t,€t—17"‘)

and

Vie=P(X¢ | e, e0-n).
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By the above lemma,

h
Yht_ZE[Xt el ]} IR
j=0
h
=> (T() -GS ey
j=0

We now show that the sequence {Y}, ¢ }nen, converges in L? to Y;:

— Square Summability of {U;},cn
For any h € Ny,

E|X; — Vi|* = tr (E[(X¢ — Vi) (X: — Vio)])

h h h h
=tr (F(O)) —tr (Z \I’j -E [Et,jXé] — Z]E {Xté-:;_j] \I’; +ZZ\I’JE [EtijQ_i] \I’;) .
7=0

§=0 j=0i=0

Since

E|X-el_| =T() -G =0;-%,
we have

h
E| X, — Yil* = tr(D(0) = 3 tr (9,20)).
§=0
The left hand side is always non-negative, so
h
>t (U,5W)) <t (D(0)) < +oo.
§=0

This holds for any h € N4, and since each tr <\1ij\119-), being the trace of a positive

semidefinite matrix, is non-negative, taking h — oo on both sides reveals that

itr (€;29)) < tr(1(0)) < +o0,
j=0

— The L2-limit of {Yhithen,

{¥;}jen is a square summable sequence of n x n matrices, so by the results on
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linear processes established above,

h
L2
Yh,t = Z\I’j “Et—j —7 Zy
J=0

2
for some n-dimensional Z; € L?(H,P). Since Yt =N Y; by the result on Hilbert
spaces established just above, the uniqueness of L2-limits now tells us that Y; = Z;

almost surely, or that {Y;}1cz is the mean zero linear process defined as

(e.)
Y; = Z\pj et
3=0

for any t € Z.

We have just shown that X; can be written as the sum of a linear process and an error

component as follows:

o
Xi =Y+ (Xe=Y) =) e+
=0

The proof is completed by showing that the linear projection of 7 on X;_1, Xy o,--- is
itself.

Step 3: Establishing Predictability of 7
By definition,
=Xt —Y: :Xt—Z‘I’j'Et—j~
=0

For any h € Ny,
h
Yh,t — &t = Z \I/j “Et—j;
j=1
this tells us that each coordinate of Y; —¢&; is contained in the linear subspace
Wy, =span({&i¢—; [1<i<n,1<j<h}),

which is itself contained in the closure of the linear subspace

W =JWh.
h
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Since Y; —¢; is the L2-limit of the sequence {Yhi—ettnen ., it follows from the closedness

of W that each coordinate of Y; —¢; is contained in W.

For any j € N4,

A

Et—j = Xt—j _P(Xt—J ‘ Xt—j—luXt—j—27 .. )’

the same line of reasoning as above leads us to conclude that each coordinate of &;_;

is contained in the closure of the linear subspace
V=span({X;;—;j|1<i<n,jeNi}).

Thus, W C V, and we can conclude that each coordinate of Y; —¢; is contained in V.

Finally, since

m=X—Yi=(Xy—er)— (Vi —¢ey)
=P(X¢ | Xe1, Xy, ) — (Vi — &),

each coordinate of 7; is contained in V. This leads us to conclude that the orthogo-
nal projection of each n; on V is 7 itself, and since the linear projection of 7; on
Xi_1,X¢_9,--- is the collection of the orthogonal projections of each 7;; on V, we have
the result

e = p(ﬁt ’ thlthan"')-

Q.E.D.

Above, we have shown that any zero-mean weakly stationary time series {X;}icz subject
to very mild assumptions can be decomposed into two parts: a square summable linear process
part Z;‘io VU;-g;_; and a predictable part 7;. In the construction of the linear process, we saw
that it was nothing more than the weighted average of all the one-period ahead linear forecast
errors, while the predictable part 7; is "predictable” in the sense that it can be perfectly linearly
forecast using past values of X;. Heuristically, this means that any X; can be expressed as the
sum of an expected/linearly predicted component and an unpredictable component, the latter

of which is a function of the linear forecasts up to time ¢.
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1.4 Asymptotic Theory for Linear Processes

Here we present an important asymptotic result pertaining to linear processes with i.i.d. inno-
vations that have finite fourth moments. The analysis necessitates the use of the vectorization
operator and the Kronecker product, two devices that will come in handy very often in the

analysis to come.

1.4.1 Vectorization and Kronecker Product

Let A € C"™*™ and B € CP*?. The Kronecker product AQ B of A and B is the mp X pg matrix
defined as

AHB AlnB

AQR)B =

AmB - ApnB

Clearly, the Kronecker product is not commutative. The following are additional properties of

the Kronecker product:

Lemma (Properties of the Kronecker Product)
Let Aec C™*" B e CP*9, C e C**! and D € C**". Then, the following hold true:

) (AQB)QC=AQ(BRC)

i) fm=p,n=q k=sandl=r,
(A+B)QR(C+D)=AQRQC+BRC+ARD+BD
iii) If n=p and [ = s, then
(AR C)(BQD)=ABKR)CD
iv) If A and B are nonsingular square matrices, then
(AQRB) ™ =(A"' QB
v) If A and B are square matrices, then
tr (AQ)B) = tr(4) tr(B)

vi) Let A be an m X m square matrix with eigenvalues A1, , A, € C, and B a p X p square

matrix with eigenvalues p1,---, i, € C. Then, the eigenvalues of A B are collected in the
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set

{Aipg | 1<i<m,1<j<p}.

vii) Let A be an m x m square matrix and B a p X p square matrix. Then,
AQB|=14r1BI".

Proof) i) This follows immediately by noting that

AHB AlnB
AQRQBRC=| + -~ |QcC
A B - A,.B
An(BRC) -+ An(BRO)
- : " : =AQR)BRC).
ii) This follows immediately by noting that
(A11+B1)(C+D) -+ (Aip+Bin)(C+ D)
(A+B)Q)(C+D)= : . :
AnC+B11C+AnD+ByD -+ ApC+Bi,C+ A1,D+ B, D
AmIC+BmIC+Am1D+Bm1D T AmnC+anC+AmnD+anD/
=AQRC+BRC+AQRD+BED.
iii) This also follows immediately by noting that
AHC AlnC Bi1D - quD
ARQO)(BRD)=| + - AR
A C - AppC) \BuD -+ BpgD
(X1 4uBa)CD -+ (301 AiBig)CD
(it AmiBi)CD -+ (35l AmiBig)CD

=ABR)CD.
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iv) Suppose A and B are nonsingular square matrices. Then, by the preceding result,

(AR B)ATTRB™) = (InQ 1) = Lnp,

so that the inverse of AQ) B exists and is given as

(AQB)'=ATRB!

v) Suppose A and B are again nonsingular square matrices. Then,

tr(A®B ZAmtr tr(A)tr(B).

vi) Let the Schur decompositions of A and B be given as
A=PDP ' and B=QAQ !,

where P,() are unitary matrices, so that their inverses are their conjugate trans-
poses, and D, A are upper triangular matrices. Since the characteristic polynomial

of A and B are given by

m
cha(z)=|A—z-Ip|=|D—z-1Iy| = H(D” —2)
i=1
P
chp(z)=|B—z-I,| =|A—z-I)| = H(A” —2).
i=1
Therefore, the diagonal entries of D and A are the eigenvalues of A and B.

We can now see that

AQB=(PDP ) RQQAQ™)
=(PRQ)((DPHRMAQ™))
=(PRQADRMNPIRQ™
=(PRADRM(PRQ)!

Therefore, the characteristic polynomial of A B is given as

Q)
Q)

hagp() = |(PRADRM(PRQ)™ ~ = Iy
=D M) 2Ly
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The eigenvalues of AQ B are thus collected in the set

{Aips [1<i<m,1<j<p}.

vii) In light of the above result, we can see that

_ (ﬁ)\ ’ (H M)m _ |ApP|B™

Q.E.D.
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The vectorization operator stacks the columns of a matrix to transform it into a vector.

Formally, for any A € C™*"  the vectorization of A is the mn-dimensional vector defined as

Ay
vec(A)=1| |,
An,
where Ay,---, A, € C™ are the columns of A. The vec operator has very useful properties, espe-

cially in conjunction with the Kronecker product.

Lemma (Properties of the Vectorization Operator)
Let Ac C™*" B e CP*9, C € C**! and D € C**". Then, the following hold true:

i) If n=¢ =1, we have

Vec AB B®A

ii) If m =p and n = ¢, we have

vec (A) vec(B) =tr (A'B).

iii) If n=p and ¢ =k, we have

vec (ABC) = C'®A vec (

iv) Suppose the matrix product ABCD is well-defined. Then,

tr (ABCD) = vec (D')' (C’ Q) A)vec (B

Proof) i) If A, B are column vectors, then

AuBu -+ AuBp
vec (AB') = vec : . :
ApiBun -+ ApmiBp
AnBn
Am1 By B A
= : = : =B A.
AUBpl BplA
Amprl
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ii) If A and B are matrices sharing the same dimensions, then

vec (A) vec( ZZAUBU —ZZA ;i =tr(A'B).

i=1j5=1 j=li=1

iii) Suppose n=p and ¢ =k, so that the matrix product ABC is well-defined. Letting
By,---,B, € CP be the columns of B, and {ey,---,e,} C RP the standard basis of
RP,

q
B=> Bie;.

i=1

It follows that

-

-
Il
_

vec (ABC) =) vec(AB;-¢e;C)

I
.M"

—_

(C'ei) Q)(AB;)
i=1

— (C’®A) (Zvec (Bl-e;)>
i=1
= (C/®A)V6C (B),

where we used the preceding result on vectorization and one of the properties of

the Kronecker product.

iv) Suppose that the matrix product ABCD is well-defined. In this case, the previous

results tell us that

vee (D) (C" Q) A)vee (B) = vec (D') vec (ABC) = tr(DABC) = tr(ABCD).

Q.E.D.
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1.4.2 Linear Processes and the Martingale Difference CLT

Let {Y;}+cz be an n-dimensional absolutely summable causal linear process with n-dimensional
innovation process {e;}tez. In many cases we will be interested in the asymptotic distribution
of the quantity
1 T

LY v
\/Tt:p+1
for any 1 < h <p. It turns out that the vectorization of the above quantity follows an asymp-
totically normal distribution when appropriate regularity conditions are imposed on {&;};ez.

Suppose {Y;}iez has absolutely summable coefficients {V;} ;en and mean ;€ R", so that
Y =pu+ V(L)

for any t € Z. Let " : Z — R™*™ be the autocovariance function of {Y;}icz.
Often, primarily when autoregressions are involved, we want to investigate the properties of

sums involving the np+ 1-dimensional process { X}z, where p € Ni and

1
Yi 1
Xy =
Yiop
for any t € Z. The mean of X; is given as
/
n=E[X] = (1 woo ,Ul> c R+
We now make the following assumptions:
A1l. Nonsingular Autocovariances
We assume that the matrix
1 M/ /’L,
po T0)+pp! Llp—1)+
Q pu—
p Llp—1)" + L'(0) + pp!

is nonsingular.

A2. 1.I.D. Innovations
This is our core assumption. We assume that {&;}:cz is an i.i.d. process with positive

definite covariance matrix ¥ € R™*™ and finite fourth moments.

This implies, by absolute summability, that {Y;};cz also has finite fourth moments and
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thus bounded second moments.

A3. Stronger Fourth Moment Assumption

In this assumption, we assume that {&;}+c7z also has finite 4+ 27 moments for some 1 > 0.

We define parameters related to the skewness and kurtosis of the innovation process as
follows:

k3 =E {at (52@52)} c RV

and

2 2
ky=E [&eé@etsg} e R *",

These quantities are designed so that, for any a,b,c,d € {1,---,n} and t € Z,

E [eatevicet] = €, - k3 (ep (X ec)
E [eatevicccar] = (€, Q) ep) - ks~ (e Q) eq),

where {ej,---,e,} CR" is the standard basis of R™.

The following is our main result:

Theorem (Asymptotic Results for Linear Processes with IID Errors)

Under assumptions Al and A2, Y;_; is independent of &; for any ¢t € Z and h > 0, and the
following hold true:

t=p+1
1 I /D
7 Z vec (X;ep) vee (Xqe}) _>E®Q
t=p+1
1 ZT: ec (X)) i>N[0 E®Q}
AY tE¢ ’ :
\/therl

If, in addition to assumptions A1l and A2, assumption A3 holds, then the following also hold
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true:

1

ET: vec (Xie}) vec (Xie}) , », YRQ (I, @ )k3
T 27 \vec(erep — %) | \vec(gg; — %) keI, Q) k1—XQX

1 XT: vec (Xe}) d 0. Z@Qﬁ (I, @[)ks ‘
Tt i1 \vec(ggp — ) k5L, Qi) ki—X QX

Proof) We first establish the convergence results pertaining to X;. For any 0 < h <p, {Y;_ —

i}z is a mean zero causal linear process with absolutely summable coefficients and

i.i.d. innovations, so by the mean and covariance ergodicity of linear processes,

1 T
= > Y, 5p
t=p+1
and

T
D .

T > V=) (Yeonj—p) =>T())

t=p+1

for any 0 < j < p— h, which establishes that

1

T
T Z }/t—h}/tlfhfj 5 T() +
t=p+1

for any 0 < j < p— h. Putting together these results reveals that

Let F = {F: |t €Z} be the filtration generated by {e;}tcz. First note that, for any
t € Z, Xy is Fi_1-measurable. To see this, choose any ¢t € Z and h > 0, and note that

m
pt> Wiy Y,
j=0
as m — oo due to the absolute summability of {W;} en. For any m € Ny, u+377"V;
€t—h—j, being an affine function of the innovations e;_j,---,6t_p—m, is clearly F;_i-
measurable, since F;_; is the o-algebra generated by the collection {e5 | s <t—1}. The
(almost sure) pointwise limit of a sequence of F;_j-measurable functions is itself F;_1-
measurable, so it follows that Y;_j is F;_i-measurable. This holds for any h > 0, so
X, is also a F;_1-measurable random vector. The independence of ; and F;_1 implies

that e, is also independent of X; for any t € Z.
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Note that we can express

vec (Xiey) = (5t®Xt) = (In®Xt) er and vec(gg;— %) = (5t®5t) —vec(X)

for any t € Z. Note also that, for any matrix A € R™**

@ =033 14k =g 1

i=1j=1

and, similarly, |1, ® A||* = ¢||A|*.

We now show that {vec (X&) }iez is a martingale difference sequences with respect to
F with bounded fourth moments under Al and A2. Likewise, under assumption A3,
{vec (1} — X) }1ez is a martingale difference sequences with respect to F with bounded

2471 moments.

1) {vec(Xie})}ien
Suppose assumptions Al and A2 hold. For any ¢ € Z, since
‘&@Xt’ = ‘(In®Xt)5t‘

< an®XtH|Et|
= Vnled| X4,

we can see that

Elei @[ < n’E[Jerf'| il

=n? (E\Xt]4> (]E|5t\4) (Independence of X;; and €;;)

<n? supIE|Xs]4 supE]es|4 < +00,
SEZ SEZL

where the second to last inequality follows from Hoélder’s inequality, and the last
from the fact that {Y;}1ez, and thus { X, }icz, has bounded fourth moments. Thus,

{vec(Xe}) }tez has bounded fourth moments.

Consequently, {vec(Xe})}iez is integrable, and since X; and &, are both Fi-

measurable for any t € Z, {vec (X;&}) }ez is F-adapted. Furthermore, for any ¢ € Z,

E[vec (Xie}) | Fi1] = E e Xo | Fii
=B | @ L) | Fia] - (L. Q) X:)
=E et @ L1 (1. R X:) =0,

where the second equality uses the fact that X; is F;_i-measurable and the third
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one follows from the independence of ¢; and F;_;. Taking expectations on both
sides now reveals, via the law of iterated expectations, that {vec(X;e})}icz is a
zero mean process, and by definition it is an MDS with respect to F that also has

bounded fourth moments.

{vec (e, — X) hez
Now assume A3 in addition to Al and A2. For any ¢ € Z, since

2@z < [« @11 @<

2
= 7’L|€t| ’
we have
24
E‘€t®5t‘ ! < n2+’7E\atl4+2"

<% supEle,|*™7 | < +o0.
SEL

Thus, {vec(e:e; — X) }1ez has bounded 2 +7 moments.

This also shows that {vec (e} — ) }1¢z is integrable, and since &, is Fi-measurable

for any ¢ € Z, {vec (e}, — ) }+ez is F-adapted. Furthermore, for any ¢ € 7Z,

E [vec (et} — %) | Fim1] = E {Q@gt | ]-"t,l} —vec(X)
=E {&@q} —vec(X) =0,

where the second equality uses the independence of ¢; and F;_;. Taking expec-
tations on both sides now reveals, via the law of iterated expectations, that
{vec (e} —X) }iez is a zero mean process, and by definition it is an MDS with
respect to F that is L?t7-bounded.

From the above results, we are able to conclude that

{vec(Xe}) |t € Z}

is an MDS with respect to F with bounded fourth moments under Al and A2, and, if

we assume A3 as well, that

vec (X )
{ (vec (65562 i )E)) ’t © Z}

is an MDS with respect to F with bounded 2+ 7n moments.
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It remains to investigate the asymptotic variance of the above processes to implement

the MDS CLT. Assume Al to A3. Note first that we can write
vec (Xye}) vee (Xeh) (€t®Xt> <€2®X£) = (Q&Q@XtXé),
vec (Xye}) vec (g8} — %) = (In ®Xt) £t Kag ®52) —vec (E)/]

vec (g6} — X) vec (16} — %) = (stsg ®€t€£) —vec (%) (6; ®5;)
- <€t ®5t) vec (X)) +vec (X) vec (2)

for any t € Z.

Note that

H 16y — ®XtX’

(B eect = 2) @ ) (B[ 1. @] )

(Independence of ¢; and X;)

= \/n(p+1) (El|zre; - =) (B X))
< fn(np+1) (Blerf? + [£]) (E1X)

n(np+1) (tr (3) +[|5]]) (B[ X))

for any t € Z. {X;}+ez has bounded fourth moments and thus first moments, so it
follows that {(e1e} — ) @ Xt X }1ez is Li-bounded.

In addition,

E (e~ ) QX X[ | Foa| = B [(e18) = 2) @ Lup1 | Fit| - (1. Q Xu X
=E (a5} = %) @ Lnp1] - 1 @ X, X)) =

for any t € Z, so each element in the sequence of matrices

{ 46 — ®XtXt}

is an MDS with respect to F that is L'-bounded. By the martingale WLLN,

teZ

T

Z vec (X;e}) vec Xtet [Z@ ZXtX’] —>O

t=p+1

Using the fact that % ST X, X! B Q, we now have the result

T
T Z vec tht)vec(tht —>E®Q
t=p+1

This result was derived without the need for assumption A3.
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For any t € Z,

E [st {(52@5;) — vec (E)/H =E {st (52@52)} —Elef]-vec(X) =E {q (52@52)} = K3.

Consider the sequence

{ (In®Xt) (Et [(Et®€t> vec ( } — 53) }tez'
For any t € Z,
B (1. @) (o[ (51 @et) = vee (5] =)
<E [HIn@XtH e - ‘at ®€t —Vec(E)H + (EHI”®XtH) || ksl
= (10 @) el @1 e ]

< Vn(E|X¢[) ( (E\a@& vec ( \2)2+Hm3||>'

Since {X;}iez and {e, Qe — vec (X) }1ez have bounded 2+ 7 moments, it follows that

the expression on the right hand side is bounded above.

Furthermore, for any ¢ € Z,

E[(2. Q1) (o | (5 @et) —vee(S)] =) | Fi
= (L. @X:)Ele [ (e, Qel) —vec (S| = ks | Fi]
= (L. @QX:)-Ee [ (1 ®et) —vee(n)'| — rs| = 0.

It follows that each element in the sequence { (I, X}) (et [(52 Qe)) —vece (Z)'} - /<;3) }
is an MDS with respect to F that is L'-bounded.

teZ

By the martingale WLLN,

T
% Z vec (X;e}) vec (e1g) — (I ® Z Xt) ks 2 O.

t=p+1 t p+1

Using the fact that %ZtT:pH X; % 11, we have

T
Z ¢ (Xyeh) vee (e8) — E) N (In ®/J) K3.
+

H \
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Finally, since
E [vec (ere) — X) vec (ee; — Z)/} = kg —vec (X)vec ()
for any t € Z, each element in the sequence
{vec (ere} — X) vec (g} — %) — (/@4 —vec (X)) vec (E)’) hez

is an i.i.d. sequence with mean zero and thus an MDS with respect to F. They are also
L'-bounded because {&;}:cz is L*-bounded. Therefore, by the martingale WLLN,

T
% > vee(se) — ) vec (e42] — £)" B kg — vec (T) vee (T)'.
t=p+1

Putting these results together,

1 ZT: vec (X¢e}) vec (X¢e}) ,ﬂ> YR (I, @ p)ks
T2 \vec(ee; — %) | \vec (g} — %) (I, QM) rki—X®%)

By the MDS CLT, we now have

XT: vec (Xie}) d 0, Z@Qﬁ (In® [)rks3
vec (g, — %) Ry(I, Qi) ki—3XQX

Since the asymptotic distribution of % Z?:p 11 vec (Xyer) does not require assumption

A3, it also holds when we only assume assumptions Al and A2.

Q.E.D.
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Vector Autoregressions

Here, we study the statistical properties of VAR models as a special case of weakly stationary
linear processes.

An n-dimensional process {Y; }ez is said to follow a (reduced-form) VAR(p) process if there
exist a white noise process {e¢}+cz, an intercept 6 € R" and coefficients ®1,---,®, € R"*" such
that

Vi=0+®1-Y 1+ 4+ Y, +e
for any t € Z. Defining the lag polynomial
¢L)=1,—P1-L—---—P,-LP,
we can also write
O(L)Y; =6 +e.

for any ¢t € Z. The companion matrix for this VAR(p) process is defined as

®, o,
I, - 9] 0

F=|" | erwxme,
0 I, O

Defining Z; = (Y/,---,Y}_ 1) and ¢ = (¢',0',---,0") and u; = (&},0,---,0")’ for any t € Z, we

can see that {Z;}icz follows a VAR(1) process with mean reversion parameter F:
Zt = c+F~Zt_1+ut

for any t € Z. This shows us that a VAR process of any order can be expressed as a VAR(1)
process. In particular, this tells us that the conditions under which {Y;};cz is weakly stationary

can simply be imposed on F'. This is formally developed in the first subsection.
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2.1 Conditions for Stationarity

Before we state and prove this result, we first extend the trace norm for real matrices to complex

matrices. Let A € C"™*™ be a complex m x n matrix. Then, we define

1
m n E
ICll= (ZZ \Cz‘jIQ) :
i=1j=1
RmXTL

To see how this is a natural extension of the trace norm to complex matrices, let A, B €

be the real and imaginary parts of C. Then,
ICIF =D D" 1C51P =D "D 1Aul +> > IBijl
i=1j=1 i=1j=1 i=1j=1

= (|4l +11BI”%,
where we used the definition of the absolute value of complex numbers, which tells us that
2 2\ 2
Il = (1Al +1BI”)* .

Therefore, the trace norm for complex matrices is defined using the trace norm for real matrices
in a similar manner to how the absolute value of complex numbers is defined.

This extension of the trace norm satisfies many properties of the trace norm for real matrices.
We state a few of these below; let z € C, x € C", A € R™*" and B € R"*P,

« [[AB[| <[[A]-]Bl]l
By definition,

m P n
IABI? =3"3 " [AnByl”
i=1j=1k=1
m P n n
<DONN S4By = 11A)P(IBI,

i=1j=1k=11=1

so that | AB|| <[l A]l-[|B]].

o [Az| <[A]-|z|
This follows immediately by noting that |ly|| = |y| for any y € R™ by definition.

 [A+ Bl <[A]+B]

This holds when A and B have the same dimensions. In this case,

HA+BH=<ZZ!AU+BM\2) S(ZZ!Az'j!2) +(ZZ|sz2) = |All+ 1B,

i=1j=1 i=1j=1 i=1j=1
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where the inequality follows by viewing A;;, B;; as functions defined on the space {1, ,m} x

<N and a 11 INKOWSK1'S 1Inequalil or spaces.
{1,---,n} and applying Minkowski’s inequality for L? sp

We now prove the result of interest.

Theorem (Eigenvalue Condition for Stationarity of VAR Process)
Let {Y:}iez be a VAR(p) process given as

Vi=0+® Y+ +0,-Yi pter

for any t € Z, where {e;}+cz is a white noise process with positive definite variance X. Let F' be
the companion matrix of {Y;}icz.

If {Yi}iez is a square integrable process such that sup,cz ||Y:|l, < 400 and the eigenvalues
of F' lie within the unit circle, then {Y;}:cz is weakly stationary with a causal linear process

representation
oo
Yi=p+Y Uj-erj
=0

for some one-summable {¥;},cn and p= W¥(1)d.

Proof) We first investigate the convergence properties of the companion matrix F. Let A1, , Ay, €

C be the distinct eigenvalues of F', and

J - O
J=
o - Jy,

the Jordan normal form of F'; where the ith block J; is a Jordan matrix corresponding

to the ith distinct eigenvalue \; of F:

A1 0 0

0 N 0 O
Ji =

0 O A1

0 O 0 N\

Then, by the Jordan decomposition theorem, there exists a nonsingular matrix A €
C"P*"P guch that

F=AJA L
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For any j > 0,

Jo... 0
FI=AJAY=A|: - AL
o ... Jgﬁ

Letting J; be a k; X k; matrix, where k; < np,

M Y J N kit
(2 j—l (2 j—k‘l—i—l 1

J=1o N J N TRit2

(2 7 j—k1—|—2 K2 9
0 0 by

for any j > k;. Since
PO\t ixGelxeex (kD)
i—k k(5 —k)! k! -

for any j € Ny and 0 < k < j, it follows that, for any j > k;,

HJJH <ZZ (J q+1> YRt

1=1q=1
ki ki—l

< Z Z jqfly)\i|ij+1

1=1q=1

k;
< |)\i‘j_ki+1 (Z

< p\i‘j—kr‘rl (kz Jq 1)

q=1

r HM"

S kz2 'jkifl‘)\i’j*kiJrl’

where the third inequality is justified by the fact that |[A\;| <1 by assumption. By

implication, letting k = maxj<;<m k; and A = maxi<;<m |Ni| < 1,

HJjH < i HJZJH < mk2jhiNI R+

for any j > k. Defining ©; = F/ for any j € N, since

16,1 < affa=] -],
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we have
G-10500% < (Ianjat2) - (53) A"
for any j > k;, so that
Jim (j-6,)7 =A< 1.

By the root test for convergence,

(o]
Y7116l < +oo,
§=0

so that {O;};jen is a one-summable and thus absolutely summable sequence of np x
np matrices. The convergence of the series above also implies that j||©;] and, by

implication, ||©;|| converges to 0 as j — cc. In other words,

lim HFJH —0.

j—o00

Define Z; = (Y/,--,Y{_,11), ¢=(8',0',---,0") and w; = (¢;,0,---,0)" for any t € Z.

Then, {Z;}1ez follows a VAR(1) process with mean reversion parameter F'
Zt=:C+zF2Q_1%—Ut

for any t € Z. Additionally, we can see that
p—1
|Zi] <D Yi]
j=0
for any t € Z, so that, by Minkowski’s inequality,

Sup (| Z¢ |0 < p-sup [|Ye],, o < +o0.
tEZL teZ

For any T' € N, the VAR(1) property of Z; allows us to write

T T
Zp = (Z Gj) e+ O uj+FTZ oy,
j=0

=0

Since {O;}en is absolutely summable, the sequence

T
{;) Os 1t }TGN
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converges almost surely and in L? to the square integrable random vector
oo
>0 u—j,
Jj=0

while the sequence {Z;‘-F:o ©,}ren converges to

Finally, since

T+1
|7 2

T+1 T+1
o ST Zer ol < [FT (ssgg||zsunp,g> 7

where the right hand side converges to 0 as T'— oo, we can see that

T T
{ Jz:;)@] c+ Z@] s Ut—j +FT+1Zt_T_1}T€N

J=0

converges in L? to

@(1)C+ Z@] CUp—j-
=0

Since Z; is also an L? limit of the above sequence, the uniqueness of mean square limits

up to almost sure equivalence tells us that

Zt = @(1)C+ Z@] cUL—j-
7=0

almost surely. This holds for any ¢ € Z, so {Z; }1ez is a weakly stationary causal linear

process with mean W(1)c and one-summable coefficients {©;} jen.

Letting {¥;} en collect the elements of {©,}en in the first n x n blocks, {¥;}en is a

sequence of one-summable n X n matrices such that

YV =U(1)0+) V-
j=0

for any t € Z.

Q.E.D.

The next lemma furnishes us with an equivalent formulation of the eigenvalue condition of

the previous theorem in terms of determinants.
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Lemma (Eigenvalue Condition in terms of Determinants)
Let ®q,---,®, € R**™ and let F' be the companion matrix defined as

®, ®, , @,
I, O O
F: .
9, I, O

Then, the np eigenvalues of F' lie within the unit circle if and only if all of the np roots of the

polynomial
det(Ip —P1-2—---— P, - 2P)

lie outside of the unit circle.

Proof) The characteristic function of F is given as

By —A-I, o By B,
I, 0 10)
det(F—\-I,,) = ) ]
o) U

We proceed by induction for A # 0. When p =1, it is clear that
|det(L,, — A- F)| = |det(®; — A- I,)|.
Suppose that, for some k& > 1,
\det(I, — \-F)| = ‘det(<1>p—|—)\-<1>p,1+---+)\p_1 B, —Ap-In)‘

for p =k and any specification of the coefficient matrices in F. Now suppose that

p=Fk+1. In this case, defining

b —X-I, -+ Pp_4 D,
- I, O 0]
Fr= . . . ’
O I, X1,
Pp11
0 k
Bk: . € RN
O
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we can see that

F B
FoX1I,=["F o
Cp —\-I,

By the formula for the determinant of block matrices, if A # 0, then

.1
det(F—A-T,) = det(—\-I,) - det (Fk + ABkc,g>

[[(®1-N1, -+ @y Dp+1Dpyy
I, 0O o)
= (A" -det : ) : :
O e =X, O
I 0] N -1,
1
= A"-det()\<1>k+1+<1>k+~-+>\k1-<I>1-A’“-In)‘
= det<®k+1—|—>\-®k~|—---+>\k-¢>1—)\k“-In)’,

where the second equality follows from the inductive hypothesis.

Therefore, when A # 0, we can see that

[det(F — X+ Iy)| = |det (@ + A+ Bpy 4o+ X101 — N 1, )|

1 1
det (In - (bl ° X ———— )\p@p)

[AP]

In other words, A is a non-zero eigenvalue of F' if and only if its reciprocal is a

root of det(l, —®i-z—---—®,-2P). On the other hand, if X\ is a non-zero root of
det(I, —®1-z—---—®,-zP), then } is a non-zero eigenvalue of F'.
Suppose that the np roots of det(I, — ®1 -z —---— @, 2P) are all outside the unit circle.

Then, since they are non-zero and their reciprocals are eigenvalues of F', the eigenvalues

of I are all within the unit circle.

Conversely, suppose the eigenvalues of F' are all within the unit circle. Assume, for the
sake of contradiction, that det(l, —®1-z—---— @, 2P) has roots within or on the unit
circle; these roots are non-zero since det(l,, — ®1 -z —--- — ®,- 2P) =1 when z = 0. Since
the reciprocals of these roots are eigenvalues of F', this means that F' has eigenvalues on
or outside the unit circle, a contradiction. Thus, the roots of det(l, —®1 -2z —--- — @, - 2P)

must all be outside the unit circle.

Q.E.D.
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Retaining the notation of the above theorem, we have
(L)Y, =0+¢;

for any ¢ € Z. The theorem tells us that, if the eigenvalues of F' are all within the unit circle and
the VAR process {Y; }1ez is L?-bounded, then there exists a one-summable sequence {VU;};en of

n X n matrices such that
Y, =9(1)d+U(L)e,
for any t € Z. It follows that
S(HY(1)d+P(L)V(L)ey =0 +&4

for any t € Z; therefore, using the notation defined earlier for linear processes,

and we can equivalently write
Y, =®(1) 7154+ ®(L) ey

for any t € Z.
Letting p1 = ¥(1)d be the mean of Y;, since

Yi=0+®1- Y1+ 4P, Vi p+e
for any t € Z and {Y;}+cz is mean stationary, taking expectations on both sides yields
(In—®1—-—®p) - =30,

If (I, —®; —--- — ®,) is singular, then det(I,, — ®; —--- — ®,) = 0, which means that
det(l, —®y-z2—---— CI)p-zp) has a unit root. In light of the above lemma, this contradicts the
fact that the eigenvalues of F' are within the unit circle, so that (I, — ®; —--- — ®,) must be

nonsingular. This reveals that
p= (I, —®—--—®,) 16 = W(1)s,
and as such, it is consistent notation to write

V()= (I, —®1——d,) ' =d(1)"L.
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2.2 Topological Properties of Positive Definite Matrices

Now we investigate the asymptotic properties of the QMLE (equivalently, OLS) estimates of the
parameters of stationary VARs. We first establish some topological facts concerning the space

of all real symmetric matrices.

Define S™*"™ as the space of all symmetric n x n matrices; we know that (S™*™,(-,-)¢ ) is an

inner product space over the real field, where (-,-);. is the trace inner product defined as
<A, B>tr =tr (A/B)

for any A, B € S™*", and that this inner product induces the trace norm ||-|| defined as

N

1Al = tr (A"4)2,

which can be extended to encompass any real matrix A € R™*" of arbitrary dimension.

Now let PS™*™ denote the space of all positive definite n x n matrices. This is clearly a
convex cone contained in S™*™; for any A,B € PS™*"™ and a > 0, since aA + B is also positive
definite, it is contained in S™*™. We can also show that PS™*" is an open subset of S™*" with

respect to the metric topology induced by the metric induced by the trace norm on S™*":

Lemma (Set of Positive Definite Matrices is Open)
Let ds be the metric on S™*" induced by the trace norm ||-||. Then, PS™*" is an open subset of

S™*™ with respect to the metric ds.

Proof) Let T™ be the unit circle in R™. We first show that the function f:S"*"™ — R defined

as

— /
flA) = vlen’]lfnv Av

for any A € S™*"™ is a continuous function. Initially, we can see that f is well-defined
and takes values in R because T™ is a compact subset of R"” and the mapping v — v’ Av
is continuous for any fixed A € S™"*™. By the extreme value theorem, this implies that,

for any A € S™*" there exists a v4 € T"™ such that
f(A) =0 Ava.

Now choose A, B € S™*™. We consider two cases: initially, suppose that f(A) < f(B).

Then, since

/ : / /
== <
vgBup vlenﬂfnv Bv <vyBuy,
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we have

f(B)— f(A) =vgBvg — vy Ava < vy Bvg — v Ava = vy (B— A)va
— e (B Auavly) < 1B - Al [uavy] < 1B A,

where we used the Cauchy-Schwarz inequality and the fact that |vav/y|| < |val® = 1.
By symmetry, if f(B) < f(A), then

f(A)—f(B)<||A-B]|
as well. Therefore,
[f(A)=f(B)| <|A- B,

and we can see that f is Lipschitz continuous with respect to the metric ds.

Let A€ PS™ ™, Since v4q € T™ and is thus non-zero, by definition we have
f(A) =0y Ava > 0.

Defining e = f(A) > 0, since f is continuous on S™*", this means that there exists a
0 > 0 such that, for any B € S™*™ such that ||A — B|| < §, we must also have

|f(A) = f(B)| <&,
and in particular, f(B) > 0. This indicates that, for any non-zero v € R",

(

/
o Bo = o] (’7;') B () > [of? - Bog = [of? - £(B) > 0,

|v

where the last inequality follows because |v|* > 0 and f(B) > 0. Therefore, B € PS"*™
by definition. In other words, as long as ||A— B|| < ¢, B is positive definite. Since A
was chosen as an arbitrary positive definite matrix, this shows us that PS™*™ is an

open subset of S™*",

Q.E.D.
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The operator vech () on S™*" is defined as

vech (A) = : e RU"+D/2,

Anfl,nfl
An,n—l
Ann

In other words, we stack the lower triangular elements of A. It is clear that vech (-) is a bijection
from S™*" onto R™™+1)/2 and thus admits an inverse function vech™! (-) from R™"*+1/2 onto
S We can also easily show that vech ™! (+) is continuous on R +1)/2. for any a,b e RMn+1)/2,

letting A = vech™! (a), B = vech™! (b) € S,

[veeh () —vech™ (5)| = 323" |4y~ By <2- 33" Ay~ By =2-Ja— b2

i=1j=1 j=li=j

where the inequality follows due to the symmetry of A and B.
Defining the subset A of R™"+1)/2 a5

A =vech (PS™"),
we can now see that
-1
A= (Vech_l) (PS™M),

that is, A is the inverse image of the open set PS™ " under the continuous function vech™! (-).
By the definition of continuity, A is an open subset of R™"+1)/2,

A is also convex. Choosing any a = vech (A),b = vech(B) € A for some A,B € PS™™" and
t € [0,1], note that

tA+(1—t)B e PS™"
since PS™*™ is a convex cone. Therefore,
ta+(1—t)b=vech(tA+(1—t)B) € A.

We have thus shown that A is an open convex subset of R™"+1)/2 and as such differentiation

of functions on A is well-defined.
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2.2.1 Duplication, Elimination and Commutation Matrices

To facilitate the transition between the vech and vec operators, we define the duplication matrix

D,, € Rn**n(n+1)/2 a4 the unique matrix such that

vec(A) = D, -vech (A)

for any A € S™*™. Clearly, D,, has full rank %, so that its pseudoinverse

D;IL» — (D;Dn)ilD; c Rn(n+1)/2><n2
is well-defined and satisfies D D,, = n(n+1)/2- Note that
D vec(A) = vech (A)
for any A € R"*"™; we call D;}" the elimination matrix.

Another matrix that often comes in handy is the commutation matrix. For any m,n € N,
and A € R™*" the mn-dimensional vectors vec (A) and vec (A’) contain the same elements, just

arranged in a different manner. Thus, there exists a matrix K,,, € R™*™" guch that
Knvec (A) = vec (A)

for any A € R™*", We write K, for K,,.

We can construct K, by noting that A;; is the (m(j — 1) +14)th element of vec(A), while
it is the (n(i—1)+j)th element of vec(A’). This indicates that K, is the elementary matrix
formed by interchanging the (m(j —1)+1¢) and (n(i — 1)+ j)th columns (or equivalently, rows)
of the identity matrix I,,,,. To do this, we need only put the (n(i—1)+j,m(j—1)+1i) element
of Kimpn equal to 1 for any 1 <7 <m and 1 <j <n, and put every other element equal to 0.

Note that, by definition,

Kpmvec (A") = vec(A),
so that
Kypin K - vec (A') = vec (4)

for any A € R™*", This indicates that K, = K, and since K, being an elementary matrix,
is also orthogonal, it follows that K, = K/ =K L.

The following are some properties of commutation matrices:
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Lemma (Properties of Commutation Matrices)
Let A € R™*™ and B € RP*4. Then, the following hold true:

i) Pre-and Post-multiplying by commutation matrices exchanges the order of Kronecker prod-

ucts:

o (A@ ) - (5@ ) iy
Kpn (AQ) B) Kng = BR) A.

ii) The vectorization of a Kronecker product can be written as the Kronecker product of

vectorizations:

vee (AQ) B) = (IR Kom @) ) - (vee (4) @) vec (B)).

iii) KDy, = D, and D} K, = D}

iv) Defining N, := 3(I

n

2+ K,,), we have

N, =D, D;.

Proof) i) For any C € R?*™
Kpm (A®B) vec (C) = Kpy, - vec (BCA") = vec (AC'B')
= (B A) vee (C') = (BR)A) Kqn - vee (C).

This holds for any C' € R9*" so we must have

Kpm (AQ)B) = (BRA) K.

Since K, is the inverse of K,, we now have

Kpm (AQ) B) Kng = (BRA).

ii) Let {e1,---,en} CR™ and {uq,---,uq} C RY be the standard bases of their respec-
tive euclidean spaces. Letting a1,---,a, € R be the columns of A and by,---,b, €

RP those of B, note that we can write
n

q
A= Zaieg and B= szu;
i=1 i=1
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It now follows that

vec (A ® B)

M@

vee (el @by
vee ((a: @by (e Qu;))

[e@% R ®b)

> i @ @ ai) @b

@ vec (0 @b,

(In R K @ 1) - [ 1 @ vee (u;af) @b
(1@ Ky @ 1) (@) @(; Q)|

[~]= jM:

.
Il

—
.
Il

—

I
NE
M@ M@

-
Il

—
.
Il

—

Il
MQ

.
I

—
.
Il

—_

I
M=
MQ

-
I
—
.
Il
—

I
M=
MQ

-
I

—
.
Il

—

-
I

I
NgE
T Ma

- (In®qu®Ip) ZZvec (aie;®bju;)

i=1j=1

= (@ Ky @ 1) - vee (AQ) B)

iii) For any A € S"*",
K, Dyvech(A) = K,vec(A) =vec(A) = D,vech(A),

so that K, D,, = D,,. Similarly,
-1

D! =DF.

n n

D} K, = (D, D,)”" DK, = (D, D,)

This shows us that K,,D,, = D,, and D, K,, = D;"".

iv) Note first that
K.D,=D, and D;K,=D}

imply

N,D, =D, and D/N,=D;.
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We can now show that N,, — D, D; is a symmetric and idempotent matrix: it is

immediately seen to be symmetric, and

2
(N = DuD;f)” = N2 = NoDuDff = Dy D Ny + D D
= Nn - DnD;i—a

where we used the fact that N2 = N,, (which is clear from insepection). Therefore,

rank(Ny — D, D) = tr (N, — DD} ) = tr (N,)) —tr (Du(D,D,) 7' D)

2 2

so that N,, = D, D;".

Q.E.D.

The last property implies that, for any A, B € PS™*",

1

D (AQ)B) DD, (AN QB ™) Dy = 5 DI (AQ) B) (12 + Kn) (AN QB

:%D* (In2 +Kn) (AQB) (A QB!

= D:’L_In2DTL = D;_Dn = In(n+1)/27

so that

(DF (AR BID,) =D (A QB!

We can also infer that, for any A, B € R™"*",

(InQ A) DD (1, QR B) = = (1n Q) A) (L2 + K ) (1, R) B)

=5 [(1.QAB) + Kn(AQ L) (B 1) K|
=5 (1. ®AB) + (1, Q AB)| = 1, Q AB.

M\HL\D\HM\HM\H
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2.3 Maximum Likelihood Estimation

Let {Y:}iez be an n-dimensional VAR(p) process with innovation process {&;}¢cz such that
Yi=0+Q1- Y 14+ 4P, Y, p+ey

for any ¢t € Z and some § € R", ®q,---,®, € R™*". Assume that the variance ¥ € R"*" of the
innovation process is positive definite.

We can collect the coefficients into the (np+ 1) x n matrix

Yiop
for any t € Z. Then, the model can be rewritten as

1
Yi ,
Yi=(0 & o @) | | |+a=TX+e

We make the following assumptions:

A1l. Stationarity
We assume that {Y;};cz is a square integrable process, and that its companion matrix
F € R">*"P hag eigenvalues within the unit circle. By the stationarity results above, this
implies that {Y;}icz is a weakly stationary square integrable process with causal linear

process representation
Y, = pu+(L)ey,

where {¥;};cn is a one-summable sequence of n x n matrices and p = (I, — P —--- —
®,)~14.

A2. Nonsingular Autocovariances
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Letting I" : Z — R™ " be the autocovariance function of {Y; }+cz, we assume that the matrix

1 M/ M/
/ ... _— /
o0 L '0)+ pp P(p—1)+pp e R(p+1)x(np+1)
p Tlp=1)+pu" - T0)+p

is non-singular.

Since we can also write
Q=FE[X;X/]

for any t € Z, we also assume, for the sample analogue of this moment condition, that

Zthl X, X] is almost surely nonsingular for large enough 7.

A3. I.I.D. Innovations
We assume that the innovation process {e;}ez is i.i.d. with finite 4 + 21 moments, where

n>0:

Eles| """ < +oo.

As above, we define parameters related to the skewness and kurtosis of the innovation process

as follows:

k3 =E [5,5 (52@52)} e R
and
ke =E [stsg ®€t€2} e RV X,

Furthermore, we also define

Given these assumptions, preliminary asymptotic results follow immediately from the result

stated in the previous section:
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Theorem (Asymptotic Results for Stationary VARs with IID Errors)

Under the assumptions above, the following hold true:

Py x

t=p+1

1 ZT: vec (Xie}) vec (X¢e}) /& YR (I, @ [)ks
T 27 \vec(eep —%) | \vec(ge; — %) k(L Qi) ri—XQX

1 ﬁi vec (Xe}) 4 n o, EDQQQ{_ (I ®mns )\ |
Tt 51 \vec(gep — ) k(I Q) ri—X Q@YX

Proof) {Yi}icz is a causal linear process with absolutely summable coefficients. In addition,
its autocovariance function I' and the innovation process {e; }1cz satisfy the conditions
of assumptions Al and A2 of the previous section. Therefore, these results follow im-

mediately.

Q.E.D.

In the special case that the errors are normally distributed, letting L be the Cholesky factor
of X,

us ==L ey ~ N[0,1,],

making {u;}ez an ii.d. sequence of standard normally distributed random vectors. Since

=E [Q (52@52)} =L-E [ut (ué@ug)} (L'QL')

and E [ujujiug] =0 for any 1 < 4,5,k <n, we have k3 = O and thus (I, @ j1)k3 = O.

Similarly,

= [(0®) (409)] = 1) B[ (1) ()| D
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and

3 ifi=j=k=1
Elujujiupruy) — =<1 ifi=jk=lori=k,j=lori=1,j=k

0 otherwise
for any 1 <i,j,k < n. We now have
E |(uiu; @ uetr)] = (I 1) = Lz + K.
It follows that
k=2 @Y = (LQL) [ | (wu; @uey)| - (L Q1) (' QL)

=SQT+ (LR LKL QL)
= (L2 +K,) (S®%) =20,07 (®%).

Therefore, when the errors are i.i.d. Gaussian,

ET: vec (Xie}) 4 v o YRQ (0]
vec (g4e) — X) '\ 0o 20, DFEE%)/|
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2.3.1 Deriving the Score
Define the vector of parameters 6 as

6= (6) €0 =R+ x A
Y

where we define 3 = vec (IT) € R™"+1) and v = vech (%) € A ¢ R*™+t1)/2 Since the parameter
space © is an open subset of R*(mP+1)+n(n+1)/2 " differentiation is defined at any point on ©.
Suppose our sample contains observations from period 1 to T'. Then, for each p+1 <t <T,

the density of Y; given its past values and initial values Yj,---,Y7 is

1\? o1 1 _
FOG Vi Yait) = (5 ) 21 Fexp (- (- 07 (1 - 11X ).

so that the conditional Gaussian log-likelihood of the model given the initial values Yj,---,Y7 is

T
10) =Y log(f(Yi|Yi1,---,Y0;0))

t=p+1
n(T —p) T-p 1 <
=——— log(2n) — log(|Z)—= Y (M -II'X)S (Y -1I'Xy)
2 2 2 tepil
= M) og0m) - Lo Prog(x)
2 2
1 T
—str| | 2 = (LQXDB)(Vi— (. QX)B) | 27
t=p+1
for any 6 € ©. Denote
T
t=p+1
for any 8 € R +1),
Recall the matrix derivative results
x| 1
oy
ox—1 ox
S Y Yt
ox ox

These can be used to conclude that

ot (S(B)E") _ o (S(ﬁ) . az—l)
Ox

X
= —tr (S(B)Elgi 1) =—tr (Els(ﬁ)zlg§> ;
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so that

e = (=7's(A=) = =SB

The conditional score function is now given as

s(0) = ouo) _ %g) _ Ztherl(In@Xt)Eil (¥ = (In @ X7)B)
920 ]\ S Lopvech (571) + bvech (S S(B)S )

Note that, for any v € R™,
(I, QX020 = (L, Q) Xe)vee (v'£71) = vee (X0'S ™) = (27 Q) Xo)v,
so that (I, ® X;)X ™! = (X' ® X;). Using this property, we can see that
(L QX)S (IR X)) =2 R X X/
and
(L, @ X371, = (57 @) X))V = vee (X, ¥/371) = (57 Q) Lpt) - vee (X,Y)
for any p+1 <t <T. Furthermore, we have
vech (R71S(8)27!) = Dif -vee (S7IS(B)2 ) = D (ST QT vee (S(8)).
This allows us to write the score function as

(Eil ®Inp+1)V6C (Z?:p+1 XtK;) - (Eil X Z,{:erl XtX{) p

L. DHE Q% vec(S(8) — (T —p)%)

s(0) =
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2.3.2 The QMLE and its Asymptotic Properties

The (Quasi) MLE Or of 0 is defined as the unique vector such that s(éT) = 0; specifically, we

have

. T -1 T
Br = In®( > thg) Vec( > Xth)

t=p+1 t=p+1
T -1 T
=vec| | Y XiX{ > X/
t=p+1 t=p+1
1 1 &
Sp=—8(fr)= —— Y, — I X )(Y; — 11X,
T=T, (Br) T_ptzp;d(t 7 Xe) (Yo —HpXy)',

where the MLE of II is given as
R T ! T
Iy = > XiX{ > x|
t=p+1 t=p+1
These estimators can be interpreted as GMM estimators with empirical moment/identification

conditions given as s(f) = 0.

Due to their formal similarity to the least squares estimators of the parameters, we can natu-
rally hypothesize that the MLE 67 is consistent for the true parameters g, where the 0 subscript

denotes true values. We confirm below that this is indeed the case under our assumptions:

Theorem (Consistency of MLEs)
Under our assumptions, the MLEs of II and > are consistent:
5 D

9T—>90.

Proof) Using the fact that ¥; = II{ X; + ¢, for any t € Z,

Iy = ( ZT: thg) R ( ZT: Xth’)

t=p+1 t=p+1
1 T
:H0+ T _Z: XtXé T _z: Xt&‘é .
t=p+1 t=p+1
We proved above that
1 & 1 &
7 2 XX{5Q and 3 X HO.
t=p+1 t=p+1
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Therefore,

Iy 2 o,
which implies that BT 2 By as well.
As for iT, note that
T . 1 <& .
T == Z )(Ve — 117 Xy)'
1 T N N !
:T Z <H0—HT) Xt+5t} {(HO—HT) Xt-l-&}
t=p+1
- (HO—ﬂT> ( Z XX ) (Ho—f[T) 1 (Ho—f[T) ( Z tht)
t=p+1 t=p+1
/
. 1 &
( Z Xt5t> (HO_HT)‘FT Z 5,562
t=p+1 t=p+1
RES I

by the consistency of II7 and the result, derived above, that {e;};cz is variance sta-

tionary.

Q.E.D.
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We can actually show a stronger result, namely that O — 0y is Op(T_l/ 2) with an asymp-

totically normal distribution:

Theorem (Asymptotic Normality of MLEs)
Under our assumptions, the MLEs of II and X have the following asymptotic distribution:

A ; So®Q! (I, ®Q i) k3Dl
\/T(GT—90>—>N 0,
Dy (L, @H Q™) Dyt (ka—Xo®@X0) DY

Proof) Note that

T -1 T
,5’T = vec (ﬂT) = B0+ In® (; Z XtXt’) vec (; Z Xteé) .

t=p+1 t=p+1

Since vec (% Z’f:pﬂ thé) = 0,(1), we can see that VT (BT —Bg) = Op(1). Likewise,

~ ~ r [ 1 T ~ ~ 11 T
Sr -3 = (Mo~ Iir) (T 3 Xth) (1o — iz + (Tl — i) (T 3 X@)

t=p+1 t=p+1
1 & / R 1 &
+ (T > th:‘fg) (HO_HT) tr > (egi—%0),
t=p+1 t=p+1
so that
vech (fJT) —vech (Zg) = D; vec (fJT - Z)
T
=D} (Ho _ﬁT)’ ® (HO —ﬁT)'} vec <51p > th,g)
t=p+1
~ / 1 T
+Dj; In® (HO —HT) :|V6C (T Z th’ié)
t=p+1
+ Dyt | (T — Tir) ®In} vec (;, 3 Xtat>
t=p+1
1 I
+D;f = > vec(eig; —Xo)
thp—l—l

We can see that

VT [(1‘[0 _ f[T>/® (HO — fIT)/} vec (; XT: XtXé)

t=p+1

- [\/T (Ho — f[T)/® (HO — f[T)/} vec (; zT: XtXé) 2o

t=p+1
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because \/T(Ho—f[T> and %ZtT:pH XX/ are Op(1) while (HO —f[T> is op(1). Since
%ZtT:pH Xie} is op(1) and \/T(Ho—ﬁT) is Op(1), we have

VT [In ® (HO — f[T),] vec ( Z Xtet) =0

as well. Putting these together,

A VT (BT - /30)
VT (6 0) = (mvech (5r) —vech<zo>>)

—1
_(L®(#Xl X)) 0 1 K[ vee(Xieh) o,(1)
O D \/Tt:p-i-l vec (ere; — Xo)

o®Q~! (In®@Q ™) k3 Dy’

DY ks (I @' Q™") Dyf (ka—20®@%o) Dy

1

N |0,
by the CMT.

Q.E.D.

The asymptotic results presented in the previous section also allow us to derive the asymp-

totic distribution of the score function at the true parameter values:

(261 ®Inp+1> ﬁ ZtT:pH vec (Xye})

s(00)
50y =
VT %D;{ (261®Zal) ﬁZtT:pﬂvec (ere} —X0)
B Y0 @ Lps1 O 1 XT: vec (Xie})
0 IDF (351 ®@%5") ) VT 5y \vee(ere) — 50)
4 N[0,I),
where
I 2o @ Inpt1 O Yo®Q (In ® R)ks3 2o @ Inpt1 O
0~ o) Ipt(ot@ys! ' i’ _ o) Ipt(s-1@xur!
sDn (20 @ K3(In Q1) ka—2o@ 2o s Dn (X0 @

If the errors are i.i.d. normal,
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2.3.3 Deriving the Hessian

To derive the hessian, note that, for any entry = of %,

D s1s) - @ -pmz = 2 (s(8) - (- pymymt 4 5 28D

_ 151508 (T pm)=!
= -2 25T (S(8) - (T-p)B)S
=S8~ (T-pD)E 5
)
o
X, % 82}21

-2 ETUS(9) - (T-p)S)+ (5(8) ~ (T -p)DE S+ (T -p)

—(T—-pxt1=—xt

This implies that

dvec (X71(S(B) — (T —p)X)x71)
ox
15)Y 82)

=— (2*1 ®2*1) -vec (gizl(S(ﬁ) —(T—p)X)+(S(B) — (T_p)z)g—la 4 (T—p)%

(@SB - (T -pDET) 5

@ -p) (2 @u) )

— @) (v @u) P
Ovec (X)

-5 @)+ (2R sE)ET) | =,

and as such,

dvech (X71(S(B) — (T —p)X)=71)




Ovech (%)
)] ox

—0f (3SR + (3T @ u S8

Therefore,

9%(0) 1 dvech (X1(S(8) — (T —p)T)x ™)
ooy 2 Ovech (2)'

I — D (BT @) Du—DF (BT Q) + (2T QTSR | D
P (@) e - (227 @) - (1 @) 0

Similarly, for any A € R(»+D*" guch that v = vec (A),

05 QInpir o1
( o p+) _( o ®Inp+1 v
82
<E 1Y~ 1®Inp+1)

= —vec (AZl 8221)
ox

( 1®AZ ) 8vec (2)
Gvech( )

—(Z‘1®A2_)Dn S

which implies that

O QInps1)v -1 -1
Ovech (Z]]?)’ T (E ®AZ )D

Therefore,

) .

=~ (2‘1® { > (- X

t=p+1

Putting the two results together,

aue) 8l
o) (dﬁdﬁ’ dﬂdv’)

H(9):=
(9) dodo’ ey  ale)
dvdp’  dydy'

( - (Z@XL XX
D, (S ® [T, (i -1rX) X{|) 132D
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For any consistent estimator 7 = (8,55) of 6y, denoting

B = vec (ﬁT) and A7 = vech (fJT) ,

note that
T T T
1 1/ ! ] /1 / 1 ! P
=53 X, (Vi - X, = (Mo—TIr) = >° XeXj+ 5 > X B0
t=p+1 t=p+1 t=p+1
and

DY RS [ — CrSr! @ 1) — (L. @ SrS7 )| Da
5 D=1 0D, =0,

so we have
1 - -5,'QQ O
—H(0r) 5 Hy := ’ 14 (vl on vl
9, —1D} (25 ®@%51) Dy
Therefore,
_ -1 ) -1 O
(—1H(9T)> B _Hy'i= 01X
T 0 2D} (30 ®X0) Dy,

for any consistent estimator éT of 8y. Note that, when the errors are i.i.d. normal, Hy and I

are almost equal; this can be seen as the VAR version of the information matrix inequality.
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2.3.4 Asymptotic Variance of Op

Using the values of Hy and Iy we derived above, the asymptotic distribution of Or can be

expressed as
VT (0 —60) 5 N[0, Hy ' 1o H ™.
In the special case that the errors are i.i.d. normal, we obtain the special case

. d Ro®Q™ 0
VT (0 —00) 5 N 0’( 0 2D;(Eo®20)Df)

—1
IO

This is exactly the result on Quasi MLEs; given consistent estimators of Hy and Iy, we can

obtain a consistent estimator of the asymptotic variance of éT.

It remains to procure consistent estimators of Hy and Ij. In the general case, this can be done
by making use of the finiteness of the fourth moments of Xy, which follows from the fact that e;
has finite fourth moments and X; is a linear process with absolutely summable coefficients and
innovation process €;.

We can naturally consider the following estimators of Hy:

g (@RS, xx) 0
g 0 2D} (Sr@®Sr) Do)

Since Iy is the asymptotic variance of the score function s(6p), which is itself a partial sum that

can be written as

T vee (X (Y — T X,)' S5 !

8(90) = Z

=pi \ vech (351 (¥ = I X0) (Y = Ty X, )85t — (T —p) 55!

T vec (thg : 251>

t=p+1 \ Svech (2615,@2251 — 261)

vec (thg-E(f)

) N . . } as a sequence with mean 0 and
5vech (20 €€ 50 — Xo ) teL

we can heuristically view { (

variance

vec (thft : Eal> vec (Xteg . Eal> /
Iy=E
' $vech (Ealetegilal - Eal) $vech (zgletegzgl - Eal)
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for any t € Z. Thus, an intuitive estimator for Iy is

A A~ /

vec (Xté;ETl) vec (Xténgl)
I —_ 9
T t; Ivech (78857 = 571) ) \ fvech (S71 688" - 57

where €; is the tth residual. The following result demonstrates that fT is consistent for Iy:

Theorem (Consistent Estimation of Asymptotic Variance)
Under our assumptions, the estimator I defined above is consistent for the asymptotic variance

Iy of the score function.

Proof) It can be rewritten as a matrix quadratic form as follows:

A~ /
i S Lpia O 1 i vec (X;é}) vec (Xyé})
0] %D;{ (2;1 ® 2%1) T 2ol \Vec (éteAg — ZT> vec (€t€2 — ZT>
~ /
y S Lpt @)
0 ot (57 @) )

It follows from the consistency of $7 that

zA:;1®Inp+1 O £> Z(;1®Inp-i-1 @
0 ot (37 @) 0 1ot (3% ®@%t)
Furthermore, we know from the asymptotic results derived above that
/
Loy [ veelNes) vee(Xigt) | 5 [ To®Q (@)
T, 27, \vec(ere; —X0) ) \vec (g} — %) k3L, Q') ka—X0®o
If we can show that
T Al N / T !/
1 vec (X;é vec (Xyé 1 vec (X&) vec (X}
1y A(A,tt) A(A/tt) L (/tt) (/tt) 20
T 2, \vec (etet - ET> vec (etet — ZT> T 27 \vec(erep — o) | \ vec(ese} — Xo)

or, equivalently,

T
= 3 [su(br)sBr) — su(b0)s(80)] % O,
t=p+1

then the claim of the theorem will follow.

We focus on each of the four block matrices that comprise the sum on the left hand
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side above. First, we show that

1 Z
T > <V€C (X:8}) vec (X4;) — vec (Xie)) vec (Xteg)') 2 0.
t=p+1

Note that

Hvec (X€}) vee (X€}) — vec (Xye}) vee (Xye})'
<|vec (X¢(&r—er)) |2 +2|vec (X (& —er)') | - [vee (Xiey) |
= | Xe(&r =) 1* + 20| Xe(&r —e0) | - || Xl |
for any t € Z, where the last equality follows because, for any A € R™**,
m k
[vee(A)F =33 14y = 4]

i=1j=1

Since
ét — &t = (H6 — ﬁrIT)Xt,

we can see that, for any t € Z,

T
% > Hvec (X:8}) vee (X)) — vec (Xie}) vec (Xtag)'H
t=p+1

T T
1 ~ 12 1 N
< T Z ‘Xt’4 HHO_HTH +2 f Z ’Xt|3|8t| HH()—HTH
t=p+1 t=p+1
Since { Xt }iez is L*T21-bounded, the sequence {% St |Xt\4}T N is L'*"/2-bounded,
€Nt
indicating that it is uniformly integrable. Uniform integrability implies boundedness in

probability, so by definition

1 & A
= 3 X =0,(1).
t=p+1

Likewise, since X; and ; are independent for any ¢ € Z, and {e; }1ez is L**21-bounded,

the sequence {% ZtT:p 1 |Xt|3|5t|}T N is also L'*"/2-bounded, uniformly integrable
ENt

and satisfies

1 T
= 3 1XuPlad = 0,(1).

t=p+1
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Since Iy — [y = 0p(1) by the consistency of Or, it follows that

T
l > Hvec (X:8}) vee (X)) — vec (Xie}) vee (Xye}) H =op(1).

t p+1

We now focus our attention on the second (and, by symmetry, third) block
A /
il Z <vec X,&}) vec (etst ZT) —vec (Xye}) vec (ee] — Zo)/> )
t p+1
As above, for any t € Z we can see that
|
< |vec(Xi(ér—er))]- ‘Vec ((étéé —eey) + (X0 — f]T)) )

+ |vec (X¢(ér —e0)')| - |[vec (erey — o) |
+ ‘vec ((étég —eey) + (2o — ﬁ)T)) ‘ < [vee (Xiey) |

vec (X€}) vec (étég — iT)/ —vec (Xiey) vec (g1, — Xo)

=HXK@—fDWﬁH@ﬁ?—&d)+(20—iTW
+[|Xe (6 —e)|| - ||l — o]
+ H(étéft —eer) + (X0 — 2T)H [ Xeet]|
S |Xt‘2 . HHO —ﬂTH . (‘ét —Et|2 +2|e’~ft _5t’ . ’Et‘ + Hzo — iTH)
+1X[ - o = Tiz |- (Jeuf* + 1 Zoll)

+ ’XtHEt| : (’ét —Et‘g +2‘ét —Et| : |€t’ + HEO — ETH)

< 1t~ 1| (1~ |+ 2t~ ]+ 054
+1X[- 0o = Tiz |- (Jeuf* + 1 Zoll)

A (2 A ~
1l el (102 1o = T |+ 21 e - [l — T | + | S £ )

As above,

vec (X,&}) vec (étég - f)T)/ —vec (Xye}) vec (e8] — 20)/

t=p+1

ends up being majorized by a sum of O,(1)o,(1) =0p(1) terms, so that it is itself o,(1).
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Finally, we deal with the final block

1 & . .
T Z (Vec (étéé - ET> vec (étéé - ET>, —vec (e¢e) — Xo) vec (ere] — ZQ)/> )
t=p+1

Analogously with the first block, for any t € Z

<[t —eieh) + (20— E0) | +2] €0 —eet) + (So—£r) |- eres — ol

!
A A - A A al /
vec (Etsg — ZT) vec (z-:tz-:; — ET) —vec (g167 — o) vec (e, — o)

< (’ét —al+ HZO _ﬁ]TH)Q +2 (’ét —ed?+ HZO —2TH) (‘Q’Q + HEOH)

< (1o ) 52 (ot S (¢ 1)

Again,

is majorized by a sum of Op(1)o,(1) = 0p(1) terms, so that it is itself 0,(1). This com-

!
A A & A A & !
vec (Etsg — ZT) vec (Eteg — ZT) —vec (167 — Xo) vec (e, — o)

t=p+1

pletes the proof.

Q.E.D.

Summarizing the results above, defining

Al Sr® (% Y ipi XtXt/>_1 0
0 2D (2T®2T) D,

o=
jT:% zT: ( VeC(XtééAi}l) ) ( vec(XtéQi;l) | )7
A A —1>

i 1 S —1a =1 =1 1 S —1a =1
t=p+1 \ 5vech (ET ey Xp — X ) 5 vech (ET eyl — X

a consistent estimator of the asymptotic variance of O can be constructed as
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2.4 Asymptotics of Structural VARs

So far, we have dealt with the theory of reduced-form VAR models. In practice, we often turn
to structural VARs to make causal inferences and disentangle the influence of one shock from
another.

Let {Y;}iez be an n-dimensional time series. We say that it follows a structural VAR(p)
process if there exist n x n matrices By, B1,---, B, and an n-dimensional nonrandom vector o
such that

ByY; :Oé—l-Bl}/t_l'i""‘FBp)/t—p"‘Et

for any ¢ € Z, where {e;}cz is an n-dimensional white noise process with variance I,,. This
means that the componenets of the error process are uncorrelated; often, we assume that they
are independent. Note that the variances of the shocks are normalized to 1; an equivalent nor-
malization is putting the diagonal elements of By equal to 1, but we choose to normalize the
variances of the shocks instead to make interpreting the impulse responses easier. The elements

of {e¢}1ez are referred to as structural errors.

Assuming that By is non-singular, pre-multiplying both sides of the above equation by By !

yields the reduced-form version of the model,

Y, =Byla+(By ' B)Yio1+- 4 (B ' Bp)Yip+ By e
=04+P1 Y1+ + PV +uy,

where {u;}tcz is an n-dimensional white noise process with positive definite variance equal to
Y =B, 1B6*1. Under the reduced-form model, the componenets of the errors are no longer
independent. To distinguish them from the structural errors, we call the elements of {u;}sez
reduced-form errors.

Suppose that {Y;}+cz is square integrable with bounded second moments and that the com-

panion matrix F' € R™*™ defined as

@, o, 9,

I, O O
F=

0 I, O

has eigenvalues within the unit circle. Then, {Y;};c7z is weakly stationary with a one-summable

causal linear process representation

oo
Y Zu—i-z\lfj up—j = p+V(L)uy
=0
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for any t € Z. Since u; = Balst for any t € Z by definition, defining
@j = \Ifj ‘Bo_l

for any j € N, {O;};ez is a one-summable sequence of n x n matrices such that
o0
Y, = M—FZ@]‘ "B = M—i—@(L)Et
j=0

for any t € Z. This indicates that any Y; is a function of current and past structural errors, where

the function is time-invariant.

The h-period impulse response of the ith dependent variable, Yj;, to a one standard deviation

shock to the jth structural error, €, can now be defined as

due to the independence of the components of €; and its independence with the structural errors
of all other periods. We collect the h-period ahead impulse responses for all dependent variables

with respect to each structural shock in the n x n matrix

iyn _

IRFyp =
Oe}

Op.

An estimate of this matrix requires knowledge of ¥}, and B, ! Since W}, is just the n x n matrix in
the (1,1) position of F*, which itself is comprised of the reduced-form mean reversion coefficients
®q,---,®,, it can be consistently estimated by estimating the reduced-form model via QMLE,
as we did in the previous section.

The problem arises when attempting to recover By 1 As is, By ! contains n? entries that
we must estimate. However, in the course of estimating the reduced-form model, we estimate
Y =B, IB(’)*l, which only has @ free parameters due to being a symmetric matrix. Thus,

@ more restrictions at the

the order condition for identification is not satisfied; we require
very least. In what follows, we study some popular methods to impose this restriction, and, for
a select few cases, derive the asymptotic distribution of the impulse responses using the delta

method.
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2.4.1 Recursive Identification

Perhaps the most popular and certaintly the simplest method of identifying B Lis recursive
identification, which imposes the constraint that B ! is lower triangular with non-zero diagonal
elements. Since B U dictates the contemporaneous effects of the structural shocks on the de-
pendent variables, recursive identification implies that the variables comprising Y; are ordered
so that, for any 1 < j <n, the structural error €; only contemporaneously affects the dependent
variables Yj; for i > j. A famous example of this identification scheme in practice is the monetary
VAR found in Stock and Watson (2001).

Formally, this allows us to identify By ! as the Cholesky factor of the positive definite matrix
Y. Thus, our estimate of B s simply the Cholesky factor of the MLE of ¥. Recall that the

reduced-form parameters are

Let 8 = (vec(IT)',vech (X)) € © = R+ x A be the reduced form parameters collected in

vector form. We define the reduced-form impulse response ¥y, : R*("P+1) _ Rnx7 a9

h
o T, @,
I, O 0]
Vn(B)=J , J
0 I, 0

for any 5 = vec(Il) € R+ - where J = (I,,0,---,0) € R"™"_ Then, the h-period ahead

impulse response function I RF; ,fﬂ : O — R™ ™ under recursive identification is defined as
IRE(0) = Up(B) -chol (vech™ (7))

for any 6 = (3',7')’ € ©. To apply the delta method later on, we first obtain the derivative of
vec (IRF,?I) on the open set © = R™"P+1) 5 A,

Choose any 0 = (3,7)' = (vec (1)’ ,vech (X)')’ € ©. We first derive the derivative of vec (IRF,{"H)
at 6 with respect to 8 = vec(II). To do so, it suffices to derive

dvec (Vn(8))
o5

the derivative of vec (%) at . This derivative proves useful under other identification methods

as well, so we present it as a lemma:
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Lemma (Derivative of Reduced-Form Impulse Response)

For any h > 0,
Ovec(Vy(8)) Bl i1y
T - (OTLQXTL 1=0 (‘](F ) ®\IJZ(B)>) 'Knp-‘rl,n
for any 8 = vec <(a Py - ép),> =R+ where F' € R™*" is the companion matrix
D, ®,1 P,
I, O O
F - .
(@) I, O

and J == (In,Oan,"' 7OTL><'I’L) € Ranp'

Proof) Note initially that

oV, (B8) OF _, 1 OFh—1\
ox =7 (8 F +F ox J

(ZF’L Fh i— 1) ZJFZ Fh i— IJ,,

It follows that

—

Ovec ( \I’h = h—io 1/ N Ovec (F)
7 O( (F )®JF)-7ax .

.

Letting IT)., collect the last np columns of II' = (§, @y, -+, ®,), that is,

“(a @),

we can see that
Ovec (F
_ J/
Ovec (H’2 . w®
It follows that

) 8 (g @) (1)

- Z (JF =y QI

@
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and since the elements of § do not appear in the formula for ¥, (3), we can see that
win Limg (TP @ Wi(8)))

(Onx1 JF=1Y) @ Wi(B)

avec H’

,_n

ovec (U ( h (
h—

=0

.

Since Ky npt1-vec(Il') = vec(II) by definition of the commutation matrix, we finally

have the derivative

dvec (Vn(B))) _ Ovec (Wn(B)))
op’ Ovec (I1') el

g

|
—

(Onxl Fh it )®‘1/ ] np+1ln-

Il
o

Q.E.D.

Using the fact that

vec (IRFFIL%I(G)) = <Chol (Vech ) ®I ) vec(Wn(8)),

we can see that

Ovec (IRFI(0) ovec (U (8
<8ﬁ’h ) (chol ®I> (w
h
— (chol(Z)'@In) : [Zl (onXl J(Fh*ifl)’) ®\I/i(5)‘| Knpiin
i=0

|
—

g

(om chol (%)’ J(Fh—i—1 )®\If ] np+1n-

Il
o
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We now move onto the derivative of vec (I RER! ) with respect to v = vech (X). The differen-
tiation is slightly more involved than the earlier case, so we start by introducing the derivative
of the function chol : PS™*™ — R™*™. Since PS™*™ is an open set with respect to the metric
induced by the trace norm, we do not have to worry about boundary problems when dealing

with differentiation. Define the n2 x n("TH)

matrix L, as the matrix satisfying
L, -vech (A) = vec(A)

for any lower triangular matrix A € R™ ", We can construct L, be taking the n? x n? identity
matrix and removing the n(i — 1)+ jth columns for any 1 <i,j <n such that j > i.
In addition, since each column of L, contains exactly one element equal to 1, L] L, =

Iy(n41)/2, making Ly, an orthogonal matrix. By definition, for any lower triangular A € R"*",
L -vec(A)= L] L, -vech(A)=vech(A).
This shows us that L/, serves a similar function as D, for lower trianguar matrices.
Choose any A € PS™*™ and note that

A = chol (A)chol (4)".

As such,
oA dchol (A) ! dchol (A) /
Therefore,
vech(A) _ 1y Ovec(d)
ox " ox
dvec (ChOl (A),) dvec (chol (A))
= D} (I, @) chol (A)) - e + D;f (chol (A) Q) 1) T

Ovec (chol (A4))
Oz

= D;f [ (I (R chol (4)) K, + (chol (4) R 1) -

— D} (K +1,2)(chol (4) R I,,)  Dvec(chol(4))

Ox
— D} (K +1,,2) (chol (A) R I,)  Qvech ((;201 (4))
=2D; (D, D;)(chol (A ®I avech (ghOI (4))
x
~Ovech (chol (A))

=2D;} (chol (A) Q) 1) L

Oz ’

where we used the fact that K,vec(chol(A4)) = vec (chol (A)/) by definition of the commutation
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matrix and (1,2 + K,) = D, D, Therefore,

Ovech (A)

—op+
Ovech (chol (A)) = 2Dy (chol(4 ®I

and as such,

Ovech (chol (A))
Svoch (A) = (2D;f (chol (4) @) ) L )

Now we move onto the differentiation of vec (I RER! (9)) Since

vee (IRF(60)) = (In @ Wa(8)) -vee (chol (%)) = (1o @ Wi(8)) Ln - vech (chol (£)),

by the result derived above we can see that

dvec (IREFI(0))  dvec (IRERI(0))

oy Ovech (%)

) dvech (chol (X))
= (1 @¥n(8) Ln- =5 5y

= (L. QW(8)) La |2D;f (chol (%) Q) L) L }1.

Putting the two results together, we can see that

ovec (IRELI(0))
o0’

_ (Bvec(IRF,fI(G)) Bvec(IRFfI(G)))
o 9B oy

= ([Zh (01 chol () - J(F"1) ) @Wi(B)] Kupirn (1@ Un(8)) L [2D;f (chol (£) @ T) L] ).

The Delta method can now be applied to study the asymptotic properties of the h-period ahead

impulse response under recursive identification; we state this as a theorem.
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Theorem (Asymptotic Normality of IRF under Recursive Identification)
Maintain assumptions Al to A3, and retain the notations of the previous section. Let éT be the
QMLE of 6. Then,

E [ (1A 65) e (15 0)]

ovec (TRFRL(f ovec (IRFEL(6,))\
4N 0,( (R (O)>)H0110H(’)1( (IR (O))) ,

oy’ o0y’

where Hy, Iy are as defined above.

Proof) This follows from the Delta method, together with the preceding result that, under our
assumptions, the QMLE of 6 is asymptotically normal with asymptotic distribution

VT (éT - 90) 4N [o, Hglfoﬂg—l} .

Here,

o1 [(To®a 0
0 0) 2D+ (X0 ® X0) Dn

and I is the information matrix.

Q.E.D.

Using consistency results concerning ﬁ} = vec (ﬂT>, f]T and fT, we can easily construct a
consistent estimator for the asymptotic variance of the estimaed h-step ahead impulse response

under recursive identification, I REF}f (07).
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2.5 Likelihood Ratio Tests under Linear Restrictions

Here, we study likelihood ratio tests for linear restrictions on the coefficient parameters 5. We do
not discuss tests of linear restrictions on the covariance terms for two reasons. First, the analysis
of LR test statistics for linear restrictions on covariance terms is very complicated, in contrast
to the simplicity of Wald tests; thus, when testing linear restrictions on covariance terms, we
opt for Wald tests. Second, we will later be interested in sequentially tests to find the correct

lag order, which can be formulated in terms of linear restrictions on the coefficient parameters.

Recall that we derived the (quasi) log likelihood function for a reduced form VAR(p) model

as

n(T—p) T—p 1 -1 d / / /
10) = " iog(om) - L Progiy—Lur [0, 3> ri—rxypvi—1rxy)
t=p+1

for any 0 € © = R™"+1) x A Since the QMLE of II and ¥ are

(£ (09

t=p+1 t=p+1
and
. 1 L . .
Y= T, > (V-1 X)) (Y - Xy,
_pt:p—i-l

the maximized log likelihood function is given by

R n(T — T - 01 (e & . R
10r) =" Prog(am) - T Prog S| - L (2 Ly (n—H’TX»(n—H’TXt)’)

2 2 o
T— T— A
:—n(2p)(log(27r)+1)— 5 plog‘ZT‘.

In other words, log‘f]T’ can be used as an indicator of the fit of the model, since the mean

maximized log likelihood, %_plA (p), is a linear transformation of log ‘flT‘
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2.5.1 Feasible Restricted Estimators of 0

We consider linear restrictions of the form Rj3 = ¢, where R € R™*"("+1) ig a matrix of full rank
r, and ¢ € R". We want to find the Gaussian QMLE of # udner the restriction R8 = ¢. To do so,

for every outcome we must solve the constrained optimization problem

T—p 1 -1 d / / /
m — log|¥|—=tr| X" Y, -II' X)) (Y —1II' X
eeae))( 5 og|X| 9 r( t:§p+1( t ) (Y t)

subject to Rp =gq.

Let 07 = (B7,7%)" be a solution to the above problem, where

Br = vec (ﬁT> and A7 = vech (ET> .
Fixing an outcome w € (), the Lagrangian for constrained maximization is given as

T - 1 4
L=-""Ploglg|— St |t > M-I'X) (Y, —I'X,) | +A(g— RpB)
2 2 =
T

T;plogm ~ 5 (2‘1- > (Vi—(I@QX)B) (Y~ (In®X£)ﬂ>’) +N(g—RB).

t=p+1

The first order conditions for maximization are

T

Y (@ X)E (Yi— (1. Q) X{)Br) - R'A=0
t=p+1

p $—1 1 S—1ora  —1) —
vech (ET ) + §vech (ET S(Br)XT ) =0,
where the function S(-) is defined as above; that is, as

T
SB)= > Vi~ (I.QXDH) (Y~ (1. &QX])B)
t=p+1
for any 8 € R™"P+1),
Since there is no restriction imposed on the covariance, S is given identically as in the un-
restricted case, except that the unrestricted estimator BT of 8 is used in f]T, while the restricted

estimator S is used in S

T

(Y — (In Q) X)) (Vi — (In QR X{)Br) -

:p+1

Yr= ﬂS(BT) = ﬂt

Turning our attention to the first order condition for the coefficient parameters, since
(In ®Xt)2:;1(yt —(In ®X£)BT) = (i%l ®Xt)(yt - (In®Xé)BT)7
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we can see that

T

S EF QXY — (1. Q) X))Br) = R

t=p+1

Sovlingn for B now yields

[ T -1 T
br={>rQ ( > m,;) { > Cr' Q@X)Yi— R'A
i t=p+1 t=p+1

[ T -1 T T -1
= In®( > Xth‘{) S (LQX)Y - f3T®( > Xth{) R'A

t=p+1 =p+1 t=p+1

T Loy ~ T -1
= vec (Z thg) x| - 2T®( > thg) R'X

t=p+1 t=p+1 t=p+1

. -1
= fBr - iT®< > XtX{> R

t=p+1

- -1
Since R is of full rank and X7 & (ZtT:p 11 XtX,{) is nonsingular, we can see that

-1

T

RISTQ [ D Xex| R
t=p+1

is a nonsingular r X r matrix. 7 must also satisfy the constraint RS = ¢, so pre-multiplying

both sides of the above equation by R allows us to express the Lagrange multiplier A as

-1

-1
T
A=|R ET@)(Z XtX{) R'| (RBr—q).

t=p+1
This holds for any outcome w € €2, so the preservation of measurability under continuous map-
pings implies that the Lagrange multiplier itself is a random vector; to emphasize this, we write
Ar.
Given the above formulation for the Lagrange multiplier, the restricted estimator of 3 is

finally given as

-1

T -1 T -1
Pr = Pr— ST®( > XtX;) R|R ET®( > th;> R'| (RBr—q).

t=p+1 t=p+1

130



A clear problem is that 87 and X7 are simultaneously determined by the equations

-1

- ~1 T -1
Br=pBr— 53T®( > XtXt') R(R iT@( > Xt-’ﬁ) R'| (Rfr—q)

t=p+1 t=p+1

_ 1 T

Sr=m— > (i (L@XDEr)(Yi— (1. QX))Ar)
P
We therefore use the feasible restricted estimators
-1

T -1 T -
T 2T®(Z thz) e f:T@( 3 thz) ®| (i)

t=p+1 t=p+1

T

~ 1 5 2

Sl = 3 (i (I QXDBE (e~ (1 QXD B
t=p+1

where 37 is the unrestricted QMLE of . Note that, BC,ER continues to satisfy the linear restric-
tions RS =q.
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2.5.2 Asymptotic Properties of Restricted Estimators

The following theorem shows us that, if the restrictions are true, then BIER and EIT?R are con-
sistent and that the difference between the FR and unrestricted QMLE coefficient estimators is

asymptotically stable:

Theorem (Asymptotic Properties of FR Estimators)
Maintain assumptions Al to A3 made in the previous section. If the linear restrictions RS = ¢

hold for the true parameter 5y, then
B £> 507

SER B %,

() 4o (a0 R [R(® ) 1] (@)

SER—Sr=0,(T7).

Proof) Under assumptions Al to A3, the unrestricted QMLESs are consistent and asymptoti-

cally normal:

A ] Yo®Q ! (I, ® Qi) k3 D}l
\/T (9T — 90) — N 0,
DYes(I,Q@WQ™) Dyt (ka—Xo®%0) Dyt

Suppose that RBy = q. Then,

-1

= Br— 2T®( ZXt ) R Rﬁ)T@( th ) R'| (RBr—q)

t=p+1 t=p+1

2o~ [£0@Q7 R (R[50@@Q Y R) ™ (R —a) = fo

and, letting BQER =vec (ﬁgR)’

T - 1 & . _
A Tt%fyt TP X) (¥ TR X,
/
- Z (Ho—f[;R)/XH—gt] [(Ho—f[?R)/Xt—l—et}
t p+1
_ (Ho_ﬁf;fa)’( 5 tht) (1~ TEER) < (11, - F1£RY ( > X)
t=p+1 t=p+1
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1 T
+ T Z Xt{:‘é

t=p+1

LS

) (-

t=p+1

1 T
+T Z Et&‘;

by the consistency of IZI}T7R for IIp and the variance ergodicity of ;. This establishes

consistency.

As for asymptotic normality, note that

A
T —Br = —

_2T® (

_2T® (

T
> X X|
t=p+1

T
> XiX;
t=p+1

.

)

R/

R/

_2T® (

_2T® (

T
> X X]
t=p+1

T
> XX
t=p+1

where we used the fact that RSy = ¢. By the consistency of éT,

T -1
Sr Q& (; > thg) R'|R 2T®(

t=p+1

By Slutsky’s theorem,

1 T
TZXth

t=p+1

;

-

1

1 -
) R R

R/

R/

(@) 7 (@0 )] '

Furthermore, by the asymptotic normality result above,

VT (Br—80) 5 N [0,2Q Q]

VT (B = pr) 5 (20 @QQ ) R [R(20Q Q") R T RxN 0.2QQ]

—N {0, (zo(g)@—l) R [R (20®Q—1) R’} 'R (20®Q—1)] :

Similarly,
T
rn 1
T-p t=p+1
1
T—p t=p+1
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A A ~ /
% [Yt 11X, + (T — H?R)’Xt]

. . . 1 T R _
= S+ (IIp — IERY T > XX, | Iy —1I57)
-b t=p+1

/
T T
A ~ 1 N 1 N N -
+ (I — TIERY (T > Xt(YtH’TXt)’) + (T > Xt(YtH’TXt)’) (Ilp — 57

Py P

. . N 1 T . -
= S+ (IIp — IERY T > XX, | Iy =155,
-p t=p+1

where we used the fact that Z%F:pﬂ X (Y — ﬁ’TXt)’ = 0 by design. We saw above that
VT(B5E = Br) = 0p(1), or

37— Br = Op(T71/2).
It follows that
Iy — 57 = 0,(T71/?)

as well, and therefore,

. . . - 1 T . _
SER S = (TIp — ORRY 7 S Xe X[ | (T — IER)
P

(T71/2)0,(1)0,(T1/?)
().

OP
OP
Q.E.D.

The above result shows us that the difference between the variance matrices converge at a

faster rate than the coefficients.
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2.5.3 Asymptotic Distribution of LR Test Statistic

Denoting

GER _ ~£ f
r vech (f]?R) ’

the value of the quasi log likelihood evaluated at the feasible restricted estimators is

)

and the difference between the unrestricted maximum log likelihood and restricted maximum

Wor") = —”(T;p)aog(%) 1) = T Plog(|£4"

log likelihood becomes
1(fy) — 1(GER) = ? [log [ S5 — log |1 ]
The LR test statistic is now given as
LRy :=2- (1(6r) - OF™)) = (T — p) [log [SF7| ~ 1og|Sr ]

In light of the result above and the continuous mapping theorem, it stands to reason that the
LR statistic is Op(1). The next theorem shows us that this is indeed the case, and that the

asymptotic distribution is a chi-squared distributed with r degrees of freedom under the null:

Theorem (Asymptotic Distribution of LR Statistic)
Maintain assumptions Al to A3 made in the previous section. Suppose that the null hypothesis
Hy: RSB = q is true. Then,

T
LRy = (B¥% — Br) (53%1(8; > XtXt') (BFE — Br) +0p(1)
t=p+1

d
52

re

Proof) The asymptotic properties of the LR test statistic is best studied by employing a Taylor
expansion of the log likelihood function. By the stochastic version of the second-order
Taylor expansion, there exists a random vector 67 that is a convex combination of éT
and éf:R such that

al(0r)
00’

e . T R
=1(0r)+ 5(9{;]% —0r) - H(0r) - (07" —b7),

.
9 Z(GT)(é:IJfR_éT)

~ ~ ~ A 1 - A
UOFR) =1(0r) + (61 —0r) + 5 (07" — brY

since alé%T) = 0 by the definition of the unrestricted QMLE éT. Since both éT and éf:R

are consistent for 0y, and 6 is a convex combination of the two estimators, 67 is also
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consistent for 6. We showed above that this implies H (67) 2 Hy, where

o -3,'®Q @)
’ 0  —iD{(%'®%;)D.)
We can write
- R 1 - R _ - R
1077 —1(07) = 5(951% —0r) - H(0r) - (077 —0r)

— 5 (VIGE = pry VTGER =30y |

VT (BER - pr)
VT(EE—-47) |

The previous theorem tells us that T(G5ER — Br) = O,(1) but that SHEE — 55 =
O,(T~1) and thus VT(¥EE —47) = 0,(1). Therefore,

LRy =2 (10r) ~105™) = [VI(EER - 0] (25 @Q) [VT(BF" — br)] +op(1),

where —X;'@Q is the matrix in the (1,1) block of Hp. Due to the consistency of
S R4S XX for 551 ®Q, it follows that

t=p+1

T
LRy = (BF%—Br) (2%1®; > XtXé) (BF" = Br) +0p(1).

It is now easy to derive the asymptotic distribution of the LR statistic. Recall that
VT(BER —Br) % (20 RQ HR'L x 2,
where L € R"*" is the Cholesky factor of
R(@e )R]

and Z = (Zy,---,Z,) is an r-dimensional standard normally distributed random vari-

able. It follows from the continuous mapping theorem and Slutsky’s theorem that
A d - - _
LRy 5 7' [FR(EQQ™ (35" QQ) (Zo @ HR'L| 2
= 7' [VR(@QR'L| 2

Since (LL')"! = R(Zo@Q 1R/, it follows that L' R(Xg@ Q 1)R'L = I,., and we have

,
LRy % 72'2=3 72
i=1
The random variable on the right hand side is the sum of r squared independent stan-

dard normally distributed random variables, so by definition it follows a chi-squared
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distribution with r degrees of freedom.

Q.E.D.
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2.6 Lag Length Selection

So far, we have taken the lag order p of a VAR model as given. In reality, it is often the case that
p is unknown, and we must estimate the lag order. To obtain a rudimentary criterion with which
to compare models with different lag orders, we return once again to the (quasi) log likelihood
for a VAR(p) process.

Throughout, we will assume that the maximum lag order is given by k > 0, and that we search
between 0 and k for the true lag order. In order to use the same number of observations in any
case, we assume that observations from time k41 to T are used. For notational convenience, in

what follows we denote

& ,
<I>/1 p+1
H(p)=| . and Tl(p:q)=| for any p < g <k
: o
q
@,
1
Y, th—p—l
t
Xi(p) = ) and Xy (p:q) = : forany p<q<k
' Y,
Yip e
. T -7
rp)=| > X)X | D XY/
t=k+1 t=k+1
~ 1 T ~ , ~ , /
Sr(p) = 7= > [V~ () Xop)] [Yi - () Xi(0)] -
t=k+1

In other words, in a model with p <k lags, X;(p) is the regressor used for QML estimation,
II7(p) the QMLE of T = (§,®1,---,®,)’, and X7(p) the QMLE of ¥. In a model with p < k lags,

the paramter space is denoted by
O(p) = R™M™+1) A,
The quasi log likelihood for a model with p < k lags is given as

T
M0 og(om) T P rog )~ Lo (z > (=T Xu() (% —H’Xt@))’)

t=k+1

[(6:p) = —

for any 6 € ©, and the maximized log likelihood is

N n(T —k)

i) = =" tog(2m) +1) — — log [P0

> ’
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2.6.1 Sequential LR Testing

We saw above that log ‘iT(p)’ can serve as an indicator of the fit of a model with p lags. Thus,
an intuitively appealing way to search for the true lag order is to conduct sequential LR tests.

Specifically, suppose we wish to test the null hypothesis of p—1 lags against p lags. This can
be viewed as testing whether ®, = O in the VAR(p) model

Y;f = 6""@1}?—1 +-+ q)p—lyvt—p-‘rl +(I)py;ﬁ—p + &t

The unrestricted estimators of II and ¥ are, of course, given by I (p) and Sz (p).

Defining

’I’L2 nn
= (OnQX(nQ(pfl)Jrn) In?)Kan,n e R xn(np+1)

J

R is a matrix of full rank n? such that
RB = Rvec(II) = J - vec (II') = (On2><(n2(p—1)+n) Ing) vec (5 Py o Dy <IJp) = vec (D).
Thus, the null Hy : ®, = O can be expressed equivalently as

Hy: Rp=0.

Note that the restricted QMLEs 67 of 6 solve the problem

I lﬁl—lt s ZT: (Y —II(p) X (p)) (Y2 — IL(p) X (p))
Gren(g(};z) 5 og 5 r R t D) X¢(p t p) A¢(Dp

subject to &, = 0.

Substituting the constraint into the objective function, the maximization problem can be rewrit-

ten as the unconstrained problem

T—k 1 -1 4 / /
0% 5 log[%| Qtr(z 't%l(Yt O(p—1)Xi(p—1)) (Vi —(p—1)Xs(p—1)) | .

This indicates that (7, the restricted QMLE of 3, is simply the QMLEs of 8 in a VAR(p-1)
model together with ®, equal to O. Similarly, Y7, the restricted QMLE of X, can also put equal

to the covariance estimator in a VAR(p-1) model:

. 1 T

Sr=m— Y M-Trlp-1)'Xi(p-1))Yi—Tr(p—1)Xe(p—1)) = Sr(p—1).
T pt:p—I—l

Since an estimate of ¥ no longer appears in the equation for B7, in this case the restricted

estimators are identical to the FR estimators. Therefore, the asymptotic theory developed above
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continues to hold, and we can see that

LRy = (T~ k) (log [Sr(p—1)| log [Sr(p)|) 4 2.

2.6.2 Information Criteria

Often, the lag order of a VAR model is chosen by minimizing an information criterion. Generally,

information criteria are given as

A c
IC(p) = log [Sr(p)| +p- =

for lag orders 0 < p <k, where cr is a penalty term that is often deterministic functions of the

sample size T'. The first part of the criterion, log ‘iT(p) , is easy to understand; it represents the
negative log-likelihood, so that the lower it is, the better the model fit. However, relying on only
the negative log-likelihood may induce overfitting, since the higher the lag order, the better the
model fit and thus the higher the log-likelihood. Therefore, a penalty term p- 7 is introduced in
order to penalize lag orders that are too high without significantly improving the log-likelihood.

Given an information criterion, the optimal lag order is chosen as the value pr that minimizes
IC(p) over {0,--- ,k}. Letting po € {0,--- ,k} be the true lag order, we say that /C(p) consistently

estimates the true lag order if
ﬁT £> Po,
which is equivalent in this case to
lim P(ﬁT :pg) =1.
T—o0
Since pr is chosen as the minimizer of IC(p) over {0,---,k},

{pr =po} = () {IC(p) > IC(po)}-

PFDPo

Therfore, another equivalent characterization of consistency is

lim P(IC(p) > IC(po)) =1

T—o00

for any 0 < p < k such that p # pg.
We can furnish a sufficient condition for the consistency of information criteria. First, a

lemma:
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Lemma (Simultaneous Diagonlization of Positive Semidefinite Matrices)
Suppose A, B € R™" are positive semidefinite matrices, and that A is positive definite. Then,
there exists a nonsingular P € R™*" and a diagonal matrix D € R™*"™ with non-negative diagonal

entries such that

A=PP and B=PDP.

Proof) Let A= A1 DA} be the eigendecomposition of A, where A; is an orthogonal matrix and
D is a diagonal matrix collecting the eigenvalues of A. Since A is positive definite, the
1
diagonal entries of Dy are all positive, meaning that D7 is well defined and nonsingular.
Define

M= AlDlé .

Defining
C=M"1'BM,

since B is positive semidefinite, so is C. Therefore, C has eigendecomposition

C = AyDA),
where the diagonal elements of D are non-negative. It follows that

B=MCM' :AlDléAQ-D-A’QDl%A’l.
Define
1

P=AD}As.
Since all three matrices that comprise P are invertible, so is P. By definition,

B=PDP,
where D is a diagonal matrix with non-negative entries. Finally,

PP = A\ D? Ay AL DA, = Ay DA, = A,

where we used the fact that A, is an orthogonal matrix.

Q.E.D.
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Theorem (Consistency of Information Criteria)
Maintain assumptions Al to A3 made in the previous section. Let IC(p) be an information

criterion given by

N C
1C(p) = log|Sr(p)| +p- T

for any 0 <p <k, and pr the lag order chosen by IC(p). pr is consistent for the true lag order
po if

cr — +oo  and CTT—>0

as T — oo.

Proof) The theorem is proven by showing that
P(IC(p) > 1C(po)) =1

as T — oo for any p < pg since Z — 0 and for any p > po since e — +o00. We first
study the case p < py.

Step 1: p < po

Suppose that p < pg. Recall that

T -1 op
17 (p) = ( > Xt(p)Xt(p)’) > Xi(p)Yy

t=k+1 t=k+1
T
1) = 7 3 (06Tl ) 0~ 1) X,

and likewise for pg. From the asymptotic properties of the QMLE estimators under
the correctly specified VAR model, Iz (po) and S7(pg) are consistent for the true
parameters I1g = II(pg) and Xy. Meanwhile, note that

Y = (po)' X¢(po) + et = L(p) X¢(p) +(p : po)' Xe(p : po) + e

for any ¢ € Z, so that

T Lo
Ir(p) = ( > Xt(p)Xt(p)’) > Xi(p)T(p)' Xi(p) +T(p : po)' Xi(p : po) + 1)’
t=k+1 t

t=k+1 t=k+1

T -1 T
=TI(p) + (; > Xt(p)Xt(p)’> (; > Xt(p)Xt(p:po)’) I(p: po)
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1 Z Tz
+ (T )3 Xt<p>xt<p>') (T > Xt<p>ez).

t=k+1

By assumption,

1 & v o [Qp) Q2
T 2, Xelo)Xiloo) 5 Q= (Qzl Q(P3P0)>’

t=k+1

where @ and by extension Q(p),Q(p: po) are symmetric positive definite matrices. We

can thus see that

T
= 3 Xep)Xe(p) B Q(p) € ROPHDX (D)

t=k+1

T
" 3" Xi(p)Xi(p:po) B Qo € ROPHDXn(po=p),

t=k+1
Also as shown in a theorem above, under our assumptions %Z?:k 1 Xi(p)et = op(1).

Therefore, by the continuous mapping theorem,

17 (p) 5 I(p) + Q(p) ' Q12 - 1(p : po).

Defining
s I
r(p) = ( () ) ;
On(po—p)xn

we can see that
T

Sr(p) = o D0 [Yim Tr(o) Xapo)] [¥i— Tir (o) Xapo)]
t=k+1

Expanding this expression as usual yields

A

1 T
Yr(p) = T—Fk Z 5t5/t

=kt 1

T

+ (I(po) — Mz (p))’ (le > Xt(Po)Xt(Po)l) (I(po) — Iz (p))
t=k+1

T T !
+ (I1(po) — Tl ()’ (Tik ) Xt<po>s;) T (Tik ) Xt<po>e;) (T(po) — Tl (p)).
t=k+1 t=k+1

Since

On(po —p)xn

) 2 (H(P)+Q(P)_1Q12'H(P3P0)) |
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7 (p) is Op(1), so that the last two terms above converge in probability to 0. Meanwhile,

we can see that

T
(I(po) — Iz (p))’ (Tik > Xt(po)Xt(po)'> (I(po) —IIr(p))
t=k+1

EN —Q(p)'Qu2-II(p : po) /Q —Q(p) Q12 I(p : po)
I(p: po) (p : po)

-1
=T1(p:p0) - (~QuQP) ™" ) ( ?12) I(p : po)
n(po—p

=11(p: po) [Qp: o) — Q1Q(p) ' Qua| T(p: po) = Q.

Since Q(p: po) — Q21Q(p) "'Q12 is the Schur complement of @, a positive definite matrix,
it is also positive definite. Therefore, Q is an n(py —p) X n(py — p) positive semidefinite
matrix with at least one positive eigenvalue (otherwise, II(p : pp) must be equal to 0,

which contradicts the fact that pg is the true lag order). Together, we can see that

The log-likelihood ratio of a model with p lags and one with pg lags is given by
log ‘iT(P)’ —log ‘ET(pO)‘-
By the consistency results derived above,
log | £1(p)| ~1og |21 (po)| 2 log S + Q| ~log Sl

Since X is positive definite and Q is positive semidefinite, the preceding lemma tells
us that there exist a nonsingular P € R™*™ and a diagonal matrix D € R™*"™ with

non-negative diagonal elements such that
Yo=PP' and Q=PDP.

Note that at least one element of D is positive, since otherwise Q = O, a contradiction.

We can now see that

log %3 + Q| — log S| = log | P(D + I,) P'| ~ log | PP|
=log(|P[*|D+ L) ~log(|PI*) =log| D+ 1] > 0,

where the last inequality follows because |D + I,,| > 1. Therefore,

log ’f)T(p)‘ —log‘fJT(po)’ Plog|D+1,| > 0.
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Since F — 0 as T'— oo by assumption, this tells us that
1C(p) — IC(po) = log| Er(p)| ~log | Er(po)| + (p—po) - o 5 log | D+ L] > 0.
By definition,
Jim P([(IC(p) —1C(po)) —log| D+ In|[ <€) =1

for any € > 0. Putting € =log|D + I,,| > 0 yields

%EEOP(IC(p) —IC(po) >0)=1.

Step 2: p > po
Now suppose that pg < p < k. In this case, the true model is a restricted version of the

model with p lags; that is, the solutions to the constrained maximization problem

n(T —k 1 <
max _ =k )log]Z\—ftr »L. Z (Y; — I X4 (p)) (Y — 1" X (p))’
€8 (p) 2 2 Mt
subject to ®p 41 =-=®,=0

are

n(p—po) Xn

ﬁT: (OHT(pO) ) and EA]T(pQ).

Here, no covariance terms enter into the solution for 3, so that the restricted estimators
are identical to the feasible restricted estimators. Therefore, as we derived for the LR

test statistic computed using FR estimators,
LRy =T (log[£1(po)| ~og [£1(p)|) X2,
In other words,
log [S1(po)| — log|[Sr(p)| = 0,(T7Y),

which implies that log ’f]T(po)‘ —log )f]T(p)’ =0p(1).

The difference between the information criteria for lags p and pg is given as

A

EﬂMD+@—m)

cr

1C(p) —IC(po) = — (log [£1(po)| ~log -
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By the definition of boundedness in probability, for any € > 0 there exists an M >0
such that

B((p—po)-er = TIC(p) ~ IC(po)) > M) = P (T (log | Ex(po)| - log|Er(p)|) > M) < e

for large enough T'. By assumption, ¢y — 400 as T — 00, and p— pg > 0, so for large

enough 7" we have (p—pg)er > M +1 and as such
P(T'(IC(p) —1C(po)) <0) <P(T(IC(p) —1C(po)) < (p—po)-cr —M —1) <e

for any T that is large enough. Thus,

limsupP(T'(I1C(p) — IC(po)) <0) <¥,

T—o0

and since this holds for any € > 0,

lim B(T(IC(p) ~ IC(po)) < 0) =0,
or equivalently,

Jim P(T(IC(p) —IC(po)) > 0) = 1.

Finally, for any T'> k+1,

{TIC(p) = 1C(po)) > 0} = {IC(p) = IC(po) > 0},

so that
lim P(IC(p)—IC(pg) >0)=1
T—o0

as well.

Q.E.D.

We have thus seen that the condition % — 0 is required to ensure that lag orders smaller than
po are not chosen; in effect, it does not penalize lag orders that are smaller than pg. On the other
hand, the condition ¢y — +oc is required to preculde lag orders greater than pg; heuristically,
because lag orders greater than py actually yield higher log likelihoods than pg, they must be

penalized heavily.
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Examples of information criteria include:

AIC:

BIC:

HQ:

Akaike Information Criterion

This is perhaps the most widely used information criterion, and is given as

2

AIC(p) = log| S (p) | +np(np+1) i

where np(np+ 1) is the number of freely estimated coefficient parameters (n(np+ 1))

multiplied by the lag length p.

Despite its renown, it is inconsistent for lag orders higher than the true lag length pg, since
cp =2 for any T € N, and therefore % = O,(T~!) in this case. It follows that AIC(p) —
AIC(po) is the sum of two O,(T 1) terms for any p > po, so that AIC(p) — AIC(pgy) > 0
does not hold in the limit with probability 1.

Bayesian Information Criterion

This is a widely used consistent information criterion, and is given as

log(T)
o

BIC(p) = log[Sir(p)| +np(np+1)
Clearly, % — 0 but log(T') — 400 as T — oo, so that it is consistent in light of the

preceding theorem.

Hannan-Quinn Information Criterion
This is an information criterion that is strongly consistent, or in other words, pr “3 po (we

omit the proof):

A

ET(p)‘-i-np(np-i- 1)-M.

HQ(p) =log T

The penalty term also satisfies the conditions of the preceding theorem.
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Spectral Analysis

In this chapter we study the frequency domain representation of time series through the spectral
representation theorem. In addition, we introduce the spectral density and investigate some

consistent non-parametric estimators of the spectral density.

3.1 The Spectral Density

So far, we have presented time series as a doubly infinite sequence {Y;};cz of random vectors
taking values in euclidean space. We can instead express this time series in terms of its fre-
quencies, that is, weighted averages of sinusoidal waves of the form ¢ — exp(ir-) for some r € R.
The spectral representation theorem, the proof of which is the main objective of this section,
shows that every weakly stationary and well-behaved time series possesses both time domain
and frequency domain representations.

First, we define and study the properties of the spectral density of time series. Let {Y}; };cz be
an n-dimensional mean zero weakly stationary time series with autocovariance function I' : Z —
R™. If the autocovariances of {Y; };c7z are absolutely summable, then we can define the function
f:(=m,m] > C" as

1 o0

flw) = By (1) exp(—iTw)

T=—00

for any w € (—m,7|; note that this series converges to an n X n complex matrix in this case
because it is absolutely convergent under absolutely summable autocovariances:
o0 o0

S N exp(—irw)l|= > (7)< +oc.

T=—00 T=—00

Note that

() = o 3 (D)) exp(—iru)

T=—00

for any w € (—m,7]. Since I'(—7) =T'(7)’ for any 7 € Z, tr (I'(7)) = tr (I'(—7)), and we can see
that

tr(f(w)) = QL tr (I'(0)) + itr (I(7)) (exp(—iTw) +exp(iTw))
T=1

™
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= 2 t S
- )+ Zr )cos(Tw) | ,

so that tr(f) is a real-valued function. We can in fact show a stronger result, namely that tr(f)

is non-negative everywhere on (—,7].

Lemma Let {Y;};cz be an n-dimensional weakly stationary time series with absolutely
summable autocovariance function I' : Z — R™ ™. Letting f : (—m,m] = C™*™ be the spectral
density of {Y; }ez, tr(f(w)) > 0 for any w € (—m,w]. Furthermore, f(0) is a positive semidefinite

matrix.

Proof) For any T € Ny, define fr: (—m,n] = C"*™ as

1 T T
fr(w) = T ZZF(S —r)exp(—isw)exp(irw)
s=1r=1
1 A 7] ,
= — — — | I'(7) exp(—iTw
w2 (177 )Tt

for any w € (—n,7|. Fixing w € (—m, ],

f(w)— fr(w) S ’T‘I‘( )exp(—iTw —i—? Z (1) exp(—iTw).

) T
T r<r Ir|>T

so we have

£~ frw)l < o= 3 IEE+ = X Tjre).

IT|1=T I7I<T

Choose some € > 0. The absolute summability of the autocovariances tells us that there

exists some N € N, such that

> I H<*

|7|>T

for any 7' > N. For such T', we also have

> Direis > Aiemi+ 3 el

|T|<T |T|<N N<|7|<T
<*ZHF M+ > IT(r)
|T|<N |7|>N
N = €
TS e+
TT:—N+1 3
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The first term here goes to 0 as T' — oo, so there exists some Ny > N such that

= Tl <5
T T=—N+1 3

for any T' > Ny. Therefore, for any T' > Ng, since T'> N as well, we have

N—-1
!f(w)—fT(w)\S;ﬂZIIF(T)HJr;W(]; > Hr<r>u+§)

|T|>T T=—N+1
< 16+1 <6+€>_ 1 <
=273 27\373) 27" ¢
Such an Ny € N, exists for any € > 0, so it follows that

lim fr(w) = f(w).

T—o00

For any w € (—m,nw] and T' € N4, we can show that tr(fr(w)) > 0. To this end, note

that we can write

T T
tr(fr(w)) = % ZZtr(F(s —r))exp(—isw)exp(irw)
s=1t=1
tr('(0)) -+ tr(I(T—1)) exp(iw)
:271T (exp(—iw) exp(—iTw)) . : :
tr(D(T—-1)) ---  tr((0)) exp(iTw)
Defining
exp(iw)
B = : ;
exp(iTw)
we can rewrite tr( fr(w)) as
YIYi - YiYr
u(fr) =B || 2 1 |8
YiYi - ViV
Y/
- _'el7 '1Y o) 8| = L E[Z7 20| = Bz >0
=57 I5} : (1 T)ﬁ—ﬁ{T T}—ﬁ‘T’—v
Yr
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where we define the n-dimensional random vector Zr as

ZT:(Yl YT)/B'

Similarly, we can show that the n x n real valued matrix fr(0) is positive semidefinite.
Choose any a € R", and define y; = o/Y; for any ¢ € Z. Then, {y;}1ez is a univariate

mean zero weakly stationary process with autocovariance function v :Z — R defined as
(1) =Elyypr—r] = E[V}Y]_Ja=a'T(1)

for any 7 € Z. Then,

1 I.T
o fr(0)a = 3T Z: Z (@T(s—r)a)
s=1t=1
, 7(0) YT —1)
= 5T d
V(T —1) 7(0)
1 o 1
_ / . _ 2
27TTE ‘r (yl yT) = 27TTIE [ZT} 20,
yr
where we define zp = (yl yT) Lty = Zthl ;. This holds for any a € R™, so by def-

inition fr(0) is positive semidefinite.

We showed that fr — f pointwise on (—m, 7], that tr(fr) is non-negative valued for
any T € N4, and that fr(0) is positive semidefinite for any 7' € N,. Therefore, tr(f)
is non-negative valued on (—m,7] and f(0) is positive semidefinite by the continuity of

the trace operation and (ordered) eigenvalues of real symmetric matrices.

Q.E.D.

Heuristically, f(w) represents the contribution that the sinusoid of frequency w makes to the

variance, or power, of the stationary time series {Y; };cz; this is formalized below.
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Theorem (Relationship between Spectral Density and Autocovariance Function)
Let {Y:}tez be an n-dimensional weakly stationary time series with absolutely summable auto-

covariance function I' : Z — R™*". Letting f : (—m, 7] — C™*™ be the spectral density of {Y; }1ez,

I(r)= /7r exp(iTw) f(w)dw

—T

for any 7 € Z.

Proof) Choose any 7 € Z. Note that, for any T' € N,

Z I'(s)exp(i(T —s)w

s=—T

Z |IT(s)]] <400

S§=—00

for any w € (—m, x| by absolute summability. Defining the function gp : (—m, 7] — C**"
and g : (—m, 7] = [0,400) as

Z I'(s)exp(i(T — s)w)
s=—T

and

(o]
= > Ir(s)
s§=—00

for any w € (—m, 7],

™

/ gwydw =27 3 0] ) < +oc.

- s=—00

Since {gr}7ren, is a sequence of complex matrix valued functions with limit
Z I'(s)exp(i(T — s)w)
s§=—00

such that ||gr| < g for any T'€ N, and g is a non-negative function that is integrable
on (—m, 7] with respect to the Lebesgue measure, so by the DCT,

277-/_7; exp(itw) f(w)dw = /_: ( Z I'(s)exp(i(T — s)w)) dw

S§=—00

[ T
= lim Tr ( Z F(S)exp(i(Ts)w)) dw

T—o0 ) T

= lim ET: ( WP(s)exp(i(T—s)w)dw)

T— _
& s=—T m
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For any s # 7,

™

/_T;F(S) exp(i(T — s)w)dw =T'(s) - / exp(i(T — s)w)dw

—T

' 1
i(t—s)

because r — exp(ir) is a function with period 2w, while

(exp(i(7 — s)m) — exp(—i(T — 5)m)) = O,

/7r [(s)exp(i(T —s)w)dw = 27 -T'(s)

—T

if s = 7. Therefore,

/7r exp(iTw) f(w)dw =T'(1),

-7

as desired.

Q.E.D.

This result tells us that, for 7 =0,
™
r©) = [ f(w)du,

so that the variance I'(0) of {Y;}+cz is the sum of the spectral densities for frequencies between
—m to 7. As such, we can interpret f(w) as the contribution the time series of frequency w makes
to I'(0). The spectral representation theorem, which is the topic of the next section, shows that
any time series can indeed be decomposed into the weighted sum of sinusoids of various frequen-

cies.
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3.2 The Spectral Representation of Time Series

Given an n-dimensional time series {Y;} ez, our goal in this section is to express each Y; as
a stochastic integral of the mapping r — exp(itr) with respect to some stochastic process on
the index space (—m, 7] with orthogonal increments. To this end, we first rigorously define the
stochastic integral of deterministic functions; because we only deal with non-random integrands,
the development of this particular theory of stochastic integration is much simpler than that of

the Ito integral, for instance.

3.2.1 Orthogonal Increment Processes

Let {Z;}_r<t<x be a stochastic process with index set [—m, 7| such that each Z; is a random

vector taking values in C. Suppose that {Z;}_r<i<y is in L2(#H,P), that is,
N
1Zel,5 = (EIZe)* < 400

for any —m <t <. In this case, we say that {Z;}_r<;<r is a mean-zero process with orthogonal

increments if
E[Z)] =0 forany —7w <t<m, and
(Zy—Zs, 2, — Zowyn2 =B [(Ze — Zs) (Zy— Zw)] =0 forany —m<w<u<s<t<m.

In light of the mean-zero assumption, the second condition is equivalent to requiring that the
trace of the covariance of Z; — Z; and Z,, — Z,, is 0 if the index intervals do not overlap.
{Z:} _r<t<n is said in addition to be right-continuous in mean square (or simply just right-

continuous) if, for any —7 <t <,
o1
2
|Zess = Zillz = (ElZers — Zi7)* =0

as ¢ | 0. From here on, we will be working with stochastic processes {Z;}_r<¢<, that are square
integrable (that is, is a process in L2(H,P)), with mean zero and orthogonal increments,
that are also right-continuous. When we refer to orthogonal increment processes on [—m, 7],
we will be referring to a process {Z;}_r<i<r that possesses all the above properties.

Brownian motion is a famous example of a square integrable, right-continuous and mean
zero stochastic process with orthogonal (in its case independent) increments. In fact, Brownian
motion also has the added condition that the increments are stationary, that is, the distribution
of the increments only depend on the difference between the time indices. Furthermore, in the
case of Brownian motion, the entire paths themselves are continuous, that is, each realization
t — Zi(w) of the process is a continuous function, which implies the kind of right-continuity in
mean square discussed above.

The right continuity property of an orthogonal increment process {Z;} _r<¢<, actually allows
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us to construct a finite measure on R whose value on any interval (s,t] C [—m, 7] coincides with

the variance ||Z; — ZSHi2 = E|Z, — Z|*. This result is formalized below:

Lemma Let {Z;}_r<i<r be an n-dimensional orthogonal increment process. Then, there exists
an increasing, right-continuous and bounded function F': R — R, a g-algebra £r on R and a

finite measure Ar on (R, Lr) such that:
i) Lp contains every Borel set on R, that is, B(R) C L.
ii) (Completeness) (R,Lp,Ar) is a complete measure space.

iii) (Regularity) Ar is a regular Borel measure, that is,

Ap(A) =inf{Ap(V)|ACV, V is open}
=sup{Ap(K)| K C A K is compact}

for any A € Lp.

iv) (Approximation Property) For any A € L and € > 0, there exists an open set V' and
a closed set K such taht K C ACV and

Ar(V\K) <e.
v) For any half-open interval (s,t] C [—m, 7],
Ae((s,8]) = F(t) = F(s) = |2 = Zs|3, -
vi) The entire mass of Ar is concentrated on (—m, ], that is,

Ar((—m, 7% =0.

Proof) Define F: R — R as

1Zx=Z |7y ift>m
F(t) = ”Zt*Z77r||iy2 if —r<t<m

0 ift<—m

for any t € R. Then, F' is bounded above by E|Z, — Z_N\Q < 400, which is finite by the

square integrability of {Z;}_r<i<r. It is clearly increasing because, for any —m < s <
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F(t) = ”Zt - Z—WH%Q = H(Zt - ZS) + (Zs - Z—ﬂ)”i,z
=[Zi— 28”3,2 +11Zs - Z—WH%J +2-Re((Zt—Zs,Zs — Z—ﬂ>n72)
=[|Zi— 25”3,2 +|Zs — Z—x| i,Z =1z - Z5|’3L,2+F(8)7

where the fourth equality follows from the orthogonality of the increments Z; — Z5 and
Zs— Z_5. It follows that

F(t)=F(s) =1Ze~ Zs |32 2 0,

and as such that F' is an increasing function on R.

Finally, F' is right-continuous because, for any —m <t <,

lim (F(t+0)— F(t)) = lim || Zirs — Zi||>, =0
im (F(t+0) = F(t)) =l | Ze5 = Zill 2

by the right-continuty property of {Z;} _r<i<x.

Given an increasing and right continuous function F': R — R, the theorem on the
construction of the Lebesgue-Stieltjes measure on R found in the probability theory
text shows us that there exist an o-algebra Ly on R and a measure A\r on (R, Lr) such

that properties i) to iv) are satisfied, and
Ar((s,t]) = F(t) = F(s)
for any half-open interval (s,t] C R. Ap must be finite because
= 1 < —Z ]?
Ar(R) 1t}lerooF(t) <E|Zr;—Z_z|" <400,

where the first equality follows from sequential continuity.

Choose any half-open interval (s,t] C [—m,7]. Then, by what we showed above,
Ap((s,1]) = F(t) = F(s) = | Ze = Zs|7 »-

Finally, note that the sequence {A}ren, of sets defined as Ay = (—7 — k&, —7] for any
k € N4 is an increasing sequence of Borel sets on R such that (J, Ax = (—oo, 7. For any
ke Ny,

Ap(Ag) = F(=m) = F(-=m —k) =0,
so by sequential continuity
)\F((—Oo,ﬂ']) = lim )\F(Ak) =0.
k—o0
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Likewise, let {Bj}ren, be defined as By, = (m, 7 + k| for any k € N,. Then, {By}ren,

is an increasing sequence of Borel sets on R with union (7,400) such that
Ap(Br)=F(r+k)—F(r)=0
for any k € Ny. Sequential continuity again tells us that
Ap((m,+00)) =0,
so that
Ap((=m,7]%) = Ar((=00,7]) +Ap((m, +00)) = 0.

This completes the proof.

Q.E.D.

The function F' and measure Ar constructed above are called the distribution function and
distribution associated with the orthogonal increment process {Z;}_r<¢<. Similarly, we refer to
L as the o-algebra associated with {Z;}_r<¢<. The term “distribution” is a bit of a misnomer,
since the total mass of A\r is not necessarily equal to 1, but we overlook this abuse in notation

for the time being.
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3.2.2 Stochastic Integration of Elementary Functions

Let {Z:}_r<t<x be an n-dimensional orthogonal increment process with associated distribution
function F': R — R and distribution pp on (R, Lr), where the o-algebra L associated with this
process contains B(R).

Let D be the collection of all complex functions on R taking values in C that can be written

as
k
f= ZTi’I(/\i)\iﬂLﬂ
i=0
for some partition —m =X\ < -+ < Agp1 = 7w of [—7, 7| and rg, -+, € C. In other words, D

collects complex functions on R taking finitely many values, which are equal to 0 at —m, and
have support [—7, 7]. These kind of functions are called elementary functions on [—m, 7], and they

are Borel measurable and thus £p-measurable because they are left-continuous. Furthermore,

k

/OO /1 dpr = /7r |fPdpr =" |ril? - e (N, Aig])
o -7 i=0
k
=3P (F(Aig1) = F(\)) < 400
i=0

by the definition of pp as the distribution associated with {Z:}_,<i<x, so it follows that f €
L?(Lp,pur). Thus, D is a subset of the inner product space L?(Lp,ur) over the complex field.
Denote the inner product on L*(Lp,up) by {(-,-)r, and the L?-norm induced by this inner
product as ||| 5.

Note that D is a linear subspace of L?(Lp,ur); the zero function is trivially included in D,
and for any a € C and f,g € D, since af + g takes finitely many values, equals 0 at —m, and has
support [—7, 7], it must be the case that af +g € D.

We define the stochastic integral of the elementary function f with respect to {Z;} _r<i<x

as the n-dimensional complex valued random variable

k

I(f) = 1 (Zan — 2n,) -

=0

We also denote I(f) by
/_T;f(/\)dZ(A).

I(f) is well-defined for any two representations of an elementary function f € D by the same line
of reasoning used to show that the integral of a non-negative simple function is well-defined®.
Since I(f) is square integrable by the square integrability of {Z;}_r<i<r, we can view the

stochastic integration operation I as a mapping from the vector space D over the complex field

IFor the sake of completeness, we present the formal argument in this footnote. Let f,g be two elementary
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into the vector space L2(H,P) over the complex field.
We can establish the following properties of the mapping I : D — L2 (H,P):

Theorem (Properties of the Stochastic Integral for Elementary Functions)

Let {Z:}_r<t<x be an n-dimensional orthogonal increment process with associated distribution
function F', distribution pp, and o-algebra Lp. Let the operation I :D — L2(#H,P) denote
stochastic integation with respect to the orthogonal increment process {Z:}_r<t<x. Then, the

following hold true:

i) (Preservation of Inner Products)

For any f,g €D,

(L(f),1(9)m2=([f.9)F-

In particular,

2

15‘/7r FNAZ(N)

—Tr

= [ £ Pdar ().

ii) (Linearity)
I:D — L2(H,P) is a linear transformation: for any a € C and f,g € D,

Iaf+g)=a-1(f)+1(g).

iii) For any f e D, E[I(f)]=0.

functions on [—m,n] with representations

l m
d :ZO”'I<A5,A5+11 and gzz;s"'[%m
1= 1=

for partitions —7T=)\(J;<---<)\lf+1:7rand —71':)\8<---<)\%L+1=7rof[—7r,7r].Letting —T=X< < App1 =T

be the common refinement (for a definition, consult chapter 6 of PMA) of the two partitions above, we can express

k

k
f= zfi T g, and g= Zgi Tox; Aiga]-
i=0 i=0
Suppose that f < g. Then, 7; < §; for any 0 <i <k, so it follows that

k

k
I(f) = Z?’i (Zxii1—2,) < Zgi (Zriis — 2Zx,) =1(9)
e

=0 [

everywhere on the sample space. Thus, if f = g, that is, if Zifo ri-I sy yand ZTZO si-I(/\g A7, ] are two
- ( i i+1] = 107041

different elementary function representations of the same function in D, then

I(f) = 1(9);

the stochastic integral of the function is invariant to the elementary function representation of functions in D.
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Proof) Let f,g € D. Then, there exists a partition —m = Ao < -+ < A\gy1 = 7w of [—7, 7] and

complex numbers rg,---,7, € C and sq,---,s; € C such that?
k k
f = Zri ’ I(Aiv/\i-kl] and 9= Z Si I(}\i,)\i+1] .
1=0 i=0
Note that

k
fg = ZT’LE : I(}\i,Ai_;'_l] N
=0

By the definition of the stochastic integral of f and g with respect to the n-dimensional

orthogonal increment process {Z;} _r<t<r,

k

I) =Y ri- (Zagy — Zn,)

~
—~
N
N—
I

. -

Mw I

o

Si (Z)\i+1 _Z/\i) :

It follows from the linearity properties of the inner product that
E k
<I(f)7-[(g)>n,2 = Z ZW@ <Z>\i+1 - Z)\NZ)\J'_H - Z)\]->n,2-
i=04=0

Due to the orthogonality of the increments of {Z;}_r<i<r,

<Z)\i+1 - Z)\iaZ)\jJrl - Z)\j>n,2 =0
if 1 # j, so that
i 2
<I(f),](g)>n,2 = ZTVST ||Z>\i+1 - Z>\i||n,2‘
=0

From the preceding lemma, we know that

125 = 202, = Fhi1) = F(A) = pr (N, Aia])

for each 0 <i <k, so

k

(I(f) L2 =">_ riSi- ur((Ai; Ait1])

1=0

T k
:/ (Z”Si'l()\i,/\uﬂ> d,uF
T \i=0

2For the existence of this common partition, consult the preceding footnote.
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= /7; (f9)dur.

The last integral is precisely the inner product of f and g on the space L?(Lr,pur), S0

our first result has been proven.

Now choose a € C. Using the same representation for f,g as above, we can see that

k
af +9= Z (CLT@' + Si) 'I(A@)\iﬂ]a
1=0
so we have
k
af+g :Z ar’+5 7.+1_Z>\i)
=0
k
- G'ZTZ' ' (ZA”l —Zxn)+ Zsi ’ (Z/\¢+1 ~2Zy,)
=0 i=0

=a-1(f)+1(g)-

This establishes the linearity of the mapping I.

Finally, let f € D have the representation
k
f = Z’ri ’ I()\i)\i-s-l]
i=0
for some rg,- -+, € C and partition —m = X\ < -+ < Ap1 = 7 of [—7,7|. Then,
k
I(f) = Zri (Z>\i+1 - Z)\Z) 3
i=0

and since {Z;}_r<i<x is a mean-zero process,

E[I(f)]=0

as well.

Q.E.D.
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3.2.3 Stochastic Integration of Square Integrable Functions

Let D be the closure of D with respect to the metric induced by the L?-norm on L2(Lp,ur).
Consider an arbitrary function f € D. Then, there exists a sequence {fx }ren . of functions in D
such that

Jim Ilfx = fllm =0.

Note now that the sequence {I(fy)}ren, of stochastic integrals in L2(#,P) is Cauchy in the
metric induced by (-,-)p 2; for any k,m € N,

I1(fe) = I(f) 120 = IT(fi = fm) |2
= (I(fx = fim)s L(fx = fm))n.2
= (fx = fos fo = Fn) P = | f&— Fon |7

by the linearity of the mapping I : D — L2(H,P) and the fact that it preserves inner prodcuts
across D C L*(Lp,pr) and L2(H,P). Since {fx}ren, is convergent in L?, it is also Cauchy in
L?, so that

Jim 1) =1l = i [fe= Fullp =0.

Therefore, {I(fx)}ren, is Cauchy in L? as well, and since L2 (#,P) is a Hilbert space under the
inner product (-,-)n 2, it follows that {I(fx)}ren, converges to some unique (up to almost sure
equivalence) random vector in L2 (#,P) in mean square. We choose to denote this limit by I(f),
that is,

1(f) == msdim I(fy).

We can verify that [ (f) is well-defined in the following two respects:

« I(f) is invariant to the choice of convergent sequence
Suppose that {gi}ren, and {fi}ren, are two sequences in D converging to f € D in L%

Denote
I, =m.slim [ d If=m.slim I(f).
g =mslimI(gy) and Iy =mslim I(fy)
Then, for any k € N,
1L = Ifll,, 0 < g = 1(gi)ll, 0 + I (gr) = L (fi)llp 2 + 1 (fr) = L, o-
By assumption, the first and third terms go to 0 as k — co. As for the second term,

1(gk) = I(fi)llno = 11 (gk — fi)llno = gk — frllp
<llgk = fllp +11f = fell ps
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where the first equality follows from the linearity of the mapping I : D — L2(H,P), the
second from the fact that it preserves inner prodcuts, and the last inequality is Minkowski’s
inequality. Both terms on the right hand side go to 0 as k — oo, so [[1(gx) — I(fk)||,, o also
goes to 0 as k — oo. It follows that

g = 15ll,,2 =0,

so that I, = Iy = I(f) almost surely. This shows us that I(f) does not depend on the

choice of sequence in D that converges to f.

o I(f) is I(f) for elementary functions
Suppose f € D. Then, {fi}ren, defined as fi = f for any k € Ny is a sequence in D
converging to f in L?, so

I(f) =m.slim I(fy) = I(f).

k—o0

Therefore, I(f) is precisely the stochastic integral of f with respect to {Z;}_n<ir if f is

an elementary function.

The two remarks above allow us to define, for any f € D, the stochastic integral of f with respect

to {Z¢} _r<i<n as
I(f) = m.s.lim I(fy),

where {fi}ren, is any sequence in D converging to f in L?.

Now it remains to see which functions in L*(Lp,ur) are included in D, which is a sub-
set of L?(Lp,ur). Fortunately, it turns out the space L?(Lp,ur) is exactly D; D is dense in
L?*(Lp,pr) in the L2-sense thanks to the fact that up is concentrated on (—m,7], so we can de-

fine the stochastic integral for every function in L?(Lp, jurr). The formal result is presented below:

Lemma (D is dense in the set of all Square Integrable Functions)
Let {Z;}_r<t<x be an n-dimensional orthogonal increment process with associated distribution
function F, distribution pp, and o-algebra Lr. Denot by D the collection of elementary functions

defined above. Then, for any f € L?(Lp,ur) and € > 0, there exists a g € D such that

If=gllr<e

Proof) Let C.(R,C) be the set of all continuous complex valued functions on R with compact
support. Every function in C.(R,C) is continuous and continuous functions are Lp-

measurable, so C.(R,C) is a collection of £p-measurable functions. In addition, for any
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f € C(R,C), letting K = {f # 0} be the compact support of f, f is bounded on K by

the extreme value theorem. Letting M > 0 be this bound, we can now see that
L 1Pdir = [ 1P < 22 (1) < oo,

where the final inequality follows because jf is a finite measure. Thus, f € L?>(Lr,ur),
so that C.(R,C) C L*(LF, pF)-

The proof wil proceed in two steps. First, we will show that D is dense in C.(R,C) in

the L2-norm. Afterward, we show that C.(R,C) is dense in L?(Lp,ur) in the L%norm,
at which point the proof will be complete.

Step 1: D is dense in C.(R,C)

Choose any f € C.(R,C), and let € > 0. Since f is a complex valued continuous function
with compact support, it is uniformly continuous® on R, and as such there exists a 6 > 0
such that

€

f(@) = TW)l < (=)

for any z,y € R such that |z —y| < J. Choosing k € N so that 2?” < 0, define
A=t

for any 0 <j <k+1. Then, —m = X\g < A\; <--+ < Ag41 = 7 is a partition of [—m, 7] such

that A\jr1— X\ = ,f—j_rl < ¢ for any 0 <i < k. Now define the function g: R — C as

k
g= Zf()‘l) 'I()\i)\wl]'

=0

Clearly, g € D, and for any z € (—m, 7], letting \; <z < A\;41 for some 0 <i <k,

because |x — ;| < Ait1—A\; < J. Therefore,

2
p— 2. 6
|f g| I(—WJF] < <1+ uF((—T{‘,Tf‘]))

3For a formal proof, consult the theorem in chapter 4 of the measure theory text that constructs the Lebesgue
measure using the Riemann integral and the Riesz representation theorem.
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and since pp((—m,7]¢) =0, we can see that

) e Vo VmCma)
Hf—9|!F—</(_m’f 4 dﬂF) =T ()

Such a g € D exists for any € > 0, so D is dense in C,(R,C).

Step 2: C.(R,C) is dense in L*(Lp,ur)

Choose some A € L and € > 0. Focusing on the regulariy property of g, since

pr(A) =inf{ur(V)| ACV, V is open}
=sup{ur(K)| K C A, K is compact}

and pp(A) < 400, by the definitions of the infimum and supremum there exist an open
set V and a compact set K such that K C ACV and

€ €
pr(V) <pr(A)+5, ur(d) -5 <pr(K).
Putting these results together, we have

ue(VAK) = pp(V) = pp(K) < pr(A)+ 5+ 5 = pe(4) =e.

By Urysohn’s lemma for locally compact Hausdorff spaces, since R is locally compact
Hausdorff, K C V', V is open, and K is compact, there exists a function g € C.(R,C)
such that

{1} ifzeK
g(x)€q0,1] ifzeV\K
{0} ifz¢V

for any = € R. In other words, Ix < g < Iy. If x € K, then
[a(x) —g(z)| =0
because x € A and g(x) =1; if z ¢ V, then
[La(z) —g(z)| =0
because = ¢ A and g(x) =0; if z € V'\ K, then

[La(x) —g(x)] <2
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since both I4 and g are bounded above by 1. It follows that

!\IA—gll?v:/ \IA—QIQdqu/ 14— g|*dur
R V\K

<4-up(V\K) < 4e.

Thus, we can find a continuous compactly supported function g on R that approximates

14 arbitrarily closely in mean square.

Let f be a non-negative £p-measurable simple function; then, there exist ai,---,ar €
[0,+00) and disjoint Ay,---, A € L such that

k
f=> a;-Ia,.
i=1
Choose any € > 0. For each A;, we saw above that there exists a g; € C.(R,C) such that

€
Iy —qgillm < —mM8M8—.
H A ngF = k(ai—l—l)

Defining

k
9= _aigi € C.(R,C),
=1

we can now see that, by Minkowski’s inequality,

k k
1 a;
— < a;-||La, — <€ — < €.
I =0l < Yas-Ma, =gl k(ZH)
It follows that any non-negative Lp-measurable simple function can be arbitrarily

closely approximated in mean square by a continuous compactly supported funciton.

Now let f be an arbitrary non-negative function in L?(Lp,pur). Then, there exists a
sequence { fi }ren, of simple non-negative £p-measurable function that increases point-
wise to f. {|f — fk|2}k€1\]+ is a sequence of £ p-measurable functions such that | f — fi|* <
4\f|2, where 4|f]2 is pp-integrable due to the assumption that f € L?(Lp,pr), and
which converges pointwise to 0. Therefore, by the DCT,

k—o0

lim /R\f—fk\QduFZU,

or equiavlently, || f — fx||» — 0 as k — co. For any € > 0, there thus exists a k € N such
that

€
| fe— fllp < 37

166



and since this f; is a simple non-negative L£p-measurable function, by the preceding
result there exists a g € C.(R,C) such that

€

— <

Putting these two results together, we can conclude that || f — g||» < €; a non-negative
square integrable function f can be arbitrarily closely approximated in mean square by

a continuous compactly supported function.

Moving onto real-valued functions, suppose f € L?(Lp,pur) is real valued. Then, its
positive and negative parts f* and f~ are also up-square integrable £ p-measurable

functions. For any € > 0, by the preceding result, there exist g1, g2 € C.(R,C) such that

_ €
|7 =] ol = g2lle < 5.
It follows that, defining g = g1 — g2 € C(R,C),

1 =glle =] =)= (F=92)|, <[/" =g .+ 1 =gl <

Finally, let f € L?>(Lp,ur) in general. Then, its real and imaginary parts Re(f) and
Im(f) are real-valued functions in L?(Lp,ur), and a process similar to the proof for
real valued functions in L?(Lg, ur) shows that, for any € > 0, there exists a g € C.(R,C)
such that

If=gllr<e

Q.E.D.

With the above lemma, we can formally claim that, for any f € L?(Lp, ), there exists an

almost surely unique stochastic integral
s
1) = [ sz

of f with respect to the orthogonal increment process {Z;}_r<i<r, defined as the L2-limit of
the sequence {I(fi)}ren, C L2(H,P), where {fx}ren, is a sequence of elementary functions
converging in mean square to f. The domain of the mapping I as now been extended from D

to L2(Lp,ur). The following are some properties of the mapping I : L?(Lp, ur) — L2 (H,P):
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Theorem (Properties of the Stochastic Integral)

Let {Z:}_r<t<x be an n-dimensional orthogonal increment process with associated distribution
function F, distribution up, and o-algebra Lp. Let the operation I : L?(Lp,ur) — L2(H,P)
denote stochastic integation with respect to the orthogonal increment process {Z;} _r<¢<x. Then,

the following hold true:

i) (Preservation of Inner Products)

For any f,g € L*(Lp,ur),

(L(f),L(g))n2= ([ 9)p-

In particular,

2

E‘/W FONAZN)

—T

= [ 1£O) Pdar ().

ii) (Linearity)
I:L2(Lp,pr) — L2(H,P) is a linear transformation: for any a € C and f,g € L*(Lp, ur),

I(af+g)=a-1(f)+1(g)

iii) For any f € L*(Lp,ur), E[I(f)]=0.

Proof) Let f,g € L*(Lp,pur). Then, because f,g € D, there exists sequences {fi}ren, and
{gr}ren, of elementary functions that converge in mean square to f and g. For each

k € N, the properties of stochastic integration for elementary functions tell us that

(L(fr), 1(gr))n2 = (fir Gr) -

By the definition of stochastic integrals,

I (fr) = L(flno =0, [L(gk) —1(g)l,0 =0
as k — oo. Note now that

[T(f1)s T(9k)yn,2 = (L) T(9))n 2| = [(T(f) = T(F): T(9k) = T(9))n,2 + (T (f&) = I(£), 1(9)) 2+ (T(f), I(g) = 1(9)}n.2]|
<) =T llz - 1 (gk) = ()l 2
+ HI(g)Hn,Z : ||I(fk) - I(f)”nj + ||I(f)||n,2 : ”I(gk) - I(g)Hn,%

where the last inequality follows from the Cauchy-Schwarz inequality. Taking k — oo

on both sides now yields

lim <I(fk),I(gk')>n,2 = <I(f)vl(g)>n,2‘

k—o0
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Likewise,
klim (freogk)F = (f9)F,
—00

so we can see that

(L(f),1(9)m2=(f.9)F-

Now choose some a € C and f,g € L?(Lp,ur). Then, as above, there exists sequences
{fx}ren, and {gi}ren, of elementary functions that converge in mean square to f and

g, and by definition

I (fx) = I(P)lln2 =0, [11(gx) = L(9) ]l .0 = O-

By the linearity of stochastic integration for elementary functions,

I(afk—l—gk) = a-I(fk) +I(gk)

for any k € Ny. Since {afi+ gk }ren, is a sequence of elementary functions converging

in mean square to af +g € L?(Lp, iur), by definition
12
Iafr+9x) = I(af +9).
Similarly, because I(f) N I(f) and I(gx) » I(g), we can conclude that

a-I(fk)—l-I(gk)EG'I(JC)"‘I(Q)

as well. By the almost sure uniqueness of L-limits, we can conclude that

I(af+g)=a-1(f)+i(g)

almost surely.

Finally, let f € L?(Lp, pup) and {fx}ren, asequence of elementary functions converginig
to f in mean square. Recall that E[I(fx)] =0 for any k € N,. Thus,

BN = [EL() - 1) < B ~ 10l < (BIIG) ~ 1GE)* =115~ Tl
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for any k € N, where the second inequality is Holder’s. Taking k — oo on both sides
now tells us that |E[I(f)]| =0, that is, E[I(f)] =0.

Q.E.D.

3.2.4 Trigonometric Polynomials

Before moving onto the spectral representation theorem, we take a brief detour to prove that
the space of trigonometric polynomials is dense in the space of all functions on R that are square
integrable with respect to a finite measure on R that assigns all of its mass to (—m,7]. Note
that this is precisely the type of measure that is naturally associated with orthogonal increment
processes on [—, 7|, hence the usefulness of the result we are about to show.

We first review the Stone-Weierstrass theorem, which plays a central role in the exposition
this section. A vector space V over a field F' is said to be an algebra over the field F' if it is
equipped with a product operation x : V2 — V satisfying the following properties:

¢ The Distributive Law
For any z,y,z €V,

(r+y)xz=xXxz+yxz
X (x4y)=zxzr+2zxY

e Compatibility with Scalars
For any a,b€ F and z,y €V,

(a-2)x (b-y) = (ab)- (x x y),

where - is the scalar multiplication operation.

Given any set F and a field F, the collection F of all functions f: E — F' is an algebra over
the field F' under the product x : F2 — F defined as

(f xg)(x) = f(x)g(x)

for any x € E. In particular, if (F,7) is a topological space and F = R or C, then the space
Cy(E,F) of all bounded continuous functions from E into F' is a subalgebra of F equipped
with the same product operation; this can be easily seen since the product of bounded con-
tinuous functions is also bounded and continuous, and scalar products obey the distributivity
and associativity properties. Recall that the space of bounded continuous functions can itself be
considered a metric space under the supremum metric de, which is the metric induced by the

supremium norm ||-||; : Cy(E,F) — Ry defined as

[flle = sup |f(x)].
el
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for any f € Cy(E,F).
Let F be a set, I’ a field with additive identity 0r, F the algebra of all functions from E to
F, and A a subalgebra of 7. We say that A:

e Separates points on F
If, for any z1,z9 € F such that x1 # 9, there exists an f € A such that f(x1) # f(x2).

e Vanishes at no point in F
If, for any = € E, there exists an f € A such that f(x) #0p.

o Is Self-Adjoint
If F = C and, for any f € A, its conjugate f is also contained in A.

The Stone-Weierstrass theorem can now be stated as follows:

Theorem (The Stone-Weierstrass Theorem)

Let (E,7) be a topological space, F =R or C, Cy,(E, F) the set of all continuous and bounded
functions from E to F, and d¢ the supremum metric on Cy(E,F). Let A be a subalgebra of
Cy(E, F) over the field F. Then, the following hold true:

i) If A separates points on F, then (E,7) is a Hausdorff space.

ii) (Real Version of the Stone-Weierstrass Theorem)
Suppose (F,T) is a compact space and that F'=R. If A separates points on E and vanishes
at no point in E, then A is uniformly dense in C(E, F), that is, C(E, F') is the closure of
A under the metric dc.

iii) (Complex Version of the Stone-Weierstrass Theorem)
Suppose (E,7) is a compact space and that F' = C. If A separates points on F, vanishes at
no point in F, and is self-adjoint, then A is uniformly dense in C(FE, F), that is, C(E,F)

is the closure of A under the metric de¢.

Proof) Consult chapter 6 of the probability theory text.

Q.E.D.
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The complex version of the Stone-Weierstrass theorem can now be used to show the first

part of our desired result. Let T be the unit circle on C, that is,
T={xeC]||z|=1}.

Clearly, T is compact under the euclidean metric on C. Furthermore, functions on T are equiv-

alent to periodic functions on R with period 27 in the sense below:

Lemma (Characterization of Periodic Functions)
Let f: T — C be a c ontinuous function on T. Then, there exists a continuous periodic function
g : R — C with period 27 such that

f(exp(iz)) = g()

for any = € R.
Conversely, suppose f : R — C is a continuous periodic function with period 27. Then, there

exists a continuous function g : T — C such that

g(exp(iz)) = f(x)

for any = € R.

Proof) First choose some continuous f: T — C, and define the function g: R — C as

9(x) = f(exp(iz))

for any = € R. g is well-defined because exp(iz) € T for any x € R, and it has period 27

because, for any x € R,

g(z+2m) = f(exp(i(z +2m))) = f(exp(iz)) = g(x)
by the periodicity of the mapping = — exp(ixz). Furthermore, it is continuous because

it is the composition of two continuous functions.

Conversely, let f:R — C be a continuous function with period 27. Let 6 : R — T be
defined as 6(z) = exp(iz) for any = € R. By Euler’s formula, the real and imaginary

parts of 6 are continuous, so 6 is also itself a continuous function. Define g: T — C as

gz) e F (07 ({=])

for any z € T, where 0~ 1({z}) is the inverse image of the singleton {z}, and f (6~ ({z}))
is the image of the set §71({z}). ¢ is a well-defined function because the periodicity of

f ensures that f (07! ({z})) contains one and only one element. It is also easy to see
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that the relationship

holds for any z € R.

It remains to show that g is continuous on T. To this end, let V' be a subset of C; we

initially note that

To rigorously establish this result, first choose some z € g~!(V). Then, since g(z) € V
and f(0~'({z})) = {g(2)}, it follows that

61 ({=}) C £V,

By definition, there exists a x € 8~ 1({z}) such that §(x) = z, and since this z is contained
in f~1(V), we have

2€0(f7H V),

which implies that ¢g=1 (V) C 0(f~1(V)).

Conversely, choose some z € O(f~(V)). Then, there exists some x € f~1(V) such that
2 = 0(x), which shows us that € 1 ({z}). By definition, g(z) = f(z) € V, so it follows
that z € g~*(V). This establishes the reverse inclusion, and we are able to conclude
that

To establish the continuity of g on T, it suffices then to show that

o(f~1 (V)

is an open subset of T for any open subset V of C. Since the set of all open intervals
on R forms a base generating the standard topology on R, we can express U as the
arbitrary union of open intervals (a,b). The proof will therefore be over if we can show

that the image

0((a,b))

is an open subset of T for any open interval (a,b) on R.

Choose any such interval (a,b); note that 6((a,b)) forms an arc on the unit circle. Let
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z € 0((a,b)). Then, there exists an = € (a,b) such that z = 60(x), and using this we can
choose a 0 < § < 7 such that

(x—0d,z+0) C (a,b).
We will now search for an € > 0 such that
B(z,e)NT C §((x — 6,2+ 9)).
For any y € R, note that

16(z) —6(y)|* = |expl(iz) —exp(iy)[*
— (cos() — cos(y))? + (sin(z) —sin(y))?
=2—2(cos(x)cos(y) + sin(z) sin(y))
=2(1—cos(x—vy))

oo ()
= 4sin’ (x;y> .

Therefore, for any 0 < € < 4, if w € B(z,¢)NT, then there exists some y € R such that

w = 0(y), where the y is chosen so that |x —y| <. This y then satisfies
tsin? (20 ) —Jo(a) 0w < &
which implies that
. (€
|z —y| < arcsin (2) ,

where we can employ the inverse sine function because —5 < z—gy < 5. It follows that,

)
€ sm(2> >0,

if we set

then since 0 < g < g, we have
|z —y|<§
and therefore

w=0(y) €0((x—5,z+9)).
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We have just shown that
. [0
B [Z,QSIH (2” NT C 0((x—0,x46)) CO((a,b)).

Therefore, any point z in 6((a,b)) has a neighborhood open in T that is once again con-
tained in 6((a,b)). This shows us that 6((a,b)) is open in T, and we can now conclude

that ¢ is a continuous function.

Q.E.D.

The main functions of interest in this section are trigonometric polynomials. A trigonometric

polynomial is a function P : R — C of the form
k
P(z) =ao+Y_ (a;-cos(tx) + by - sin(tx))
t=1

for any x € R, where ag,---,a,b1, - ,br € C. By Euler’s formula, we can formulate the cosine

and sine functions in terms of the complex exponential as follows:

cos(tx) = = (exp(itx) + exp(—itz))

‘,_.L\D\»—t

sin(tx) = — (exp(itr) —exp(—itx))

[\
<&

for any t € Z and = € R. Therefore, the trigonometric polynomial above can be written in terms

of the complex exponential as

k
P(z)=ao+ Z [C;t - (exp(itz) + exp(—itz)) + % - (exp(itz) — exp(—itx))
t=1

k , k .

—ib b

=ap+ E @ 2Z L. exp(itz) + E at—;l L. exp(—itx)
t=1 t=1

k
= Z ¢t -exp(itx)

t=—k

for any = € R, where

acibe §f ] <t<k
Ct =4 ap ift=0

actibe i —k<t<-—1
Euler’s formula also tells us that we can write any finite partial linear combination of complex
exponentials as a trigonometric polynomial, so from here on we write trigonometric polynomials

as a doubly finite linear combination of complex exponentials, which is more convenient for our

purposes.
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The preceding characterization of 2w-periodic continuous functions, combined with the Stone-
Weierstrass theorem, produces the following result central to the ubiquity of trigonometric poly-

nomials in mathematics:

Lemma (Density of Trigonometric Polynomials for 27-Periodic Functions)
Let T be the space of all trigonometric polynomials on R. Then, 7 is uniformly dense in the

space Ca,(R,C) of all complex periodic and continuous functions on R with period 27.

Proof) Define A as the set of all polynomials from the unit circle T to the complex field C. A is
clearly an algebra over the complex field, since the linear combination of polynomials,
as well as the product of polynomials are still polynomials. A also separates points on
T; for any distinct z1, 22 € T, the simple linear function P € A defined as P(x) =« for
any x € T separates z1 and zy. For any z € T, the polynomial P € A defined as P(z) =1
for any x € T satisfies P(z) =1 # 0, and therefore A vanishes at no point in T. Finally,
for any polynomial P € A defined as

k
P(z) = Z a2
=0

for any z € T, its conjugate P is defined as

for any z € T and is thus also a complex-valued polynomial on T, meaning that it is

contained in A. In other words, A is also a self-adjoint algebra.

The properties of A shown above, together with the compactness of T, allow us to
use the complex version of the Stone-Weierstrass theorem; we can conclude that A is

uniformly dense in the space C'(T,C) of all complex continuous functions on T.

Now choose any function f € Cy,(R,C). The preceding lemma tells us that there exists
a g € C(T,C) such that

f(z) = g(exp(ix))

for any x € R. Since A is uniformly dense in T, there exists a sequence {P,}nen, of

polynomials on T, where each P, is defined as

kn
Po(z) =3 a2
t=0
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for any z € T, such that

lim sup|P,(z) —g(z)| =0.
N0 2eT

Define the sequence {7}, }nen, as

T, (z) = Py(exp(ix) Zat -exp(itx)

for any x € R and n € Ny; {T,,}nen, is, by definition, a sequence of trigonometric

polynomials on R. Since g(exp(iz)) = f(x) for any = € R, it follows that, for any n € N,

sup |P,(2) — g(2)| = sup |Tn(x) — f(2)].
z€eT z€eR

Therefore,

lim sup|T),(z) — f(z)],

and since this holds for any continuous 27-periodic function f:R — C, the space T of

trigonometric polynomials on R is uniformly dense in Cor(R,C).

Q.E.D.

We can now show that trigonometric polynomials are dense in certain kinds of L2-spaces.

Lemma (Density of Trigonometric Polynomials for Square Integrable Functions)
Let T be the space of all trigonometric polynomials on R. Let £ be a o-algebra on R that
contains the Borel o-algebra B(R), and p a finite measure on (R,&) concentrated on (—m,7],
that is,

u((—=m,7]) = 0.

Then, T is dense in L?(€, ) in the mean-square sense, that is, L?(€,u) is the closure of 7 with
respect to the L2-norm |||, on L3(&,p).

Proof) We first show that 7 is dense in the space of all complex continuous functions f on
R such that f(—=n) = f(7), in the mean-square sense. Let f: R — C be a continuous
function such that f(—m) = f(r), and choose any € > 0. Define f as the restriction of f
to (—m, 7], and construct g : R — C by connecting an infinite number of f side by side.

Then, g is a continuous periodic function on R with period 27. By the previous result,
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there exists a trigonometric polynomial P € 7 such that

€

EEEIP(:C)—Q(%)! DY (et

By implication, we have

sup |P(z) = f(z)] = sup |P(x)—g(z)]

z€(—m,m] x€(—m,m)

§22E|P(x)—g($)| < 1+ M((—Tr 7T])

€

)

since f and g agree on (—m,7|, and since the measure y is concentrated on (—m,7],

1=l = ([ 1500~ Plo)Pas)

1

_ ptoan) <o VECEA)
—(/(_mmx) Pl >\2d) <o <e

(G

Now we show that the sapce of all complex continuous functions f on R such that
f(=m) = f(m) is dense in the space C(R,C) of continuous complex functions on R in
the mean-square sense. Choose any f € C'(R,C) and € > 0. Since f is continuous on the
compact set [—m, 7], by the Weierstrass theorem it is bounded on this set; let M > 1
be an upper bound of |f(x)| for x € [—m,7]. Define

K= (m*+1)2M? >0,
and choose d € (0,1) so that

ul(=m, = 4-8) + pl(r —0,]) < 5

such a § exists due to sequential continuity and the finiteness of p. Having chosen this

6, since

. 2 2h 2\h | _
1&%<1+(w) —2(27r5—5))_o,

there exists an h € (0,1) such that

€

<1 + (7r2>2h —2(2m5 — 52)h) < T

Now define g: R — C as

for any « € R. We can clearly see that g is a continuous function on R such that
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f(=m) = f(m) =0, with upper bound

sup }|g<x>|<< sup f(sc)r) (v)" < a7

z€[—m,m x€[—m,m]

on [—m,7]. It follows that

sup | (x)— g(o)? < M2 (2 +1) = K,

z€|—7,7]

and since

we can see that

s [f@)—g@)P= s (1-@—2)) i)

z€[—m+6,7m—0] z€[—m+6,m—0)

:M2l sup (1—1—(77 —x2)2h—2<ﬂ2—x2>h>]

zE€[—m+6,m—0]
e <1+ (7r2)2h_2 <2ﬂ5—52)h> < m

by our choice of § >0 and h > 0. We can now see that

17 - gH2—/|f #)Pdp()
=/ () du(a)
= [ @) —e@Pdu@)+ [ 1) - e(e)Pda)
(—=m,—7+0) (m—6,7]

2
i /[w+5,7r5] |f(z) —g(z)|["du(x)

< K (u((=m, =7 +6)) + p((m — 6, 7]))

of s @ —g<x>\2> 7+ 67— 3]
r€|—m+0,m— 6

Putting these two results together, we can see that, for any continuous function f: R —
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C and € > 0, there exists a trigonometric polynomial P € 7 such that
If=Plly <e

In other words, 7 is dense in C(R,C) in the mean square sense. Since we already saw in
the previous section that the collection C.(R,C) of all continuous compactly supported
functions on R is dense in L?(£,u) in the mean-square sense, it now follows that 7 is

dense in L?(&£,u) in the mean-square sense.

Q.E.D.

3.2.5 The Spectral Representation Theorem

Now we return to the main objective of this section, namely furnishing a representation of some
time series as the stochastic integral of sinusoidal functions. Let {Y;}icz be an n-dimensional
mean zero weakly stationary process with absolutely summable autocovariances. Letting I' : Z —
R™ ™ be the autocovariance function of {Y;}¢cz, we defined the spectral density f: (—m, 7] —
C™™ " of {Yi}iez as

1 o

fw)=5- 3" T(r)exp(—irw)

T=—00

for any w € (—m,w]. The spectral distribution F': R — R of {Y; };cz is defined using f as

tr (I'(0)) ifx>nw
F(z)= JEotr(f(w)dw if —r<z<m7
0 if —nr<z

for any € R. F is continuous at m and —m because I'(0) = [” _ f(w)dw, and it is differentiable on
(—m,m) because tr(f) is continuous on (—, 7). Therefore, F' is continuous on R, bounded above
by tr(I'(0)), and increasing because tr(f) is a non-negative function on (—m,7|. This indicates,
in light of the construction of the Lebesgue-Stieltjes measure, that there exists a o-algebra Lp

on R and a finite measure ur on (R, Lr) satisfying the following properties:
i) Lp contains every Borel set on R, that is, B(R) C Lp.
ii) (Completeness) (R,Lp,ur) is a complete measure space.

iii) (Regularity) pp is a regular Borel measure, that is,

pr(A) =inf{up(V)| ACV, V is open}
=sup{pr(K)| K C A K is compact}

for any A € Lp.
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iv) (Approximation Property) For any A € L and € > 0, there exists an open set V' and
a closed set K such taht K C A CV and

pr(V\K) <e.
v) For any half-open interval (s,t] C [—m, 7],
t
pe(s) = F() = () = [ tx(f(w))duw.
vi) The entire mass of up is concentrated on (—m,7], that is,
pr((=m,7%) = 0.

The last property follows in a manner similarly to how we showed the distribution associ-
ated with an orthogonal increment process is concentrated on (—m,7]. We call pp the spectral
distribution of {Y;}scz, and Lp the associated o-algebra.

Suppose we extend the definition of f so that

f(=m)=f(m), f(w)=0 forany w¢ [-m,7].
Then, for any half-open interval (s,t] C R, we have
t
pe(s.t) = [ ex(f(w))dw.

and since the set of half-open intervals generates the Borel o-algebra on R, this makes tr(f) the

Radon-Nikodym derivative of pp with respect to the Lebesgue measure on R. It follows that

/—zgd“F = /_7; (g(w)tr(f(w)))dw

for any Lp-measurable and up-integrable complex valued function g.

Our goal is to first and foremost construct an n-dimensional orthogonal increment process
{Z;}_r<t<x with respect to which each Y; can be expressed as a stochastic integral. To this end,

we first consider the linear subspaces
Wy € L2(H,P), and Wpg C L*(Lp,pr)
defined as
Wy =span{Y; |t € Z}, and T =span{w — exp(itw) |t e Z}.

Note that 7T is simply the space of all trigonometric polynomials; similarly, for any X € W, we
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can write

N
X=> a'Y

t=—N

for some N € Ny and N € N,.
Define the mapping T : Wo — T as

N N
T Z a Yy | = Z az - exp(it-),
t=—N t=—N

for any SN a;-Y; € Wy, where exp(it-) represents the complex exponential z +— exp(itz). The

following is our first result concerning the operation 71"

Lemma  Let {Y;};cz be an n-dimensional mean-zero weakly stationary time series with
absolutely summable autocovariances, and denote the autocovariance function of {Y;}iez by
[':Z — R™™. Let f be the spectral density, F' the spectral distribution, and (R,Lp,ur) the
spectral measure space associated with the process {Y;}icz.

Define the linear subspaces W C L2(H,P) and T C L?>(LFr,ur) as above, and let T : Wy —

T be the operation introduced above. Then, T is an inner product space isomorphism from

<W27 <'7 ‘>7L,2) onto (T7 <'7 >F)

Proof) We first establish a key result. Choose any

N N
YooYy, Y bYieWs.
t=—N t=—N

Then, we have

(g (50

N

Z (ar — by) exp(itw)

t=—N

2 2

-exp(it-) Z by - exp(it-)

F F

2

dpp(w)
R

™

=>. > (a bt)m'/ exp(i(t — s)w)dpp(w)

[tI<N|s|<N o

=3 3 (ar—b)(as—ba) - /ﬂexp( (t = 8)w) tr (f(w)) duw

[t|<N|s|<N o

= Z Z (ar —be)(as —bs) i tlr(F(T))'/7T exp(i((t—s) —7)w)dw

[t|<N[s|<N T=—00 -
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= Z Z (ar—be)(as —bs)tr (T(t—s))

[t|<N [s|<N

=Y 3 (a—b)(as—bs) - E[YY]
[t|[<N|s|<N

2 2

=E

Z (ar—b)Yi| =

[t|I<N

T( 3 Y) _T( 3 by)

it YN ya-Y; and SN by Y are two representations of the same random vector

X € Wy, then the right hand side is 0, so that

N N
> arYi= y bV
t=—N t=—N

n,2

As such,

)

n,2

N N
Z ag- Yy — Z by - Yy
t=—N t=—N

F

N N
T( > at-Yt) :T( > bt-Yt) =T(X)
t=—N t=—N

almost surely. This shows us that T is a well-defined operation.

Another way to express the above equation is that, for any X, Z € W5, we have
IT(X) =T(2)|lp =1 X = Zl|,, o
Putting Z = 0, we can see that
1T (X)) = [1X]

n,2’

so that T'(X) =0 if and only if X = 0. This shows us that the operation T is injective.
In addition, for any X,Z € W3 and c € C such that

N N
X=> aY,Z=3) bY,
t=—N t=—N

since
N
X+Z= Y (ca+b) Vi,
t=—N
we have
N
T(cX+2Z)= Z (c-ay+by)-exp(it-)
t=—N
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N N
= c( Z at-exp(it-)) + ( Z bt-exp(it-)) =cT(X)+T(Z),
t=—N t=—N

which demonstrates that T is a linear transformation. This, together with the injectiv-

ity of T', shows us that T is a vector space isomorphism from W5 onto 7.

It remains to show that T preserves inner products. This is seen below; for any

N N
Z ag- Yy, Z bi- Yy € Wa.
t=—N t=—N

we have

<T(2:%&Q,T<§:@JQ>F=<ijﬁmﬂﬂvXﬂ%ﬁM%»F

[tI<N [tI<N [tI<N [t <N
=>. . atbis'fT exp(i(t — s)w)dpr(w)
[t|<N|s|<N -
= 3 X b [ explit—syw) e (f(w) du
[t|<N|s|<N -

™

= Y ab S tr(F(T))-/ exp(i((t — s) — T)w)dw

(<N[s<N 7o —
= Z Z aibstr (T(t —s))
tI<N|s|<N
= > > abs-E[YY]]
<N [s| <N

S(ESEe

N N
(> @, > v
t=—N t=—N n,2

)

Therefore, T' is an inner product space isomorphism from W, onto 7.

Q.E.D.
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Now, we want to extend the domain of T to Ws and its target space to T, where W5 is the
L?-closure of Wy and T the L?-closure of Wr. Note that, since T is the set of all trigonometric
polynomials, Lp is a o-algebra on R containing B(R), and up is a finite measure on (R,Lr)
concentrated on (—m, 7], by the result shown in the previous section the L?-closure T is precisely
the space L2(Lp,pr).

T is extended to W5 in almost the same manner as the stochastic integral. For any X € W,

there exists a sequence { X} }ren, € Wa such that
Jim [|X), — X[, 5 =0.
Since the operation 1" on Wy preserves norms, we can see that
1T (Xk) =T (X))l p = |1 Xk = Xim I,

for any k,m € N,. Since the right hand side goes to 0 as n,m — oo (all convergent sequences
are Cauchy), so does the left hand side; this tells us that {T'(Xy)}ren, C L*(Lp,pp) is Cauchy
in L?, and by the completeness of L?-spaces as Hilbert spaces, it follows that this sequence

converges to some quantity in L?(Lp, ur) = Wr. We then define

T(X) = m.s.limT(Xy).

k—o0

As during the construction of stochastic integrals, we must verify the following to see that T(X )

is well-defined:

e T (X) is invariant to the choice of convergent sequence
Suppose that {Xj}ren, and {Zj}ken, are two sequences in W converging to X € W in
L?. Denote

Tx =m.slimT(X;) and Tz =m.s.lim T(Z).
k—o00 k—o0
Then, for any k € N,
ITx = Tzllp < |Tx = T(Xi) | p + 1 T(Xk) = T(Zi) |l p + 1T(Z1) = Tz || -
By assumption, the first and third terms go to 0 as k — oo. As for the second term,

|T(Xk) = T(Ze)|l p = | Xk — Zkl],, 2
<[ Xk = X, 0+ 11X — Zill,,.0-

Both terms on the right hand side go to 0 as k — oo, so |T'(Xy) —T(Zk)|| » also goes to 0
as k — oo. It follows that

|Tx —Tz|| =0,
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so that Tx = Tz = T(X) almost surely. This shows us that 7'(X) does not depend on the

choice of sequence in Wy that converges to X.

o T(X)is T(X) for X € Wy
Suppose X € Wy. Then, {X}}ren, defined as X = X for any k € Ny is a sequence in W5

converging to X in L2, so
T(X)=m.s.lim T(X};) =T(X).
k—o0

Therefore, T'(X) is precisely T(X) if X € Wy.

As in the case of stochastic integration, these two remarks allow us to define the operation
T:Wy— L*(Lp,ur) as

T(X)=m.slim T'(Xy)
k—o0

for any X € W5 and sequence {Xj}ren, converging to X in L?.
The extended operation T : Wo — L?(Lp, ur) is actually an inner product isomorphsim from

Wy onto L2(Lp, k), as we show below:

Lemma Let {Yi},ez be an n-dimensional mean-zero weakly stationary time series with
absolutely summable autocovariances, and denote the autocovariance function of {Y;}icz by
[':Z — R™™. Let f be the spectral density, F' the spectral distribution, and (R,Lp,pup) the
spectral measure space associated with the process {Y;}icz.

Define the linear subspace Wo C L2(H,P) as above, and let T : Wy — L?(Lp,ur) be the
operation introduced above. Then, T is an inner product space isomorphism from (Wa, (-, ),.2)
onto L?(Lp, jir).

Proof) Let c€ C, X,Z € W5, and {Xktren,, {Zk}ren, sequences in W converging to X and
Z in L2. Then, since {cX}, + Zy }ren, is a sequence in Wy converging to cX +Z in L?,

T(cX +Z)=m.s.lim T(cXy + Zy)
k—o0

k—o0

=c (m.s.lim T(Xk)) +rr}€.s.lim T(Zy)
—00

= T(X)+T(2),

where the second equality follows from the linearity of 7" on Ws. Therefore, T is a linear

transformation on Ws.
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In addition, we can see that, because inner products are continuous functions,

(T(X),T(2))r = lim (T(X), T(Z))r

= lim (Xi, Ziyn2 = (X, Z)n2:
k—o0

the second equality follows because 1" preserves inner products on Ws. Therefore, T

preserves inner products on Ws, and as a special case, when X = Z,
17O e = 11X 1,,2-

This shows us that the operation T is injective, and as such 7' is an inner product space

isomorphism from Wy onto L2(Lp, ur).

Q.E.D.

The inner product space isomorphism T : Wa — L?(Lp,ur) defined above can be used to

construct the orthogonal increment process of interest.

Lemma  Let {Y;};cz be an n-dimensional mean-zero weakly stationary time series with
absolutely summable autocovariances, and denote the autocovariance function of {Y;}iez by
I':Z — R™™. Let f be the spectral density, F' the spectral distribution, and (R,Lp,ur) the
spectral measure space associated with the process {Y;}icz.

Define the linear subspace Wo C L2(H,P) as above, and let T : Wy — L*(Lp,ur) be the
operation introduced above. Letting T~' : L?(Lp,ur) — Wa be the inverse of T, define the

process {Z)} _r<i<r as
= (1)

for any —m < A <. Then, {Z)}_r<a<r is a mean-zero, square integrable and right continu-
ous orthogonal increment process, and F' is precisely the distribution function associated with

{ZA}—wg/\gw-

Proof) {Z\} _r<x<r is clearly square integrable, since each Z, takes values in Wo C L2 (#H,P).
In addition, since Z) is an element of W5, there exists a sequence { Xk een L in Wa
that converges in mean square to Z). Each X} has mean zero because it is the linear

combination of random vectors with mean zero. Since

IE[Z)]| = [E[Z)] - E[Xk]| <E|Z) — Xi| <1 Z) — Xkl 0
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for any k € Ny by Holder’s inequality, taking £ — oo on both sides shows us that
[E[Z)]] =0,

or that Z, has mean zero.

Forany - n<w<u<s<t<m,

<Zt - 237 Ly — Zw>n,2 = <T(Zt) - T(Zs)a T(Zu) - T(Zw)>F

= <I(s,t]a I(w,u]>F = \/MF((w>u]ﬂ(Sat])a

where the first equality follows because the operation 7' is linear and preserves inner
products. Since (w,u]N(s,t] =0, it follows that

<Zt - 257 Zu - Zw>n,2 = 0’

so that {Z)}_r<x<r has orthogonal increments.

Finally, for any —m < A < 7, note that

E|Zy—Z =2y~ Z |2,
2
=720 =T(Z-)% = [T,
= pr((~mN) = F(\).

F(\) =0 for any A <7 and F(\) = F(r) for any A > 7, so it follows that F' is precisely

the distribution function associated with {Z)}_r< <. By implication,

|Zxss = Zallz = \/F(A+6) — F())
for any —7m < A < 7 and sufficiently small § > 0, so by the continuity of F,
lim||Zyis6 —Z =0.
| Z5ss — Zalln2 =0

This demonstrates that {Z)}_r<a<r is a process that is right continuous (in mean

square).

Q.E.D.

Finally, we can show that each Y; can be expressed as the stochastic integral of exp(it-) with
respect to the orthogonal increment process constructed above. This is the formal statement of

the spectral representation theorem.
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Theorem (Spectral Representation Theorem)
Let {Y; }+cz be an n-dimensional mean-zero weakly stationary time series with absolutely summable
autocovariances, and denote the autocovariance function of {Y;}icz by I' : Z — R™*"™. Let f be
the spectral density, F' the spectral distribution, and (R,Lp,ur) the spectral measure space
associated with the process {Y; }1ez.

Then, there exists a mean-zero, square integrable and right continuous (in mean square)

orthogonal increment process {Zy}_r<x<r such that
E|Z\—Z_;|* = F()\)
for any —m < A <7 and
Y, = [ " exp(itA)dZ(\)

for any t € Z.

Proof) Let Wy C L2(H,P) be the linear subspace and T : Wo — L?(Lp,uur) the inner prod-
uct space isomorphism defined above. Furthermore, let {Z)}_r<x<r be the orthogonal

increment process constructed in the preceding lemma as

Z\ = 71 ([(,ﬂ.’)\})

for any —m < A <.

Let the operation I : L?(Lp, ur) — L2(H,P) denote stochastic integration with respect
to the process {Z)}_r<i<x, that is,

160) = [ rvazo

—Tr

for any f € L?>(Lp,ur). Recall that I is a linear transformation that preserves inner
products. We must show that I =7~! on L?(Lp, pup; then,

Y = T (exp(it)) = I(explit-)) = / " exp(it\)dZ(\)

—T

for any t € Z, as we desired.

To this end, choose some elementary function f € D C L?(Lp, ur), and represent it as
k

f= Zh‘ RICYRVIRE

=0
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where —m = \g < -++ < A\g41 = 7 is a partition of [—m,7]. Then,

k

Tﬁl(f) _ Zn N (I(/\i,)\iﬂ})

1=0
k

;}T"' {T_l (I(—W,MH]) -T (I(—W,Ai]ﬂ
k

=2

i (Zxnigy — Zx) = 1(f),

=0
so that I =T~! on the space D of all elementary functions on [—,7].

Now choose some f € L?(Lp,pur). Since D is dense in L?(Lp,pur) in the mean square
sense, there exists a sequence { fi}ren, of elementary functions that converges to f in
L?. By definition,

1(f) = mslim I(f) = mes.lim 771 ().
Note that, for any k € N4,
|7 -1 )], = @ ) - T@ D) = 1= e

by the linearity and inner product perserving property of 7. Thus, taking k£ — co on
both sides shows that

T7Hf) = m.slim T 1(f),

k—o0

and by the almost sure uniqueness of L?-limits,

In other words, I = T~! on L?(Lp,ur), which completes the proof.

Q.E.D.

What the spectral representation tells us is that any time series {Y; }+cz can be expressed as
the weighted sum of periodic functions of frequencies ranging from —7 to w. Here, Z) can be
interpreted as the weight assigned to the periodic function t — exp(itA). Use Euler’s formula to
see that

exp(itA) = cos(tA) +isin(tA).
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exp(itA), as a function of ¢, is a periodic function with period 27”, since

cos(tA) = cos(t\+2m) = cos ()\ (t—l— 2;))

In other words, this function repeats every 27” time periods. An equivalent way to say this is
to say that the function has frequency %; the frequency of a periodic function is the average
number of times the function is expected to repeat its behavior in a single time period. The

lower the frequency, the less frequently we observe the same behavior.

A
2

the associated wavelength recurs in a given length of time, meaning that it represents cyclical

Therefore, Z) is the weight assigned to a wavelength of frequency £. The larger A, the more
behavior. In contrast, a wavelegnth with a lower frequency takes much longer to recur, so that
it can be interpreted as representing the trending behavior of a time series. Thus, the spec-
tral representation theorem, by allowing us to decompose a time series into its higher and lower

frequency components, allows us to extract and study separately its trend and cycle components.

3.3 Time Invariant Linear Filters

Let {Y;}iez be an n-dimensional, mean-zero, square integrable and weakly stationary time se-
ries with absolutely summable autocovariance function I' : Z — R™*™. An absolutely summable
sequence {V;};cz of n x n matrices is referred to as a time-invariant linear filter (TLF), and the

process {X;}icz defined as

(o]
X=wnyi= Y U,
Jj=—00
for any t € Z is said to be obtained from {Y;},cz via the filter ¥ = {W;};cz. Recall that {X;}c7
is itself a mean-zero weakly stationary process and absolutely summable autocovariances. The
filter W is said to be causal if ¥; = O for any j < 0.

TLFs arise often in time series analysis; for instance, the h-period moving average process
{Xi} ez defined as

for any t € Z is obtained from {Y;};cz via the filter H = {H;},cz defined as

L1, ifljl<h
sz 2h \J\_ .
) if || >h

Similarly, the first difference process {AY;}1cz defined as

AY; =Y, Y

191



for any t € Z is obtained from {Y;};cz via the causal filter D = {D;},cz defined as

I, ifj=0
Dj=4-1I, ifj=1
O otherwise

However, one should exercise caution when employing TLFs because they have the effect of
eliminating wavelengths of certain frequencies from the original time series; this may leave us
only with the trend or cycle components of the original series. This is formally articulated in

the following theorem:

Theorem (Transformations in Spectrum via TLF)

Let {Y;}+cz be a univariate mean-zero weakly stationary time series with absolutely summable
autocovariances. Let f be the spectral density of {Y;}icz, F its spectral distribution, and
(R,Lp,ur) the associated measure space. Denote the L:norm on L?(Lp,pur) by ||-||p. Finally,
let

Y, = / " exp(itA)dZ(\)

—Tr

the spectral representation of {Y;}scz, where F' is the distribution function associated with the
orthogonal increment process {Z)}_r<i<r-
Let ¥ = {V,},cz be a TLF, and let ¥(z) be the associated polynomial defined as

\I/(Z) = Z \I/j-zj

j=—o0

for any z € C.
Suppose we obtain the univariate mean-zero weakly stationary time series {X;}:cz with
absolutely summable autocovariances from {Y;};cz via the TLF W. Then, the spectral density

fx i (—m,m] = C of {X;}iez is given as
—iw 2
fx(w) = [W(e=™)|" f(w)
for any w € (—m, 7], and {X;}+cz has spectral representation
X, — / ¢ (e~ dZ (A

for any t € Z.

Proof) We first show the result for the spectral density. Letting I': Z — R and G : Z — R be
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the autocovariance functions of {Y; }tcz and {X;}icz, recall that
o0 [e.e]
= > > U D(r+k—j) ¥y
Jj=—0o0k=—00

for any 7 € Z. By definition, for any w € (—7, 7] we now have

fx(w)=— Z G(7)exp(—iTw)

1 o0 o0 o0

Z Z Z (W, -T(t+k—j) Vi]exp(—itw)

T_—OO]——OO k=—0o0

:i i\l}j\pkl Zr s)exp(—i(s+j—k)w )1

j=—00k=—00 §=—00

Jj=—00k=—00

- ( oy \I’j\I/keXp(i(k?j)w)> f(w)

2
= ( > %-exp(—z‘jw)) ) = e )] f(w

j=—o0

Now we move onto the spectral representation. For any ¢ € Z and N € N4, by the

linearity of stochastic integration,

S Y= S, / exp(i(t — H)N)AZ(N)

l7I<N li|l<N T

—/ exp(itA) (Z U, exp(— Zj)\)) dZ(N).

l7I<N

The sequence

{ > ‘l’j'Yt—j}

: NEN.
ljl<N +

converges in mean square and almost surely to X;. Furthermore, defining

XN7,5:/_ exp(it) (Z VU exp(— 1])\)> dZ(\)

l71<N

for any N € Ny,

2
2

HX]W _ [ 7; G (=N dZ (M)

exp(it-) (Z U, exp(—ij-) \P(exp(—i-)))

l71<N

2
F
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2
durp(N)

_ 2N oA (i
_/]R (Z WA ))

ljI<N

2
d/‘F()‘)ﬁ

_ A g (p—iA
= [ we o we™)

l7I<N

where the first equality follows from the fact that stochastic integration perserves inner

products.

2

{

is a sequence of continuous functions on R that converges pointwise to 0 and which is
dominated by the pp-integrable function 3|¥(exp(—i-))|, so by the DCT,

> Wjexp(—ij-) — ¥(exp(—i-))
71N

}NEN+

™ . . 2
lim HXN,t— / W (e M dZ(N)
N—oo —T n,2
2
: —ijA —iA
:]\}gnoo A Z Ve % —W(e )| dup(X) =0.
l7I<N

It follows from the almost sure uniqueness of L2-limits that

X, = / G (e=NdZ (V).

Q.E.D.

The mapping w +— ¥(e~™) is called the gain function, and w |\Il(e_iw)|2 the squared gain

function. For example, the gain function of the h-period moving average filter is

1 h

w1 [ 1
=on 2 e IV = 7 Ecos(jw) +5
j=—h j=1

and that of the first difference filter is

H(e ™)

D(e™™) =1—¢"™,

The above theorem basically tells us that wavelengths of frequencies for which the gain function

equals 0 are erased from the transformed process { X }iez.
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Unit Root Asymptotics

Here we introduce the mathematics needed to study the asymptotics of non-stationary and coin-
tegrated processes. As in the previous section, we take (2,H,P) as our underlying probability

space.

4.1 The FCLT and its Extensions

The FCLT is a generalization of the CLT studied above. We first re-state some results concerning

continuous function spaces and weak convergence on such spaces.

4.1.1 Continuous Function Spaces

For any topological space (F,7) and F' = R" or C, the space Cy(E, F) collects every bounded
and continuous function mapping E into F'; the boundedness condition can be omitted if F is

compact due to the extreme value theorem. The supremum norm on Cy(E, F') is defined as
[flle = sup | f(z)]
el
for any f € C,(E,F), and the supremum metric d on Cy(E, F) as

d(f,9) = f =glle

for any f,g € Cp(E, F). We can show that (Cy(E, F'),d) is a complete metric space.
Using the Stone-Weierstrass theorem, it is also possible to show that, if (E,p) is a compact
metric space, then (C(E,F),d) defines a separable metric space. Thus, (C(E,F),d) is a Polish

space (a complete and separable metric space) if (F,p) is a compact metric space.

Let B¢ (E, F) be the Borel o-algebra generated by the metric topology induced by d. Defining

the set of all finite-dimensional distributions as

Cp={m, . 1 (A)|t1,- th € E, A€ B(F™)},
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where 7, ... 4, : C(E, F) — F¥ is the projection function defined as

Ty, by of = (f(tl)a T 7f(tk))

for any f € C(E,F), Cs is a m-system that generates Be(E, F).

4.1.2 Random Functions

A random function X is a random variable that takes values in the measurable space (C(E, F),Bc(E, F)).
To any X there corresponds a stochastic process {X;}tep with continuous paths taking values
in (F,B(F)) defined as

Xt:T('tOX

for any t € E. Conversely, for any stochastic process {X;}icrp with continuous paths taking
values in (F,B(F)), we can define a corresponding random function X by letting X (w) be the

continuous mapping
t— Xt (w)

for any w € Q. The random function X and the stochastic process { X} inp are in this case said

to correspond to one another.

We are mostly interested in the collection of continuous functions defined on the compact
metric space [0, 1] equipped with the euclidean metric. The properties mentioned above all apply
to the metric space (C([0,1],R™),d), where d is the supremum metric, and to the measurable
space (C([0,1],R™),B¢([0,1],R™)), where B¢(]0,1],R™) is the Borel o-algebra generated by the
metric topology induced by d.

4.1.3 The FCLT

Let {&;}tez be an i.i.d. sequence of n-dimensional random vectors with mean 0, positive definite
covariance matrix 3, and finite fourth moments. For any T' € N, we can define the stochastic

process {Xr7(r)},e[,1) With continuous paths as

(7]
1 1
XT(T) = \/T E €t + \/T(Tr_ LTTJ )EI_TTJ+1
t=1

for any 7 € [0,1]. Let the random function corresponding to {X7(r)},¢[o,1) be denoted XT, and
pr its distribution.
The Functional Central Limit Theorem (FCLT) tells us that the sequence {X”}ren, of

random functions converges weakly to the n-dimensional Brownian function B™ with covariance
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matrix X, that is,
B =y "

for the standard n-dimensional Wiener function W" and $7 the Cholesky factor of ¥. The
stochastic process {B"(r)},¢[o,1] corresponding to B" is the n-dimensional Brownian motion

with covariance matrix X, and
B™(r) = S2W"(r)

for any r € [0,1], where {W"(r)},c[0,1) is the standard n-dimensional Wiener process on [0,1].

By the continuous mapping theorem, for any 0 <ry <--- <rg <1,
d
(Xr(r1), -, Xo(ry)) = (B"(r1),++, B"(rx))

as T'— oo, which holds because the projection ., ... ,, is a uniformly continuous function from
C([0,1],R™) to R,
The FCLT implies the Lindeberg-Levy CLT, since the FCLT implies

T
Xo(1) = \}ngt < B(1) ~ N(0,5).
t=1

4.1.4 Linear Processes and the BN Decomposition

We often find it necessary to extend the FCLT beyond i.i.d. processes. A natural class of time
series to which to apply the FCLT is the class of linear processes. Recall that, given a white
noise process {&;}+cz with positive definite covariance matrix ¥ € R™"*" and a square summable
{¥;}jen, that is,

itr (0;29)) < +oo,
=0

we can define the (causal) zero mean linear process {Y;}icz as
[e.@]
Yi=) Uj-er
=0

for any t € Z, where the limit is taken in L2, If {U;} ¢y is absolutely summable instead of square
summable, we showed above that the convergence can be extended to almost sure convergence

as well.

A stronger result than square summability and even absolute summability is one-summability;
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{¥;}jen is said to be one-summable if

oo
> J 1] < oo
=0

This implies that {¥;};cy is absolutely summable, or that

o0
D% < oo,
j=0

and both these conditions imply square summability. In these cases,
oo
> Ve
=0

can be viwed as both the L? and the almost sure limit of the corresponding partial sum process.

The following theorem allows us to decompose the partial sum process of a linear process into

a pure trend component and a stationary component.

Theorem (The Beveridge-Nelson Decomposition)
Let {Y;}1ez be an n-dimensional zero-mean linear process with underlying white noise process

{et}+ez with covariance matrix ¥ € R"*" and one-summable filter {V¥,} en. Then, defining

)
Oéj:— Z \Ifh

h=j+1

for any j € N, {a;};en is absolutely summable, and there exists an almost sure set {2y € H such

that, for any t € Z,
Ye=V(1) et+mn—m—1

on o, where ¥(1) is defined as

U(1)=> U; eR™"
j=0

and {n;}tcz is a zero-mean weakly stationary process such that
oo
m=a(l)e=) aj-e;
j=0

for any t € Z.
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Consequently, for any 17" > 0,

T T
D Ye=0(1) Y etur—1o
t=1

t=1

on (.

Proof) We first prove the claim that {c;};cy is absolutely summable. Clearly, the process itself
is well-defined because of the absolute summability of {¥;};cn. Now note that, for any
m, k € N+,

ZHO‘JH<Z Z H\I’h”—Z] |W] < +oo,

Jj=0h=j+1

where the terms in the series can be rearranged due to the absolute summability of
{¥;};jen and the last inequality follows from one-summability. Thsi shows that {o;}jen

is absolutely summable.

By the absolute summability of {¥;};cy, Y; is the almost sure limit of the sequence

m
{Z\pj ‘gtij}meN.,_ = {Y;E,m}mGNJr
=0

for any t € Z. Likewise, the absolute summability of {a;}jen ensures that each 7 is the

almost sure limit of the sequence

m

Z is countable, so we can define the almost sure set 0y € H on which every {Y; m tmen "
and {7¢m fmen, converges absolutely.

Now choose any t € Z. It follows that, for any w € Qy,

W)= Ve ;(w)
=0

= (V1) +ap) -ee(w) +

s

(aj — 1) -&r—j(w)

<
Il
—

= (U(1)+ao)-er(w)+ D (aj-er—j(w) —aj-1-e1—j(w))

'MS

Il
—

J

= V(1) er(w) +ag-er(w "‘Z% “et—j( ZO‘J “Et—j-1(
=V(1) &(w) +ne(w) —m,l(w),
where the additive operations above all hold because the series involved are all abso-
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lutely convergent. Therefore, on €y, for any ¢ € Z we have

Y =V(1)- e 4+n —n—1.

It follows that, for any 17" > 0,

(W) -er+m—me-1) = V(1) - > er+nr—10

T T
=1 t=1

T
> vi=
t=1

t

on ).
Q.E.D.

Let {Yi}icz be a zero-mean linear process as the one above, and assume that the process
{St}ten is defined as

t
Sy = ZYS + 5o
s=1
for any t € N, so that

Si=58-1+Y;

for any t € Ni. {S;}ten thus looks like a random walk process, but has potentially serially
correlated errors.

Similarly, define the pure random walk process {7 }:+en as 70 = 0 and
t
Tt = Z €s
s=1
for any t € N4, so that

Tt =Ti—1+¢€¢

again, but this time with WN errors.
Then, the BN Decomposition of S is

t

t
Se=2 Yi+So="(1)-> es+n—1m+So
s=1 s=1

=W(1) 7 +n+ (So—m0)

almost surely for any ¢ € N;. Thus, the BN decomposition allows us to decompose S; into a
trend component W(1) -7, a stationary component 7, and a component consisting of initial

values Sp — np. This will come in handy later on when defining I(1) processes.
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4.1.5 The CLT for Linear Processes

The BN Decomposition allows us to establish the CLT for zero mean linear processes when the

underlying white noise process is an MDS with finite fourth moments.

Theorem (CLT for Linear Processes)
Let {&;}tez be an n-dimensional MDS with finite fourth moments and common positive definite
covariance matrix ¥ € R™*". Suppose {V;};en is a one-summable sequence of n x n matrices

and define the linear process {Y; };cz as

00
th = Z \I/jgt—j-
j=0

for any ¢t € Z. Then,

where W(1) =372, ¥;.

Proof) Define {a;}jen C R™*™ and {n:}+ez as in the BN decomposition. By that theorem,
there exists an almost sure set {2y € H such that, for any T' € N,

T 1 & 1
‘;ZEZWW'TZ¥ﬁvﬁw—W

3

on Qo.

Letting « : Z — R™*"™ be the autocovariance function of the weakly stationary process
{nt}ez,

2

1 1
< _TF|— _
> 6) = 52E‘\/T(77T 770)

1
= <3 E [np + ngmo — 200

zé%hmﬂm%%d%Tm

P(| = —m)

for any T' € Ny. Since v(T) — O as T — oo due to the absolute summability of the
autocovariances 7y(-) (which follows from the absolute summability of the coefficient

matrices {a;}jen), taking T'— oo on both sides tells us that

. 1
TIE};OP(‘\/T(TIT—HO) >5> =0.

This holds for any d > 0, so

1 P
o) %0
\/T( O)
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by definition.
On the other hand,

1 & d
— E et — N(0,X%)
Tt:l

by the Martingale Difference CLT. It follows from Slutsky’s theorem that

W(1)- ﬁg+ (= m) 5 N(0,u(1)2w(1)).
Finally,
P LET:Y— \p(1).i§Tje +i( —no) || >0 <P =0
\/thl t Tt:l t T nT — "o = =

for any d > 0, so

1 & 1 & v
ﬁZYt— (‘I’(l)‘TZé“t‘i‘T(ﬁT—Uo)) -0,

t=1

and by Slutsky’s theorem once more,

Q.E.D.

Here, the positive semidefinite covariance matrix
Yy =¥(1)X¥(1)

is called the long run variance. This is clearly different from the ordinary variance
oo
L0)=> v,nv,
j=0

of the process {Y; }iez.

202



4.1.6 Extending the FCLT to Linear Processes

With the BN decomposition, we can extend the FCLT in a manner thata allows the underlying
process to be a linear process. Since linear processes are generally autocorrelated, this means
that the FCLT can be formulated even for partial sums of some autocorrelated processes. The

formal statement is as follows:

Theorem (The Extended FCLT)
Let {&¢}+cz be an n-dimensional i.i.d. white noise process with positive definite covariance matrix
¥ € R™" and finite fourth moments, and {¥;};cn a one-summable sequence of n x n matrices.

Let {u;}tcz be the mean zero linear process defined as

o0
Ut = Z \I’j&‘t_j
7=0

for any t € Z.
For any T € N, define the n-dimensional stochastic process {X7(r)},¢[o,1 With continuous

paths as

\Tr)

1 1
Xp(r)= Nii t; up + ﬁ(TT — T )uirr 11

for any r € [0,1]. Then, letting X7 be the random function in C([0,1],R™) corresponding to
{XT<T)}T€[0,1}7
xT 4 pn

as T — 0o, where B" is the n-dimensional Wiener function with covariance matrix 3, = U(1)X¥(1)".

By implication, for any 0 <7y <--- <7 <1,
d n
(Xp(r),-, Xo(ry)) = (B"(r1),--+, B"(rx))

as T — co.

Proof) By the Beveridge-Nelson decomposition, there exists an almost sure set g € H such
that, for any 7' € N4 and r € [0,1],

7] 7]
S ur=(1)- Y e+ —no
t=1 t=1

and

U\ rr )41 = Y1) €71 0T 41 — N0
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on £y, where
o0
-2 W
h=j+1

for any j € N and {n;}+cz is the weakly stationary process defined as
o0
Nt = Zaj “Et—j
j=0

for any t € Z. We now decompose each random function X7 in a convenient way.
Defining {VT(T)}re[O,l} as

Tr|
1
=S et = (Tr = | Tr ey
\/Tt:15t+ﬁ( r L TJ)gl_T 141

for any r € [0,1] and {A7(r)}r¢c(0,1) as

Ar(r) = = (o) =) + = (Tr = [T (g0 =7

for any r € [0,1], both {V(7)},¢c01] and {A7(r)},¢jo,1) have continuous paths, so that
there exist random functions V7 and A’ in C([0,1],R") corresponding to these pro-
cesses.

We can see that, for any 7' € N and r € [0,1],

(Tr — LTTJ)ULTTJ—H

|7

Et+N1r] — "0 +7(T7”—LT7“J) V(1) &rr|+1+ 0 Tr|+1 = 1|Tr|
St Gy 0 |
T

L
\/1:? S et \}T(TT— LTTJ)ELTTJH]
1

T
r]
=1
r]
&

= 111(1) .

[1T (77|_T7"J - 770) + \%(TT —[Tr] )(nl_T’r‘J-‘rl - m:m)
) Vr(r)+Ar(r)

+
=Y(1
on €. It follows that
XT=wvq).vT+ AT
on {1y for any T' € Ny. We study the limiting behavior of each term:

i) The First Term V7
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ii)

By the FCLT, we know that
VT4 s,

where W™ is the n-dimensional standard Wiener function on [0,1] and 22 is the
Cholesky factor of X.

The Second Term A’
Meanwhile, for any 7' € N and r € [0,1],

A (r >'<T( |ney |+ e | + ol

because Tr — [ Tr] < 1. We now have

1
ol o g

and as such, for any § > 0,

1 0
B (|47, >0) <P (> 5)

Note that

(L el > 3= U il > 2},
/T 0<t<T+1 4 = WT

so that, by finite suabdditivity and the generalized Markov inequality,

T+1

P( ol > §) < 2 (> )
T
= <i) 41}2 f [|77t }
Since {n; }1ez has finite fourth moments due to the finiteness of the fourth moments
of the underyling WN process {e; }+cz, letting
Bl * = p14 < 400

for any t € Z, we can see that

41T—|—1

P47 >0) < (5) 7= B[]

O\ AT +2
< = .
= (4) T2
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Therefore,
i 2((7], ) =0
and because this holds for any § > 0,

AT %0,

as T — oo, where O¢ is the zero function on [0, 1].

By Slutsky’s theorem, it now follows that

(1) VT + AT 4 g)szwm,
and because Qo C {XT =V(1)- VT + AT},

P(|x" - (@) v? +AT)HC >5) <P(QF) =0

for any § > 0; this trivially implies that

XT—(w1)- v+ 4Ty % o,
and by Slutsky’s theorem again,

X7 4 y)ymzwn.

Here, \If(l)E% W™ is an n-dimensional Wiener function with covariance matrix U(1)X¥(1)
>u, which is the result we desired.
Q.ED.
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4.2 The Limit of Functions of Trending Processes

In this section, we use the results of the preceding section to derive asymptotic results pertaining

to trending processes.

4.2.1 Continuous Functions on C([0,1],R")

To set the stage, we first note that the following are continuous functions:

e The Integral of a Continuous Function
Define the function g : C([0,1],R™) — R" as

o= [ Fnr)

for any f € C(]0,1],R™), where p is any finite measure on [0,1]; x4 is most often taken to be
the Lebesgue measure on [0,1]. The integral is well-defined because f, being continuous,
is measurable and it is also bounded by the extreme value theorem, which, in light of the
finiteness of u, means that f is u-integrable. Thus, the usual integral arithmetic operatinos
apply.

For any f,h € C([0,1],R™),

1

< ), 1) =h(r)ldu(r)

< sup [f(r) —h(r)]-p((0,1]) = p([0,1]) - |If = Al

1
9(5) =gl =| [ (Fr) = h(e))du(r)

and because u([0,1]) < 400, this shows us that g is Lipschitz continuous on C([0,1],R™).

When g is the Lebesgue measure on [0,1], we can discuss a stronger form of continuity.
Consider the product space [0,1] x C([0,1],R™) given the product metric p of the euclidean

metric on R and the supremum metric on C([0,1],R™), which is defined as

p((r; f):(s,9)) = max(|r—s|,[|f = gllc)

for any (r, f),(s,g) € [0,1] x C([0,1],R™).
Define G : [0,1] x C([0,1],R™) — R™ as

Gmﬂzéwa

for any (r,f) € [0,1] x C([0,1],R™). To see that G is continuous, choose any ¢ > 0 and
(r, ) €[0,1] x C(]0,1],R™). For any (s,g) € C([0,1],R™) such that

3

1 =gllesIr =l < (1), (529)) < 5y
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we have

G )~ Glsg) = | [ F)da [ g(a)da
‘/f d:c/f )dx|+ ‘/f )dx — ()d:c

max(rs
<[ . |dx+/ |£(@) - g(@)|da

< Hch'\?“—SHIIf—gH-S
<|[flle-1r—=sl+1f =gl

<Al s+ <
C2fe 27

By definition, G is continuous at (7, f), and because this point was chosen arbitrarily, G
is continuous on the entire product space.

Since the pair of any two measurable random variables on metric spaces is also measurable
with respect to the Borel o-algebra associated with the product metric on the product

space, this result is sufficient for us to apply the continuous mapping theorem.

More Integrals

While we only considered the integral of a function itself in the above discussion, we can
in fact define a wider variety of functions from C([0,1],R™) into arbitrary metric spaces

defined via integration.

For any finite measure p on [0,1], define g3 : C([0,1],R™) — R™*"™ as

= [ 1)y autr)

for any f € C([0,1],R™). The integral is once again well defined because of the boundedness
and continuity of f, as well as the finiteness of u.

To see that go is continuous, choose any f,h € C(]0,1],R™) and note that

192(f) — g2 (R)]| <ZZ

[ G0 50) = s () )

1=175=1
<ZZ/m )5 r) = By () )
i=175=1
1) > N fifs —hibylle-
i=1j=1

Each f;fj —hsh; is bounded above by linear combinations of || f||, and ||f —h||., so g2 is
continuous on C([0,1],R™).
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Now define g:C(]0,1],R™) — R"™ as
1
i) = [ v F@dutr)
for any f € C([0,1],R™). Then, for any f,h € C([0,1],R"),

o) -g01=| [ 7 (F0) = gDautr)| < [ 7-176) ~ g autr)

1
<1 =glle- [ rdu(r) <1 = gle-n((0.1):

so g is Lipschitz continuous on C([0,1],R™).

Joint Continuity of Projections

For any 0 <r; <--- <1, <1, we saw that the projection m;, .. is uniformly continuous
on C([0,1],R™).

Choosing any r € [0,1], we can also view the projection ,.(f) of f € C([0,1],R") as a func-
tion of both r and f. Reflecting this change in perspective, define 7 : [0,1] x C(]0,1],R™) —

R™ as

Tk

w(r, f) =m(f)

for any (r, f) €[0,1] xC([0,1],R™). Define the product metric p as above. We can now show

that 7 is continuous.

To this end, chose any (r, f) € [0,1] x C([0,1],R™). Then, for any e > 0, by the uniform
continuity of f there exists a §; > 0 such that

€

£@)— )l <

for any z,y € [0,1] such that |z —y| < d;. Now define
) €

§ = min (51, ) > 0.
2
It follows that, for any (s,g) € [0,1] x C([0,1],R™) such that
[r=s,1lf =glle < p((r, ), (s.9)) <4,

since || f —glo < § and |r —s| < §; implies

F) = Fs)l < 5,
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we have

w(r, f) =m(s,9)| = |F(r) = g(s)| < |f(r) = F(s)[ + 1 (s) —g(5)]

<SHlf-glle<s++
- — —+-=ec
2 Jlle =575

By definition, 7 is continuous. Since the pair of any two measurable random variables on
metric spaces is also measurable with respect to the Borel o-algebra associated with the
product metric on the product space, this result is sufficient for us to apply the continuous

mapping theorem.
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4.2.2 Convergence to Stochastic Integrals

So far, given an n-dimensional linear process {u }+cz, our main convergence result has been that
of the random function X7, defined as the random function corresponding to the continuous

stochastic process {X7(r)},¢[o,1) defined as

\Tr)
Xr(r)= \% ; ug+ ﬁ(TT— \Tr )urr )41

for any r € [0,1]. As we will soon see, however, we require not only the convergence of X7 to an
n-dimensional Brownian motion, but the convergence of a partial sum process to a stochastic
integral as well. Furthermore, this convergence should hold jointly for X7 and the partial sum
process. We thus show here that this sort of joint convergence holds true.

First, we state some of the results to be used to derive this result. The two main ones are as

follows:

Theorem (Skorokhod’s Reprsentation Theorem)

Let (E,d) be a complete and separable metric space, 7 the metric topology induced by d, and &
the Borel o-algebra on E generated by 7. Let {ur}7ren, be a sequence of probability measures
on (E,&) weakly converging to a probability measure p on (E,E).

There exists a probability space and random variables { X7}7en, , X defined on that probability
space, take values in (E,£), and satisfy the following:

i) Xp has distribution pp for any 7'€ N4 and X has distribution pu.

ii) X7 converges almost surely to X.

The above theorem allows us to move back and forth between the weak convergence of prob-

ability measures and the almost sure convergence of specific random variables.

We also require the following result, which we state without proof (refer to the text on the

convergence theory for a proof):

Theorem  (Egorov’s Theorem)

Let (E,d) be a separable metric space, 7 the metric topology induced by d and £ the Borel
o-algebra on E generated by 7. Suppose {X7}7cn, is a sequence of random variables on (E,&)
that converges almost surely to the random variable X.

Then, for any € > 0 there exists a measurable set {2y € H such that P(Q) < e and {Xr}7ren,

converges to X uniformly on Q\ Q.

This theorem furnishes sufficient conditions for pointwise convergence of a sequence of ran-
dom variables taking values in a separable metric space to converge uniformly. It turns out that

the sequence converges uniformly except on a set whose measure can be made arbitrarily small.
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Both of the above theorems are proved in a separate text exclusively concerning the conver-

gence of random variables and probability measures.

We are now ready to prove our joint convergence result. The proof below is based on Chen and
Wei (1988), where we have imposed stronger assumptions to make use of convergence results in
C([0,1],R™).

Theorem (Joint Convergence to Stochastic Integrals for IID Processes)

Let {e¢}tez be an n-dimensional i.i.d. process with mean 0, positive definite covariance matrix
Y € R™™ and finite fourth moments. In addition, define {V;};cn as the partial sum process of
{et}tez such that Vp =0 and

t
Vi=> eV
s=1

for any t € N;. For any T'€ N4, define the stochastic process {X7(r)},¢[o,1] s
[T

‘wmzjf;a+;#ﬂ—UHmmH

for any r € [0,1], and let X7 be the random function taking values in C([0,1],R") corresponding
to {Xr(r)}rejo,1)- Defining

1 T—h
Vi=2 Vi
T t=1

for any h €N, for any p€ N, XT and V2., --- , V¥, jointly converge in distribution to their limits:

xT 4 sz

1
Vo V0 S 4 a @ |24 [ Wryawn(ry's¥

jointly, where {W"(7)},¢[0,1) is the n-dimensional Wiener process, where ¢, 11 is a p+1-dimensional

vector of ones.

Proof) To avoid confusion, we denote by W" the standard n-dimensional Wiener function.

We know from the FCLT that X7 % $2W". Because (C([0,1],R™),d), where d is the
supremum metric, is a complete and separable metric space, by Skorokhod’s repre-
sentation theorem there exists a probability space (Qg,Ho,Pp) and random functions
{YT} ren, , Wi on Q taking values in the measurable space (C([0,1],R"), B¢([0,1],R™))
such that

—~ YT ~ XT for any T € N,

212



— W is an n-dimensional standard Wiener function, and
— YT wawp,
as T'— oo. For any T'€ Ny, let {Y7(r)},¢[0,1] be the stochastic process corresponding
to the random function Y7
Now we fix some 0 < h < p. Note that
1 Tt t t+1 t\1’
= Vi_iep = Xrl=)|Xr|—|—-Xr|=
r 2 V= 3 e (g) o () - ()]

a function of Xp. By implication, defining

A="E ()b () ()]

we have
1 T=h
YT, Zp) ~ (XT’T Z vt_lgg> .
t=1

We will now show that (Y7, ZL) converges in probability to the limit in the claim of
the theorem.

For notational simplicity, we denote Wy by W", and the expectation with respect to
Py by E[-].

The separability of (C([0,1],R™),d) allows us to use Egorov’s theorem, which tells us
that, for any € > 0, there exists a set 2. € Hg such that

Py(2) >1—¢, and

o7 = sup HYT(w) - Z%W"(w)‘
WEN ¢

—0 asT — .

We can choose a subsequence {St}7ren, of Ny such that Sp <T —h—1 forany T'> h

and
St
Stér — 0 and ?%O as T — oo.

In other words, St must converge to +oco at a slower rate than ér and % converge to

0. One possible choice for St could be

St = |min <\/27T,\/m>J

tST

Once {S7}ren, has been established, for any 7' € N choose a partition {tTO, e 7T}
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of {0, T_}L_l}, where tg =0, tg, =T —h—1and t1,--- ,t5,—1 € Ny are chosen so that

1
lim — ti—ti—1] ) =0.
i (s, = i)
One possible choice is to set

T—h-2

ti=
L St —1

Ji V1<i<Sp—1.

The natural numbers %o, ---,tg, represent a non-overlapping partition of the interval
[0,7—h—1], since t; —t;—1 > 0 for any 1 <i < Sp—1 for large enough T (this is the
case because STT —0asT — o0) and

T—h-2 T—h-2

L s < T (S ) =T —h-2<T—h—1

tsp—1=1

so that tg, —ts,—1 > 0. Finally,

1 T'—h-2 T 1 1
— <

| —he —0
T Sp—1 B T Sr—1
as T — oo because S — +oo as T — oo and, lettingm:LTS_Th__ll,
T—h—1-m-(Spr—1) Sr
as T — oo, where the inequality is justified because
<Tmh=2
m<———<m
- Sr—1
and thus
T—h-—2
o —
Therefore,
lim — lts—t; 1] ) =0
700 T \18i88, 11 11l ) =
under our choice of g, ,tg,.
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We now proceed in steps:

1) Step 1:
We first show that

) (5) o ()] o0

Sr '
Zp=> Yr ( :
i=1
To this end, note that, because {St}7ren, is a subsequence of N,
li tic1\]’
Yr|(=)-Y
T(T) T( T )}
t; t+1 t\1’
Y; -Y; Y, -Yr(=1||.
() v (5 e (5) e (7))
Since {e;}¢ez is an i.i.d. sequence, and
t ti 1 !
volz) (7 )~ 75 2 o
r T \/TSZti—lJrl

t+1 t 1
Y, —Yr(=)~—
r(5) e (7) ~ Zmen

for any 1 <i < Sp and t;_1 <t, we can see that, for any 1 < j,k <n,

St t
JT:Z{;—ZYT( % )
St t;—1

X 2

i=1t=t;—

st =35 5[ (1) - (5)) ] o (152) -3 (1))

ST t;—

_E]_]Ekk 22 Z t—t;— 1

zlttzl

1 —1—ti—1)(ti —ti1
_Z]JZkkTQZ : 2)( Z . )
=1
13
< ZME%WZ ti—1)2
i=1
St
1 1 t; til)
<Y, — t; —t;_ . max |— —
e Sl (T;(l ! 1)) (1§i§ST T T

t;  tiq

T T

).

where the first equality follows from the independence of {¢;};c7z, and the second
from the fact that

o (i () ()] -7 85, Pl -5

E l(YkT (HT1> — Yir G)ﬂ - %E [ezw} - %zkk.
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By assumption, the right hand side of the above chain of inequalities goes to 0 as

T — oo, and because

n n
2 2
EllJrl|* <> El Il
J=1k=1

we have Jp 5 0 as T — oo. Therefore,

2l = iYT (%) [ () -7 (“;)},+op<1),

where the o,(1) term represents Jr.

2) Step 2:

Now we show that

h 1 o n [ ti—1 t; ti—1\1
ZT'IQe:IQe'EQ ZW < T ) |:YT <T)—YT( T >:| +0p(1)
i=1

The above result shows us that we need only prove

St

pr=tn [ (%) -2 (4)] i () -0 (5] =0

=1

Since

sup [(Yr(r)(w) =22 (W™ () ()| < sup [YT ()= 23W"(W)|| = or
ref0,1] W€ ¢
for any w € ¢, for any 1 < j,k <n we have
2 o ti—1 1 tic1 t; ti—1 i
|Drjkl” = Iq, - ; Yir\ = ) —22W;( % Yir (7 ) —Yer | =

St

S s () (5))]|

By the independence of {e;}c7, we once again have

<Ig, -0%-

St

t; ticg\\ 2
win <o 352 e () e ()

=1

St

1
=g, - Zkkfs%f D (ti—ti1)
i=1

= I, - Yir0a.
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The term on the right hand side converges to 0 as T'— oo by design, and since
this holds for any 1 < j,k <n and

n n
2 2
E|Dr|* <> E|Dr il
j=1k=1

we can see that Dp 2 0.

3) Step 3:
We now replace the remaining Y7 terms with E%W”; specifically, we want to show
that

Zhto, = 0,530 (520 o () e (22)] st
T Qe — 10 gt T T T p .

To this end, we utilize the following summation by parts formula:

v (3) - ()]

St

syt ()
1=1 T

1 ti li—1 ti\' 1 /
Dy Wl —=|-w" Yr( =] =22W"(1)Ypr(1).
+ZI{ (T)W(T) T(T) W)
Following the same process as in step 2 reveals that
ST !/
1 t; ti1 t;
Ig. -2 =) -W" Yr| =
oy () - ()] (7)
=1 zéi[W"(ti) W”(t"‘l)}wn(tiyz%% (1)
T L T T T oo\

[N

W™(1) implies that Y7 (1) —E%W"(l) =0,(1), so

I Eiiwn (t’“) {Y <t) Y. (t"‘lﬂ/
Qe T\~ ) LT
2 T T T

In addition, Y7 (1) % ¥

St

1 1 1 t; ti—1 ti\ 1
=Io -S:WH(L)W™(1)'S2' — I -2 )W = 2] B 1).
n IR - fo. ;{W <T> W(T)}W <T> '+ 0p(1)
The same summation by parts formula reveals that
SHWT ()W (1) S zé%[W"Ci) (S)]w (%)
= T T T

St /
1 Zu, ti—1 W t; W ti—1 1
v T T T
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so we have

s ti1 t; ti—1\]
iy (5 ) e (7) - ()
xS (S o () < ()] st
i=1

In light of the previous developments, it stands to reason that

h 1 n ((ti-1 n(ti w(tic1\] wis
Zp-Ig =1, 52y W ( 7 )[W (T>—W ( 7 )] ¥3' 4 0,(1).

=1

It now remains to show that the partial sum above converges to the stochastic integral
fo W™ (r)dW"(r). Choose any 1 <4,j <n, and let W; and W represent the i and jth
coordinates of W"; W; and W; are independent random functions corresponding to the
univariate Wiener process.

For any T' € N, define the elementary function ¢ : Q2 x[0,1] — R as

_ iwi (”;) I[tH ) (t).

Since
o t
o1 Wi(1) =3 (wi (") -wito)) s )00 Lz 0
for any t € [0,1],
E|| or(t) - wie) ot = [ VElor (- 8)— Wit) Pt (Fubini’s theorem)
St /T t 2 1
:lzl/tl_l/TE’Wi (lTl) —Wi(t) dt—/T_THEyWi(mZdt
St /T ¢ 1
:;/tl_l/T <t lTl)dt—/T_?_ltdt

— ;leé B (2 —121) —tl_l(tl—tl_l)] +%
ey
|

1 )
2T2Z ti—ti-1)"+

1
< — ( max
2 \u<i<sp|T
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The term on the right goes to 0 as T' — oo, so we have

T—o0

1
. : 2 _
lim [EUO (br(- 1) — Wi()[2dt| =0,

that is, the sequence {¢r}ren, of elementary functions on € x [0,1] converges in
L?(Py x \) to the mapping (w,t) — (W;(t))(w), where X is the Lebesgue measure on
[0,1]. By definition, the stochastic integral of W; with respect to W; is the L*(Py) limit
of

/01¢T(.,t)dwj(t) _ iwi (tle) {Wj (;) —w, (“Tlﬂ .

This holds for any 1 <14,j <n, so we have

2 T T T o Y o
which implies that the convergence is in probability as well. Therefore,
h 1 1 1
Zr-Io, = Iq, -25/ W™ (r)dW"™(r)$2" +o0,(1).
0

By implication, for any ¢ > 0,

il

1
Zh—st [ W )aw (s
0

<P0(

Taking T'— oo on both sides yields

>3)

1
To, - 7k — I, -z%/o W () dW () 53

>®+mm3

1
lim POO 252—2%/ W (r)dW™ (r)'S2’
0

T—o00

> 5) =Py (Q) <k,
and because this holds for any € > 0,

1
lim P()(‘Zéz—z%/ W (r)dW™(r) S2’
T—o0 0

> 6) =0.
As such,
h P i ! 2SLY;
Zh —>z§/ W () dW™ (r) S5,
0
and because almost sure convergence implies convergence in probability,

1
T,z B (z%W”,zé/ W”(r)dW”(r)’zé’).
0
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This holds for any 0 < h <p, so

1
(528 20) % <Eéwn’ ‘;+1®{Eé/o Wn(T)dW"(T)/Eé/D'

Convergence in probability implies weak convergence, so the above convergence is in

distribution as well. Finally, because

T 0 p r 1 ZT / 1 Tz_h /
(Y aZT7"' 7ZT) ~ | X af ‘/tflgta"' 7? ‘/tflgt
t=1 t=1

for any T' € N, we can conclude that
r 1 d ’ 1 = 1\ 4 1 / ot I L/
X afZW—lgta"waW—ﬁt 5 (22W", LM@[EQ/O W"(r)dW"(r)E2D.
t=1

t=1

Q.E.D.
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Now we show the main result, which generalizes the above theorem for the case when the un-
derlying errors form a linear process. The proof follows the martingale approximation approach
by Phillips (1988) almost verbatim, save for the use of the BN decomposition instead of a mar-

tingale approximation.

Theorem (Joint Convergence to Stochastic Integrals for Linear Processes)

Let {&;}1ez be an n-dimensional mean zero i.i.d. process with positive definite covariance matrix
¥ € R™" and finite fourth moments, and {¥;};cn a one-summable sequence of n x n matrices.
Let {u¢}tez be the mean zero linear process defined as uy = W(L)e; for any t € Z. Let T': Z — R™*"
be the autocovariance function of {u;}iez.

Define the process {S;}ien as So =0 and Sy = S°4_; u, for any ¢t € N. For any T € N, define
the stochastic processes { X7(r)}¢cp0,1) and {Vr(r) }rejo,1] as

\Tr)
Xr(r)= NG > w+ ﬁ(TT— \Tr ) rr )41
=1
1 1
Vi(r) = JT d et ﬁ(TT— \Tr])e 741
=1

for any r € [0,1], and let X7 and VT be the random functions taking values in C([0,1],R™)
corresponding to { X1 (r)}rejo1] and {Vr(r)}ep,1)- Defining

1 T—h

Vi = 7D Sig
t=1
1 T—h

Z/f% = — Z St_lu;
T t=1

for any h € N, for any p e N

e 5 @ [zt ([ W) 5]
U, Uy S [‘1’(1)Eé (/01 W"(r)dW”(ﬂ’) E%/\Il(l)’_FK}

jointly, where W™ is the n-dimensional Wiener function, {W"(r)}re[o’u the corresponding Wiener
process, and K =322, I'(j)".

Proof) We first define some notations and state preliminary results.

Recall from the BN decomposition that there exists an almost sure set 29 € H such
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that

ug = W(L)er +nr —ne—1

Si=> us=9(1) (Z&) +ne—mo
s=1

s=1
on Qo for any ¢t € N4, where

- (1) =205,

— {aj}jen is an absolutely summable sequence of n x n matrices such that

o0
aj = — Z V; for any j €N,
h=j+1

— {nt}+ez is an absolutely summable linear process such that n, = Z?io aj-g4—j for

any t € Ny.

Define the random walk 7 as 79 = 0 and

¢
=) s+
s=1
for any t € N4, so that we can express
Se=V¥1)m+n—mo
and
up =V(1)er+n —m—1

for any t € N,. Furthermore, it was shown in the proof of the extended CLT that we

can write
XT=w)vT4 AT

for some random function Ar taking values in C([0,1],R™) that converges to the zero
function in probability.

By the stochastic integral convergence result we proved in the previous theorem,

VT 4 sawn

1 1 1
Tth—lgta”' T > e 4 i1 {2% (/ W"(T)dW"(r)’) 25}
t=1 t=1 0

jointly. We can easily see that, by the continuous mapping theorem, the convergence
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result

XT 4 g)sewn

occurs jointly with the above results. We are now ready to prove the remaining items.

We start with the easier of the two partial sum processes.
For any 0 < h < p,

1 T—h 1 T—h
7 Z:l Si_1e) = T Z:l (U(1)7—1+me—1—10) €}
= =

1 T—h 1 T—h
=¥(1)| = Z Tt-1€t | + Z (1e—1—10) €4
T3 T3
The first term converges in distribution to
1 ! / Y
w(1)sh (/ W™ (r)dW™ (r) > 53
0
by the previous theorem. Meanwhile, because the {n;};cz is an absolutely summable

causal linear process representation with an iid innovation process {e;}tcz that has

finite fourth moments, the earlier result on linear processes tells us that

1 T—h
ﬁ ; N—1€t = Op(l)

In addition,

| T=h
JT Z er = Op(1)
t=1

by the usual Lindeberg-Levy CLT, so it follows that
1 T=h

T Z (-1 —"o0) €}
t=1

converges to 0. This holds for any 0 < h < p, so using the result proven above,

XT 4 y(1)ne . wn

1 & 1P 1
(Tzst_le;,--' £ st_le;> b0 @ vzt ([ wrawney)s|
t=1 t=1

jointly by the continuous mapping theorem and Slutsky’s theorem.
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The proof that the second partial sum process converges is slightly trickier.

For any 0 < h <p we have

T h
= Z St—rup == > (WD) 14+ m-1—n0) (U(L)er+me —me—1)’

1 —h 1 T—h
<T Z Tt1€t> V(1) +w(1) (T Z Te—1 (M _77t1)/>
—1

1 T—h T h
+<T (77t1—770)€2> U + Z -1 —n0) (N —ne-1)"-
t=1

We examine each term in turn.

The Last Term
Because the innovation process {e;}icz for {n:}icz is i.i.d. and the linear filter
{e}jen is absolutely summable, we can apply the WLLN for linear processes and

conclude that

1 T—h
7 2 (1 =m0) (me—me—1)' 5 G(1)' = G(0),

t=1

where G : Z — R™" is the autocovariance function of 7;. Examining the limit

G(1)' — G(0) further, we can tell that
[e.9]
G(1) -G(0) = Zaj 150 Z%Z}a
J=1
Z (0j—1 —ay) Ea —apXay
]:1
= —Z\lljzoz;- —apXay
o
=—> V%0 — %, — VX[ + U(1)TT,+ UeX (1),
since g = — 272 W = W — W(1).

The Third Term

From our earlier result, we have

Z Nt—1—"10) Et‘I’(l)/gO-
t=1
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The Second Term

As for the second term, we have

1 T—h

< ZTt 1(ne—me—1 ) ZTt 17— (1)TZ”—1’71/5—1
t=1
1 / =2 | T=h /
1)*2%% —¥(1)— Z e, — (1) Z Tt—1Mt—1
T — T — T —
t=1 t=1 t=1
1

= ‘I’(l)TTTthéF—h - ‘I’(l)f Z 5t771/t'

Since E|rp|* = T -tr(2) for any T € Ny,

B et < 3 (Birral)* (GO
= (D) (@) Y,

1
so that %TT,}LT]/Tih L, O and thus %TT,hn/Tfh = 0,(1). The sum of the product of

n; and &4 can be expanded as

1 T=h 1 T=h
T Z ey = T Z e+(ne — aoey)’ Z E1£,0).
t=1 t=1

Because {n; — ape }tez has the absolutely summable causal linear process repre-

sentation
— Q& = Z%H €t—1—j
for any t € Z, the result on linear processes tells us once again that
1 T—h
/
— Et\Mt — Q&L =0,(1).
77 2 el = o) = 0,(1)

By implication,

—

T—h
Z Et Oé()é-:t £> 0.
t:I

As for the second term,

T—h

!/ 1 P /

f Z Ete g — EOZO
t=1
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by the WLLN for iid processes. Considering the fact that ap = ¥y — ¥ (1), we have

1) (; > e (m —m_n') %W (1)Saf = P()DU(1) ~ ()2,

The First Term
Finally, the first term has the limit

N\»—A

T—h
1) (;2) w(y S wss ([ wrear ey ) iy,
t=1

because we know the limit of the sum in the middle.

The above results hold for any 0 < h <p, so

1 T 1 T—p -
fZSt_lé';,"' ,T Z St_léfg i} L;+1® \I/ % </ Wn de( ) ) é,:|
t=1 t=1 L

1 & 1= r
(TZSt—lufs,"' T Z St—lufs) ﬂ> L;+1® v(1 % </ W (r)dw™ (r) >E;/‘I’(1)/+K]
t=1 t=1 L

jointly by the continuous mapping theorem and Slutsky’s theorem, for some K € R™*™
by Slutsky’s theorem and the joint convergence of Vp and %ZtT:l Ti—1E}.

The constant term K is given as

K=U(1)S¥(1) - ¥(1)2¥)— Z\p Ny — Xy — WX+ U(1)SWh+ WX v (1)
——qu Xa+ WX (¥(1) = Z\y S,
J=1

By the definition of each o,

—i)quza;:i i R _ZZ\ph PN _Zr
iz

j=0h=j+1 j=1h=j

Q.E.D.
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4.2.3 Main Limit Results

Theorem (Main Limit Results)
Let {&¢ }1ez be an n-dimensional mean zero i.i.d. process with positive definite covariance matrix
¥ € R™" and finite fourth moments, and {¥;};cn a one-summable sequence of n x n matrices.

Let {u;}tez be the mean zero linear process defined as
o
Ut = Z \Ilj cEt—j
§=0

for any t € Z. Let I' : Z — R™ " be the autocovariance function of {u;}icz.

Define the process {S;}ien as Sop =0 and
t
St = Z Ug + S().
s=1

for any ¢ € N. Define 3, = ¥(1)X¥ (1), 2 as the Cholesky factor of 3, and A = \I/(l)E%. Let
W™ denote the standard n-dimensional Wiener function, and {W"(r)},¢(o,1) the corresponding

Brownian motion. For any p € N4, the following convergence results hold jointly:

T
Zutu;_h 1) for any h >0

1
Si_1€}_p, 4N < W”(r)dW”(r)/> N+ % forany 0 < h<p

1

T 1 o0
7 > Siaugpy, 4 A </ W”(r)dW”(r)’> N4+3, =D T() for any 0 <h <p
0

t=h+1 j=h
1 & d 1 n
mZSt_l —>A/ w (T)d’r
t=1 0

T 1
% S8, S A (/ W”(r)W”(r)’dr) I\
t=1 0

1 & 1
T3/ Z t-ut_hﬁu\-/ rdW"(r) for any h >0
t=h+1 0
. it LS /1 dw™ (r)
— e o r
T2 0

1 & d 1
—Zt-St_l—H\-/ r-W"(r)dr
52 0
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Proof) For any T € N, define the n-dimensional stochastic processes {Xr(r)} [0, and

{Vr(r)}rejo,1) with continuous paths as

[Tr]
1 1
XT(T) = \/T Ut + \/T(TT - LTTJ)ULTTJ
t=1
L

for any r € [0,1]. Let X7 and V7 be the random functions in C([0,1],R™) corresponding
to {X7(7) }reo1) and {Vr(r)}rep,1)- Finally, defining

1Th

ZSt 1€t h and

t 1
/
=7 Z Si-1ti—p
t=1

for 0 < h < p, the joint convergence results in the previous theorem tell us that

d 1

v 4. wn

XT 4N wn
d, ! n n 1
(V:(}a“‘avzl;)%L;H@[A (/0 W™ (r)dW (r)')ih’}

A ( /0 1 W"(r)dW"(r)’) A+ K]

d
(U%, o 7“%) — L;Q—i-l

jointly, where
oo
K=) T(j)
j=1
These results are now used to prove the results claimed in the theorem.

We proceed one by one:

i) For any T'€ N,
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so by the continuity of projections,

ii) The proof is almost identical to the above. For any T' € N,

T
\}TZUt = XT(l) = Wl(XT)7
t=1

so by the continuity of projections,

1

T
TZut b (A W) = A-W(1).

t=1

3

iii) This was proven in the lemma for the WLLN of Linear Processes.

iv) Choose any 0 < h < p. Then,

1 T 1 T t
T Z St—lgf‘,*hzf Z Stfhfl‘i‘ Z Es €27h

t=h+1 t=h+1 s=t—h
| T=h T
=7 > St—lffe“‘f Yo > (escin)
t=1 t=h+1s=t—h

t=j+1

o1 T—h+j
=Vi+y T > e
=0
d ! / 1,
= A (/ W"™(r)dW"(r) ) Y43,
0

where we used the fact that

T—h+j e

1 > ifj=0

T Z Et€1_; LR {5155;_]-] = '
t=j-+1 O otherwise

for any j € N. This holds jointly for any 0 < h < p.
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v) This result can be shown in a similar manner to the preceding result. Choose any
0 < h <p. Then,

1 T 1 T t—1
T Z St_lugih = T Z St_h_l + Z Ug U;ih
t=h+1 t=h+1 s=t—h
1 T—h 1 T t—1
!/ /
=7 Z Sp_qup+ T Z Z (usuy_p)
t=1 t=h+1s=t—h
h—1 1 T—h+j
=0 \ " =+

A (/Olwﬂ(r)dW”(r)’> A’+K+§F(j),

where this time we used the fact that
| Tchti

P .

T Z Utuéfj = I'(j)

t=j+1

for any j € N, as shown in iii). Since K = 3772, I'(j)’, we can see that

1 T 1 0o
7 X Sew Sa( [ weeawney )y Y Ty
t=h+1 0 j=1—h

To obtain the alternative formulation of the nuisance term 3772, , T'(j), note

that, because {u;}ez has an MA(oco) representation with coefficients {V;};en,
Y, =0 (1)XP(1)

is 27 times the spectral density of u; evaluated at 0, that is,
Yu =27 fuu(0).

By definition,

1 oo
" or

Fuul2) exp(—ir2)T(r) = —— |T(0) + 3 exp(—irz) (T(r) + T(r)) |,

2

T=—00 =1

so we have

¥, =T(0)+ E (D(r)+T(7)).
T=1
It follows that

IGY = Su— S TG).
i=h

J h
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This again holds jointly for any 0 < h <p.

vi) Note that the Lebesgue integral of Xp(r) with respect to r is given by

t=1 T’%
| (r2e)+ (1
:—Z =Y ug |+ (Tr—(t—1))dr | -w
Tt:l Ts:l %
1 1 & 2 (t-12) t—1
- S, T
T32t§“+ T;l <2T2 272 T |"

By implication,

1 & L 1
W;St_le XT(’I”)CZ’I”—§ T3/2ZUt XT _ﬁ XT(].)

It follows from the continuous mapping theorem and Slutsky’s theorem that

1
T3/ > Si1=g(Xp) - o7 m1(Xr)

A g(A-) = A-/Ol W™ (r)dr.

vii) As above,

M'ﬂ
e

/XT YXr(r)dr = - Xo(r)Xp(r)dr
=1/ [ F
1 I
TZ/ “1 ) (St—1+ (Tr = (t—=1))uy) (St—1+(TT—(t—1))ut)'dr
=175 F)
1< L L /
=72 | pHSia S /t_Tl(Tr—(t—l))dr "
1 T t %
+fz; [Ut </ (Tr—(t— ))dr) Sy +uy (/H(Tr— (t— 1))2dr> ué}
T
1 XT: / XT: , ) 1 XT: /
= 2 Stflst—1+7 (Si—quf+upSi 1) + =5 Y ugus.
T2 t=1 2T2 t=1 3T2 =1
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It follows that

1 d / ! / 1 1 a / / 1 1 a /

t=1

1 (1& 1 (1&
= QQ(XT) — ﬁ (T Z (St—lu; +'U/tS£1)> — 37T (T Z’Uqué) )
t=1

t=1

the last two terms converge in probability to 0 by the previous results, and by the

continuous mapping theorem,

viii) For any h >0,

— Ut—h — 7379 toug_p = 372 (T - t)ut—h
\/Tt:h-&-l T3/ t=h+1 T3/ t=h+1
1
= W(UT—h—l+2'UT—h—2+"‘+(T—h—1)‘“1)
1 T—h-1 T-2 1
t=1 t=1 t=1
1 T—h

- m t_zl St_l.

From viii), we can deduce that

1 =h T-h 1 (T—h
W tz::l Si1=G <T,XT> - ﬁﬂ' <T’XT> )

and
1 & »
m Zt cUt—p — 0,
t=1
so we have
Ly Ly Ly
— N tup = —e o+ = > toup,
T3/ t=1 T3/ t=h+1 T3/ t=1
1 T 1 T—h 1 h
LT SR oy SR S o PR
\/Tt:h—i-l T3/ t=1 T3/ t=1
T—h (T—h T—h
(T ) (T ) o
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(1L, W™) = GOLW™) = A <W"(1) _ /01 W"(r)dr) .

By Ito’s lemma, for any 1 <1i <mn,
d(rW;(r)) = Wi(r)dr +rdW;(r),
so that
1 1
Wi(1) = / Wi(r)dr—l—/ rdWi(r).
0 0

Therefore,

W™(1) —/01 W™ (r)dr = /01 rdW"(r),

so the limiting distribution can be written as

1 & d 1 n
T3z ;t-ut_h—ﬂ\-/o rdW"(r).

ix) By the same process as the preceding result, we can see that

T 1 T 1 T t—1
?Z&t—l —m;t‘ﬁt—l = W; (;&;) .

Analogously to viii), we can deduce that

1 T-1 t 1
- ; (;e> 7/0 Vir(r)dr = o(1),

and by the continuous mapping theorem,

1

Furthermore,
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so we can see that

x) Note that

/017" Xr(r)dr = (rSecs + (T4 — (t = 1)r)ur) dr

T
72 S
t=1 T’T
T (1 1 T

—Z t-Sy 1 — ——=S;_ 1)+Z(3t—1)ut

VT = 2T2 675/ —

1 & 1 & 1 & 1 &
= 752 ;t'st‘l "~ 975/2 ;ST‘l toren ;t'ut 675/2 ;“t'

by the continuous mapping theorem and Slutsky’s theorem.

To see that the convergence results hold jointly, note that each term can be expressed
as the sum of, on the one hand, continuous functions of V7, X7 and the partial sums
VI ,Vg,bl%,m , UL, and on the other, a term that converges to 0 in probability.
Therefore, the continuous mapping theorem and Slutsky’s theorem imply that the terms

all converge to their weak limits jointly.

Q.E.D.
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Items iv) and v) can be further simplified when n = 1. In this case, denoting ¥ = o2 > 0 and
Yu=V(1)Z¥(1) = 02¥(1)2, the above theorem tells us that

Ly 1 ! 2(1)2 T
Tzst—lut 4 502\11(1)2/ W)y dwt(r) + o (1) -1(0)
t=1 0

2
2 52 2
10 <02 [ Wl(r)dWl(r)+W> |

1 & a1
Tzst—lutfh -5
t=1

[\]

2\11(1)2W1(1)2+F(0)+2h§r(j)] .
j=1
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Cointegration

Here, we investigate the properties of cointegrated time series using the limit results established
above. We first define what is meant by I(1) and I(0) time series, and then define cointegration of
I(1) processes. We derive the asymptotic properties of the Phillips-Ouliaris test for cointegration,
and afterward move onto cointegrated VAR systems, or VECMSs. There, we derive the Granger
representation for such systems, and investigate methods, including Johansen’s MLE approach
and Ahn and Reinsel’s least squares approach, to estimating VECMs.

As above, we let (Q,H,P) be our underlying probability space.

5.1 I(1) Processes and Cointegrated Time Series

5.1.1 I(0) Processes

Let {Y:}+ez be an n-dimensional time series. We say that {Y; }+cz is I(0) if it is a weakly stationary

and causal linear process; that is, if

o There exist some p € R™, an i.i.d. process {e; }e7 and
« A one summable sequence {¥;},cny of n x n matrices such that

e For any t € Z,

[o.¢]
YVi=p+Y Vj-ey,
=0

where the limit is both in L? and almost surely.

We limit the class of I(0) processes, which is often taken to be the class of weakly stationary
processes in general, to the class of weakly stationary causal linear processes with i.i.d. innova-
tions and one-summable coefficients, for analytical convenience. Note that any stationary VAR
process with i.i.d. innovations satisfies the above conditions and is thus I(0), which demonstrates
that our definition is not as restrictive as it first seems.

It is also important to note that the first difference of I(0) processes is again 1(0). To see
this, let the I(0) process {Y;}+cz be defined as

oo
YVi=p+Y Ve
=0
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for any ¢t € Z. Then, the first difference {AY;}:c7z is given as

o0 o0
AY; =Y —-Y :Z\I’j'etfjfz\l’j'etflfj
=0 =0

oo
= Woes + Z (\I/j — \Ifjfl) Et—j
j=1
for any t € Z, where the last equality is justified because the series Z]O‘io U, -g4_; converges
absolutely with probability 1 for any t € Z. Defining ©g = ¥o and ©; = ¥; — ¥,_; for any
j € N+a

o0 o o
Yo g 1O <5 15l + 325 1]
j=0 j=0 j=1
o0 o0 o0
=2 NI+ G =1 1%l + > 1
=0 =1 j=1
o0 o0
=23 5150+ 111
j=0 j=0

The rightmost term is finite due to the one-summability of {W;};en, so it follows that {©;};en

is also one-summable; it follows that the process {AY;}icz, written as
o
AY;g = ZGJ cEt—j = @(L)&g,
§=0

is an I(0) process with mean zero.

5.1.2 I(1) Processes

We say that the n-dimensional time series {Y;}iez is I(d) for some d > 1 if its d difference
process {(I, — I,L)%Y; }4e7 is 1(0), or equivalently, a weakly stationary causal linear process with
i.i.d. innovations and one-summable coefficients. Of special interest are I(1) processes, which are
processes whose first difference process {AY; }iez is 1(0).

Suppose that {Y;}+ez is an I(1) process, and define uy = AY; =Y; —Y;_; for any ¢ € Z. Then,
{ut}tez is a weakly stationary causal linear process with mean ¢ € R™, i.i.d. innovation process
{et}+ez and one-summable coefficients {¥;};cn; by the Beveridge-Nelson decomposition, there

exists a weakly stationary causal linear process {n;}+cz with mean zero such that
t

t
YZ_YO:Z’LLt:6t+\11(1)‘255+77t_7707
s=1 s=1
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or

t
Y = 3t + ‘1’(1)‘;65 + 2+ (Yo—m)

Deterministic Trend Cycle Initial Values
N———

Stochastic Trend

for any t € N with probability 1. We say that {Y; };en is non-stationary if § £ 0 or ¥(1) # O; the
latter condition is referred to as the "no MA unit root” condition. This definition is motivated
by the fact that, if 6 =0 and V(1) = O, then for the inital value Yy = 7y, we have Y; =, for any
t € N, which renders {Y;};cny weakly stationary.

5.1.3 Cointegrated Processes

Let {Y;}1ez be an n-dimensional I(1) process. {Y; }1en is said to be cointegrated if there exists a
non-zero vector 3 € R™ such that {f'Y; }ien is weakly stationary for some initial value Y. The

vector 3 is called a cointegrating vector for {Y;}sen.

Let {Y;}icz be an n-dimensional I(1) process; we can carry over the Beveridge Nelson de-
composition used in the previous section, so that
t
Yy =6t 4+ (1) Y ectn+ (Yo —1mo)
s=1
for any t € N with probability 1. This representation allows us to obtain a characterization of
the space of all cointegration vectors, which we denote by V and refer to as the cointegrating

space.

Suppose that 5 € R" is a cointegrating vector for {Y;}ien. Then,

t

B'Yy=p'6t+ Y1) > e+ B+ (Yo—no)
s=1

defines a stationary process {3'Y;}ien for some choice of Y. If 860 #0 or 5/¥(1) # 0/, then
for any choice of Yp, 8'Y; will possess either a deterministic time trend or a stochastic trend.

Therefore, a necessary condition for cointegration under the cointegrating vector 3 is that
B'6=0 and V¥(1)B=0.

That is, V' C Ny N Ny (1), where Ny and Ny (1) are the null spaces of the linear transformations
0" and ¥(1)" defined on R™. Since the intersection of two vector spaces is also a vector space,
Ns M Ng(1y is a linear subspace of R".

On the other hand, suppose that 8 € Ng N Ng(;) and S is non-zero. Then, 6 =0 and
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B'U(1) =0, so that
B'Yy = B'm+ (Yo —m0)

for any ¢t € N, and given initial value Yy = ng, 8'Y; = 8'n; for any t € N. The weak stationarity of
{nt}+ez implies that {5'Y; }en is also weakly stationary, and as such f is a cointegrating vector
for {Y;}ien. We have thus shown that (Nss N Ng(iy)\ {0} C V, and putting the two results

together, we can see that the space of all cointegrating vectors is characterized as
V = (N5/ N N\I/(l)/) \ {0}

This shows us that the cointegrating space V augmented by the zero vector 0 is a linear subspace
of R™; for simplicity, denote the augmented cointegrating space by V=V U{ 0} = Ny NNy -
The rank of V is called the cointegrating rank, and any basis of V is called a cointegrating basis
for {Y; }+en; since basis vectors must be non-zero, the cointegrating basis consists of cointegrating
vectors.

Let ¢ be the cointegrating rank and {3i,---,5,} C V a cointegrating basis. Define

B
B=|:
By
Because f3; € Ny N Ny(q)y for 1 <i<gq,
BY; = Bn

for any t € N under the initial value Yy = 79. Thus, { BY; }+cn is a g-dimensional weakly stationary

causal linear process.

Lemma (Cointegrating Rank of a Non-Stationary Cointegrated I(1) Process)
Let {Y; }1ez be an n-dimensional I(1) process. If {Y; };en is non-stationary and cointegrated, then
its cointegrating rank ¢ cannot be 0 or n.
Proof) We continue to rely on the Beveridge-Nelson decomposition of Y;, which tells us that
t
Y, =0t+W(1)-> es+m+(Yo—mo)

s=1

for any t € N with probability 1. Let V be the cointegrating space of {Y;};en, and V

its extension to a vector space. The cointegrating rank ¢ is the dimension of V.

Suppose that ¢ = 0. Then, V = Ny N Ny(1y contains only the zero vector, which implies
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that
V= (N5/ mN‘II(l)’) \ {0} - Q),

or that there are no cointegrating relationships among the elements of Y;. This contra-

dicts the fact that {Y;}en is cointegrated, so we must have g > 0.

On the other hand, suppose that ¢ = n. Then, Ny N Ng) =R", which implies that
Ng: = Ny(1yy =R". Thus, 6 =0 and ¥(1) = O, which contradicts the non-stationarity
of {Y;hien (0 #0 or ¥(1) # O). It follows that ¢ < n.

Q.E.D.

Of particular interest is the case § = 0. In this case, the dimension of V = Ny (1) is exactly
the cointegrating rank. Denoting the cointegrating rank by 7, by the dimension theorem we can
see that

0<rank(¥(1))=n—r<n.

Since the rank of ¥(1) dictates the number of linearly independent and thus distinct random
walks comprising the stochastic trend of Y;, we call n —r the number of common trends. Thus,
the larger the cointegrating rank, or the more series are cointegrated, the more the dynamics of

the n series are driven by a small number of common stochastic trends.
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5.1.4 The Phillips-Ouliaris Test for Cointegration

Before studying a cointegrated system, we must first verify whether the system is cointegrated
in the first place. The first of these types of tests was developed by Engle and Granger. Their
test is based on the intuition that, if there is no cointegration between variables, then any
linear combination of the variables is non-stationary. This indicates that the OLS residual from
regressing one of the variables on the other ones must be non-stationary, and as such they
propose running an ADF or PP type unit root test on the residuals. In this manner, the null of
no cointegration is transformed into a null of a unit root in the residuals.

The Phillips-Ouliaris test extends the Engle-Granger test and derives the exact asymptotic
distribution for the test statistic, which differs slightly from that of the ADF and PP tests. In
addition, they implement a bias correction in the vein of the PP test to obtain a pivotal distri-
bution for the test statistic. The exposition here follows that of Phillips and Ouliaris (1990).

The model is one in which there is at most one cointegrating relationship, where the vari-
ables have been ordered so that the last n —1 variables are not cointegrated. Formally, let
{Y; = (yt, X{)' }tez be an n-dimensional non-stationary I(1) process, where {X;}:ez is not coin-
tegrated. Let {AY;}icz be a weakly stationary causal linear process with one summable coeffi-
cients {V,}en, mean 6 € R and i.i.d. innovation process {&; }+cz with positive definite variance
¥ € R™"™ and finite fourth moments. By the Beveridge-Nelson decomposition, we have

¢
Yy =0t+W(1)-> es+m+ (Yo —no)-
s=1
for any ¢ € N with probability 1, where {n;}+cz is an absolutely summable weakly stationary

linear process. The augmented cointegrating space Vis given as
V = N5/ ﬂN\I,(l)/.
Define the long run variance ¥, = ¥(1)XW¥(1)’, and partition it as

Dull  Bu,12

Y=
Yu21l Y22

conformably with (y;, X/). We can now derive a convenient necessary and sufficient condition

for cointegration using X,,:

241



Lemma (Characterization of Cointegration)
Let {Y; = (v, X}) }+ez be an n-dimensional non-stationary I(1) process, where {X;}icz is not
cointegrated. Retain the notations above, and let the long run variance ¥, be defined and
partitioned in the same way. Then, ¥, 99 is positive definite.

Suppose, in addition, that Ny 1) C Ny, so that the augmented cointegrating space V equals
the null space of ¥(1)'. Then, {Y;}+cz is cointegrated if and only if

—1
Y12 = Y11 — V1220, 59200,21

is equal to 0.

Proof) We first show that ¥, 92 is positive definite. Since {X}}+cz is not cointegrated, if
(0 g)e)=0
for some € R" !, then we must have 8 = 0; otherwise,

B/Xt = 5/77152)

for any t € N when the initial value Yy = g, where 77152) collects the last n — 1 elements

of n;. this makes § a cointegrating vector for {X;},en, a contradiction.

Now choose some 3 € R*!; since ¥, is positive semidefinite,

/ / 0
62u7226:<0 B)Zu (5) 207

which tells us that ¥, 92 is also positive semidefinite. To show that X, 20 is positive
definite, suppose '3, 226 = 0. Then,

0=(0 7). (g) ~ (0 g)e@zuQy (g) .

Since ¥ is positive definite, this implies that

(0 _
w(1) (5)—,

and we just showed above that this implies 5 = 0. Therefore, 8%, 223 > 0 if and only

if 8 is non-zero, which tells us that X, 22 is positive definite.

Define ¥, 1.2 as above. Then, since ¥, 1.0 is the Schur complement of the positive
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semidefinite matrix X,
det(X,) = det(zwl.g) . det(zugg) >0,

and since det(X,, 22) > 0, we have det(3,, 1.2) = 3 1.2 > 0.

Suppose ¥, 1.2 > 0. Then, det(X,) > 0, and thus
Y, =0 (1)SP(1)

is positive definite. 3, and W(1)" share the same null space and are linear transforma-
tions on the same space R”, so it follows that they have the same rank; in other words,
U (1) has full rank n. Otherwise, if ¥, 1.2 =0, then X, and by extension ¥(1), has rank

n—1.

Assume now that the augmented cointegrating space of {Y;}iez is V = Nyqy. If
Yu1.2 = 0, then Nq,(l)/ is a subspace of dimension 1 and thus V contains a non-zero
vector, meaning {Y; };cz is cointegrated. Otherwise, V = {0} and {Y; };cz is not cointe-

grated.

Q.E.D.

In light of the above result, the null of no cointegration is equivalent to putting ¥, 1.2 > 0.

The Phillips-Ouliaris test considers the OLS residual ; from regressing y; on an intercept
and Xy; letting i and BT be the OLS estimators of the intercept and coefficient terms estimated

using the sample up to time 7T,
iy = ye — fir — P X
for any 1 <t <T. We consider the asymptotic behavior of the Dickey-Fuller test statistic

by = S iy
==

>i—a U7y
Intuitively, if pr is close to 1, then i, is close to a unit root process and it is likely that v, is
cointegrated with X;. Thus, we reject the null of no cointegration if pr is significantly smaller
than 1. To define what is meant by "significantly smaller”, we derive the asymptotic distribution

of pr below:
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Theorem (Asymptotic Distribution of Phillips-Ouliaris Test Statistic)

Let {Y; = (v, X}) }+ez be an n-dimensional non-stationary I(1) process, where {X;}icz is not
cointegrated. Retain the notations above, and assume that § = 0, so that there is no deter-
ministic time trend. Suppose the autocovariance function of the mean zero weakly stationary
linear process {AY; = e;}yez is given as I': Z — R™ ", and let A =322, T'(j)". Let {W"(r) =
(Wi (r), W3 (r)") }rejo,1] be the conformably partitioned n-dimensional standard Wiener process
on [0,1].

Let {W"™(r) = (W™ (r),W3*(r)") }rej0,1) be the n-dimensional Brownian bridge defined as

W™ (1) = W™ (1) — /O W (s)ds

for any 7 € [0,1], and let {Q()},¢[o,1] be the stochastic process defined as

@ =) ([ wrw ey ([ wewgera) wie

for any r € [0,1]. Then, under the null of no cointegration, there exists an n-dimensional random

vector 7 such tat

4 [ QRUAQ() 1 1

JoQ(r2dr T JiQ(r)%dr 25uiz 7 (Zu =T(0))n.

T(pr—1)

Proof) By the previous lemma, X, 99 is positive definite, and if {Y;}cz is not cointegrated,
Yu,1.2 > 0. Denoting AY; = e, = U(L)e; for any t € Z, define the process {Z; }1en as

t
Zi=Y,~Yo=3 e,

s=1

for any ¢ € N; note that Zy = 0. Letting {B"(r) = (Bf(r), B3(r)") };¢[o,1] be the n-
dimensional Brownian motion with variance ,, by the asymptotic results derived

above we know that
1 & d
—— Zet — Bn(l)
\/Tt:1
1z
— Zeteé N r'(0)
T t=1

1 T 1 00 ‘
TZZt_le%/o B™(r)dB™(r) + %y — S T(j)
t=1 =0

A

1 & a 1
T3 ZZt—l — / B"™(r)dr
t=1 0

244



1 <& 1
=72 S / B™(r)B"(r) dr.
=5 0

Since the only difference between Z; and Y; is the presence of the initial value Yy, the

above results hold unchanged for Y; in the place of Z;. Furthermore, since Y; =Y;_1 +e¢4,

T
7/2_: :T3/2ZYt 1+T3/2Zet
—>/ B"™(r
T2 ZY%Y; _TZ ZYt 1Y;f/ 1+T2 ZYt 1et T2 Zeth 1+T2 Zetet

4 /0 B™(r)B"(r)'dr.

Note that 3, is nonsingular due to the assumption of no integration, which means
3 B™(r)B™(r)'dr is positive definite-valued.

We now proceed in steps.

Step 1: Asymptotic Distribution of the OLS Estimators

Let (ﬂT,ﬁA’T)’ be the OLS estimators from the regression of y; on X;. By definition,

-1
A _ T 23:1 X£ Z?ﬂ Yt
Br ZthlXt Zthl XtX{ Zthl Xyt 7

and the residuals are given as

-t %) (5

for any 1 <t <7T. We can scale the estimators above as

VTjir _ VT 0] i
T Br O T-I,1) \Br

-1
_ 1 r%/z Zf,T:1 X£ ﬁ ZtT:1 Yt
T3/2 =1 Xt T2 D=1 Xe Xy T D=1 Xty

Note how the last term diverges because the speed at which they converge is 7%/2 and
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T2. Thus, we divide both sides by T', which reveals that

-1
Jhr _ 1 T i X| 75 i1 Yt
Br i1 Xe g Y XeX] 77 21 Xeys

1 len( / -1 1 p1
o By (r)'dr Jo B'(r)dr

Jo BE(r)dr [ BE(r)By(r)'dr Jo BE(r)By(r)'dr

This shows us that B is Op(1), and that fip diverges. In particular, using the formula

for block matrix inversion, we can see that
1 pn (Y pn.\ 1 pnx nk (! L1 o nk
(;T ﬂT) o [T (Jo BE(rydr) (fo BE*(r)By=(rydr) — (fy By (r) By (r)dr)
3 -1
or (Ji By () By (ry'dr) (J3 By (r) By (r)dr)
where {B™*(r) = (BY*(r), By*(r)")' }r¢[0,1] is the Brownian bridge defined as

for any r € [0, 1]. Note the similarities with the usual OLS intercept and slope estimators.

Step 2: Asymptotic Distribution of Test Statistic

Using the above result, we can derive the asymptotic distribution of the denominator

of the test statistic pr as follows:

1 —=hr
- ﬁzytzfl —2 (ﬁ ZtT:QZJt—l %ZtT:zyt—lXé,l) VT
=2 Br
T-1 1 T 1 -
+ (LﬂT Br}) T T3/2 i Xi 4 JTHT
VT LYo Xt i Xe1 X[y B

T3/
—>/ Bl (r
—(Jo By(r)dr  J3 By (r)BE(r)'dr)
1 WBpeydr N\ (i B

foan )dr fan ) By (r) dr foBz ) By (r) dr
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= /01 B (r)%dr — (/01 B?(r)dr)Q
+ (/OIB’f(r)dr> ( 1B2
—(/OIB?( dr>(/B r)BY (r ) (/B r) B ( )dr)

- [ mera=(f mromer) ([ srom ) ([ oo

Defining the univariate stochastic process {J(r)},¢[o,1] as

J(r) = B (r (/ By ds) (/ By* )m) 133*(r)

for any r € [0,1], the above result can be simply written as

ﬁDT—>/O J(r)2dr

Likewise, since

= y; — fir — B Xy

~ Al Al ~ Al
=Yi—1 — fir — BrXi—1 + e — Prea = Uy—1 + ey — Prexy,

5 r)’dr) (/IBS*(T)B ) (/ By*(r)B( )dr)

r) B ( )dr) .

where e, = (ey,€),)" is the conformable partition of the first difference e;, the numerator

of the test statistic is given as
T

Np=Dp+)Y <€1t - /3/T€2t) (]
=2

T T
=Dr+Y ewyp—1—Br Y eat—1

t=2 t=2

Br

- (Zthz €1t Zthz eltXt/A) (MT> +6T (Zt 2 €2t Et 2€2tXt 1) (ZT) .

Denoting Np — Dp = Ap, we can write

— = — e _1— o e _
T T Tt:2 1tYt—1 T thz 2tYt—1

1 -~
HT

- (ﬁ ZtTZQ €1t %Zfzz €1tX£_1) (\/g
T

Note that
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1 Jrhr
Tzeltyt—l - (% Z?:Q €1t %Z?:Q eltX£_1> (\/E
t=2

T

1
4, / B (r)dB™(r) + A1

~Bi(1 /B” Y+ By (1 (/ Bi(r dr) (/ B (r) BY*(r) ) (/ BE*(r) B (r dr)
( / Ba(r)dBi (r +)\12) ( / B (r) BY*(r ) ( / B (r) B (r dr)
—/B”* VABY (r (/B F)dBY (r )(/B ) B (r ) (/B ) B (r dr)
A= N (/ By (r) B (r ) (/ By (r) B (r dr)
— / LI dB ()
A1 — Ny < / B (r) B (r ) ( / B (r) B (r dr>

and similarly,

1 <& Jrhr
? Z €2Yt—1 — (ﬁ g e 7 Yis etié—l) (\/g

—>/B”* )ABY (r (/B r)ABL(r )(/B r) B (r ) (/B r) B (r dr)
N — ( / By (r) BE*(r ) ( / By (r) B (r dr)
:/1 J(r)dB (r)
< / By (r) BE(r ) ( / By (r) B (r dr>

Therefore,

—AT—>/ r)+n )\n,

where we define

1
" ( (Jo By (r) By (r )dr)_l (Jo BS*(T)B?*(TW))'

The convergence results above all hold jointly, so

Nr Ar  EAr
T(p —1_T(—1> T-—= =1
(pr=1) D Dr %DT
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W BIOAIE) 1
JEamzar  [Tae)dr

An.

Examining the nuisance parameter term n’An, we find that

n'An =1 (i F(j)’) 7

j=1
=7 (. —T(0)n—17' (if(j)) "
j=1
=17 (2, —=T(0))n—n' M.
Therefore,

1
n'\n= 577’ (Zu—T(0))n.

Step 3: Simplifying the Asymptotic Distributions

1
Define Loy = 25122 as the Cholesky factor of ¥, 22, and

ha = \/Eu,w = \/2%11 — Su12%, 25 5u21 >0
1\t
Lis =%y12 (&3,22)

Then, letting

we have

LI — % +L1,2L’12 L12L:22 _x..
LogLiy Lol

Therefore, LW™ and B™ are both n-dimensional Brownian motions with variance >,;
it follows that LW" ~ B™.

This implies that

B\ _ [l La2) (Wi} _ [laWi'+ LWy
By O Lyp) \Wp LyoW3 ’

so that
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(/OlBg*(r)B ) (/B ) B ( )dr)
)

~ L,QEI (/01 W (r)Wa* (r)' (lu-/ Wy (r) Wi dr—i—/ *(r)drL) )

=l L (/ ) (/ r)dr) + Loyt Ly

It follows that

J(r) = BP (r ( / By (s) B ds) ( / By )dr)lBg*(r)
e perenroyforespa) o] -

for any r € [0,1]. The asymptotic distribution of the test statistic is now given as

1 1
dfo +

fo er Q0 g e T O

T(pr—1)—=

Q.E.D.

As expected, the test statistic pp is superconsistent for 1 under the null of no cointegration;
if there is no cointegration, no linear combination of the variables yields a stationary process.
However, a nuisance term is present on the right hand side, which prevents us from actually
implementing the test in practice. For this reason, Phillips and Ouliaris propose a bias correction

in the same vein as the PP test.

The bias correction term is based on the observation that

)

is a consistent estimator of the random vector 7. Thus, provided that there exists a consistent

estimator f]u of ¥, and a consistent estimator 62 of I'(0), it follows that

(1 -8) (Bu—0?) (1%) Lo (Su—T(0)) .

Furthermore, we already saw that
1T

1 1
ﬁZat{li% J(r)2dr~2u,1.2-/0 Q(r)%dr.

t=2
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Therefore, we can construct the bias-corrected Phillips-Ouliaris test statistic

. A 1 N | 1 &,
Zr=T(pr—1)— B (1 —5%) (Eu -0 ) B : (T? Z“t—1>
t=2

By the result in the preceding theorem,

-1

2y 4 ho Q)AQ(r)
Jo Q(r)2dr

)

where the right hand side is a pivotal distribution.
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5.2 Estimating Cointegrating Relationships

Here we study methods to estimate for cointegrating relationships in the case that the cointegra-
tion rank is 1. We start with the Static OLS (SOLS) approach to estimating the cointegrating
vector, that is, via ordinary least squares from the first equation in the triangular representation.
Due to the presence of nuisance parameters in the asymptotic distribution of the SOLS estima-
tor, we introduce the Fully Modified OLS (FM-OLS) estimator, which provides a non-parametric
correction that yields a pivotal asymptotic distribution.

First we study Phillips’ triangular representation, which provides the basis for the estimation
methods studied later.

5.2.1 Phillips’ Triangular Representation

Recall that the augmented cointegrating space is a linear subspace. This indicates that any lin-
ear combination of cointegrating vectors is again a cointegrating vector, and we can exploit this

feature to derive a convenient representation for cointegrated systems.

Transforming the Cointegrating Basis

Let {Y;}+cz be a non-stationary and cointegrated n-dimensional I(1) process. Letting {AY; }iez
be a weakly stationary causal linear process with one summable coefficients {U;};cny and mean
6 € R", we showed above that the augmented cointegrating space V is the intersection of the
null spaces of ' € R*™ and ¥(1)' € R™*™:

V = Ngl ﬂNq,(l)/.

Let the cointegration rank be 0 < ¢ <n and choose a cointegrating basis {f1,--,5,} C V.
We proceed by induction. Since 51 # 0, it has a non-zero element; assume that the elements
Yit, -+, Yt are ordered so that 811 # 0. Then, we can define

{ﬁ£1)7 7/851)} C]Rn

as

B0 =g and pY=pi-Llpg foramy2<i<q.
11

P11

Then, since each ﬁi(l) is a linear combination of f1,---, 3, they are contained in V. To see that

{Bgl), e Bél)} is linearly independent, let

q
Zﬁ"ﬂi(l)zo
i=1
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for some r1,---,7, € R; then,

q 1 q q
Zm'@(l) =5 (7“1 —Zm) B+ ri-Bi =0,
i=1 1 i=2

=2

and since the cointegrating basis consists of linearly independent vectors,

ro=-=rg= 5 (7”1 Zn>—0
=2

which implies that r; = 0 as well. By definition, {Bgl),m ,6&1)} is a collection of ¢ linearly
independent subset of V; it is thus a cointegrating basis. In particular, the first column of the

g X n matrix

is the first standard basis vector in RY.

Now suppose, for some 1 < k < g, that we have constructed a cointegrating basis {55“, y ,55’“)} C

V such that the first & columns of the ¢ x n matrix

are the first k£ standard basis vectors in RY. Since ,6’,?1)1 is a non-zero vector, it contains a non-zero
value; since the first k& elements of 5k 1 are equal to 0, the non-zero element must be found among
the last n —k elements of this vector. Without loss of generality, assume that Y11 ¢,---,Y,; have

been arranged so that 515;121 k+1 7 0. We now proceed identically as above; define
k+1
{81, B} C R

as

(k+1) k+1 k Bk 1 .
/Bk;+1 - 5k+1 and Bi( ) = ﬂi( ) + ! 6k+1 for any i # k+1.
k+1 k+1 k+1 k41

5(k+1 . gD

Since the first & elements of ﬁk +1 are equal to 0, the first k£ elements of . Bq are
identical to those of B ,Bq The same line of reasoning as above leads us to conclude

that {,Byﬁl), “ee (kH } is a cointegrating basis, this time with the property that the first k41
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columns of

B(]H_l),
1
B(k-‘rl) —
B(k-{-l)/
q

are equal to the first k+ 1 standard basis vectors of RY.

Proceeding in this manner, by induction there exists a cointegrating basis { 6@ S ,BéQ)} cV
such that

B(Q) — : = (Iq 71*)
for some I' € R9*" 9,

Deriving the Triangular Representation

Define

for any t € Z. Letting {n; }+cz be the cycle component of Y}, we can see that
BWY, =Yy, — Ty = By, + BO(Yy— ) := p+uy

where u; is a g-dimensional weakly stationary and causal linear process with mean zero, and we

assume = B(Q)(Yo —1)) is a degenerate ¢g-dimensional random vector.

Letting v; collect the last n — g entries in W(L)e; for any ¢ € Z and 6(® the last n — ¢ entries

in 9, we finally have the triangular representation
Y = p+1Y? 44, and AY,® =6 4y,

for any ¢ € N. In other words, we have partitioned the data into two components: the first compo-

nent is Yt(z), which collects the n — ¢ common trends that drive the n series comprising Y;. Each

(2)

variable in Y™ represents a distinct common trend because all the cointegration relationships

are collected in the equation relating Y;(l) to Yt(2). Speaking of that equation, it shows that Yt(l)

(2)

contains the common trends Y, and a stationary noise comopnent p + u;.
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A More General Triangular Representation

Suppose 1; = o(L)e; for any t € Z, where {a;};ecy is an absolutely summable sequence of coeffi-

cients. Defining the absolutely summable sequences {O;};cy and {A;} en as
0;=(I, ~T)a; and A;=JU,
for any 7 € N, where J = (O In_q> e R(—9*" we can see that

w=(I, ~T)m=6(L)
VUVt — J\I/(L>€t = A(L)e’ft

(7 > 6]
€t = = Et—j.

It follows that {e;}+cz is a weakly stationary causal mean zero linear process with absolutely

for any t € Z, and as such that

summable coeflicients.

Therefore, we can see that any cointegrated non-stationary system {Y; }4cz can be represented

in terms of two equations

Yt(l) _ M_’_Fyt@) +6£1) and A}/t@) — 6(2) +6§2)7

where e; = (eil)/,eg),)’ is a weakly stationary causal mean zero linear process with absolutely

summable coefficients and we assume that (Iq —F) (Yo —no) is degenerate.

5.2.2 SOLS Estimation

The exposition here is based on Phillips and Hansen (1990). Suppose {Y;}:cz is an I(1) process
that is non-stationarity and cointegrated, with a single cointegrating relationship. As stated in

the previous section, this indicates that Y; can be partitioned as

and that there exists a weakly stationary causal linear process {e; = (u¢,v}) }+cz with absolutely

summable coefficients such that

y=p+0Xi+u and AX; =8+,
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for some 3,6 € R»! and p € R. The intuitive approach is to estimate /3 via least squares, by
regressing y; on X;. However, the fact that Y; is I(1) implies that this least squares estimate has
a non-standard asymptotic distribution; this is demonstrated below. We consider a case with no
deterministic time trend for simplicity. An extension to models with deterministic time trends
can be found in Hansen (1992).

Theorem (Asymptotic Distribution of the SOLS Estimator)
Let {Y; = (yt, X})' }+cz be an n-dimensional I(1) process that is non-stationary and cointegrated,

with cointegrating rank 1. Let the triangular representation of the system be

Y =p+ 08X+
AXt:'Ut,

for some p € R and 6 € R" ™1, where {e; = (us,v}) }iez is a weakly stationary causal linear process
with absolutely summable coefficients {®;};cn and i.i.d. innovation process {; }+cz with positive
definite variance ¥ € R™*" and finite fourth moments. Let I" : Z — R™*" be the autocovariance
function of {e;}icz, and assume in addition that the coefficients are one-summable and that
®(1) has full rank n, so that the long run variance X, = ®(1)X®(1)’ is positive definite. Lastly,

define
A1 A2 > X [(Eluguy] E[“Ovﬂ
A= = r = .
()\21 Agg) JE% ) ]Z%(E[vouj] E |vov}]

J

Denoting by (ﬂT,B’T) the OLS estimator of (u,") obtained using the sample up to time T,

we can see that

VG- o (1 i mseryar Bi()
T-(Br-5) Jo BE(r)dr o By (r)By(r)dr |\ Jy B§(r)dB(r) + Ao )

where {B"(r) = (B} (r), B§(r)')'};¢[o,1] is an n-dimensional Brownian motion with variance X,,.

Proof) The OLS estimator of (u,3") is given by

-1
At _ T Zthl Xé Zthl Yt
Br ZtT:1 Xy Zthl XtX{ Zthl Xty

—1
_ n n T Zthl ng Z?:l Ut ‘
B Y Xy Yl XeX] Y Xew

We can scale the estimators above as
VT (fir — 1) _ vT O A —p
7-(Br-8) O T Ii1) \pr—5
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-1
T
_ 1 ﬁEtTﬂXt, ﬁZt:l Uy
T?}/Q Y1 Xe %ZtT:I X X{ %ZL Xiuy

We investigate below the asymptotic distribution of each of these terms.

Define the process {Z; = (Z14, Z5,) }en as Zo =0 and

t t
—1Uu
Zi=Y es+Zy= (Zil )
s=1

s=1Us

for any t € N. By the asymptotic results derived above we know that

T 1 o]
=3 Ziael b / B (r)dB"(r) + Sy — S_T(j)
0 .
7=0

Since ¥, is nonsingular by assumption, fol B"(r)B™(r)'dr is positive definite-valued
Since Zy = Z;_1 +e; for any t € N, we have

1 & 1 & 1 &,
T3/2;Zt_T3/2;Zt‘1+T3/2;et_>/o B"(r)dr

1z 1 I 1 Z Lo o0
—X:Zte;5 = —ZZt,le;—l— —Zete; — / B™(r)dB"(r) + 3, — ZF(]’)
= T= T= 0 j=1

A
and

1 & 1 & 1 & 1 & 1 &
7ZZtZ£ = 72215712{_1 + 72Zt7162 + 7267&22_1 + 7Z€t€2
T t=1 T t=1 T t=1 T t=1 T t=1

d [* n n/ N
4 /0 B"(r)B"(r) dr.

Note that Zoy = Xy — Xy, so that the asymptotic results for Zo; apply for X; as well.
Specifically,

1 & a 1
— > X; = Bl (r)d
T3/2t§::1 t /0 5 (r)dr
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1 & 1
T ZXt s Ut i) / Bg(?")dB?(?") + )\21
t=1 0

T

1 1

=Y X4 /0 By (r) By (r) dr.
t=1

It now follows easily that

-1
VT (i —p)\ _ 1 priia X\ [ Jriim
T-(br-8)) \F=ylix AyLixx) \Lsh X

d

of 1 Jo Byrydr ) By(1) |
Jo B3(r)dr [y BE(r)By(rYdr |\ Jy BE(r)dBy(r) + Ao

Q.E.D.

Remarkably, the OLS estimator A7 of the cointegrating vector is superconsistent for the true
value 8. However, the formulation above is intractable for a number of reasons For one, due to
the dependence between the Brownian motions BY(r) and B} (r), the long run variance cannot
be easily disentangled from the asymptotic distribution. Moreover, the asymptotic distribution
contains a nuisance parameter Asq, which represents the sum of the covariances between vy and

uj for any j € N.

Thus, we require a modification of the estimator that has a pivotal asymptotic distribution.
There are many ways to do this; among the most famous is the Dynamic OLS (DOLS) estimator
introduced in Saikkonen (1991), which furnishes a parametric correction for the nuisance pa-
rameter by adding lags and leads of AX; into the regression. The technical details, however, are
complicated, so we instead focus on the FM-OLS estimator introduced in Phillips and Hansen
(1990), which provides a non-parametric correction. The relationship between the DOLS and
FM-OLS estimators is akin to that of the ADF and PP tests for unit roots.

5.2.3 FM-OLS Estimation

We retain the notations introduced in the previous theorem. The FM-OLS estimator is based

on the modification of the error u; to form the new error process

+ _ —1 _ —1
Ul = U — 2%122%221),5 = (1 —Zu7122u’22) et
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for any t € Z, where {u; };cz is a mean zero absolutely summable linear process. Given a con-
sistent estimator 3, for the long run variance ¥,, and a consistent estimator \ for Z?io NG
define

+ _

S S—1
Yi = Yr — D122, 200t

and
St a o el s
AT = Ao1 — 128, 99 A02,

where v; = AX;. Then, the FM-OLS estimator is the OLS estimate from regressing ;" on X;

and an intercept term with an additional correction term A*: formally, we define the FM-OLS

estimator (ut,3%") of (u,B') as
-1
e 9] ()5
¢

T 0

T -\t

Yy
X ty;r

i

+
Br -1

T Y X|
S Xy Sl XeX]

(5
)

Zthl y;r
S Xy T2

) |

We show below that the FM-OLS estimator converges to a pivotal distribution.

Theorem (Asymptotic Distribution of the FM-OLS Estimator)

Let {Y: = (yt, X})' }iez be an n-dimensional 1(1) process that is non-stationary and cointegrated,

with cointegrating rank 1. Let the triangular representation of the system be

yr = p+ X+
AXy =y,

where we retain the assumptions and notations of the previous theorem. Then,

(Joy wg(rydr) Ly

Lo (fol WQ"(T)CZT> Lo (fol WS(T)WQTL(T)/dT) 5

VT (1if — 1)
T- (5% -8)

1 wi(1)

d
— 01

)

Las (fo W (r)dwy (r))
where {W"(r) = (W' (r),W3'(r)") },¢jo,1] is an n-dimensional standard Wiener process on [0, 1],

1
3 2 —1
Lyg=%799 and o7 =Xy 1.2 =23y11 — Yy 12X, 203021
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Proof) By definition,

Y =y — iu,mi;éﬂt
= p+ B X +uy— 2u,122;§21}t
= p+ B Xe+uf + (Zu,lzzléz - iuﬂi;éz) Ut

for any ¢ € N, so that

—1
Hp _ T Y1 X POARE T
B SEXxe Y x X ST Xyt —T-A*

1
—(# T Y X| ST uf
o + T T / T +
B Y1 Xt Do Xe X S Xy
- —1
1 i1 X{ 0
YLx SE xx)) \T-At

-1
T XLX ST e ey
* - = S22l — Su S L)
This reveals that

(¢T@¥—@):( 1 ﬁmzipw>“<x%szr)

(85 -8) Ayl X YL xx) \EYl Xt

1 T AN
_ 1 377 2ot=1 X1 0
9 i X 2 e X X] AT

—1
> A A I ey
+ T8/2 2at=1“%¢ VT —t= 2%122*12272%122*122 )

(T:‘}/2 Z?:l Xy 7}2 Zz:l XtXé % Z?:lXtvé ( u, u, )

Letting {B"(r) = (BY(r), B3(r)") }sejo1] be an n-dimensional Brownian motion with

variance X, by the asymptotic results in the previous thereom we have

1
T

3

(1)
/1 B"™(r)dr

T
Z €t i) B
t=1
T

Z %
=1

1
T3/2 tZ 0
1 & a [t o0
TZZteQ—)/O B"(r)dB”(r)’—f—Eu—ZF(j)
t=1 j=1

A
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1 & 1
EZthgi /O B™(r)B"(r) dr
t=1

for the stochastic process {Z; = (Z1¢, Z%;) hen with Zy = 0 and defined as

t t

11U

thj :€3+Z0: Ziil s
s=1 Z

s=17Us

for any t € N. We noted earlier that, since Zo = Xy — X,
! XT:X 4 / ' BI(r)d
— ; 5 (r)dr
T3/2 — 0
1 4 / d L n n /
TZXtet%/O By (r)dB™(r) +()\21 )\22)
t=1
1 & a 1
—QZXtX£—>/ B (r)By (r)dr.
== 0
In particular,
1 T
— uf =(1 =3, 12275) — e
\/TZ t ( u,12 u,22)ﬁ; t
1
ey
—Euzzzu,ﬂ
1 1 <& 1
_ Xtu?—:< Xt.e;(). B
T ; T ; —%, 5o Tu,21

! n n / 1
( ; B3y (r)dB (7’)) (_2;522%21 )

+ (Ao = Xpo Xy 30T )

1

These asymptotic results tell us that

1
1 ﬁZthl X ﬁZthl U;r
7 i1 Xt gz i XoX| 3 Xy

d 1 ) By(r)dr B™(1) 1
- 1 1 ! 1 / —1
Jo B (r)dr [ By (r)By(r)'dr Jo B2 (r)dB"(r)" | \ =2, 550,21

. 1 JEBy(rydr \ 0
Jo B3(r)dr [y B3 (r)By(r)dr Aa1 — Moo Sy 5o S 21
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and

-1
1 s Sy X 0
Y X e Y XX At

a 1 JEBy(rydr \ 0
Jo By (r)dr [y By (r)By(r)'dr Aot = Ny Zo 5o Tuo1 )

As for
1 T A 1 T
1 T372 2 =1 X4 ﬁzzﬁ:l Ut (E 122_12 _$ 122_12 )’
u, ,22 u, ,22 ’
7T§/2 Y X, 7 Y XX =5 X ! “

since the first two terms are O,(1) and the last one is o0,(1), the entire term converges

to 0 in probability. Thus, we have
VI(ih =)\ o (1 faBseyar \ [ Bray 1
T (BF - B) JEBy(rydr LBy By(rydr ]\ JiBE(r)dB(r) ) \~SihSun )

Define the univariate stochastic process {J(r)},¢(0,1) as
J)= (1 ~Su125,5) B"(r) = B (r) = D15, 4, B3 (1)

for any r € [0,1]. We can see that {J(r)},¢[o,1) is @ Brownian motion with variance equal

to

1 _
(1 —Zu,mz,:ég) Y ( sl 5 ) =Yy12 = Yy 11 — Z311,1221&22%21-
224,21

In addition,

E[B%)J(r)]—E[Bg<r>B”<r>’]( ! )

-1
_Eu,222u721

1
e mea) (Lt -0

so that {J(r)},epo,1) and {BF(r)} [0, are independent Brownian motions with vari-
1
ances equal to X, 1.2 and ¥, 29, respectively. Therefore, we can write 2571,2 -W1{ and
1

%2 99 - W3 in place of J and By, which yields

VI o (0 gBeye (0
T(8f-8) Jo Ba(r)dr [y By(r) By (rYdr )\ Jy B3 (r)dJ(r)
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1 (wgpeyar) oy, W)

~ 0‘1 . Y
Los (Jy WE(r)dr)  Las (Jy WS (r/W3(r)'dr) L) \Las (Jo W3 (r)dwy(r))
where
1
Loy = 25722 and a% =2y 12
Q.E.D.

It is clear that the resulting asymptotic distribution is free from any nuisance parameters
and, since we have estimates of o2 and Y22, pivotal. Using this distribution, we can obtain
the limiting distribution of the usual Wald-type test that imposes linear restrictions on the
cointegrating vector under the null.

First note that

T8} —B) > o [LQQ( / )dr) } (ng/ dWl()>

where {W3(r) }r¢[0,1] is the Brownian bridge defined as

W (r) /W2

for any r € [0,1]. We denote

H = Lo ( /0 1 W;*(r)wg*(r)dr)

1
J= L /0 W (r)dW P (r).

From the proof above, it is clear that
d~rdr d
Ly xixy S
t=1
where the superscript d indicates that the variable has been demeaned.

Now consider testing the null hypothesis Hy : R = q against the alternative Hy : RS # q,

where R € R™*("=1) ig a matrix of full rank m. Then, under the null,

T(Rfr —q) = R-T(8} - B),

so we can consider the Wald statistic
-1

T -1
R (Z X;fX,fl’) R

1
Wr = = (R} —q)
71 =1
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where 62 is a consistent estimator of o?. Then,
-1
1 + " i 1 4 d ~yrdr / +
Wr= = |T(8; = B)| R |R| = > X{X{" || R[T(5f - 5)]
1 t=1

4 J'R'[RHR ' RJ.

Given W3, due to the independence of W3' and W{* we can see that the distribution of J is

normal with mean 0 and variance H:
J| W3 ~N(0,H).

Therefore, given W, J'R'[RHR'] ' RJ follows a chi-squared distribution with m degrees of
freedom. Since this distribution does not depend on W3', we can conclude that the unconditional

distribution of J'R'[RHR']"* RJ is x2,, and as such that
Wr 5 X2,

This demonstrates that we the Wald test statistic constructed using the FM-OLS estimator has

the same asymptotic distribution as the usual Wald statistic.
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5.3 Vector Error Correction Models

So far, we have only considered the estimation of cointegrating relationships under the triangular
representation, and even then only under the assumption that there is at most one cointegrating
relationship. Here, we study a model that imposes a semi-parametric structure on the time se-
ries of interest in exchange for allowing for the consistent estimation of the cointegrating space
itself under a fixed cointegrating rank (which is allowed to be greater than 1). The structure is
identical to that of the VAR case, except that now we use an equivalent error correction rep-

resentation, to be defined below, as a means of accounting for the non-stationarity of the process.

Let {Y:}1ez be an n-dimensional time series that follows the (reduced form) VAR(p) process
Y;‘ - 5+(I)1Y;f—l +"'+(I>py;f—p+€ta

where {e;}:+cz is a white noise process with positive definite covariance ¥ € R™*" § € R" and

¢y, , P, € R"*". Denote the AR polynomial corresponding to this process by
AL)=1,—®1-L—---—®, - LP.

We saw in the section on vector autoregressions that {Y;}:cz is stationary with a causal linear

process representation if the eigenvalues of the polynomial
|A(z)| =det(L, —P@1-2—---— D, 2P)

lie outside the unit circle. We are now interested in what happens if |A(z)| possess a unit root,
that is, when |A(1)| = 0. It can be shown that there is a very close connection between the
number of unit roots of |A(z)| and the non-stationarity of {Y;}iez.

In what follows, we deal with the case where the roots of |A(z)| are either on or outside
the unit circle. When |A(z)| has roots within the unit circle, the companion matrix of {Y;}:cz
has eigenvalues greater than 1 in magnitude and thus it becomes an explosive process; we are
precluding this case. In this context, we first show that a necessary condition for {Y;}:c7z to be

I(1) is for |A(z)| to have at most n unit roots and at least one unit root.

Lemma Let {Y:}icz be an n-dimensional time series that follows the VAR(p) process
Yi=0+®1Y 14+ +P,Yp+e4,

for an n-dimensional i.i.d. process {e;}+cz is a white noise process with positive definite covari-
ance ¥ € R™*™, Letting A(z) be the AR polynomial corresponding to the above VAR process,
suppose |A(z)| has roots on or outside the unit circle.

In this case, if {Y;}iez is I(1) with innovation process {e;}icz, then |A(2)| has at least one

unit root and at most n unit roots.
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Proof) Suppose initially that {Y;}icz is I(1) with innovation process {e;}1ez. Then, {AY;}iez
is I(0) with innovation process {e:}:ez, that is, there exists a one-summable sequence
{¥;}jen and p € R™ such that

o0
AY,=(1-1L)Y; :,LL+Z‘I/j'5t—j =p+Y(L)e
j=0

for any t € Z, where ¥(1) = O. Since A(L)Y; = +¢; and (1 —L)J =0, we have
(1 - L)e = (1- D)A(L)Y: = A(D)AY; = AL+ A(L)W (e,

which implies that A(1)u =0 and

for any z € C. Therefore,
(1—2)" =[A(2)¥(z)| = [A(2)] - [¥(2)].

for any z € C, and |A(z)| can have at most n unit roots.

On the other hand, if |A(z)| has no unit roots, then
0=A(1)¥(1)

and |A(1)] # 0. By implication, A(1) is nonsingular and ¥(1) = O, which contradicts
the no MA unit root condition of I(0) processes. Thus, |A(z)| must have at least one

unit root.

Q.E.D.

Since we are interested in I(1) processes, the above lemma shows that we need only consider
the case where |A(z)| has at most n unit roots. The case where |A(z)| has no unit roots (it
has roots outside the unit circle) was already considered in the section on stationary vector

autoregressions.
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5.3.1 VAR Processes with Finite Starting Times

In this section we briefly touch on VAR processes that start from a finite time, say, tg € Z. We
show that, in this case, there exist appropriate initial values such that the eigenvalue condition
is sufficient to ensure the stationarity of the VAR process; the L?-boundedness condition, which
usually cannot be assumed a priori when it comes to non-stationary processes, can be omitted.

Suppose {Y;}+>4, is an n-dimensional time series that follows a mean zero VAR(p) process
Yi=®1Y; +"'+(I)pyzfp+5t

for any t > tg+p, where {e; }+cz is a white noise process with positive definite covariance matrix
3 e R™*™, to € Z serves as the finite starting time for this VAR process. The companion matrix

is, as usual, given by

o, o, P,
I, -~ O O

F — ) . ] E Rnpxnp7
o I, O

and the companion form of the VAR process is

: ;
7y = : =FZ, 1+
Yi pt1 0
—

for any t >ty +p. We can now show the following result:

Theorem (Stationarity of VAR Processes Started at Finite Time)
Let {Y;}+>4, be the VAR(p) process defined above. If the eigenvalues of F' are all contained

within the unit circle and the initial values Y;,4,—1,---,Y}, are determined as
Y;50+P*1 00
= Ztytp-1 = ZF] “Uto+p—1-j-

i=0
Y,

Then, {Y;}+>¢, is a stationary VAR(p) process with causal linear process representation
o0
Y, = Z U ep
§=0

for any t > to, where {¥;};en is a one-summable sequence of n x n matrices.
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Proof) We showed when proving the sufficiency of the eigenvalue condition for stationarity

that, if the eigenvalues of F' are all contained within the unit circle, then

0o
Z]HF]H < +o00.

Jj=0

and [I,, — F' is nonsingular. It follows that the vector
0 .
ZF] . utfj
§=0
is well defined for any t € Z as the almost sure and L? limit of the sequence

{g%)pj.utj}

meN .

As such, the statement

(o]
Ziotp—1 = ZF] “Uto+p—1—j
Jj=0

is well-defined. For any t > tg+ p, it now follows that

Zy=FZy 1 +uy

t—to—p
_ i t—to+1—
= > Fluj + FT P 7000
j=0
t—to—p )
_ J . (t—to—p)+j . )
S P SR
Jj=0 Jj=1
0 .
:ZF]-ut_j.
Jj=0

Thus, {Z;}¢>1+p—1 is a weakly stationary causal linear process with one-summable

coefficients.

Letting ¥; be the n x n matrix in the (1,1) position of F7 for any j € N, {¥;},en is a

one-summable sequence of coefficients such that
o0
Y;g = Z v g Et—j-
§=0

for any t > tg+p— 1. This shows us that {Y;t}tzto+p—1 has a causal linear process rep-

resentation with one-summable coefficients.

It remains to show that the initial values chosen above have the same linear process
representations. For any j € N, by definition ¥, is the n x n matrix in the (1,1) position
of FJ.
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Now suppose that, for some 1 <k < p, that the n x n matrix in the (k,1) position of
Fitk=1 equals ;. Then, since

D - Dy B,
Fitk — I - 0 L pitk=1
o -~ I, O

and the n x n matrix in the (k,1) position of Fi**~1 is W, by the inductive hypothesis,
the n x n matrix in the ((k+1),1) position of F/** is W, as well.

By induction, for any j € N the first n columns of F7 are given as
\I/j,1

Vip+1
where we define ¥; = O for any i < 0. Therefore, our initial values can be written as

Y;fo +p—1

= = W,e :
_ J - Jetotp—1—j-
N
v §=0 =0 \Wj—p+1-Eto+p-1-j
to

oo
ijo ;- etotp—1—j

o0
2= V-1 Etotp-1-j

o0
2 i=p—1Vj-(p-1)  Eto+p-1-j

(o]
2520 Vj  Etgtp—1—j

oo
> 20 Vj - Eto+p—2—j

o0
ijo W) eto—j

This shows that
oo
Y; = Z Uep
=0

for any t > tg, so that {Y;};>, follows a stationary VAR(p) process that has a causal

linear process representation with one-summable coefficients.

Q.E.D.
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The preceding theorem shows that the L?-boundedness condition need not be assumed a
priori when proving the stationarity of a VAR(p) process if the VAR process is started at some
finite time with appropriate initial values. In this case, the process has the same causal linear
process representation as in the case where it is assumed to be L?-bounded and does not start
at some finite time.

While we defined I(0) processes as doubly infinite processes, that is, processes with time index
Z, we now allow processes started at some finite time to also be I(0) processes. Specifically, we

say that an n-dimensional time series {Y;};>¢, started at some finite time ¢o € Z is 1(0) if

oo
Yi=p+Y Ve
j=0

for any t > to, where {e;},cz is an m-dimensional i.i.d. process, p € R", and {V;};ey is a one-
summable sequence of n X m matrices. In light of this extension, the preceding theorem tells us
that the initial values of any intercept-less VAR(p) process started at some finite time, whose
companion matrix has eigenvalues within the unit circle and whose innovation process is i.i.d.,
can be chosen so that the process becomes I(0).

A final comment is that the eigenvalue condition can, as usual, be replaced with the condition
that the roots of

|A(2)| =det(l, —P1-2—---— D, 2P)

lie outside the unit circle.
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5.3.2 Error Correction Form and the Granger Representation Theorem

For now, suppose that there is no intercept in the VAR process above, that is, put § = 0. One
advantage of doing so is that we can apply the result in the previous section and work with
VAR(p) processes started at some finite time.

First, we require a different, more convenient representation of the VAR, process, called the

error correction representation. It is derived as follows:

1/;‘/ :q)lnfl_‘_""‘_q)py;ﬁfp_‘_st
= (@144 P,)Y; 1+ P(Yi oY1)+ +2,(Yip = Y1) e
P J
= (In*A(l))YthrZ@j *ZAYtﬂ‘H +et
=2 =2
=, —AQ1))Yio1 — (P24 +P)AY; 1 — - =Py AY)_pr1+ey
=, —AQ))Yi 1 +T1AY i+ + T 1 AY i1+,

where

for 1 < j <p—1. Rearranging terms reveals that

A}/t—l = —A(l)Yt_l +F1AY;5_1 + - +Fp_1A§/t_p+1 +&¢
=Y, 1 +T1AY; 4+ Ty 1 AY; 1 +ey,

where we define IT = —A(1). This is called the vector error correction model (VECM) represen-

tation of the original VAR process.

The VECM AR polynomial is defined as
N(L)=1I,-T1L—--—T, [P
and satisfies

[(L)AY,=(1-L)I'(L)-Y;
=6—A1)Yo1+e=6+e—A1)L-Y; = (A(L) - A(1)L) Ys.

This implies that
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for any z € C, and, for any z # 1,

I'(-), being a polynomial function, is continuous on C, so

['(1) =1limT'(z) = lim Al) = Az =—lim (A'(z) — A(1)) = —A"(1) + A(1),

z—1 z—1 1—2 z—1

where A'(-) is the first derivative of A(-).

Suppose |A(1)| =0, or equivalently, |A(z)| has a unit root. The n x n matrix A(1), and by

extension II, has rank 0 < r <n. We now present a convenient decomposition of II.

Lemma (Decomposition of Reduced Rank Matrices)
Let IT € R™*™ be a matrix of rank 1 <r < n. Then, there exist matrices «, 3 € R™*" of rank r

such that
II=ap.
Proof) Let {vi,---,v,} CR™ be the basis of the range R(II) of II, and define

a:(vl UT’);

note that a is an n x r matrix of full rank. Letting {ej,---,e,} C R™ be the standard
basis of R™ and IIy,---,II, the columns of II, for any 1 <¢<n

I; =11-¢; € R(I),

so that there exists an r-dimensional vector b; € R" such that

Hi = - bl
Defining
by
B=1|:1,
by,
[ is an n X r matrix such that
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Since « has full rank, o/« is nonsingular, implying that
B = (o/a) /1L

The range of 3’ is the same as that of o/II. Note that, if ITv = 0 for some v € R", then

B'v = o/Ilv = 0; conversely, if 3'v =0 for some v € R", then
v = af'v=0.

This indicates that the 5’ and II share the same null space and thus the same nullity;
because they are both linear transformations on R", by the dimension theorem they

have the same rank r.

Q.E.D.

In the case when r =0, we let &« = 8 = 0. Thus, the error correction representation can be

written as

AYi;=af Y1 +O01AY; 1+ + Op_1AY; pi1+er
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Orthogonal Complements of Full Rank Matrices

We reuiqre addition concepts to understand the representation theorem below.

For any A € R™ " with full rank 0 < r < n, we let the orthogonal complement A | € R**(=7)
be the matrix satisfying A’A; = O.

If r =0, so that A is the n x 1 zero vector, we define A as any nonsingular n X n matrix,
and if » =n, we define A = 0.

In the case 0 < r < n, we can construct A, and thus see that it exists, as follows. Since A has
rank r, the columns {A4;,---,A,} CR"™ of A are linearly independent. Letting V' be the vector
subspace of R™ spanned by the columns of A, we can think of the orthogonal complement V= of
V: since R” is a finite dimensional vector space, V@ V+ = R". This indicates that the sum of
the dimensions of V' and V- must equal the dimension of R”, which is n. In other words, V1 is

an n —r dimensional vector subspace of R", and thus has a basis {Bi,---,Bp—,} C R™. Defining
A = (Bl Bn—r)a

A is a matrix of rank n —r because its columns are linearly independent, and we can immedi-

ately see that

B Bl A, BJA,
(A= (4 A)=1| =0
B, . B, A B, A,

because the columns of A are all contained in the space orthogonal to V. Since the basis of
V1 is not unique, neither is A ; in most cases, we use a convenient normalization of A| that

puts as many entries equal to 0 or 1.
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Granger’s Representation Theorem

The following is our main result, called Granger’s representation theorem. The proof is adapted
from Johansen (1991).

Theorem (Granger’s Representation Theorem)

Let {Y:}iez be an n-dimensional time series that follows the VAR(p) process
Yi=®1Y, 1+ +Q,Y; p+e
with error correction representation
AY; =11-Y; 1 +T1-AY; g+ 4Ty 1 - AY pi1 + ¢

for an n-dimensional i.i.d. process {e;}+cz with positive definite covariance ¥ € R"*". Let A(z)
be the AR polynomial corresponding to the above VAR process, and I'(z) the VECM AR
polynomial.

Assume the following:
i) |A(z)| has roots on or outside the unit circle.
ii) II has rank 0 < r <n with decomposition IT = a3’, where a, 3 are full rank n x r matrices.
iii) Letting ¥ =T'(1), the matrix o/, U3, is nonsingular.
Then, there exist appropriate initial values Yp,---,Y7_, such that:
i) Defining

C=p1 (O/L‘I’ﬁl)ilal,

there exists an absolutely summable seqeunce {C}}jen C R™*™ such that

Y, =C- <zt:es> +C(L)ey—C(L)eg+ Yy
s=1

almost surely for any ¢ € N.
ii) {AY;}ien and {f'Y:}ien are zero-mean I(0) processes.
iii) |A(z)| has exactly 0 < n—r <n unit roots, so that there are n —r common trends.

iv) The cointegrating rank is 7; in other words, there are exactly r cointegrating relationships.
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Proof) The Case r =0
If r=0, then a = 5 =0, so that {AY;}cz follows a VAR(p-1) process with AR poly-

nomial I'(L). a1, are nonsingular, so by assumption, I'(1) is nonsingular and thus

IT'(2)| has no roots outside the unit circle. Furthermore, in this case A(1) = O, and

A(z)—2zA(Q1)

I(z) = 11—z

so that
IP(z)[ =[A(z)[- (1 —2)""
for any z # 1. Premultiplying both sides by (1 — z)" yields
(1=2)"T(2)[ = [A(2)];

and since this holds for z =1 as well, this holds for any z € C. Since |I'(z)| has no unit
roots, |A(z)| has exactly n unit roots, and because |A(z)| has roots outside or on the

unit circle, |T'(z)| must have all roots outside the unit circle.

Therefore, we can choose the initial values Y,_1,---,Yy so that {AY;},en follows a

stationary VAR(p-1) process with causal linear process representation
AY; =T(L) e

for any ¢ € N. Here, the MA(oco) coefficients are one-summable, so that {AY; }en is an
1(0) process. We denote W(L) =T(L)~!. That {8'Y; }sen is 1(0) is trivial because 3 = 0.

By the Beveridge-Nelson decomposition, there exists a sequence of absolutely summable
coefficients {C;};en such that

t
Y, =¥(1) <Zss> +C(L)ey —C(L)eg+ Yy
s=1
with probability 1 for any ¢ € N. Here,

T(1) =0(1) " =81 (e, T(1)BL) o)

since a,f, are nonsingular n x n matrices, which proves the representation part of
the theorem. Finally, since the cointegrating space is the null space of ¥ (1), which is a
nonsingular matrix, the cointegrating space consists only of the zero vector. This shows

us that the cointegrating rank is 0.
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The Case 0 <r<n
Now suppose that 0 < r < n. Recall that the relationship

A2)=(1-2)T(2)+2z- A1) =(1-2)'(2) —z-af
holds for any z € C between the AR and VECM AR polynomials, in light of the equation
A(L)Y: =T(L)- AY: —af i1 =c.
Pre-multiplying both sides by o’ and then o/, yields the equations

—d'af Y1 +dT(L)-AY; = gy
o\ T(L)-AY; = &,

since o/, o = O.

To facilitate the proof, we define
a=a(da)™t

for any a € R™** of full rank, where 1 < k < n. Note that aa’ = a(a’a)"'a’ is a matrix
that orthogonally projects any vector v € R™ onto the vector subspace of R™ spanned
by the columns of a. Letting a, be the orthogonal complement of a, since R™ is the
direct sum of the vector space spanned by the columns of a, and that spanned by the

columns of a, which in turn are orthogonal complements, we can see that
ayay’ +ad =ai(d a) | +alda) " d =1,
Now define
Zy=PBY, and X,=p|AY;
for any ¢ € Z. It follows that
AYi = (BB +BLBL)AY; = B-AZy+ 81 Xy,
and substituting this into the two equations above yields

(—d/af'L+a'T(L)(1- L)) BZi+a'T(L)BL - X¢ = dey
o\ T(L)Y(1—L)-BZi+a/\T(L)(1—L)BL - Xt = o\ &y,

where we used the fact that

—aIOé,BI'}/%_l — _O/aﬁ/ﬂ(ﬂlﬁ)flﬁ/'n_l
=—ad'af'§-p'Ys1 = —a'af'BL- Z.
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In matrix form, the equations become

~ Zt o
A(L = ts
o))

where we define the polynomial

fl(z): _a’aﬁ’ﬁ'eraT(z)(l—z)ﬁ OéT(z)ﬂJ_
AT oAl

We can now proceed in steps to show each of the claims above:

Claim 1: |A(z)| has exactly n—r unit roots

Note that

A1) = —d'af'f o'T(1)BL
0 o T(1)BL)’

so that
A(1)| = |o'a] |8l T(1)84].

All three matrices on the right hand side are nonsingular, so ‘fl(l)‘ # 0, meaning that

A(z) does not have a unit root.

On the other hand, if z # 1, then
Az) = (O‘ ) —af 24T (A=) (8 L(1-2)")

= (O‘) A (8 BL-2)),

so that

A \—|( )| AR |(8 BL)|(1—2) 0"

/
By the nonsingularity of (a/ ) and (5 B L), this quantity equals 0 if and only if
oy

A(z)] =0, and since all the roots of |A(z)| are outside or on the unit circle, if z # 1
and ‘ ’ =0 then z must lie outside the unit circle. We have shown that all the roots
A(z

) are outside the unit circle.
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The preceding analysis also shows that

o)
ay

for any z # 1, and since the equation holds trivially for z =1, we can say that it holds

(1 _ z)n—r

JAE)-| (8 8L))|

for any z € C. Since the roots of ’A(z)‘ all lie oustide the unit circle, it follows that
|A(z)| has exactly n —r roots that equal 1.

Claim 2: {AY;}ien and {5'Y;}ieny are mean zero I(0)

/

Defining ) = (04,

) and the polynomial B(z) as
@y

for any z € C, we can see that B(L) is a finite order AR lag polynomial:

Ae) - (“) EICAE (j) 1) (5 0)

o) i
= (a) (= @rz— =02 (B 1) = (2L —Tiz? = =T, 1) (8 0)],
oy

B(z)=Q 'A(z)=L,-Y_[® (s B.)-Ty1(8 0)]+,

Jj=1

where we define I'g = I,,.

By design,

Since all the roots of B(z) lie outside the unit circle due to the fact that all the roots
of A(z) also lie outside the unit circle, the process {(Z/, X!)'}ien is weakly stationary

for appropriate initial values, and has the causal linear process representation

Xy

7 S
( t) = B(L)_léft = Z@J “Et—j
=0
-

@(L)St
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for any ¢t € N, where {©;},en is a one-summable sequence of n x n matrices. Since
B'Y, = (8'B)Z; for any t € Z, the above result tells us that {'Y; }+cn is a mean zero I(0)
process under our initial values, with one-summable coefficient process {(5'8)©1;}jen

of r x n matrices, where ©1 ; collects the first r rows of ©; for each j € N.

As for the first difference process,

AYtZ(ﬁ(l—L) )( )Zi( 1-1L) ﬂL)Gj'EH
=§:‘I’j'€t—j

J=0

for any t € N. Since {V,}en is a one-summable sequence due to the one-summability

of {O©;};en, by definition {AY;},cy is a mean zero I(0) process.

Claim 3: Deriving the Granger Representation

The Beveridge-Nelson decomposition now tells us that

(Zss> +C(L)e,—C(L)eo+ Yy

with probability 1 for any ¢ € N, where the absolutely summable sequence {C};en is
defined as

s

i=j+1

for any j € N and

||
A
sy

|7
e
A

7=0
=(0 B.)B(1)~!
=(0 p)Am™ (Cy//)
ay

O (@, T(1)B) "
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Therefore,

t
Y;=C <Z€S> +C(L)e,—C(L)ep+ Yy
s=1
with probability 1 for any t € N, where

C=41 (' T(1)81) .

Claim 4: Cointegration Properties of {Y;}:cz

The above representation tells us that the null space N¢r of the linear operator C’ is
the (augmented) cointegration space. Since C' = a). (B’Lf(l)’al)_lﬁi has rank n —r,
by the dimension theorem the nullity of C” is r, so that the cointegrating rank is exactly

r. Furthermore, since
O'B=0

by the definition of the orthogonal complement of 3, the columns of 5 are r linearly
independent vectors in R"™ contained in the null space N¢v. Since N has dimension r,
it follows that the columns of 3 form a basis of N, and as such they form a cointe-

grating basis for Y;.

Q.E.D.
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Granger’s representation theorem tells us that the cointegration properties of an intercept-
less VAR(p) process {Y;}iecz is determined by the rank r of A(1) = —II, where A(z) is the AR

polynomial. We can consider the following three cases:

i)

ii)

iii)

r=0

In this case, IT = O and the first-difference process {AY; }1en follows a stationary VAR(p-
1) process. Thus, we can simply apply the results of the section on stationary vector
autoregressions to study the properties of the first-difference process. This is made possi-
ble because there are no cointegrating relationships among the variables, as seen by the

fact that the cointegrating rank is 0.

O0<r<nmn
In this case, there are exactly r cointegrating relationships and {Y;}:cn is an I(1) process

with trend-cycle decomposition

t
yi—C (z ) O 4T
s=1

where Y contains initial values. C' is a matrix of rank n —r, which tells us that there are
n—r common trends driving the dynamics of Y;. Since Il # O, we cannot just estimate a
stationary VAR with first differences.

r=n
In this case, II = —A(1) is nonsingular, meaning that |A(z)| only has roots outside the
unit circle. By implication, {Y;};en is an I(0) process under the appropriate initial values.
Analysis proceeds by estimating the levels VAR using the methods studied in the section

on stationary vector autoregressions.
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5.4 Estimation of VECMs
Suppose {Y; }1ez is an n-dimensional time series generated by the VAR(p) process
Yi=®1Y 1+ 4+ p+e
with VECM representation
AY; =11V, 1+ -AY; 4+ 4+ Ty 1 - AY i1 + &4

We assume that the rank 0 <r < n of II is known, so that it may be decomposed as IT = a5’ for
n X r matrices a, 8 of full rank. Note that we exclude the case r =n because in that case {Y;}ten
is weakly stationary and thus different asymptotic rules apply. On the other hand, if 0 <r < n,
then Granger’s representation theorem shows us that {Y;}ien is I(1), and the asymptotic results
follow that of chapter 3.

Suppose the sample size is T, so that we have the sample observations Y7,---, Y. Then, we
define
v, N
Yo = , AY =
Yi_q AY],
AY;
X = : , forany p+1<t<T
AY‘t—p-i-l
Xpt1 Epri
X = : , €=
Xr er
I
I'= :

Then, for any p+1<t<T
AY; =11V, + T Xy +ey,
and stacking these observations yields

AY =Y_ ;- '+ X -T+e.
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Finally, we denote by A(z) and I'(z) the AR polynomials corresponding to the VAR in levels
and the VECM, respectively.

5.4.1 Assumptions and Preliminary Asymptotic Results

We make the following assumptions:

Al.

A2,

Cointegration Properties

We assume that {Y;}cz be an n-dimensional time series that follows the VAR(p) process
Yi=®1Y, 1+ +0Y_,+e
with error correction representation
AY; =11V, 1+ AY; g+ 4+ T - AY 1 + &4

for an n-dimensional i.i.d. process {&;};cz with positive definite covariance ¥ € R"*". We
assume the following hold:
i) |A(z)| has roots on or outside the unit circle.

ii) II has rank 0 < r < n with decomposition II = af3’, where «, are full rank n x r

matrices.

iii) The matrix o/, I'(1)3, is nonsingular.

For notational convenience, we put 5, = I, when r = 0. The form of a will be specified

later.

Suppose the initial values have been chosen so that the conclusions of the Granger repre-
sentation theorem hold, namely that {AY; }4en and {8'Y; }ren are mean zero I(0) processes
and that

t
v, :c@es) LD+ s,
s=1

for any ¢t € N, where Y collects initial values, {C}}jen is one-summable and

C =3 (o, T(1)B) ")

Nonsingular Population and Sample Moments

By Granger’s representation theorem, {AY; }1eny and {3'Y; }ren are mean zero I(0) processes
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given appropriate initial values. Letting G : Z — R™*™ be the autocovariance function of

the first-difference process, we assume that

G@o) - Glp-1)

Glp—1)" - G(0)
is a positive definite np x np matrix. This implies that the submatrices

Go) - Gp-2)

Glp=2) - G0)

and G(0) of the above matrix are also positive definite.

We also assume that AY,Y_; and X have linearly independent columns almost everywhere.

This ensures that the matrix

AY’
v, [(ay v Xx)
X/

is nonsingular for large enough T

For later use, we let Gg : Z — R™*" as the autocovariance function of {3'Y; }+cn. We assume
that the variance Gg(0) of 'Y} is positive definite if » > 0; it equals 0 if r =0 and § = 0.

A3. 1.I.D. Innovations
We assume that the innovation process {e; }1cz has finite fourth moments. Since {AY; }1en
is a one-summable causal linear process with innovation process &, it follows from one-

summability that {AY;};en also has finite fourth moments.

The main asymptotic results concerning these quantities are given below:

285



Theorem (Preliminary Asymptotic Results)

1
Maintain assumptions A1l to A3. Define the long run variance ¥, = CXC’ and X2 =C E%, and let
{W™(r)}rep0,1) be the standard n-dimensional Brownian motion. Then, the following convergence

results hold jointly:

% (A;/) (ay x)5

Go) - Gp-1)
Gp-1)" - G(0)
1 lyl D O
Tﬁ —1€—
%5'1/111/,15 2 G5(0)

%mﬁl (ay X) B (880 - BAp)

1

SV (AY) S A ( /0 1 W”(r)dW”(r)’) A+ Ag

xS @ ([ wrearner) ]+ (a0 a,)

Lo, 4 L VALY
TY,1€ = A /0 W™ (r)ydW"(r)" | X2

1 / d ! n n / /
ﬁYqY_l — A /0 W™ (r)W™(r)'dr ) A

1

Tyilylﬁi{A(/Olwn(r)dwn(r)')z%’(r(1)0—1n)’+A0—(Al Ap_l)l"}oz

where
Ap=%,— Z G(])
j=h

forany 0 < h<p-—1and

1

alda)™ ifr>0

19 ifr=0

o=

In addition, we can obtain the following rate of convergence, which need not hold jointly with

the above:

X'e = 0,(T"?).
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The following matrix equalities also hold:

%=G0)-Ay-Ba’ — (G(1) -+ G(p—1))T
G(0) -2\ [ cay Y
r= : — Ba’
G(p—2) G(0) Glp—1) Ay
Ao = <A1 Ay 1) Ta
Gs(0)a = B'Ao— B (A Apr)T

Proof) Note that, under our assumptions, there exist one-summable coefficients {¥;}cn, such

that
AY; = U(L)z;
for any t € N. Define the doubly infinite processes {u;}icz as
ug = V(L)ey

for any t € Z; we have u; = AY; for any t € N. Furthermore, let us define {S;};en as

t t
Si=Yi-Yo= AV, =Y u,
s=1 s=1

for any t € N. Since {e;}1ez has finite fourth moments and is i.i.d., we can see that the
main asymptotic results derived in the previous chapter hold for {S;}.en as well. For

the sake of completeness, they are enumerated below:

N

1
=S e S iwr()
thl

o

!

LS u b A
Tt:l

!

Z wply g, 2 G(h) for any h >0

1
T
T 1
f Z 1€ h—>A(/ W™ (r)dW"(r ))E?’—kZ forany 0<h<p-1
t=h-+
T
f ZSt 1uth—>A(/ W™ (r dW”())A'+Ah forany 0<h<p-—1
t=h+
1
mZSt_lgA'/ W”(T’)dr
t=1 0
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1 & 1
73 2SSt 4A (/ W”(r)W”(r)'dr) N
t=1 0

where X, = U(1)XW¥(1), % is the Cholesky factor of ¥, A = \P(l)Z%, W™ is the stan-
dard n-dimensional Wiener function, and {W"(r)},¢[o,1] the corresponding Brownian

motion.

Therefore,
Ut Ut

t=p+1
Ut—p+1 Ut—p+1

() 935

17T 1T
T Zt:p—i—l uguy T T Zt:p—‘rl Utuf:—pﬂ
1T 1T
T Zt:p—l—l Ut—p+1u2 T Zt:p+l ut—p+1u2—p+1
G0O) - Glp-1)

A . . .
G(p—1) G(0)

T T, 2

1 T 1 &

SYL(AY) == ) Vi (AY) =7 > Vi
t=p+1 t=p+1

1 /
— (1T / 1T /
fy—lX - (T Dimpr Vi1 T X hepta thlut—pﬂ)

4y [A(/OlW"(r)dW”(r)’>A/]+(A1 o Ap)

1 1 & d 1
Y= Y YH—>A-/ W (r)dr
T3/2 T3/2 i 0

Iyiv, =1 ET: ViV,

—1-1= —1X4
T2 ™,
1 & 1 & /
=72 > S8 +Y T2 > S
t=p+1 t=p+1
1 & T—p
+ T2 Z St—1 Y(J/—l‘ﬁybyol
t=p+1

4 A (/01 "(r)W”(r)’dr) A
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Moreover, since {u; }+cz is a causal linear process with absolutely summable coefficients

and iid innovation process with finite fourth moments,

Ut—1
1 < 1 & d
— ) vec(Xie)) = —=) vec : gl SN0,2XQ].
Ut—p+1
It follows that
Lxes Ly xe—o,)
VT T,
By implication,
lX’&t£>0
T .

It remains to show the convergence results for terms invovling 5. If » = 0, they hold

trivially because 8 = 0. Below, we assume that r > 0. Since
C'=pBu(a\ T(1)BL) " e,
B'A = (B'C)%2 = O and therefore
| d
Tﬁ Y_15 — O
| d
Tﬂ Y (AY) = 5'Ay
1 d
FOVLX L (A M)
The limits on the right hand side are all non-random matrices, so it follows that
]' IAVdS D,
Tﬂ Y e=>0
1 AV P o1
FBYL(AY) 5 5
1
T5/YL1X 5B (A1 Ap—l)

as well.
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Since
AY =Y_1-Bd’+ X T +e,
premultiplying both sides by Y’ yields

Y (AY) = (YL,Y 1 8)a’ + (Y, X)T + Y. e

This tells us that
1 1 1 1
<TYL1Y_1B> Oé, = TYil(AY) — (TYL1X> F — TYilg.

Since o« is nonsingular (a has ful rank), we can therefore express %YL 1Y_18 as a

continuous function of the random matrices studied above:

1 1 1 1

This means that %YL 1Y_ 18 converges jointly with these quantities, with asymptotic

distribution given via the continuous mapping theorem as
Lo d ! n YA = ! n n(.N\ L.
SV YA /OW () dW™(r)' ) A'a+ Aga — A /OW (rdw™(r) ) S¥a
1 p—1 !
—A(/ W”(r)dW"(r)’) N[Y T a=(Ar -~ Aps)Ta
0 i=1

=A (/01 W"(T)dW"(T)f) S (D()C L) a+ Ao~ (A A,p)Ta

It remains to show the matrix equalities. We first show the equalities for r > 0. Pre-

multiplying

(;ngl@ o B A (/01 W”(r)dW"(r)’) S (D)~ 1) +Aoa— (A Apy)T

by /3’ tells us that

Gs(0)a’ = /A (/01 W"(r)dW”(r)') SY(C()C-L)a+8 b8 (A Apy)T

=B No—B (A - Ap)T
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Premultiplying both sides of
AY =Y_1-Bd’+ X T +e,
by X’ and (AY) yield

X'(AY)=X'Y_ ;- + (X' X)I+X'e
(AY)(AY) = (AY)'Y_1-Ba’+ (AY)' X -T+ (AY) e.

Inspecting the last equation, we have
Lavye= Lavyay)- <1(AY)’Y ) Bal — (1(AY)’X) T
T T T - T ‘
Taking T'— oo on both sides,

1

—(AY)e B G(0) - lA (/Olwn(r)dwn(r)')/A’+Ag fa'—(G(1) - Gp-1)T

=G(0)— Ay’ = (G(1) - Gp—1))T.

Meanwhile,

1 /. (1o / 1., 1,
T(AY){-:—QB (TY_lg)—i—F TX& tpee

LY (/01 W”(r)dW”(r)’) sYynoy,
so the uniqueness of probability limits tells us that
S =G(0)-Ay-Ba’~ (G(1) - Gp-1)T.
Note that we also have
I=X'X)"Y(X'(AY) - X'Y_;-Ba’ — X¢).
Taking 7' — oo in the relation

I'= (;,X'X>_1 (;X/(AY) — (;X’Y_l) -Ba — ;X%)

tells us that
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Meanwhile, premultipyling
1 1 1 1
<TYI1Y—1/B> Oé/ = TYil(AY) — (TY/1X> P — TYLIE'
by a yields
1

1 1

and taking T'— oo once again yields
0= [A </01 W"(r)dW”(r)’) S (C)C 1) +A0— (A -+ Apoy)T
Since
o\ T(HC=d,
we can see that

T(1)C—1,)aL=a; —a; =0,

so that
A()Ou_: (Al Apfl) FOéJ_.
When r =0, the equality
% =G(0)-(G(1) G(p—1))T

follows by premultiplying

p—1

et = AY; — Z LAY pia
i=1

by ¢, and taking expectations, while the equality

-1

Go) - G-2) Gy

Gp-2) - G(0) G(p—1)

simply represents the Yule-Walker equations. Meanwhile,

Gs(0)a' =B'ho— B (A Apy)T
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holds trivially because «, 5 are zero vectors. Finally, the equality
Ao=(Ar -+ Apy)T
follows by taking T"— oo on both sides of

1

1 1

and using the fact that C' =T(1)"1.

Q.E.D.
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5.4.2 The Concentrated Log-Likelihood

As in the section on stationary vector autoregressions, we study the properties of the Gaussian
Quasi-MLEs of the model parameters. Assuming 0 < r < n for now, the parameters of interest

are
OZ,,B,F,E7

where «, are full rank n x r matrices. To define a parameter space on which the quasi log
likelihood is differentiable, we must first show that the set of full rank n x r matrices is an open

subset of R™"*". We can define the set of full rank n x r matrices as
FRY" ={AcR™" | A'/Ac PS™*"},

where we used the fact that A’A is positive semidefinite and thus has full rank if and only if it

is positive definite. Defining the function f:R™ " — R"™*" ag
f(A)=AA
for any A € R"*", we can see that
FRYT = f~1(p§™r),

that is, FFR™*" is the inverse image of the set of all positive definite r X » matrices with respect
to f. Thus, we can show that FR™ " is an open subset of R™*" if f is continuous with respect to
the metric induced by the trace norm on R™"*" and R"*", since we already showed that PS™*"
is an open subset of R"*",

The continuity of f follows from the fact that, for any A € R™*" and ¢ > 0, if B € R™*"

satisfies

9
A-B in(1l, ———

we have

1£(A) = f(B)I = |AA=B'B|| = [(B-A)(B-A)+ A(B—A)+(B—A)A|
<|IB—A|* +2]| Al | B~ Al
< QA+ DB = Al <e.

Therefore, FR"*" is an open subset of R™*" with respect to the metric induced by the trace

norm on R™*". It now follows easily that the set
R = vec (FR™")

is an open subset of R™ with respect to the euclidean metric (this follows from the same line of
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reasoning used to show that A is an open subset of R™"+1)/ 2.

The full parameter space is then given as
O =RExR”(P~D x A

where vec (), vec(8) € R, vec (') € R**(P~1 and vech () € A. Clearly, © is an open subset of
R2nr+n*(p=D+n(n+1)/2 We deonte the vectorized parameters by

a=vec(a),
= vec (),
=vec(I"),
o =vech(X).

The Gaussian (quasi) conditional log-likelihood is, in turn, given as

T _
ta.b.7.0) = =" rog(am) - T Prog)m
T
LS Avi—af Y - TXYSTHAY —af Y - TX)
2t =p+1
T — — 1
= —n(2p)log(27r) 2 Proglx| - St [B7HAY Y fo’ = X T)(AY =Yy - B’ — X T)].

In this section, we concentrate out the parameters one by one until the likelihood is a function
only of 5. In what follows, we assume that the MLEs (given other parameters) always exists, so

that we need only inspect the first order conditions.

Concentrating out I

The log likelihood can be written as

_(T=p)

-p

l(a,b,v,0) = log(2m) —

log [%]

[\D\H

t=p+1

2

T

> [AYi—af Vi - (LQX)) } 27 AY; - af' Vi — (L QX))
=p+

Given a,b,0, the MLE of v, 47(a,b,0), must satisfy the first order condition

T
- > (L@X)THAY - af Vi~ (L@ X))ir(a,b,0)| =0,

t=p+1
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rearranging which we obtain

T -1 T
(a,b,0) [ ®( > XtXt’)] vec( > Xt(AYt—aB’-Yt_n’)

t=p+1 t=p+1
(I QX' X)) )vec (X'(AY) = X'Y_1 - Ba)
= vee ((X'X) I X'(AY =Y.y - 5d)),

analogously to the stationary vector autoregression case. Therefore, the MLE of T, f‘T(a,b, o),
becomes

A

I'r(a,b,0) = (X'X) ' X' (AY —Y_; - Bd),
and the concentrated log-likelihood is
l—(a,b,0) =1(a,b,57(a,b,0),0)

n(T —p)

= —Tlog(%r) B

log 2|
1 A A
—gtr {E_I(AY—Y,l B’ — X -T'r(a,b,0)) (AY —Y_y 'ﬁO/—X-FT(a,b,O'))}

n(T —p)

= —Tlog(%‘) - _plog|2\

- %tr [2—1(AY — Y1 Ba/Y Mx(AY —Y_, -50/)} ,

where My = It_, — X (X'X) ™1 X" is the residual maker of X. Define the residuals from regressing
AY and Y_1 on X as

Ra = : =Mx(AY) and R_;= : — Mx-Y ..

/ /
AT Ry

Then, since Mx is symmetric and idempotent, we can write

l_(a,b,0) = _n(T2—p) log(2m) —

__nT=p) )log(27r)

1 _
Plog|s| - St [E "(Ra—R_1-Ba/)(Ra— Ry ﬂa/)}

—Liog|y)

2
1 T
—5 > (Rag=af-Ra) S (Rag—af-Royy).
t=p+1
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Concentrating out «
The concentrated log likelihood can be written in terms of the vector a as

_n(T'—p) —p

l_y(a,b,0)= log(2m) —

2

1 T

—5 > (Rar=(RLBR 1)) (Ras— (RLy B In)a).
=p+

t=p+1

log [X|

Given b,0, the MLE of a, ap(b,0), must satisfy the first order condition

_ Z /R 1 t®I RA t L17tﬁ®In)aT(b70’)) =

rearranging which we obtain

VGC( Z RAJR/_L,:B)

t=p+1

T
0) = [( Z ﬁlRl,tR/_LtB) ®In

t=p+1

= ((B'R_1R18) " @) 1) vec (RyR15)
= vec (R’AR_lﬁ(B R _R_1B)" ) .

Therefore, the MLE of «, & (b,0), becomes
aT(va): /AR—lﬁ(ﬂ,R/—IR—lﬁ)_lv
and the concentrated log-likelihood is

l_ya(byo) =1_y(ar(b,0),b,0)

= —"<T2_p)10g(27r) — = Piogy
- %tr 271 (Ra— R+ Ban(b,0)) (Ra — By - Bar(b,0)))|
n(T —p) —p

1
= 2 TP o0 (o) — log| %]~ tr (37 RaMn_,5Ra),

where Mg_,5=1Ir_,— R_1B(B'R_{R_18)"1B'R"_ is the residual maker associated with regres-

sions on R_1[.
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Concentrating out X

As we derived in the chapter on stationary vector autoregressions,

Ol_ry o(b,0)
o

T 1
— Py-1y 5 RAMp_ sRaY™

for any ¥ € PS™*™. It follows that, given b, the MLE ZA]T(b) of ¥ is

A 1
Sr(b) = 7 RaMn_,sRa.

making the concentrated log-likelihood
l*'y,a,a(b) = L%a(ba&T(b))

T2 g 2m) 1) — L2 o 810)|

M(log(%’) +1)— T=p log

2 2 T

1
_pR/AMR—lﬁRA"
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5.4.3 Maximum Likelihood Estimates when r > 0

Using the concentrated likelihood derived above, we can derive the maximized log-likelihood
and the MLE of 5. Afterward, we can use the MLE of 5 to recover the estimates of o,I" and X

using the formulas derived in the previous section.

For notational convenience, we define the quantities

1 /

1
Sa,-1= Ti_pRA'RA
1

- /
Sfl — 7T_pR_1R71.

Note that

Sa Sa 1 (R, 1 [AY
= Ra R.,)=— My (AY Y.y,
[0, 5] = () o =5 () etov )

Since Mx has rank T'—p—n(p—1), for large enough 7T this is larger than 2n and therefore the
2n x 2n random matrix above is almost surely positive definite. It follows that, for large enough

T, Sa and S_; are positive definite, and that the Schur complement
So1— SIA,ASEISA,—l
is also positive definite.

Returning to the concentrated log-likelihood, we have

T— T —
Lo ®) = =" og(om) +1) — T Prog[ss — S5 188518 B8 1|

Since Sa — SA,,15(5'5_15)_15/S’A7_1 is the Schur complement of the block matrix

Sa Sa,—18
B'Sh_y BSaB)’

it follows that

| ( Sa Sa_if

=|B'S_ . _ B g -1 g’
/B/S/A,—l B/S—1ﬁ>l |/8 15’ ‘SA SA, 1ﬁ(/85 16) B A,—l’

= |Sal-

B'S-18—B'Sh 155" Sa, 18-
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Since 3'S_13 is positive definite, we now have

-1
n(T —p T—p 1Sal-|8'S-18 _BISIA,—lsA Sa,-18
Iy a0(b) = —(2)(log(27r) +1)— 5 log Y] ’
_AT=p) o Tep (8(S-1 -85, 155" 9a,1)8| T-p,

Since the only term with 3 is the second one, the QMLE of § is the solution to the maximization

problem

e  V(B)=log| /(51— Sy, 155 5 -1)B| ~log| 8’515,

Necessary Conditions for Maximization

For any symmetric n X n matrix M, define the function gp; : R — PS™ " as

gu(b) =log |5 M|

for any b € R, where b =vec () for g € FR™". Note that

(s (),

which implies that

dvec (B'M ) ovec ()
PreeTMD) _ (50 @ 1)K+ (1, @ 8 0)| 2!
and thus
avec(ﬁ’M,B

In addition,

—1
0A A
for any Ae PS™", so
dlog|A] 1
= A
Ovec (A) Vec( )

300



By the chain rule, it now follows that

dgn(b)  Olog|B'Mp| .avec(ﬁ’Mﬁ)
o dvec(B'MB)  Ovec(B)

= vec (B'MB) ™) [(B'M @ 1) Ko + (1, @ 5'M)]
= vec ((8'MB) ' B'M) Ky +vee (MB(5'MB) ™)'
= vec (Mﬁ(ﬁ’M,B)—l)'.

Therefore,

a‘gém = vec (Sﬁ(ﬁlsﬂ)_l - 5—15(5,5—1@_1) ’

where we define
S=8_1—-8r_15:"Sa 1.
Therefore, the QMLE 7 of 3 must satisfy the first order condition

SBr(BrSHr) ' = S_1Br(BrS-_1p7) "

Maximizing the Likelihood

Define
N 1, .
CT = SilﬁT?
1
where 52, is the Cholesky factor of S_i. Then,

. . 1L
S_1Br(BpS—1Br) "t =82, - Cr(CrCr)

AA s s a1 _1
= SBr(BpShr) T =8-S_F'Cr |Ch(S_E-S-S_?
Defining
1 _1,
M=S_}%-88_7
_1 1
:In_57252,—15515&—15712/7

which is positive definite since S is, we have

CA'T(CA'%CA'T)_I = MCA'T(CA'%MCA'T)_I.
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This means that the maximized log-likelihood becomes

T— 1 T—
T =p) (log(27r)—|—1+log|SA|> - plog - .
2 n 2 BrS-15r|
T 1 T—p. |CPMCr
n(2p) (log(27r) —|—1+log|SA|> - plog ‘ T ~ ’
n 2 r.Cr

We now derive an expression for the rightmost term, and, through that expression, obtain an

estimator for the cointegrating space. To proceed, we require the following algebraic results:

Lemma

(

Properties of Self-Adjoint Linear Operators)

Let (V,(-,-)) be a finite-dimensional inner product space over the real field, and T' € L(V) a

self-adjoint linear operator on V, that is, a linear operator on V such that

(Tv,u) = (v,Tu)

for any v,u € V. Then, the following hold true:

i) The eigenvalues of T' are real.

ii) There exists a basis of V' consisting of orthonormal eigenvectors of T'.

Proof)

i)

ii)

Let A € C be an eigenvalue of T" with corresponding eigenvector v € V', which must
be non-zero by definition. It then holds that

Mv,v) = (X-v,0) = (Tv,v) = (v,Tv) = (v, \-v) = X(v,v)

by the bilinearity of the inner product, as well as the definition of self-adjointness
and eigenvectors. Since (v,v) # 0 due to the fact that v is non-zero, we have A =\,
and thus A € R.

We proceed by induction on the dimension n of V. Denote the norm induced
by (-,-) as [|-||]. When n =1, letting {v} be a basis of V, there must exist some
A € R such that Tv = Av, since T'v which belongs to V' and is thus a scalar multiple

of v. Therefore, {”2—”} is a basis of V' that consists of orthonormal eigenvectors of 7.

Now suppose that the claim holds for any real inner product space of dimension
n > 1 and self-adjoint operator on that space. Suppose that (V,(:,-)) is a real in-
ner product space of dimension n+ 1 and that T is a self-adjoint operator on V.

Choose any eigenvector v,41 € V' of T normalized to have norm 1; there exists a
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A € R such that Tv,+1 = A-vp41, in light of the preceding result. Defining the sub-
space W = span({v,+1}) of V, since W and V are both finite-dimensional spaces,
we have V =W @ W, where W+ is the orthogonal complement of V. Since W
has dimension 1 (v,41 is non-zero), and V is an n+ 1-dimensional space, the fact
that V is the direct sum of W and W tells us that W+ must have dimension n.

Let T € L(WL,V) be the restriction of T on W; since T is self-adjoint on V,
T must be self-adjoint on W+. By the inductive hypothesis, there exists a basis
{v1,--+,v,} CV of W that is comprised of orthonormal eigenvectors of T.V=

W@ W+ tells us once again that {vq,---,v,,v,11} is a basis of V. Since
(Unt1,0:) =0

for any 1 <4 < n since v,,41 belongs to the orthogonal complement of W, |jv, 41| =

1 and for any 1 < ¢ <n there exists a A\; € R such that
T’Ui = TUZ‘ = )\z *U;

since v; is an eigenvector of T' of norm 1, it follows that {v1,- -+, vy, vn41} is a basis

of V' comprised of orthonormal eigenvectors of T'.

Q.E.D.

Lemma Let {y1,---,y,} CR" be a linearly independent set of n-dimensional vectors that are

collected into a matrix

y= (y1 yr) e R™

of full rank r. Let A € R™"*™ be a positive definite matrix, and suppose that

y(y'y) ' = Ay(y'Ay)~!

holds. Then, the vector space V = span ({y1,---,y,}) is invariant under A, that is, Av € V for
any v € V. In addition, there exists an n X r matrix E whose columns are orthogonal eigenvectors

of A, and a nonsingular matrix P € R"*" such that y = FP.

Proof) We first show that V' is invariant under A. The orthogonal projection (as a linear

operator) onto V' is defined as

/

projy = y(y'y) " 'y';
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we can easily see that, for any v € R”,
(v=y(y'y)"y'v)'y=0.
Choose any v € V. Since there exists an a € R" such that v =y-a, it follows that

projy (v) = y(¥'y) 'y'v =v.

Now note that
projy (Av) = y(y'y) "'y Av =y (y'y) " (' Ay)a.
Since
y(y'y) "y Ay = Ay
by assumption, we have
projy (Av) =y(y'y) "' (y Ay)a = Ay -a = Av.

Therefore, Av € V' and the subspace V is invariant under A.

Let T be the left multiplication transformation corresponding to A, and T its restriction
to V. Since A, and by extension 7', is invariant on V, it follows that 7" is a linear operator
on V. Furthermore, it is self-adjoint because A is a symmetric matrix; by the previous
lemma, there exists a basis {ej,---,e,} CV of V that is comprised of orthonormal

eigenvectors of T and thus of A. Defining

E= (el er,)

since {y1,---,yr} is a basis of V' and thus contained in V', there exists a vector P; € R"
such that

yi=FE-P;

for each 1 <i < 7. Defining

it follows that y = EP.

To see that P is non-singular, note that, by the same reasoning as above, there exists
a A € R"™" such that



Thus,
I, =FE'E=FEy\A=(E'E)PA=PA,

where the first equality follows because the columns of E are orthonormal. This shows
us that A = P71,

Q.E.D.

Since

A

Cr(ChCr) Y = MCr(CHrMCr)7H,

everywhere on {2, the preceding lemma tells us that, for any outcome w € €2, there exist or-

thonormal eigenvectors eq,---,e,. of M and a nonsingular r x r matrix P such that
éT e (6]_ . 61”) P
—_——
E

Letting 1; € R be the eigenvalue of M corresponding to e; (it is real because the eigenvalues of

symmetric matrices are real), it follows that

w0
M-E=FE-| :
0 Loy
and thus
\C{rM CT! _ |P'E'MEP|
Cy0r] | IPEEP
w0 )
=|E'ME|=|| : - || =]]m
0 - =1
Finally, note that the eigenvalues u1,---, i, are solutions to the equation

_1 _1
0= |M—p-I| = ‘(1 ) I~ S 7S 1S3 Sa 1877

= ‘(1 —p)-S_1— S’A,_15£15A771HS:H‘
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Thus, the maximized log-likelihood must be equal to

N T— 1 T—
lp = _n(2p) (log(27r) +1+ nlog|SA|> ~——3 plog

_ _n(T'-p) 1 T—p< N
= (log(27r) +14 nlog]SM) — 2izllog(1 —)\z)

for the r largest solutions A1 > -+ >\, > 0 that solve the equation
A-S_1 =S 18388 1| =0.

Note that 1> \; >--- > ), >0 are the r largest sample canonical correlations between Ra and
R_; (for more details, consult section 2.1 in the factor model text). Heuristically, in the case
that there are no lagged differences (no X), this means that the cointegrating vectors in Br
must be determined so that the sample correlation between AY and Y_; is maximized. This is
in accordance to our usual conception of cointegration that Y_; must drive long run changes in

AY if the variables in Y; are cointegrated.

It remains to obtain a tractable expression for the cointegrating basis BT- We saw above
that the columns of Cp = S%,l Br at the maximum can be chosen to be any linearly independent
eigenvectors corresponding to the eigenvalues 1 — :\1, I A\ of M. To simplify things, note
first that, for any eigenvector v of M with eigenvalue pu, the quantity v is an eigenvector of the
positive definite matrix S:I% S’A’_IS;lsA,_lsj’ with eigenvalue 1 — p; this follows by noting
that

_1 1
Muv=v—S_2S5 _1Sx'Sa 15 2 -v=p-v,
so that we have
_1 1 _1,
S_fS'A,_lsg Sa—15_7 v=(1—p)v.

R 1,

Thus, it follows that the columns of Cp = SE/I B can be chosen to be orthonormal eigenvectors
_1 _1 . .

of S_fS’AfnglSA’_lS_f/ corresponding to its r largest eigenvalues A\; > --- > A, > 0. Note

that we have imposed the normalization

CrCr = BpS_1pr = I,
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Summary of QMLE Values
Given the quantities
Ra = Mx(AY)=AY - X(X'X)"1X'(AY)
Ri=Mx-Y =Y 1 -X(X'X)"'X'Y,
1
Sa = RaRa
S_1= LR’ R
-1 = T—p —14t-1

1
SA,—l = mR/AR—17

the Gaussian QMLEs of the model parameters are given as follows:

~ _L1, . A
pr=S_{ (Cl,T Cr,T) ;
N N ) _1 3 _1,
where C1 7,---,C, are orthonormal eigenvectors of SffS’A’_lSAlSArlef

corresponding to its r largest eigenvalues M>>0>0
dr = RAR 1 Br(BrR R1fr)”"
S7=8Sa—Sa 187 (3{[’5—15})71 BrSi, -1
Pr = (X'X)7' X' (AY = Yoy - fraf)

The maximized log-likelihood is

> n(T-p) 1 T-py <
I =~ <log(2w)+1+nlog\5’A|)2;10g<1>\1).

Note that, if the eigenvalues of S:%S'A7_IS£15’A7_1 are distinct, then BT is unique up to sign

changes in its columns.
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5.4.4 Maximum Likelihood Estimates when r =0

So far, we have studied the (quasi) maximum likelihood estimates of the model when 0 < r < n.
The case when r = 0, that is, when there is no cointegrating relationships, is much simpler to
analyze. 7 = 0 is equivalent to the claim that II = a3’ = O, so that the VECM becomes a VAR

in first-differences:
AY; =T1-AYy 1+ +Tp 1 AYy pi1+er.
Therefore, the maximized log-likelihood is the same as in the stationary VAR case, given by

A T— 1
lp = _n(2p) <log(27r)+1+ nlogSA) ,

and the QMLEs of I" and X are

= (X'X)"'X'AY

iT:SA:Tl_p(AY—X.fT)'(AY—X.fT).

Since the assumptions on the first-difference process { AY; }+cz and the innovation process {e; }1cz
are identical to those for stationary vector autoregressions, the asymptotic results proved there

continue to hold; specifically,

where
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5.4.5 Specifying o |

When studying the asymptotic properties of the QMLEs derived above, it is conveninent to
choose the following specific form for the orthogonal complement «;. Assuming that r > 0,
define

Py(M)=a(e’M o) ta/M™!

for any positive definite matrix M. Since the matrices I, — P,(X) and P,(X) are idempotent,

their rank equals their traces, so that
rank(l, — Py(X)) =tr ([, — Po(X)) =n—r.
Consider the matrix
ST I, — Pa(E)).
This matrix clearly has rank n —r, and
ST - Po(R) =S =S (@S a) e/ BT
shows us that X ~!(I,, — P,(X)) is positive semidefinite. Therefore, it has the eigendecompsition
»~1I, - P,(%)) = PDP'

for orthogonal matrix P € R™*" and diagonal matrix D with diagonal entries equal to the

eigenvalues of ¥~1(I,, — P, (X)), which are non-negative; the last 7 entries in D are 0. Denoting

D
D= © :

where D € R(=7)%(n=7) ¢ollects the non-zero elements of D, define
Dl
2
a, =P e R,
O

aja) =NHI, — Py(X))

We can then see that

o oy =D.
By implication,

a o a=2"I,-Py,(X)a=0
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and thus

o la=D"10=0,

so that «  truly does act like the orthogonal complement of a. Another important property

that this o) possesses is that, because
Yajd| =1, —P,(X),
and the matrix on the right hand side is idempotent,
Yay (| Yal)d| =Sad|,
which implies that

o Yoy =1 ;.

When r =0, we define

the inverse of the Cholesky factor of .

Define the n —r-dimensional Brownian motion {B(s)}se(o,1] as
B(s)=d/, 32 -W"(s)

for any s € [0,1], where {W"(s)}sco,1) is the standard n-dimensional Wiener process. Since
o Yy = Iy, it follows that {B(s)}sc[0,1) has variance I,,_, and therefore is identically dis-

tributed to the standard n — r-dimensional Wiener process. This establishes that
& X7 W(s) ~ W (s)

under our choice of o .
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5.4.6 Consistency of QMLEs

Now that the QMLEs have been derived, we can study their asymptotic properties. We start
with the r largest sample canonical correlations 5\1, e ,S\T of Rao and R_1, and then make our
way back up to f]T and f‘T.

Note first that the canonical correlations, being real ordered eigenvalues of the positive
definite matrix S:%S’A’_ISEISAAS:%/, are continuous functions of S:%S’A?_ISZISAAS:?
(for a formal proof of this result, consult section 1.2.3 in the factor model text). This ensures
that :\1, “ee ,5\7« are well-defined random variables, and that we can use the continuous mapping
theorem to derive the asymptotic distribution of the canonical correlations. Formally, we will

denote
R _1 1 -1
(A1, Ap) = eig,, (SfS'A’lsg SA,—15_7 ) ,

so that eig) (-) is a function that extracts the r largest eigenvalues from an n x n matrix with
real ordered eigenvalues.

The quantities Sa,S5_1,54,—1 defined above have the following asymptotic properties:

Lemma (Asymptotic Results for QMLE)

Under assumptions Al to A3, the following convergence results hold jointly:

CINE-STIN

1
Tl_ps_l KN ( /0 W”(r)W"(r)’dr) I\

1
T—p

8581 % (LA @ T s ([ W w6y ds) (BT () B8

-1
(778081) =0,
S.15=0p(1)
B'S_18 5
1 /
Sa—1 LN pa,—1+A (/0 W”(r)dW"(r)’) A
Go) - Gp-2)\ (AW ey) N

~(6@) - Gp-1) ; :
Glp—2) -  G(0) AW @awn(ry)

Sa 185 pa 1P

BISA,—l = Op(l)
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1
Sh_jaL LA (/ W”(r)dW"(r)’) Z‘%'ab
0

where
G(0) ap-2)\  ( eay
a=GO)-(6() - Gr-1) s
G(p—2) G(0) Gp-1)
G(0) Gp-2)\ [ A
noa=Ga0) =8 (A - Ap) : - : |8
G(p—2) G(0) A
G(0) Gp-2)\ [ A
a1 =M= (G(1) - Gp-1) : : : :
Gp—2) - G(0) A,y

pasp—1 and pa 1 are related to one another as

UA :Z+HA,7150/ and M—la/:ﬂ//j/A7_1-

Proof) We can recover the probability limit of SA as

Sa = 7 RaRa = 7 (AY) My (AY)
1 . 1 , 1, .\ 1 )
= 7, (AY)(AY) - (T_p(AY) X> (T_pX X) (T_p(AY) X)
GO) - Gp-2)\ [ Gy
LGO)-(6) - Gp-1) : S :
Gip-2) - G(0) G(p-1)

Note that pa is the Schur complement of the positive definite matrix

G@o) - Glp-1)

Glp—1) -+ G(0)

so that it is also positive definite.

Likewise, we can conclude that

1 1
B'S_18= ﬂﬁ’RLIR,lﬁ = ﬂﬁ’YLIMxy,l,B
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We also have

1
Sa1 = g (AY) My Yy

1 , 1 , 1 o, N\t 1 !
= e (AY)Yo (T_p(AY) X) (T_px X) (T_ple>
KN ( /0 1 W"(r)dW”(r)’)lA/JrAg
GO) - Gp-2)\ (Ao WrEaney) A
~(c) - cpr-1) : g : :
Glp—2) - G(0) A(JEWn(rawn ) A
6(0) ap-2)\ [ AN
~(6) - cp-1) : :
G(p—2) G(0) A4

When r > 0, using the fact that

GO) - Gp-2)\ [ Gy GO) - Go-2)\ [ A
r'= : : : - : : : Ba,
Gp—2) -~ GO) cwr-17) \cow-2 - a0 A

the above limit can also be reformulated as
, A (W )awn(ry) A
1
Sa—1 4 A (/ W”(r)dW”(r)’) N+ AT :
0
A (g wr)awn(ry) A

Go) - G<p2>)1 (A(f&W"(r)dW”(r)’)'A’)

(p=2) - G(0)

GO) - Gp-2)\ [ A
-(6) - Ge-v)| z
Glp-2) -~  G(0) AL
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—T(1)A (/01 W”(r)dW”(r)’)IA’ LA

GO) - Grp-2)\ (AW Eaney) A
—045/(1\1 Ap—l) : : : :
Gp-2) - G(0) A (fgwr)awn(ry) A
G(0) Gr-2\ [ A
-(e) - G- s
G(p—2) G(0) Ay
It now follows easily that
G(0) ap-2)\ (M
Sa1BL A= (GQ) - Go-D)| i |8
G(p-2) G(0) A4

= pa,—153

since 'A = O, where the convergence in distribution changes into convergence in prob-

ability because the limit is non-random. Similarly,

GO) - Gr-2)) [ A
BSa BN -8 (GO) o Gp-1)| i :
G(p—2) - G(0) Ay
GO) - Gp-2))  (AlWrmavtey) v
-6y - Gp-1) A :
Gp-2' -~ G(O) A (W)W ry) N

where the convergence this time is in distribution.

If r > 0, then

AT(1) oy =%2'C'T(1)a,
=22 (FL0(1)ar) 01 ay

Ly
:EQ aJ_,

while if 7 = 0, because A = C¥2 = F(l)*lE% and « ) = I,, we still have A'T'(1) ) =

»3’ar . Therefore,
d ! / i,
Sh s b A ( / W (r)dW™ (r) ) S5 a) +Agal
0
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(A )| |
Gp-2) - G(0) G(p—1)

1
=A (/ W"(r)dW”(r)’) “¥ar+Agar— (A o Api)Tar
0
1 1
_A < / W”(r)dW”(r)’) ¥,
0
where the last equality follows because

Ao = (A1 - Apor)Tal.

Meanwhile,

T—p " (T—-p)?

KN ( /0 1 W"(r)wn(r)’dr) N,

since WYL 1X = 0p(1). Pre- and post-multiplying both sides by 5, implies

=
1 / / ! n n / !
T_p/BJ_S—lﬁj_ 4 8 A (/0 W™ (r)W™(r) dr) NG,
Here,
BLA=(B181)(a! T(1)81) Le/ T2,
so that
TS S (AT ([ BB s ) (BT (L)

where we define B(s) = a’J_Z% -Wn(s) for any s € [0,1]. Since B(s) ~ W™ "(s), we can
see that

1
s AT ([ W) s ) (BT (1) B0,
Clearly, the limit has full rank n —r, so that

1 —1
(7

—ALSaAL) =0,
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We can also see that

1
S 18=—+—-Y' | MxY_
18 T—p 1 Mx 18

_ Tlpy’ly_lﬁ— (Tlpy’lx> (Tle’X> B (Tlpﬁ’Y’lX)/
4 [A (/Olwn(r)dwn(r)') D (D(1)C L) + Ao~ (Ar - Ap_l)r}a
GO) - Gp-2)\ (Ao WrEaney) N
8 (A )| :
Gp—2) - G0) A(fEwn(rawn ))&
co) - Gr-2\ ([ a\]
(A M) | :
Go-2) -~ GO ) \a,

Therefore, we can conclude that S_18 = O,(T).

The relationship between pua and pa _; can be seen by noting that

X =G0)-Aysa’ —(G1) - Gp-1))T
G(0) aw-2\ [ cay
=G(0)—Ag-pa’ = (G(1) - Gp-1) :
G(p—2) G(0) G(p—1)
G(0) G(p—2) Ay
-(G@) - Gp-1) : Ba’

Gp-2) G(0) A,y

= pa —pa,—16a.

The relationship between p_1 and pa 1 follows from

,ufloé/:Gﬁ(O)O/—B/ (A1 Ap,1> —T
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=4 Ao—(A1 Ap—l)

= B,M,A,fl'

Q.E.D.

Suppose r > 0. Note that

p—1 pa—1pP
BINIA7_1 HA
is the probability limit of

B'SaB Sa-18)  [BY, 1 Y_18
(ﬁ’S’&_1 N ) - ((AY)’) (T—pMX> (AY) '

If we assume that the smallest eigenvalue of this matrix is bounded below at a level greater than

0, it follows that
p-1  pa,—1f
BI,U/A,_1 mA

must also be positive definite. By impliction, p_1, ga and the Schur complement p_1 — ﬁIMIA,_WZIMA,—lﬁ
must also be positive definite.

If » =0, then we can still assume that pa is positive definite.
We can also show that P,(ua) and P,(X) are related in the following manner:

Lemma (Relationship between P,(ua) and P, (%) )
Under assumptions Al to A3, if » > 0, then the following hold true:

Po(X) = Pa(pa) and X71 (I, — Pa(X)) = Ngl (In — Pa(pa))-

Proof) The above results make use of the fact that
pa=X+pa 18 =S +ap 1o
First we show that P,(X) = P,(ua). To this end, note that

pal =S =2 apad
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this can be seen by direct verification through the identity pua = X+ ap_1a’. It follows
that

o/ugla =a'Y la— O/E_lau,lo/ugla

o ut =a/S 'S ol ut
direct verification via the first equation leads us to the conclusion that
(o/,ugla) g (o/Efla) - +p—q.
Therefore,

a (o/,ugla)_ o/ugl =« O/E_loz)_l + M—l} [a/E_l — O/E_lozu_lal,ugl}

1
oS g d ST gy — pd/ S apa/ !

2) + (ap1a) ST = (apora!) Tt = (apora) ST apoal)uy
Y)+ {(a,u_lo/)*lilfl —i—In} {In - (au_lo/)*l,ugl} —I,.

Since au_1a/ = ua — X, we can see that

(ap-1a) 'S =X - 1,

(ap—10) = I —Spy',

so that

-1
P,(pa) =« (a'ugloo o' iyt = Py (D).

It remains to show that
z! (In—Pa(X)) = Ngl (In— Pa(pa)) -
Since Py(pua) = Pa(X), we can see that

Al (In = Palpa)) = pa' = pp' Pa(X)
-1,

zugl—ugla(a’ugla) o py

Pa(pa)

=S =S N apo1a) )yt — Pa(E) pa!
-1
=yl E_l(a,u,lo/),ugl -y la (O/E_la) o/ugl

-1
=y 1-xla [,u_l + (O/E_loz) ] o/ugl
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=yl-»la (o/,ugla)il o/ugl

Pa(pa)

»lowTP,®) =211, - Pu(D)).

Q.E.D.

The preceding results allow us to prove a consistency result for the sample canonical corre-

lations 5\1, e ,XT obtained as the r largest solutions to the eigenvalue equation

AS_1 = Sh_1S3"Sa 1| =0.

Theorem (Consistency of Eigenvalues)
Maintain assumptions Al to A3. Let 5\1 > > 5\n > 0 be the real ordered solutions to the

eigenvalue equation
AS_1— S5 155" Sa 1| =0.
If » > 0, then
At h) B (AL, A, 0,---,0),

where A\; > --- > A\, > 0 are the ordered eigenvalues that solve the problem

‘Auq - B’M’A,_luglm_lﬁ\ =0.

On the other hand, if » =0, then

Proof) The Case r =0

We first prove the result for the case r = 0. In this case, because 5, = I,,, we have

(os) o
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and by implication,

si=_1 <1 s >_1— (1)
AT p\T—p7) T

Since 5\1, e ,5\,1 are the solutions to the equation
-1 L _1,
’)\ I —S_{ SN 1S5 Sa, 157 | =0,
and
_1 1 _1,
S 75k, 155158157 = 0p(L).
by the continuity of ordered eigenvalues 5\1, ‘e ,S\n converge in probability to the solu-

tions of the equation
[A-I,| =0,

that is, to the n-dimensional zero vector.

The Case r >0

Recall that, if » > 0, we assumed that

pe1 a1
6,N,A7_1 “a

is positive definite. Thus, A1, -, A, are the eigenvalues of the positive definite matrix
*% 7ol -1 *%’
B_i B A 1WA Ba—1BR_T

so that A1,---, A\, are real, ordered and non-zero.

For any A € R, defining My = (5 S_15 L)fé, the inverse of the Cholesky factor of
B S-1B.1, we have

(8,80 [AS—1 = S 15a" a1 (8. 81)]

_ | (5') (AS-1 -84, 15588 1) (8 5.

1

_ 1y B'S_1B BSaBLY B’S’A,_ISESA,_M 5'53,_15;15A7—1ﬂL
BSap BLS-1pL BLSN 1S Sa—18 BN 1A Sa—181
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N B'S_1p B'SaBiMy \ [ B'Sh_1Sx'Sa 1B B'Sh 157" Sa 181 My,
Mrp\ S8 MrB\ S_18. M} MTﬁﬁ_S/ArlSZISA,—IB MTﬁiS/A,—ISEISAﬁl/BJ—MC/F

I, O
X
O M;!

Since (B3,81)" and My are nonsingular matrices, it follows that the solutions to the

eigenvalue equation ‘)\S_l - S _1SngA7_1’ = ( are solutions to the equation

N B'S_15 BIS_apLMp ) 5/S/A7_1SEISA,—1B 5'521_15115A,—1ﬁLM’T _0
MpB'\ S Mrp|S_161 My Mrpp Sy _1Sx'Sa—18 MpB SN 155" Sa 181 My

The preceding result tells us that

(Tl_pﬁj_s—lﬁj_) o Op(1),

so that

1

(/Bj_s—lﬂJ_)_l = m (

1
T—-p

1
53_S—I/BJ_> = 0p(1),

implying that

N

My = (81S-181) 2 = 0p(1)

as well by the continuity of the Cholesky operation. Therefore,

B'S_18 B'S_161 My o [ H @)
Mrp\ S_18 Mrp\ S_181 My O I,

and

Mrf, S 153" Sa 18 MrBiSh_Sa'Sa18.Mj

LN (ﬁ///A,_ﬂiglﬂA,lﬁ O)'

( BSh_1Sx'Sa 1B B'Sh_,SalSa 181 M )

O @)

By the continuity of real ordered eigenvalues and the continuous mapping theorem,

(:\17 o 75\n) should converge in probability to the solutions of the eigenvalue equation
p-1 O B'in _pix pa—1B O )
‘/\ ( o I ) B ( o OA oll~ ’)\M—l _5/U/A,71MA1MA,—16) ATy

This equation has exactly r non-zero solutions, denoted A1 > --- > A, and n —r solu-

tions equal to 0.
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Q.E.D.

While the uniqueness of the ordered sample canonical correlates allows us to obtain probabil-
ity limits for them, the potential non-uniqueness of the corresponding eigenvectors of S:lé S’A’_ISEIS A7_15:1% '
makes it more difficult to obtain limiting results for BT- Fortunately, we can establish that the
cointegrating space, at the very least, is consistently estimated, in a sense to be discussed below.

First we decompose BT as the sum of the projections of BT onto the space spanned by the

columns of § and its orthogonal complement; specifically, we let

Br=B(B'B) " B Br+BL (B BL) B br.

T yr

Since the column space of § is the (augmented) cointegrating space, we can say that the coin-
tegrating space is consistently estimated if 7 = 0,(1), that is, if the projection of BT onto the
orthogonal complement of the cointegrating space vanishes as T'— oco. In other words, the coin-
tegrating space is consistently estimated if BT belongs to the cointegrating space (the column
space of ) with probability 1 as T — oo.

To show this consistency result, we require more preliminary asymptotic results. First, define
S(A)=AS_1—SA_15x'Sa,1

for any A € R. Note that, since Aj,---, A, are the solutions to the equation [S(A\)| =0, S(\;) is

singular for any 1 <i <mn.

Lemma (Rates of Convergence of Eigenvectors)

Maintain assumptions Al to A3, and suppose that r > 0. Then, the following results hold:
i) Br=0p(1), i1 = Op(1) and i7" = O,(1).
ii) 97 = O,(T7') and B’S(S\i)ﬂ-:ﬁagp = O,(T™1) for any 1 <i<r.

iii) For any 1 <i<r,

o 1 B )
BS(8-dur =B (V"¢ ) Walna,1Bdir +op(1).

Proof) We proceed in steps.

Step 1: fr = 0,(1)

We first show that 37 = O,(1). This follows from the normalization condition
BrS_1pr =1,
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We transform S_; in the same manner as in the preceding theorem; defining M7 =

(ﬂj_S_lﬁl)_l as above, so that Mp = 0,(1), note that

B'S_15 B'S_1p1 My I, O I I, O
= = S_ .
‘ (Mw;s_lﬁ MTﬁ;S_lmM'T> (0 MT> (ﬁ;) 0 81) (0 MT)

Letting LL' = ¢ be the Cholesky decomposition of ¢, we can now see that

-1
o s a8\ (L o). (L o 1,
BrS—1Br = Pr (ﬂl) (O MT_1> LL (O MT_1> (5 /31_) Br =1,

or, defining

op=1' (g MO_l) (ﬁ ﬂL)ilﬁA’T,

T

we have
Sbbp =1,

This means that the columns of §7 are orthonormal and have norm 1 for any 1T'€ Ny,
so that HSTH < y/r and thus op = O,(1). Furthermore,

Br= (ﬁ 5J_> (g ;2) (L')~'-brp,

where

L 0\
(5 9)-a0

because M7 = 0,(1). Furthermore, since

Cﬂ) H—1 O
O In.)’

a nonsingular matrix, (! = O0,(1) and (L’)~!, being the Cholesky factor of (71, is also
O,(1). Therefore, 7 is the product of a nonrandom matrix ([3 B L) and three Op(1)

matrices, so that it is also Op(1).

Since 27 = (8/8)~ 14 Br, by implication &y = Op(1) as well.
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o & _ —1
Step 2: ;7 =0,(T"")
Recall that the columns of

A

Cr= S%;BT = Si (ﬂl,T B’“vT)

1 1
. -1 _ —17 . . Q Q
are eigenvectors of S_2 S’ 715’AISA,_1S_12 corresponding to the eigenvalues Ay, , A

Therefore, for any 1 <17 <r,
5:1%5'&,15515A,_1 Bir =N\ S%;Bi,Ta
or equivalently,
S\ Bir = P\is—l — S’A,_nglSA,_l} Bir = 0.
For any 1 <i<r,
Bir = Basr + BLikr
and the equations
B'S(A)B- @iz +B'S(N)BL-Jir =0
BLS(N)B-Eix +BLS(M)BL - Gir =0

hold. From the asymptotic results for QMLE and the consistency results for the eigen-

values shown above,
B'SA)B=Xi-B'S_18—B'Sh 155" Sa—18=0y(1),
B'S(A)BL =X B'S_18L—B'Sh 152" Sa,~18L = Op(1)
BLS(A)B =N BLS_18—BLSA 153 Sa 18 = Op(1)

Lo ofs . BLSaBL 1 .
FASA)BL =N = — 81 S 15K Sa18L

4N BLA (/01 W"(r)W"(r)'d?“) NBy,

where \; > 0 is the ith largest solution to the equation ’)\M—l — B\ _1u£1,uA7_16 =0.

By implication,

(Roists) =0,

as well.
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We showed above that &7 = Op(1). Therefore,
" [PPSR i A
Tjir = (77SO0BL)  BLS(R)B-dir = Oy(1)
which tells us that
Jir = Op(T7H).
By implication,
B'S(N)B-dir =—F'S(N)BL-Gir = Op(T™)

as well.

Step 3: i7" = Op(1)

Using the normalization condition, we can see that

I, = BpS_1pr = (Bir + BLir) S—1 (Bir + BLir)
=& B'S_aB-2p+ 3 BSaBL - 9r+ 97y BLS-1B T+ 97 BLS-181 - Or-

Since 97 = O, (T~ 1) and &1 = O,(1),
B8 1B1-r = - (55181 ) Tir = op(1)
since 'S_1 = Op(1). Similarly,
- BL5BL0r =T (55461 ) - Tir = op()
since | S_181 = Op(T). It follows that
I, = BpS_1pr =il B'S_18 - i1 +0p(1).
It follows that
i B'S_1B-dp B IL.

Because the determinant is a continuous function, by the continuous mapping theorem

we have

- 18'S_18] B || =1.
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8'S18] & |i-1] >0, so
1

L
o7 B ()2 > 0.
1]

The elements of the adjugate of a matrix A are polynomials of the elements of A.
Therefore, the adjugate of a random matrix that is bounded in probability is also
bounded in probability. We just showed that |TIT| =0,(1), so

A—1 _
T ey

(1) = Op(1).

Step 4: An Expression for ﬁis(j\z’)ﬁ'fi,T

The final result follows by noting that

BYLSh 1 —B1LS 1B —BL Y’lMX(AY Y- /Ba)}

1
_pYLlMX(X-F+s)]

= (5 ie) - () (72) (52%)

Since SX'e=0y(1),

85,1 = (B1518) o = B (=¥ !ie ) +o,1),
The asymptotic results for QMLE tell us that

o = pZi(pa-18)',
and 3'S_183 and Sa,—1/3 is consistent for 11 and pa 1/, so
S, 1~ B SaB(ES13) 'Sy = Bl (V") +op(D),
where we used the fact that S_15 is Op(1). Therefore, for any 1 <7 <r,
BLS(N)B @i =N B S_1B- &1 — BLSA 157" Sa—1B Tix
=N\ BLS 1B #ir */515—15(5/5—15)_15/53,_15515&715'i“z',T

—BL <Y/ 15) SA'Sa-18-Eir+op(1)
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= 31518 (8S18) " [\ BS18—F'Sh 195" Sa 18] - dir
—BL <Tl_py’15> SA'SA 1B Zir +op(1)
=B S 1B(8'S1B) " BS(A\)B-ix
-6 <T1—pYi15> SA'Sa—1B-2ir+0p(1).
We saw above that B/S(S\i)ﬁ'ﬁcij = Op(T1) and thus o0,(1), so that

“ R 1 _ N
BLS(A)B- &ir = =Bl (T_pY) S3'Sa-18- i+ op(1).
Finally, since S&l EN ,uzl and S 1/ EN pa,—13, we have

o 1 B )
BLS(N)B-&ir = —B) <T—pYi1€> pn A, -1 &g+ op(1).

Q.E.D.

The preceding lemma can be directly used to establish several consistency results:

Theorem (Consistency of Parameter Estimates)
Maintain assumptions Al to A3, and suppose that r > 0. Then, the following hold true:

i) The cointegration space is consistently estimated:
BL@T = Op(Til)-

ii) IIp = &p- % is a consistent estimator for II:

Iy B 1= af.
iii) Sr is a consistent estimator for X:
Sr b %
iv) T'p is a consistent estimator for I':
I'r BT,

Proof) i) This follows immediately from the preceding lemma. Heuristically, it tells us that

the projection of BT on the orthogonal complement of 8 vanishes as T'— 0o, so
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that, for large T, Br lies in the cointegrating space with probability close to 1.

ii) Note that

A

Br = B+ BLir,
so that
Briz' — B =Bririp' = 0p(T ™),
since 7 = O,(T~ ') and &1 = O,(1). Therefore,

. . 1 ~ T4 1 17
Iy = arpr = (T_pR/AR—1> pr [BIT (T—pRl_lR_l) 5T} Br

= SA771,@T (B&“S—IBT) - B%

A~ N A~ —1 A~
A—1 [ ~—1 ~—1 ~—1
= Sa,—18r27 (xT "B S—1Prip ) i7" Br

B pa—1Busif =af =1L

iii) Similarly to the preceding result,

& A Al 5\ 71 Aol
Y =8A—8a_18r <5T5—1ﬁT) BrSa.—1

. . . 1 .
o1 (a1 =1\ L1
= SA —Sa, 187187 (ZL‘T "BrS_1Priy ) &7 BrSh, 1

B A —pa—1BuZ1B pa 1
=X+ pa 180 —pa, 1o’ = 3.

iv) Finally, using the consistency of I, we can see that

Pp =T+ (X' X)XV (V= 1) + (X'X) 7 Xe

o 1 / -t 1 / / r/ 1 ! -1 1 /
—T+ (TX X) (TX Y_1> (' —17) + (TX X) (TX g)

1 ~
since (%X’X) =0p(1), +X'Y_1 = Op(1), II' = I/, = 0,(1) and +X'e = 0,(1).
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That ﬁATi}l —B=0,(T~1) can also be expressed as
BT — Bir = Op(Til).

This is reminiscent of the result in factor models that the factor estimates are consistent only for
a rotation of the true factors. As in factor models, because the cointegrating relationships are
non-unique, our estimates of the cointegrating relationships collected in ﬁ} is consistent only
for a rotation of the true cointegrating basis . In this sense, too, is the cointegrating space

consistently estimated.
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5.4.7 Testing for the Cointegrating Rank

Here we state and derive the limiting distribution of two test statistics designed to test for the

cointegrating rank r. To this end, we first derive the limiting distribution of the last n —r sample

canonical correlations, 5\r+1,~- ,S\n, under the assumption that the true cointegration rank is
O<r<n.
It turns out that /A\TH,--- ,;\n converge at a rate of T to their limiting distributions. The

formal statement and proof are given below:

Theorem (Asymptotic Distribution of Eigenvalues)
Maintain assumptions Al to A3. Then,

~

Q d
(T/\r+17"' 7TAn> — (7717"' ann—r)a

where 17 > --- > n,_, are the ordered eigenvalues that solve the equation

|)\- / W)W (s ds — ( / 1 Wn—f(s)dwn—f(s)’> < /O 1W”_T(s)dW”_’"(s)’>, o,

0 0

or equivalently, the ordered eigenvalues of the positive definite valued random matrix

(/ W (s)dW™ " ( ) (/ W ()W (s )ds) 1(/01W"’"(s)dww(s)’>.

In addition,

(Z )\) [(/ W ()W ) </ W ()W (s )ds) 1(/01W"_T(s)dW”_T(s)’)].

i=r+1

Proof) The Case r =0

Again, we deal with the case where there is no cointegrating relationships, so that r» = 0.

In this case, T5\1 > > zjn > 0 are the ordered solutions to the eigenvalue equation

1
‘)\ <TS_1> - 537_15518A7,1 =0.

Letting F' be the weak limit of SA _1, the continuous mapping theorem tells us that

Thi > >TA\, >0 converge weakly to the solutions of the equation
‘/\ (1) </ W™(s)W"(s )ds>E2T(1) —F’MglF’ =0.
Since pua =% and a | = 53" when r = 0, the above equation can be written as

1
‘A-r(l)lzé’ (/ W"(S)W”(s)’ds> Ser(1) Y — F’aLalF‘ =0.
0
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Since F'o ) and
) 1
r(1)-'s (/ W"(r)dW”(r)’)
0

are both limits of S’ _;a | when =0, the uniqueness of weak limits tells us that they

are identically distributed and thus that T, ,Tj\n converge weakly to the solutions
of the equation

—153 (/1 n n ’ ) 1, —17 1k (/1 n n /> (/1 n n /)l 1, -1/
A1) 'nz W™(s)W™(s) ds | 22'Tr(1)"Y —r(1)"in2 W™ (r)dW™(r) W) dw™(r) | £2'T@)
0 0 0

or equivalently, the equation

‘A- /0 W (s W (s) ds — ( /0 1 W”(r)dW”(r)') ( /0 lwn(r)dwn(r)’)/ —0.

The Case r >0

Note that (T'A,)~* >--- > (T'A;)~ > 0 are the ordered solutions to the equation

1 _
’Ts_l —1-Sh_1Sx'Sa 1| =0.

As above, we can use the fact that (ﬁ B L) is nonsingular to conclude that (T'A,)~!

Y

e > (Ts\l)_l > 0 are also the ordered solutions to the eigenvalue equation

| (5'57:1,3 ,8’5}1[& ) . (/B/S/A’_l‘SZlSA,l/B B/S/A,_l‘SZlSA,lﬁJ_) ‘ 0

/ S_ / S_ — -
ﬂJ‘T 18 BJ_ Tlﬂl 6lSlA,—ISAISA7_IB /giS/A’_l‘S’AISA,—IBJ_

Note that
ﬁ’S’A,_nglSA,_lﬁ ﬁ’S’A,_lsngA,_lm
ﬁlS'A,qS&lSA,flﬁ BLS'A,ASESA,qﬂL

a (Braapawa B By iy F
Fluy'pa 1 Flup'F

a positive definite matrix, where F' is the limiting distribution of Sa 13, , and likewise,

B'S_18  B'S_1B. o) 10
/ T ! T & .
lﬁ?—lﬁ lﬂsj—jlﬁJ_ 0 BiA (fol Wn(T)Wn(T)/dT') NG,

By the continuity of ordered eigenvalues, ((T j\n)*l, .. ,(qu)*l) converge in distribu-

tion to the ordered solutions of the equation
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O O . Bltip akaia B By apalFY|_
O BLA(Jo Wr(ryW(r)dr) A'81 Flup'pa, 18 Flup'F

The matrix on the right is positive definite, so the solutions to this equation are non-
negative and real valued (they are the eigenvalues of a positive semidefinite matrix). If
n > 0 is a non-zero solution to the above equation, it is also a solution to the equation

0=|n- ﬁlM/A,flﬂgluA,—lﬂ

1
_ _ _ -1 _
x [BLA (/ W"(T)W"(T)’dr> ANBL—n-F {NAl_NAl:UJA,fl/B(B/H/A,—IUAlﬂA,flﬂ) B/NIA,—lﬂAl] F‘
0

Since the first term is always non-zero, it follows that any non-zero solutions to the
eigenvalue equation of interest must also solve the equation

1
_ _ _ —1 _
BiLA (/ W"(T)W"(T)'dr) NB|—n-F' {Ml—uAluA,ﬂ/J’(B’M/A,—wAluA,—lﬁ) 5'#&,—1%1}17‘ =0.
0

This equation has n —r positive roots, so the equation

o) O . Bun _ypin pa—1B8 Bus _pn'F 0
O BLA(fy Wr(r)wr(rydr) N8, Flux pa—1p Flux'F

must have n —r positive solutions and r solutions equal to 0. It follows that

where the convergence is in probability because the limit is non-random.

It remains to find the non-zero roots to the above equation. Note that

HA = a a,—13 (BINIAﬁlMZlMA;lB)il LN
= pa! = patapor (poa/iylap ) T alg!
= Mgl (In -« (o/,ugla) - o/,ugl>
= :“Zl (In— Pa(ﬂA))_l =x! (In— Pa(z))_l = OZJ_O/i

where the last two equality follows from results shown earlier. Therefore, the non-zero

solutions to the eigenvalue equation are also solutions to the equation

BLA (/01 W”(r)W”(r)'dr) NB —n- F'aJ_aJ_’F' =0.

Since | F'a;; and
1 1
ga( [ wrmawn ey ) s¥ay
0
are both limits of S’A7_1a 1, the uniqueness of weak limits tells us that they are identi-
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cally distributed and thus that (Tj\n)_l, e (Tj\TH)_l converge weakly to the solutions
of the equation

s wrowrote) s wsis( [ wromer )t [wromor) 5o
Since
1 ) X
BLA (/0 Wﬂ(S)dWﬂ(S)/) 2o ~ (B B1) @\ T(1)8) </ W (s )dW"T(s)’>
1
BiA (/ W"(T’)W”( )A /BJ_ ~ (ﬂlﬂj_) aLF </ W" 7“ 71 T(S)/CLS) (ﬂlr(l)/aL)—l(ﬁiﬂLL
0

we can say that (TAp)~L,---,(TArp1)"! converge weakly to the solutions 7j; > -+ >
Tin—r > 0 of the equation

1 1 1 !
/ W ()W (s) ds — - ( / W"""(s)dW”_T(s)’) ( / Wn—r<s>de—r(s)') 0,
0 0 0
Letting n1 > -+ > np—» > 0 be the ordered solutions to the equation
1 1 1 !
A [ wersyas = ([ @aw sy ) ([wersar sy ) | <o
0 0 0

since n; = % for any 1 <¢ <n—r, it follows from the continuous mapping theorem that
the first claim of the theorem holds true.

To see the second claim, note that the trace of a positive definite matrix is given as the
sum of its eigenvalues. Therefore, since n1 > -+ > n,_, > 0 are the ordered eigenvalues

of the positive-definite valued random matrix

</01 Wn_T(S)de_T(S),>, </01 Wn_T(S)W”_T(S)’ds> B ( /0 1 W”_T(S)dW”_’“(s)’) ,

we can see that

() (o) ([ )]

Q.E.D.

We now consider two tests for the cointegrating rank.
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The Trace Test

Initially, consider testing the null hypothesis
Hy:rank(Il) <r<n
against the alternative hypothesis
Hy :rank(Il) > r

for some 0 <7 < n. The likelihood ratio test statistic is given as

LART:*2 |ﬁllp l(a,B,H,E)fsup l(avﬁ’n72)‘|
Hy Hy

=n(T—p) <1og(27r) +1 +Tlllog|SA|) +(T'—p) ilog(l — 5\2)
i=1

— [n(T—p) <10g(27r)+1+ ilog\SA\) + (T—p)ilog(l —5\1)]
i=1

n
=—(T—-p) Z log(l = /\i)-
i=r+1
Suppose the null hypothesis is true. The stochastic version of a second order Taylor approxima-

tion around 0 tells us that
1og(1 - /\> SR VR |
where )\; is a convex combination of 0 and \;. Since T\; = Op(1), it follows that

(TP =~

and, by implication, (T —p)A\? = 0,(1) as well. Therefore,

7

n n

LRr=(T-p) 3 5\¢+% Y (T-p)X;

i=r+1 i=r+1
n

=(T=p) Y Ai+oy(1).

i=r+1

Slutsky’s theorem now tells us that

LRy % tr [( /0 1 W"_"(s)dW”‘T(s)/>/ ( /0 1 W"—T(S)W”—T(s)'ds> - ( /0 1 W”‘T(s)dW"_"(s)’)] |

This is called the trace test due to the form of the limiting distribution.
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The Maximum Eigenvalue Test

An alternative to the trace test considers testing the null hypothesis
Hy:rank(Il) =r
against the alternative hypothesis
Hy:rank(Il)=r+1

sequentially for » =0,--- ,n— 1, stopping only when the null can no longer be rejected. In this

case, the likelihood ratio test statistic is given as
LRT = _2“(@7/871_[72 ’ HO) _l(a767H72 ‘ Hl)]

=n(T —p) (10g(27r) +1 —i—:llog\SA\) +(T-p) ilog(l — 5\1)
i=1

1 r+1 R
_ ln(T—p) (10g(277) +1+ nlog\SA\) +(T—p) Y log(1- )\)]
=1
=—(T-p) log(l - 5\T+1).

Suppose the null is true. Relying on the same second degree Taylor approximation as before tells

us that
A 3 d
LRT = (T_p))\rJrl +Op(1) — M,

where 77 is the largest eigenvalue of

(/01 Wn_r(s)dwn_r(s)l)/ (/01 Wn_r<S)W"_’“<S)’d:~r)_1 < /O 1 W”_T(S)dW”_’”(s)’> .

This is called the maximum eigenvalue test, again due to the form of the limiting distribution.
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5.4.8 Asymptotic Distribution of QMLEs

Here we derive the asymptotic distribution of the QMLESs of 3,11 and I". We first use a previous

result to establish the limit of BT, or at least a rotation of it.

Theorem (Asymptotic Distribution of Cointegrating Relationships)
Maintain assumptions Al to A3, and suppose that r > 0. Then,

-1

T (Briz'—8) S 5 ( /0 lB"_T(s)B”_T(s)’ds) /0 "B (s)dV (s,

where { B"7"(5)}sejo,1] and {V"™(s) }se[0,1] are n—r and n-dimensional Brownian motions defined

as
B""(s) = (BLAL)( T(1)BL) - W™ (s)
n i —1 -1 /7 1wl n
V™(s) = p-1 (ﬁ NN MA,_1B> B'lin _pix 52 - W™ (s)

for any s € [0,1].

Proof) For any 1 <i <r, recall that

N

Bi=p-Zir+ B0
and
BLS(N)B - i+ BLS(N)BL - Gir =0
Therefore,

T (Bz - 5501',T) =T -B10ir
1 . -1 S
— 5. (7805008L)  BLSGB-dur.

We saw above that

1 ! 3 d ’ ! n n ! I

TPLS(A)BL = A BLA /0 W YW (r)dr ) '8y,
where A; > 0 is the ¢th largest solution to

‘)‘M—l - B’M’A,_luglua,-lﬁl =0;

by implication,

1

-1 -
(3560 ) A @0 Gy ([ W @wrsyds) (@l p(#L6
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It was also shown that
A R 1 _ N
BLS(N)B @i = —p1 (T—PY/lE> HA i, -1 BEi T+ op(1).

Therefore,

T (B ir) = o (30L50082) 2 (ovhie ) uas 18- du-+oplD)
1

-wmmm*%ﬂw%([WW@mwwmﬁ (@ T(1)8L)(BL5L) '8,

1 _ N _
) (Hy,lg) pa Ha—1B-Eir AT +op(1).
Defining
AN - 0
D= | : :
0 Ars

we can now see that

-1

. 1
7 (e pir) = (8150 FTW ) ([ W W (s ds) (@ TWEL(E )7L
1 / —1 A —1
X ﬂy—1€ ta Ba,—18 21Dy +op(1).
Recall that, for any 1 < <r,
B'S(N)B &g =B'S18-Zixhi — B'Sh 1S3 Sa,18 &ir = 0p(1).
Since

B'S_1B8- N — p1-Ni = 0p(1)
B'Sh. 158 Sa—18— B tia _1pa a1 = op(1)

and Z; 7 = Op(1), we have
H—1 T TN — 5/MIA,_1/L£1MA,—15 T =o0p(1)
as well, so that

po1- 27Dy — B'ta 1y pa, 18- 3 = 0p(1).
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i1 = 0,(1) and 23" = O,(1), so that

-1
drD et B (B/M/A,_mgl%,flﬁ) [

This reveals that

A 1 -1
T (Briz' —8) = BL(BLA) (BT o) ( / W”’“(s)W"T(syds) (! D(D)BL)(B1L8L) 81
< (Ve ) a8 Dy 7+ 0,(1)

-1

= (e e (| 1 W () ds) (@l T8 5L) Bl

1 ~ - -1
X (T_pYiy?) pa pa,—1 (5/NIA,71MA1MA,—1B) fi—1+0p(1).

Finally, we know that

1 / d, ! n n(\/ 1,
Ve A /OW(r)dW (ry )%,

SO

1 -1 e -
B (T_pY’la> OISl Gl NS BT

1 ) _
(8T @A) ([ W aW(s) ) £zl a 18 (Fuis, amzna18) i,

Therefore,

r(5ret-5) 4o ([ Borwmreas) [ B @asy,

where the processes { B"7"(s) }s¢[0,1] and {V"(8) }se[o,1] are the n—r and n-dimensional

Brownian motions defined above.

Q.E.D.
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Estimating Structural Break Points

Bai and Perron (1998)

In this paper, the authors estimate multiple break points at once under the assumption of struc-
tural changes in regression coefficients, and also present a way to test for the number of break
points. In this chapter we deal with the former problem, namely the estimation of multiple break

points through simultaneous and sequential means.

Assuming that there are m break points 17, - - , T, in the sample, so that there are m+ 1 regimes,

the model in question is given as

= - B + 2z - 0 tu
—~ O~~~
1xp px1 1xk Ekx1
for any T;_1+1 <t <7Tj and 1 <j <m+1, where Tp = 0 and T,,11 = T. Due to the presence
of regime-independent coefficients (5, this is a model of partial structural change; if p =0, then
every slope coefficient becomes regime-dependent.
Our objective is to estimate the structural break dates 11,---,T},. The true dates and parametes

are denoted with the superscript 0.

There exists a convenient way to organize the data. Define Y = (y1,---,yr)’, X = (z1,--- ,27)/,
U= (uy, - ,ur) and
/
ATy 141
7 =diag(Zy1, -, Zm+1) where Z;= : for any 1 <j<m+1,
21,

with § = (01, - 76m+1)/~

Then, the model can be expressed in matrix form as

Z o, + U .
~— ~— ~—~—
Tx1 Txppx1l Txk(m+1)k(m+1)x1 Tx1
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6.1 Estimation of the Break Points

To estimate the break points T1,---,T},, the authors use a least squares method. Specifically, for
some ¢ > 0, denote by B, 1 the set of all potential break dates {T}} = (11,---,T},) in {1,---, T}
such that |T; —Tj_1| > ¢q for 1 <j <m+1. For any {T;} € By r, define the sum of squared

deviations given break points {7} as

m-+1 T
T({T5},8,0) = 3 Z r—xy8 — 216;)?
J=1t=T,_
= Y-Xﬁ-Z&)’(Y—Xﬁ—Za).

The minimizers of the above function with respect to 3,9 are given by the least squares estimates
R \ -1
s\ (xx xz\ T (x,
s{Ty) | \Zx 7z z'|

BUTY) = (X' MzX) ™ X'MzY

which implies that

~ _ N —1 —
S{TY) = (2MxZ) 7'My,

where M7 and Mx are the residual makers associated with Z and X.

Defining V ({T}}) = (X, Z), the concentrated sum of squared deviations is then given by

Sr({Ty}) = Sr({T3}, BUT.0(T3}) = Y Myqr)Y-

We define our break point estimators {7} = (T1,---,Tj,) as the solutions to the minimzation

problem

i Sr(AT:Y) =Y My (.Y
o T({Tj}) VAT

subject to W = (X, Z).

Our estimators of § and ¢ are then given by
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6.2 Assumptions

The following are the assumptions made to ensure that the estimators of the break points are

consistent and well-behaved estimators.

Formally, we assume the following:

(1) Existence of Break Fractions

We assume that there exist fractions 0 < A\ < --- < A% < 1 such that

TJQZLT)\?J
forany 1 <j<mand T € N,.
It follows that
79 0 1
AP P
T — 7 < T +T

79
for any T'€ N4, impyling that - TN )\? as T — oo for each 1 < j <m+1.

(2) Asymptotic Properties of Sample Covariances
Denote w; = (2}, 2,)’ for any t € N, and define W = (wy,--- ,wr)’. Let W° be the diagonal
partition of W at the true break points 70,---, 79, that is,

w/

79 41
j—1
WO = diag(Wy,--- , W2, 1) where W)= : forany 1 <¢<m+1.
Wro
J
Then, we assume that, for any 1 <j <m+1,
1 017770 1 i P 0 7 7
/ _ / _ 71T 1,z
7070 WiWi =m0 70 >, wwp Q=1 0
J J-1 J Il =19 1 +1 Jzx 3z
for some positive definite (p+ k) x (p+ k) matrix Q?.
By implication,
1 T m+170 _ 0 . 1 T]Q
T2 = 2 S g, 2 v
t=1 j=1 J J=l=10 41
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for any T' € N, ; as such, we can conclude that

where () is positive definite because each Q? is.

Identification Condition for Break Points
We assume that there exists some lp >0 and ppmin > 0 such that, for any [ >y and 1 <j <

m+ 1, the minimum eigenvalues of

TO ,+l 70
1 1
/ * /
Aj_11= 7 g wywy, and  Aj = 7 wpwy
t=T) | +1 t=T) 1

are greater than or equal to pyin. In other words, the matrices A;_;; and A;‘-l are positive

definite matrices that are bounded away from 0.

Nonsingularity of Regressors
For any ¢ <[ such that [ —¢ > k,

I

/

Bi=)Y_
t=i

is nonsingular.

Uncorrelated Errors
Since we are interested in investigating structural breaks when the regressors include lagged
versions of the dependent variable, we assume that the error process {u; }+cz is a Martingale

Difference Sequence (MDS) with respect to the filtration
F= {]:t ‘ te Z}
on Z where

th =0 ({ws}SEZ U {us}sﬁt)
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for each t € Z, such that

sup E|u |*T¢ < 400
tez

for some ¢ > 0.
Furthermore, by the definition of an MDS E [u;] = 0, and we assume that E [u? | F;_1] = o
for any t € Z.

An FCLT for Martingale Difference Sequences

Let the stochastic process {v;}iez be defined as
VUV = WUy

for any t € Z. We assumed above that {u;}ez is an MDS with respect to the filtration F;

since vy = wyuy is Fi-measurable for any ¢ € Z by the definition of F;, and

E [’Ut | Ft—l] = Wt - E [Ut ’ ft—l] (U)t is ]:t_l—measurable)

=wy-0=0, (MDS property of u;)

it follows that {v; }1ez is also an MDS with respect to F.
For any 1 <4,j <p+k, {Vijt = (u} — 0*)wirw;ji }tez is a mutually uncorrelated sequence
of random variables with finite mean; to see uncorrelatedness, note that, for any t,s € Z

such that s < t,

E[VijtVijsl = E[E[Vije | Fio1]- Vijs]

[ E [u? | -thl} - 02> witwjt‘/%j,s] =0,
and for finite mean, note that
E [V%j,t] =K [(E [u? | .7'—1571} — 0'2> witwjt} =0.

It follows from the WLLN for uncorrelated sequences that

1T

72 Vit 0,

t=1

and because this holds for any 1 <4,5 < p+k, we have

T
1
T Z(u? — o) ww, B 0.
t=1
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Finally,

by assumption (2), so we have

1

M|

Therefore, it makes sense to assume that {v; }ez follows some sort of FCLT result. Specif-

ically, define the stochastic processes {S7(7)},c(o,1] and with continuous paths as

L

1
Sr(r)= ﬁ ; v+ ﬁ(TT — I_TTJ)’ULTTJ_H

for any r € [0,1]. Letting S7 be the random function in CP*[0, 1] corresponding to {S7(r)} 0,1,

we assume that
d 3 +k
ST — 0 Q 2. WP s
where Q% is the Cholesky factor of .

Defining {V7(r)},¢j0,1] @s the process collecting the lower k rows of {S7(r)},c[0,1) and Vr

the random function corresponding to {Vr(r)},c[0,1), it follows that

1
Vr(r) = T > murt ﬁ(TT = [TrD)z17r 41070 41

for any r € [0,1] and

for some k-dimensional random function B* corresponding to a Brownian motion process.
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(7) Uniform Convergence of Sample Covariances
Assuming that the regressor z; contains lagged values of the dependent variable, so that
{zt}tez is not strictly exogenous, our break point estimators are found by solving the

minimzation problem

min T: Y' M
o Sr({T;}) = v Y

subject to W = (X,2)

for some € > 0.

We assume that

L
— Z z20 B Q(r) — Q(s)
t=|Ts|+1
uniformly on the set of all (r,s) € [0,1]?, where 2(0) = O, Q(r) — Q(s) is positive definite
for any 0 <s<r <1, and

sup
(v,u)€[0,1]2, v—u>e

(2(0) =0 w) ™| < +oo.

Note that, for any T € N, such that 7 > =1 = L1 tEFTsJH

(r,s) € [0,1]? such that r — s > ¢ by assumption (4), since

22y is positive definite for any

|Tr|—|Ts| >Tr+1-Ts=T(r—s)+1>eT+1>k

in this case.
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6.3 Preliminary Results

The following are results that Bai and Perron establish prior to the proof:

i) Rate of Convergence of XJQ’MZJ.XJQ
For any 1 <j <m+1, define X¥,--- vXSerl and Z9,--- ,ZSLH as

/ /

T z

T]071+1 T§71+1
X9 = : and ZV=
J : J
/ !
L0 20
T; T;

for any 1 <j <m+1, so that W]Q = (X]Q,Z?).
Choose any 1 < j <m+1, and note that

XYM, 0 XY -1
177 ouvo o0 o0 L ory0
79
9 —T9. 1 J
=L = 0_ 70 > w)
T 7 =T 1, %
t=T9_ +1
79 70 -1 79
70 _ 70 1 J 1 j 1 j
J j=1 / ’ ’
T\ -1 ; TE) | o0, 2w TO_70 2.
=T} | +1 J J t:T]071+1 J J t:T]971+1
By assumption (1),
TO
J PO
TN

as T'— oo for any 1 < j <m+1. This, together with assumption (2), implies that

X' Mz X)

b 0,—1
T - ()\9 - A?—l) (Q?,x - Q?,xz : Qj,z . Qj,zx) ’

where the right hand side is nonsingular due to the nonsingularity of @);. Therefore,

XYMy X? XU MpX9\ ™
———— and |———
T T

are Op(1).

346



ii) The Sizes of Submatrices
Let there be full rank matrices S1,V; with m and n columns, respectively, and r rows.
Now let S,V be full rank matrices with the same number of columns as S1, Vi, but now
with 7+ s rows. We will show that S'My S — S| My, S; is positive semidefinite.

To this end, let the matrices Ss, Vo, with the same number of columns as S1, Vi, collect the
lower s rows of S and V. Choose any o € R™, and define y = Sa € R"™"*, y; = S1a € R”
and ys = Sea € R®, so that y = (y1,v5)"-

We approach this problem in terms of projections. Defining
b=V'V)"'WW'y and b = (V1) Wy,

it is easy to see that Vb is the projection of y on the column space of V and Viby the

projection of y; on the column space of Vj. By definition,
1~ Vib ‘2 inf |y, — Vib|?
A 101 = blelﬁv Y1 10| .

Note that

2
2

’y—VB Z‘erlﬁfﬂyz—VQl}fz ‘qu/lé ,

2 |y —Vib
y2 — Vab

o2 .2
Suppose that ’y — Vb) < ‘yl —Viby| . Then,

2

)

A~

S

)91 — V113‘2 < ‘yl —vib| + ‘yz - ‘/213’2 = ‘y—VlA?f < ‘y1 ~Viby

.12
which contradicts the assumption above that ’yl - Vlbl‘ is the infimum of |y; — Vlb]2 over

the set of all n-dimensional vectors b. Therefore, it must be the case that
.12 .12

’y1 - V1b1‘ < ‘y— Vb‘ )

Since
.12 . N
‘yl - Vlbl‘ = (y1 — Vib1) (y1 — Vib1) = y1 My, 11
~12

and ‘y — Vb‘ =1y’ My -y, we finally have the inequality

o/ (8" My S — S{ My, S1)a =y Myy — y) My,

= ‘y—VB’Q - ‘y1 - Vll;l’g > 0.

This holds for any o € R™, so S’ My S — S| My, S; is positive semidefinite.
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iii) Rate of Convergence of X'M;X over B. 1t

We will now show that

sup
{T;}eBer,r

under the stated assumptions.

Choose any {Tj} € By, sothat 0< Ty <--- <Ty, <land Tj—Tj—1 > €T forany 1 < j <
m+1, and construct Z as the diagonal partition of Z = (z1,---,2r)" according to {T}}. It
follows that

P, =2(Z'2)"'Z,

where Z'Z is invertible for T large enough so that €T > k due to assumption (4). Using

block matrix operations, we now have

-1

Zy - O VAVAREEE @ Zy - 0
Py=|: S : S
O - Zpi O - Zi1Zmm o - Z .,
Z(Z\z) 7z - O
_ : : =diag(Pz,, -+, Pz,...)-

0O Zm+1(Z;n+1Zm+1)_IZvln+1

and as such,

MZ:IT*PZ:diag(MZIfH’MZ"H“l)'

Define
x/Tj71+1
X; = :
ar,

for any 1 <j <m+1, so that

]\421 O Xl m+1

X'MpX = (X -~ Xh)| 0 L =3 XMy X
=1
O - Mgz, ) \ X J
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Let R1,--,Rm+1 be the regimes under {77}, that is,
Rj=A{Tj1+1,---,T5}

for any 1 <j <m+1. Let RY,---,RY, ., be the true regimes.
Suppose that none of the true regimes are contained in a single regime under {77}, that

is, suppose that, for any 1 < j < m+ 1, there does not exist an 1 <i < m+ 1 such that
RY CR..

In this case, because Ty =Ty = 1, TY > Ty + 1, since otherwise R will be contained in R;.
Now suppose, for some 1 < j < m+ 1, that T]Q > T+ 1. Then, it must be the case that
TJQH > Tj41+1, since otherwise, the regime R?H = {TJQ +1,--- ,TJOH} would be contained
in Rj1 = {Tjs1,---, Tia }-

By induction, T,?Hl =T >Tn+1+1=T+41, a contradiction. Therefore, it must be the
case that there exists at least one 1 <j<m-+1 and 1 <¢<m-+1 such that R? CR;.
This implies that T;_; +1 < TJQ_I +1< T]Q < T;, so that (XJO,ZJQ) is contained within
(X, Z;). By the above result on submatrices, it follows that

XMz, Xi— X) My XY
J

is positive semidefinite, and because each X]My X; is positive semidefinite, we can see
that
m+1
X'MyX = XJ'MpoXJ = 3 X[Mz, Xy~ X} Mz X
I=1
is also positive semidefinite.
Since X?M ZQXJQ is a positive definite matrix, this implies that X’M ;X must have full
J
rank (otherwise, there exists a vector a such that o/ X'Mza =0 < o/XJQMZQX]Qa, a con-
J
tradiction). Therefore, X’M;X is nonsingular and by extension positive definite.

Furthermore, the above implies that

-1
X;)/MZJOX_;) (X/MZX)l
T T

-1
is positive semidefinite, and as such the maximum eigenvalue of (X JQ’ Mz X jo> is larger
J

than or equal to that of (X'M;X )71. Since the operator norm of positive semidefinite

matrices is equal to their maximum eigenvalue, it follows that

—1
(X’MZX>_1 g X3'Mzo X7
T = T ‘
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The above holds for any {T}} € By for some 1 < j <m+1, so we have

XOM,Hx0\ !
< max (w)

su
> T 1<i<mA+l T

(X/MZX> -1
{T;}eBer,r

T

We saw above that, for each 1 <j<m+41,

XOM,0x0\
JtZr g
() o

so it follows that

sup
{T;}€Ber,r

(X'MZX>_1 —0,(1).

T
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iv) Rate of Convergence of X’MZZO over B.rr

We will show here that

X'M5Z°

sup T

{Tj}€Ber,T

= 0,(1).

Choose any {T;} € By, and let Z be the diagonal partition of Z according to {7}}.
Then, the residual maker M, = I — Z(Z'Z)~'Z' is symmetric and idempotent, so that
it is positive semidefinite (its eigenvalues are either 1 or 0 due to idempotence) with
rank(M;) =tr(M;) =T — (p+k) > 0 for large enough T'. Therefore, the operator norm of

M7 is equal to its largest eigenvalue, which is 1, and it follows that

H X'M 2"

L2 < L2 <o (Rarx) (2 z)

This holds for any {71} € B.rr, so

1

X'M,Z° 1 (1 29 =\ 3
sup =27 I <tr (X’X)2tr (ZO’ZO>2 .
{T;}€Ber,T T T T
Since
1 m+1 TQ 1 _TQ 1 Tjo » m—+1
I'v _ J— J ' 0 0 0
XX =3 = B DR B (/\j —)‘j—l) jo
T — T T’ T —
j=1 J J t:T]‘Ll-&-l Jj=1
and similarly,
70
L o0 T]O—l_T]Q 1 : 1| P 0 0 0
TZJ Z = T TO —TO Z tht — ()\‘7 _)\j—l) j,z

I T =T 41
for any 1 <j <m+1 by assumption (2), together with the condition

1 07 0

<

=1

H1Z0/Z
T

we can see that X'X and £Z%Z° are O,(1). It follows that

X'M,Z7°
su —_—
5 T

{T;}eBer,1

= 0,(1).
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v) Rate of Convergence of P;U over B.rr

We will show here that

sup | PzU|* = 0,(1).

{Tj}eBET,T
First note that, for any {T;} € By, we can write
\P;UP=U'PU=U'Z(Z2'2)"'Z'U
1 -, N /1, N1/ 1 -
= Z’U) (Z’Z) (Z’U),
(ﬁ T T

so that

U'P,U = yU’P—U;

1 - _ —1
A =Z2'Z .
of|(772)

We now examine the terms on the right hand side one by one.

2
Step 1: The’ L Z’U‘ Ordinate

Since
! T1
Z . 0\ (u >h
7'V = | = : ,
o - 7,n+1 ur ZtT:TmH Ut
we have
1 . 2 mtlly T} 2
—7'U| = — 2l
e IR

m+1

—Z

2

)

(%) (%)

where the last equality follows because T% | T TJJ for any 0 < j <m+1.

Define the set

J.={(v,u) €0,1*|v—u>el}.

By the way in which we defined B.r 7, Tj —Tj_1 > €T, which implies % —

352

Tj,1
T

> ¢€; as



such,

2
<(m+1)- sup |[Vr(v)—Vp(u).
(v,u)ede

1 -
—=7'U
.
Because this holds for any {7} € B.r 1, we in fact have

<(m+1)- sup |Vp(v)—Vp(u)]*
(v,u)€Je

sup
{T;}€Ber,r

We now show that the function of Vp defined above is continuous on C"[0,1], and therefore

that the term itself is O, (1) by the FCLT assumption and the continuous mapping theorem.

Let the function g:C"[0,1] — R4 be defined as

9(f) = sup [f(v)— f(u)]

(v,u)€de
for any f € C"[0,1].
Now choose any f,h € C"[0,1], and assume without loss of generality that

9(f)= sup |f(v)=f(u)|> sup [h(v)—h(u)|=g(h).
(v,u)€Je (v,u)€Je

Then, define f: J. — R, as

f(v,u) = [f(v) = f(u)]

for any (v,u) € Je. J. is closed and bounded, so it is compact, and f is a continuous
function on the compact set J.; by the extreme value theorem, there exists a (v*,u*) € J.
such that

[f(v) = fu)| = f(v"u) = sup flo,u)= sup [f(v)—f(u)l.

(v,u)EJe (v,u)EJe

Therefore,

l9(f)—9(h)| =g(f)—g(h) = sup [f(v)—f(u)|— sup |h(v)—h(u)

(v,u)€Je (v,u)€Je

= (") = f(w)[ = sup |h(v) —h(u)]

(v,u)ede
<|f(") = f@)] = [h(v") = h(u")]
<|f(0") = f(") = (h(v") = h(u"))]
<|f") =h()|+[f (") =h(w")] <2-|[f = hllc-
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Therefore, g is Lipschitz continuous on C"[0,1], and by the continuous mapping theorem,
2 d k k NL
sup |Vi(v) = Vi(w) = (Vi) % (W) = sup |W*(v) = Wh(u)[".

(v,u)EJe (v,u)€Je

It follows that

sup  [Vip(v) = Vip(u)® = Oy(1)

(v,u)eJe
and as such that
1 4, |
sup |—=Z'U| =0,(1)
{Tj}EBET’T \/T P
_ o\ -1
Step 2: The (%Z’Z) H Ordinate
Because
X S VAVAREE 0]
1rz-
T . M
O %qunﬂzmﬂ
we have
-1
(%Z{Zl) 0
1o, )"
A = :
(7272) . -
and thus

m4+1 1 T} -1
=5 3 [E SR
=\

el -
<(m+1)- sup ( Z Zﬂ’é) ;

(U,u)EJe T t= LTUJ+1

where the inverse functions exist for large enough 7' by assumption (4) because we restrict

our attention to (v,u) € [0,1]? such that v —u > e. This holds for any {T}} € Ber 1, so

1 - _ -1
~7'7
(77)

sup
{T;}€Ber,r

L o) -
<(m+1)- sup ( > ztzg) :

(v,u)EJe t=|Tu)+1
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By assumption (7), which states that

L )
T Z 212y — Qr) —Q(s)
t=|Ts|+1
as T — oo uniformly on Jq,
L) -
(m+1) swp (= > =z || Bm+1) swp |(QE)-2@w@) |,
(v,u)€Je T t=|Tu|+1 (v,u)EJe

where the inverse matrices on the right hand side exist because v —u > varepsilon, which
means @ (v) —Q (u) is positive definite by assumption (7).
Since the value on the right hand side above is assumed to be finite, we can conclude that

1 - _ —1
~7'7
(777)

sup
{T;}eBer,r

= 0,(1).

It now follows that

—27'U
VT

) -1
( / )
T

sup ]PZU]2§< sup
{T3}Ber,r {Tj}€Ber,r

2
{T‘] }GBST,T

sup  |PzU* = 0,(1).
{T;}Ber,r

)

and as such that

355



vi) Rate of Convergence of X'P,U and ZO’PZU over B.rr
We will show here that
1

VT

1

VT

X'PyU

sup ZO’PZU‘ =0,(1).

{T;}€Ber,T

s sup
{T;}€Ber,r

This follows easily from the preceding result.

Note that
=X'PU| < 1P| x|
vT VT
for any {T;} € B.rr. Thus,
1, X'X 3
i, <) ()

We already know that both terms on the right hand side are O,(1), so that

L
VT

sup
{T;}€Ber,m

X’PZU‘ = 0,(1).

Likewise,

sup

1 ZO/ZO > %
{T;}€Ber,T ’

~0.
Nl ’PZU‘ < (supryyep.rn | P7U) -tr< -

and by the same reasoning as above,

sup
{T;}€Ber,T

1 oo o]
ﬁZO PZU‘ =0,(1).
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6.4 Consistency of the Break Fraction Estimators

We first prove that the estimators 0 < 5\1 << 5\m < 1 of the break fractions, which are defined

as

>
NS

for any 1 < j < m, are consistent for the true break fractions A{,--- A0 .

This is shown in several steps:

6.4.1 Step 1: Convergence of the Sum of Squared Differences
For any 1 <t < T, define 4; and d; as
- a:;ﬁ — z{SJ and
dy =z} (3—30) +2 (53‘ —5?)

for any 1 <t <T such that Tj_14+1 <t <Tj and T, +1 <t <T? for some 1 <j<m+1,
1 <l <m+1. That is, @ is the residual for the ¢th observation and d; the difference between
the fitted values and their true counterparts.

By definition, 3 ({77}) and 6 ({77}) minimize the sum of squared deviations
m—+1 j
Sr{TP},B,0) =" > (w—xiB—=20;)?

0
Jj=11t= TP +1

with respect to [3,9. Therefore,

St({17}) = Sr({T},BUTY Y. 6(T7)) < Sr({T7},8°,8%) = _uj.

t=1

In addition, by definition {7}} is the minimizer of S7({T}}) on B.rr. Since {17} € Beryr due

to our assumption that
0 0
Aj—Ajo1>¢€

for any 1 <j <m+1, it follows that

Z?Zé ({T3}) < Sr({13}) g
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Note that u; — 4y = d; for any 1 <t¢ <7T. By implication,

T T T
Zu?EZﬂf:Z Z -2 Zutdtv
=1

so that

An easy consequence is that

1 T
= —Zutdt.
thl

We wll now show that this term converges to 0 in probability.

Define Zy,--- , Zpmy1 as
,/\
T 141
Z] — :
/

for any 1 < j <m++1, and let Z* = diag (Zl,--- ,Zm+1). Let 29,..., 29 m+1 and Z9 be the popu-

lation counterparts.

Note that
T m—+1 Tj R m+1 T]Q
Zutdt = (Zutxt> 5 BO Z Z UtZ;/ (5] — Z Z u,,z,é 5?
t=1 J=L A\ =Ty 141 J=1 \t=T9_,+1
21 31 Z? : 51
'X(B-8%+U : -U’ :
Zm+1 : 8m+1 Za(’)nJrl : 5m+1
/X(B—ﬁo)—FU/Z*S—U/ZOéO,
so we have

1 & 1 . 1 ,-. 1
= d — IX _ 0 - lz*(;_i /ZOCSO.
T;Utt TU B 5)+TU TU
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For any fixed {T}} € Ber T, let Z be the diagonal partition of Z under {7}}. Now we have the

following results:

. sup ‘%U/X(B({Tj})_ﬁo)‘ = o0p(1)
{T;}€Ber,r

By definition,

BUTY) = (X'MzX) ™ X'MzY
= B0+ (X' MzX) "' X'M5Z°° + (X' Mz X) ™ X' M4U.

It follows that
1 . 1 _ _ 1 _
U'X (B -p°) = FUX (X'MX) " XMz 2060 + ZU'X (X' Mz X) ™ X' MU.

The first term above is majorized as

1 _ _ XM X\ Y | x'p, 20
‘U’X (X'M,X) " X' M, 7% < ‘ UX’ H Z) Hz ’50
T
so that
- 2V =1 7as7_ 7050
sup |=U'X(X'M;X) " X'M;Z°6
{T;}€Ber,T
1 X'MX\ ! X' M 570
S‘X'U’-( sup (Z> )( sup —Z -‘50,
T {T;}€Ber, T T {T;}€Ber,T T

We already saw that all the terms on the right hand side are O,(1), except for ‘%X ! U’.

This term can be majorized as

1
7]

1z
= *Ziﬂtut <
T

and because
Sr(1) % N (O,JQQ)
by assumption (6) and the continuous mapping theorem, we can see that
Lo
TX Ul =o0,(1).
Therefore,

1 _ _
sup  |=U'X (X'MzX)"' X' M,Z°°| = 0,(1).

{Tj}€Ber,T
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On the other hand, the second term is majorized as

)

X’MZX) !

1, 1 1 X' MU
—U'X(X'M-X)  X'MU| < |=U'X]|- : Z
U XM X)X < U ‘H( T =7

so that

sup
{T;}€Ber,T

Lorx (x0T X’MZU‘

/ _ -1
’ ‘1X,U’_< s (X MZX>
T {T;}€Ber,T T

) . < sup
{T;}€Ber,T

The first term is 0,(1), and the second is O,(1). As for the third term,

X’MZU‘
=== ).

X'MyU| |1 1
< | =X —X'P;
=2 < [pxvfs |pxeay]
for any {7} € Berr, so that

X'MzU
T

1
X'P—U’ ;
Gl

sup
{Tj}€Ber,T

1 1
<’X'U‘+< sup
‘ T V T {Tj}EBET’T

both terms are op(1), so

X'MzU
T

sup
{T}}€Ber,T

’ =0p(1).
It follows that

sup
{T;}€Ber,T

Lorx () X’MZU‘ = 0p(1).

Putting these two results together,

ZU'X (BUT) - )

sup
{T;}YeBer,

=o0p(1).
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[V () = 28) <o)

Using the fact that

_ _\ —1 — _ _ -\ —1 —
— (Z’MX Z) 7' Mx Z°6° + (Z’MXZ) 7' MxU,
we can see that

1 1 (78 X ~0 ¢0

U (28((T3)) - 2°9°)
_1/‘ ~1 ‘_1‘/ ~0 0 1/‘ 71 ‘_1‘/ 1/‘00
= U'Z(ZMxZ) " ZMx 2%+ U2 (Z'Mx Z)” 2/ MxU 0" 2%

Note that

o (x _ X'X X'Z
ww =" | (x2)=("" )
7' 77X 7'Z

so that the lower (2,2) block matrix in W'W is given in two different ways:
(zMx2) ' =(22) " +(22) 7x (X'Mux) "' x'2(22) "
This implies that
Z(7'MxZ) 2y = [Ir+ P X (X'M;X) ™' X'| P My,
and as such that
%U’Z (7' Mx2) 2 (2°6°+ MxU)
_ %U’ |Ir+ P X (X'MzX) ™" X'| Py My (2°6° 4+ MxU)

1

1 1 1 - 1
— _U'P,X(X'M-X)" X'P,M )<20-60+M -U).
\/T A ( A ) ZX \/T X \/T

Each term is majorized as follows:

1
U'P; MX‘ ( sup U'P; )
‘ v v T {Tj}EBET,T| Z|

1 1 1
—U'P; X (X'M;X X’PMX‘g sup UP
ﬁ Z ( Z ) Z \/T {Tj}EBETT| Z|

1 2

f

) )

(X MZX

X ( sup
{T;}eB.r,T

361



‘ZO 5| < \50

|7

e 7 <[l

The only term whose rates of convergence are unknown is ﬁU . But this can be easily

seen to be Op(1); for any § >0,

1< ) 1<
P TZ:U,: >0 <= fZ(ut
t=1 t=1
]E H(u?—o?)
T252t 1s=1 { }
1 X
— 7252 E [(uf — 02)2}

Since sup;ez E [uﬂ < 400 by assumption,

T—o00

1T
lim P <|T;u§—o’2

-4 -

and because this holds for any ¢ > 0,

1 1 L,
U ==Y 2 R
‘ N eI
Therefore, ‘ﬁU ‘ = O,(1), and we can conclude that
sup ! U'P;M op(1)
—_U'P,My| =
{Tj}EBET‘T \/T Z b
1 _
sup | —=U'P;X (X'M;X)"' X' P;Mx| = 0,(1)
{Tj}EBET’T \/T
7°.8% = 0,(1
’\/* p( )
1
My -—=U|=0,(1).
My —=U] = 0,1)

By implication,

sup
{T}}€Ber,T

vz (Z’MXZ)_l 7'M (2050+MXU)’ = 0,(1).
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Finally,

Here,

where S7(1)

as well.

1 170 c0
—U'Z"§
‘TU

1T
<|= 2+
< 2w

'\50‘.

‘ ZZtuze M,

77l

= O,(1), so we have

1 _
‘TU’ZO(SO =0,(1)

Putting all the pieces together,

sup
{T;}YeBer,T

<

%U’ (Z6({my}) - 2°°)

sup
{T;}YeBer,T

Lz (Z’MXZ) 2y (2050 + MXU) ’ 4 ’;U’Z%O
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Therefore, we are able to conclude that

'X(BUT;Y) B+ U'Z5({T = U200 =

sup
{T;}eBer, 1

op(1),

and because {T;} € Boyr, it follows that

1< 1 N BT
For any § > 0,
1T T
t=1 t=1

T 1 T
< Zutdt > 5) <’T Zutdt
t=1

>5>,

and because the rightmost term goes to 0 as T'— oo by the definition of an op,(1) process,

>6> =0.

T—o00

1T
lim P||=Y &
n P (7

This holds for any é > 0, so

R \
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6.4.2 Step 2: Deriving a Contradiction from Inconsistency

In this section we will use the convergence result proven above to show that, if

min ‘)\l —)\2’ 20
1<i<m

does not hold for some 1 < j <m, then we have a contradiction. To make the notation clearer,

we explicitly state the dependence of the break fraction estimators 5\j on the sample size T', as
AT -
We again proceed in steps:

The Implication of Inconsistency

Suppose, for some 1 < j <m, that
i \X )\0‘ 50
lg}lgnm T, 3

By the definition of convergence in probability, there exists an 7 > 0 such that n < § and

1<Ii<m

P( min P\T’l_)\?’ >’I7> 7L>0,

as T — oo, and this in turn means that there exists a g9 > 0 such that, for any T' € N, there
exists a T > T such that

]P’( min P\T’l_/\?‘ >n> > £g-

1<I<m
This means that there exists a subsequence N of Ny such that
P( min (A= >n) > .
(ér}lsnm T, j n)=¢€o

for any T € N.

Characteristics of the Interval [T'(\} —7),T(A] +17)]

We now investigate how large T must be for T]Q to be the only true break point to fall in
[T(A} =), T(A) +n)].

Since we assumed 1 < §,

£
)\Q—n>>\2—§>/\?_1,
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which in turn implies that

T (A =n) > TN > |TA) | =T).,.

lJikeWise,
0 0, ¢ 0 €

which implies that

T(\+n) <T-A), —T;

for T' such that TS5 > 1, or T > %, we now have
T (X +n) <TA)p —1< T,
This shows us that

[T(AF =), T(A] +m)] € [T}y +1,T7]

if 7> 2,

Since
0__ 0 0 110
15 = LT)\jJ € [T/\j,T)\j +1),
if Tn > 1, then
0 0
T +1<T (X +7),
so that
0 0 0
T7 € [T(Af =), T(Aj +n)].

Since T' > % implies T" > %, it follows that, for any 7" > %, TjO is the only true break point to be

contained in

[T(AF =n), T(A] +m)].
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Deriving the Contradiction

For T € N such that T > %, let w be an outcome contained in the event
m A
ﬂ{‘)\T,l —A?‘ > 77} €H.
=1

In this case,

~

Ari(w) & [X] = 1,77+,

for any 1 <! <m, and because

for each 1 <[ <m, we have
Tri(w) & [T(A]—n), T(A) +m)].

for any 1 <1 <m. In other words, no estimated break point falls in the interval [T()\? - n),T()\? +

n)] under outcome w.

Suppose that the above interval is contained in the ith regime under w, so that

A

Ti1(w)+1 < T —n) < T\ +n) < Ti(w).

Then, for any ¢ € [T()\? - n),T()\? +n)], since ¢ < T)\? implies ¢ < TJQ and t > T)\? + 1 implies

t> T]O7 we have

>

dy(w) = ri(w)=09) ifte[T(A}—n),TAY] '

A A

ot (w) (Br(w) — B°) + 2t (w)' (014 (w) — (5?+1) ifte [T)\? + 1,T(/\5-) +n)]

Denoting [T()\g - n),T/\g-)] = A; and [T/\g-) + l,T(/\g-) +n)] = Aa, and suppressing the dependence

on the outcome w for notational brevity, we have

T
1 1 1
TLUZFd At )
T TteA1 TteAz

~ / 79 ~
. (ﬁT—BO) LS (BT—/ﬁO)
s ol |Tn e 5 0
5T,i - (Sj T77 t:TjO—Tn 5T,i - 5]‘

R ! TQ+T77 A
Br—° 1 | [ Br—5°
+1- ] 4 0 Tn > wawp | o |-
6T,i - 5]+1 n t:TJO-‘rl 5T,i - 6]+1
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For any d-dimensional vector a and a conformable positive semidefinite matrix A, letting A =
PDP' be the eigendecomposition of A,

d
o/ Aa=a'PDP'a=Y D; (P'a);
=1

> (fgingi) <i (P'a); )

=1

= (min Di> ‘P’a’Q = (min DZ) Jal?.

1<i<d 1<i<d

Here, minj<;<q D; is the smallest eigenvalue of A.
By the identification condition for the break points (assumption (3)), given that Tn > ly, the

minimum eigenvalues of

1 TP 1 T+Tn
/ /
T Z wiw, and T Z WWy
t:TJQ—Tn t:TJQ-H

are bounded below by pmin > 0. Therefore,

~ 2 n 2
1 & Br—B° Br—B°
T d% 21" Pmin A + 1| 4
T ; 5T7i — (59 6T,i - 6?+1
A N 2
1 pr—B° Br—B°
> =17 Pmin * A ol "1+ 0
1 2
= §U * Pmin 5]_1,_1 (5;)‘ .

Define C' = %n-pmin > 0.

Since the above holds for any 7' € N such that T > max (%, %) on the set
m A
M Ar =] > b,
=1

it follows that

p (ﬁ{]xm BU n) <p <;2T:d,? - |t _59.\2> .
t=1

=1

Since
lﬁl{‘:\m —)\?‘ >n}= {1I§I}i§nm);\T»l _ /\?‘ >
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and
. ? 0
m —\- >
P (1<ll<nm ‘)\T’l )\]’ > n) = €0

for any T' € N, it follows that

1< 2
co <P 5> > C|o,, — o
Tt:l

for any large enough 7T in the subsequence N of N,. This contradicts the fact that

so it must be the case that

for any 1 <j <m.
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6.4.3 Step 3: Matching Estimators with True Break Fractions

Finally, it remains to show that, for any 1 < j <m, j\j is the break fraction estimator that is
consistent for /\9. To make the proof simpler, we prove the result for the case where there are
three breaks, that is, m = 3.

We showed above that, for any 1 < j <3,
min ‘5\5 — )\?’ 2o,
1<I<3
so that, by definition,
lim IP’(min ‘S\l —)\?’ > 5) =0,
T—oo \1<I<3
or equivalently,

lim P(min ’5\1—)\?‘ §5) =1

Tooo \1<i<3

for any 0 > 0 and 1 < j < 3. This property allows us to first prove the consistency of 5\1, and

then proceed forward until we reach As.

Preliminary Results

Defining
3 0] « €1 _
{[h=2]= 3} =
for 1 <1,5 <3, we will show that
P(ATJ]')—)O
as T'— oo for any 1 <1,j < m such that [ > j.
o A3
If ‘:\3—)\(1)‘ < 5, then
€ 3 0 3 0
52 ‘)\3—>\1‘ > A3 — Ay
implies
3 0, ¢ 0o 3 0
)\3§)\1+*<)\3—*6<)\3.

2 2
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This means that

5\1<5\2<5\3<)\g,

so that
8 =[] 2 g ]
o e 3
> 2¢e — 3= —€.
Therefore,

AT,l C {1rgli£3‘5\l *)\g’ > g&},

and as such

P(ATJ) < P(min ’5\1—)\(3),‘ > 28) .

1<I<3

The right hand side goes to 0 as T'— oo, so it follows that P(A7 1) — 0 as well

o Ar32

Now suppose that ’5\3 — )\8‘ < 5. Then,

>

e ~ ~
5 Ag =8| > As -8,

so that
Z\3§A3+§</\g—%<)\g.

As above, this implies that

i o] = ] = g
and as such,
]P)(ATQ) <P <1I£li£3‘5\l — )\g’ > ;) .

Again, this implies P(Ar2) — 0 as T — oo.
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o Aron
Suppose that ’5\2 —)\(1)‘ < 5. Then,

>

% Xz—A?\zXZ—A?,

so that

€

< .
2 2

S < A?+§ <N-
As above, this means that
A< A < AY,
so that
’5\2—>\3‘ < ‘Xl—Agl.
Note that
2= x| > |3 = 29| =[R2 = XY >g—§:§.

If, in addition,

5\3—)\8‘ > 5, then

min ’)\j — )\8’ = min (’)\2 -
1<5<3

5\3—>\8D >

£
2

Y

Putting these results together, we can see that

A7 C { P\j —)\8’ > %} UAT 32,

min
1<5<3
so that

R €
P(AT,21) < [P( min ’)\j —Ag‘ > 2) -HPJ(AT732) .

1<j<3

We already saw that the last term on the right converges to 0, and the first term on the right

also converges to 0 by the result derived in the previous section, so P (A7 1) —0as T — oo.
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The Consistency of M

Choose any 0 < d < 5. We first state the following decomposition:

P o o= =5) =2 ({81 <} =38 P} )
For j =2,3,

p({[3 28] <o} n {28 = min [\ -]} ) < (|8 -8 < 5) = A,

where the right hand side goes to 0 as T'— co. Therefore,

({3 <o} {8 -8l = i [} -0

as T — oo.

Since
P(min ‘Xj—)\?‘ Sé) —1
1<5<3

as T — oo, together with the preceding result it must be the case that

P({ﬁl—xﬂgé}m{ﬁl—A?::ﬂﬂéﬁp—Aﬂ})—>1

as T — oo. Finally, because

P ({8 <5} 2] = i ) <2 (5n 8] <)

and the left hand side goes to 1 as T — oo, we have
P(|d - <8) =1
as T — 00,
If 6 > 5, then
([t 5) < (-] <9)
where the left hand side goes to 1 as T — 00, 50
P(|d - <8) =1

as T — oo.
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We have seen that, for any 6 > 0,
P(|h - <8) =1
as T'— oo. Thus, by definition,

PYES\S

The Consistency of po

Choose any 0 < § < 5. As above, we first state the decomposition

P ( i [3; -] <) =§;P<{\Xﬂ‘”3\ <o} {i% 8= pin [ }).
As above,

]P’<{‘5\3—)\8’ ga}m{\xg—xg = min \&—%]}) §P<’5\3—)\3‘ < ;) = Apss,

1<I<3

where the right hand side goes to 0 as T'— oco. Therefore,

P({lﬁg—)\g‘ ga}m{pg—xg — min \x,_xg\}) -0

1<i<3

as T — oo,
If [Ay —A3] <4, then

3= 29| > [33 - 28] - [ - 29| >5—5Z%,
so that

IIOWESHES) g[@(\&l—x{( >;)
By the consistency result proved above,
P(‘Xl—/\?‘ >;) =0

as T — 0o, so that

P(’S\l—)\g‘gd)ao
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as T'— oo and therefore

P({bl—Aﬂgé}m{pl—Ag::ﬂﬂaﬁrmgu)—+o

as well.
These results, together with the property that
P(min ‘S\j—)\g’ §(5> —1
1<5<3
as T — oo, imply that
: $_ 10 20| |5 1O _
Jim B ({3 =] <o} {[3 4] = poin [% -]} ) =1

Again, this allows us to deduce that

fim P (|3 -] <) =1.

If § > £, then
P(]XQ—AS\ g;) <P (|} -2 <),
where the left hand side goes to 1 as T — 00, 50
P (A= <) =1
as T — cc.

We have seen that, for any d > 0,
P (|3 -2 <6) =1
as T'— oo. Thus, by definition,

3. P O
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The Consistency of A3

Choose any 0 < 6§ < 5. As above, we first state the decomposition
P (i [3, 28] <) :gp({\xj_Ag\ <o} {[i, 8] = i[5~ 4]}).
If ]XQ—Ag‘ < §, then
32— 28| > [33 - 29| - [ - 2] >5—52%,

50 that
P(|d— 2| <o) gp(\xz—xgﬂ > ;)
By the consistency result proved above,
IP’(‘XQ—/\Q‘ > ;) ~0
as T — 00, 5o that
P(|A2 =y <) =0
as T — oo and therefore

P({]XQ—AQ‘ <obn{[A 28| = min \x,_xg\}) ~0

1<1<3

as well.

Likewise, the consistency of A\ for A? implies that

P({‘Xl = <oA= = min ‘f\l—)\g’}> 0.

1<I<3
By implication,
P ({a=d] < 0} {1 = i 3} ) -1

which implies that

B <) =1

We can deal with the case § > 5 as above, so A3 is consistent for \J.
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6.5 The Rate of Convergence of the Break Date Estimators

So far, we have shown that the break fraction estimators are consistent for the true break
fractions, that is, 5\j RS Aj as T'— oo for any 1 < j <m. We are now interested in the rate of

convergence of the break dates; that is, the rate of convergence of

T =10 =T (- )

for each 1 < j <m. It will turn out that the above quantity is O,(1), or equivalently, that :\j —Aj

converges to 0 at the same rate as %

As above, we prove the result for the case where there are three breaks, that is, when m = 3,
and prove that Ty — TY is bounded in probability. The proofs for T —TY and Ty — T will then
be seen to be similar to that for Th — TY so that we are done.

In addition, we will assume that the model is one of pure structural breaks (p =0) in order to
simplify the proof.

We once again proceed in steps.

6.5.1 Step 1: Obtaining a Probability Bound

We want to show that 75 —T20 is Op(1); in other words, that for any n > 0, there exists a C' > 0
and T € N, such that

}P’(’TQ—TQO‘>C><17

for any 7 > T. To this end, we first derive an upper bound for the probability P (‘T H— TQO‘ > C’)
for any C' > 0.

For any ¢ > 0, define the set
ch{(T1,T2,T3)€BaT,TH7}—T]Q‘SCT for any1§j§3}.
For any 1 <5 <3, if‘j\j—)\?’ < ¢, then, because TJQ: LT)\?j,
710 <TX = TA) < |[T(3; - \D)| < 7¢,

and

T <A —Th,+1<T (|3, - 20|+ =) <7

g —Lis LA —TA LS ‘J*j‘+f<f
for large enough T', so that

) -1 <¢T
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for large enough T'. Therefore, for large T,

<P ((T17T2,T3) € Vg)
which implies that

hmP@A@j@ew}ﬂ

T—o00

~

by the consistency of the break fractions 5\1, S A3,

Now we can start constructing the upper bound. For any C' > 0, note that
P(|T-15|>C) =P (T~ 19 > C) + P (T~ 1§ < ~C).
Because the two terms on the right hand side are symmetric, we focus on the last term. Define
Ve(C) = {(T17T2,T3) € BeT,THTj —T]Q‘ <(T, Th—T9 < —C}.
Clearly, V¢(C) C V¢, and

P(TQ —TQO < —C) < ]P({TQ —TQD < —C}ﬁ{(Tl.TQ,Tg) S V’Q}) +IP({T2 —T20 < —C}ﬂ{(fl.fg,’fg) ¢ ‘/C})

<P ((Tl.TQ,T;),) € %(C)) +P ((Tl.TQ,Tg) ¢ ch) .

We focus on bounding the first term. Recall that ST(Tl,T n,T3) is the least squares sum of squared
residuals given the break points (17,7%,73) € B.r . By definition, the estimators (Tl,Tg,Tg)

minimize this SSR, so
Sr(T1, Ty, Ts) < Sp(Th, 19, T3),
or equivalently,
St(Th, Ty, T3) — S(T1,T%,T3) < 0.
If (T1.1%,13) € V¢ (C), then Th —T9 < —C < 0 and

St(T1,Ts,T3) — Sp(T1,T9,T3)

E <0
T9 — 1T

)

which implies that

St(Th,Ts, Ts) — Sp(T1,T9,T)

min <0.
(T\ T2, T5)EV, (C) 19 — Ty B
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Therefore,

Sr(Ty, Ty, Ts) — Sp (T, TO. T
]P’((Tl.Tg,Tg)EVC(C’))SP< (11, T, 15) (11,15, 3)§0>7

min
(T, T2, T3)€V, (C) T20 =T

and we can bound P (Tg -T9 < —C) above by

: Sr(Ty, T, Ts) — S(Ty, T9, T
P(TQ_T20<_C)SP min Sr(1h,1s, 3)0 Str(Th, 15, T5)
(T1,T2,13)€V:(C) 9Ty

From the result derived above,
Th—{réop ((Tl.Tz,Tg) ¢ Vc) = 0,
so there exists a T € N, such that

]P)((Tl.Tg,Tg) ¢ ‘/g) <

>3

for any T > T.
We need only show that there exists a C' > 0 such that

>3

Sp(Ty, Ty, Ts) — St (Ty, T, T
P min (11, T3, 3)0 (11, Ty, 3>§0 <
(T1,T2,T3)eV:(C) 15 =15

for large T' to conclude that

P(Th—T) < —C) <

N3

for some C' > 0 and large T
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6.5.2 Step 2: Decomposing the Difference of SSRs
For any C > 0, choose any (T1,T»,73) € V¢(C), and denote \; = % for j =1,2,3. Define
SSRy = Sp(Tv,T»,T)

SSRy = Sp(T1,T9.T3)
SSRy = Sp(Ty, To, T, Ts).

Then, we can write

Sr(Ty,Ts,T3) — Sp(T1,T9,T3) = SSR; — SSRy
= (SSR; — SSR3)— (SSRy— SSR3).

Note that each term that comprises the rightmost term is the difference in SSRs of a model with
3 breaks and one with an additional break. Thus, the problem reduces to one of comparing two

models, one a restricted version of the other.

Asymptotic Properties of the Model with an Additional Break
Under the break points T4, Ts, 7Y, T3, the model can be written as
Y =764 U,

where Z* is the diagonal partition of Z in accordance to T, T, T, T, that is,

7 = diag (21,23, 25, 23, Z)

for
/ / / / /
2] 2741 “To41 #1941 241
Zl = ) ZQ = . ) ZA = ) Z3 = ) Z4 = )
/ / / /
le ZT2 ZTQO ZT3 27.

and 6% = (6,69 ,69,6Y.69"), where 49 is repeated once because T is categorized into the second
regime in the true model.

The estimator 0* = (8%,85,6%,05',0%")’ of 6* satisfies
8* _ (Z*/Z*)—lZ*/Y.

Let 2% = diag (27,23,2%,79, 7)) be the diagonal partition of Z according to the true break
dates with 75 between the first and second true break dates, specifically the break dates
T, T, T9,T9. We choose ¢ > 0 small enough so that TP < 7. In this case, the true model
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is written as
Y = ZO* 50* + U7
and we can expand 5% as

S* — (Z*IZ*)—IZ*/Y
— (Z*IZ*)—IZ*/ZO* '60* + (Z*IZ*)—IZ*/U

_ 50* + <IZ*IZ*) - (12*/[])
B T T

+ (;Z*'Z*>_1 {J{Z*/ (ZO* . Z*)] '

+2*'U is 0,(1) because
= zug = —= (Vr(r) = Vr(s)) = 0
Tt:LTsJ—i—l \/T

|
for any 0 < s <r <1 by assumption (6), and (%Z*’Z*) is Op(1) because

L) -
( > mé) 5 () - (s)

t=|Ts|+1

forany 0 <s<r<1.

In addition, we can see that

min(Ty,TY) {
T - T7|{
Tg—max(Tl,Tlo){
19 - T
min (7Y — 79,75 — T3) {
|79 - T3{
T —max(T9,T3){

— ZO* o Z*’

SO & & O % O
o © & © OO
Q=< O© O O© O O

S o © O O

S o0 © O O

S d

where the values on the left hand side refer to the number of rows associated with each row of

blocks and x, y denote non-zero elements. Therefore,

1 B B 2 1 max(Ty,T{) max(13,79)
H\/T<ZO*Z*> <2 T Z22t+f Z Zézt .
t=min(T1,77)+1 t=min(T3,79)+1
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Since the first term on the right hand side can be written as

1 max(77,T7Y)

0 /
‘)\1—/\1‘- TR Z A I
|T1 - T1| :
t=min(T1,T7)+1

where the latter is O, (1) and [A) — A\ | = £ [T} — T3 | < ¢, and the same holds for the second term,
we can see that

2

1 7 0% 7% _
H\/T(Z ~2%)| =¢-0,(1).
Therefore, we can see that
A 1-,=0" 11 - Vo N M L mwadl2 1L /a0 -
* 0% < Z*IZ*> ‘Z*l ‘ <Z*1Z*> HZ*/Z* H ZO*_Z* ‘
§* — 6% < (T =270\ +| (7 - ﬁ< )

= 0p(1) +V/C- 0p(1) = V(- Oy (1).

-1
In other words, for small ¢ > 0, large C' > 0 (the large C' is so that (%ZZ’ZZ) is not too large)
and large T, 53* is close to 5;-) for j =1,2,A,3,4.
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Difference in SSRs via Restricted Linear Regression

The model with break points 17,75,75 can be viewed as a special case of the above unrestricted
model subject to the restriction da = 3. In other words, SSR(T1, Ty, Ty, T3) and SSR(Ty, Ty, T3)
are the sum of squared residuals from the unrestricted model above and the model subject to

the restriction
Ré* =0,
where R is an k x 5k full rank matrix defined as
R=(0 O I, ~I; 0O).

The estimator of 0* subject to the restriction RJ* = 0 solves the constrained minimization

problem

: 1 7% ok ! 7% Ok
i, 5 (Y-2) (v -2)
subject to Ré* =0.
The Lagrangian for this problem is
1 7% Ok ! 7% Ok / *
E_E(Y—Zé)(Y—Zé)—uRé,

where 1 is a k-dimensional vector of Lagrangian multipliers. Letting 0* be the estimator of §

under the restricted model, we have the f.o.c.
7y - 2F) = Rl
so that
=5 (2727) 'R

_ -1
Premultiplying the f.o.c. above by R (Z 7 *) , we can see that
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Therefore,

5t = 6% — (Z*’Z*)*l R {R (Z*'Z*)*1 R’] - RS

Using this formula, we can express SSR; —SSR3 as

SSRy -SSRy = (Y~ 28") (v - 2°6") - (Y - 2°6°) (v - 2°F")
A AN A S 1Y Z* (3* . S*>

R [R (z727) " R’} ~ rée

Under the R defined above,
R6* = 6% — 6%,
and because

(Zy'zy)~" - 0

Y

_ N1
0 e (zyzy)”
we can see that

St 7\ L o ! # ke \—1 ey —1171
R(z"Z") R| =[(ZXz8) " +(z5'z)7"]
Therefore, the difference in sum of squares can be written even more compactly as

SRy~ SRy = (55 -83) [(25z8) "+ (z5/25) 7] (5 -84).

By a symmetric argument, because SSRy is the model with break points 71,7%, T3, we have

SSRy— S8Ry = (55 63) [(z8z3) " + (25 2z) 7] (85 -53).

384



6.5.3 Step 3: Rate of Convergence of the Difference in SSRs

From the result above, we can see that

Sp(Ty, Ty, T3) — Sp(T1,T9,T3) = (SSR; — SSR3) — (SSRy — SSR3)
= (f5-63) [(z5z8) '+ 2z z) "] (5-8)
~(B5-88) [(z8za) (22 (B -6n).
Since
(B-0a) [(zaza) '+ (252) "] (33-6a) = (33 -64) 2aza (35 -53).

we can further bound the above quantity below by

St(T1, T, Ts) — Sp(T1, T3, Ts)
> (55-0a) [(z8za) "+ (z525) 7] (85-08) - (5 -08) 2 za (55— 3a).
Note that

1 -1

_ 411 Z*,Z* -1 Z*/Z* -1
T20—T2 |:( A A) +( 3 3) :| [ TQO—TQ + T2O_T2

(ZZ’ZZ >_1+T20—T2 ( 73 7% )1
T9 — T T5—T9 \T3—T9

-1

The eigenvalues of

Z*/z* 1 T2O
ACA th/
0 __ 0 _ t
B-T, T9-T, %,

are bounded below by pmin, so that the eigenvalues of

(#5)
9 — T,

are bounded above by p—i . Likewise, the eigenvalues of

19— Tp ( 7573 >—1
T3—-T9 \T3—TY

TO—Ts
T3—T7
diagonalizable, this means that the eigenvalues of

are bounded above by p_1 - , and because two positive definite matrices are simultaneously

(ZZ’ZZ >1+T20T2 ( Z3y 73 )—1
9 -y Ts—T9 \T3—T9
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are bounded above by

0T Ts—T
—1 2 2 1 3 2
pmin <T3—T20+1> :pmin‘Tg_Tzo'

In other words, the eigenvalues of

1 *f 7k ) —1 wt sy —1171
o7 [(ZA/ZA) +(25'23) }
are bounded below by
T5—TY
Pmin Ty — T, .
As such,
Sr(T1, Ty, Ts) — Sp (11,13, T5)
9T,
T3 _T20 Sk Tx 2 Tx S\ ZZ/ZZ Sk Sx
> pminm |03 —0A| — (52 —5A> ™ Ty (52 —5A) .

We saw above that
5; _5? = \/Z'Op(l)a
for any j =1,2,A,3,4, where 6& = 49. In addition,

ZRZ}
LA%A _ o1

by assumption, so that

(55 -03) 7278 (53-83) =< 0,0,
Finally,
Ty 1§ = 15— 19| > 19 - 19 |15~ 19| > (19 - 1) - T

and

Ty—Ty < ‘Tg—T??’ + ]TQ—TS\ + (19— 19)
< (T??—T20>+2CT,

386



so that

T-T) (A=) —¢
T5—To = (A —A9)+2¢

and
T-T9 ¢ (A3 =29 —

min 5*_ i '— 5 (5

P T T 3 ()\0 )\O +2C ‘ 3 2’ +C O ( )
Putting all the pieces together, we have

§T<T17T27T3) - S’T(TlaT207T3) (AO )\2
> min-— 03 — 0 2-¢-0
9T, = Pmin N N9+ 2¢ ‘3 2‘ 20 Op(D).

The first term does not depend on 71" and very little on (, provided that it is small. Thus, for
small (, large C' and large T, there is a large probability that

St(T1, T, T3) — St (T4, T, T3)
0Ty

>0,

and by implication a small probability that

St(Tv, T2, Ts) — S (T, 19, T5)
0T

<0,

which is precisely what we intended to show.

387



Testing for Multiple Structural Breaks

Bai and Perron (1998)

Here we consider two ways to test for multiple structural breaks. The first one tests the null of
no breaks against the alternative of r breaks, while the second sequentially tests the null of r

against the alternative of r+ 1 breaks.

7.1 Testing the Null of No Breaks against the Alternative of m
Breaks

We wish to test the null hypothesis
Hy: There are no structural breaks
against the alternative hypothesis
H, : There are exactly m structural breaks.

Under the framework of the structural break model studied in the previous chapter, we can view
these hypotheses as representing a restricted model and an unrestricted model, respectively,

where there are km restrictions
§:=06, = 05,
for 2 <j <m+1, so that there are no structural breaks under the null.
To obtain a tractable test statistic for testing Hy against Hy, define the set

Aaz{(/\l,...,)\m)e [0,1]™ | [Aj —Aj—1| > € and )\j:% for some n € N, for any 1§j§m+1}.

for some d € N, and small € > 0, where we put A\g =0 and A,,,+1 =1 as in the previous chapter.
The second requirement, that each A; be a rational number with divisor d, is, strictly speaking,

not required, but has been included to facilitate the proof and enable an exacty grid search.
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Suppose that (A1,---,\pn) € Ac represents a collection of true break fractions in the sample.
Then, letting the break points be given as T, ,T,, where T = |T'\;| for any 1 < j <m, the

model can be written as
Y =B+ 20, +w

for any Tj_1 +1 <t <Tj and 1 <j <m+1, or in matrix form as
Y =XB+Z5+U,

where Z is the diagonal partition of Z = (21,---,2r)" according to the break points T1,---, T},
and 0 = (d],---,0;,,1)", as we defined in the previous chapter.

In this case, the alternative hypothesis H; can be viewed as an unrestricted version of the above
model, and the null hypothesis Hy can be viewed as imposing the following linear restrictions

on the model:

Hy: R6=0
for the km x k(m+1) full rank matrix
I, —1I O O
R=
O O I, —1I

Therefore, granted that (A1,---,\;,) are the true (potential) break fractions, the problem of
testing whether there are 0 or m structural breaks reduces to testing for the linear restrictions
R6=0.

We can naturally think of the following F statistic:

(SSRy—SSRy)/km

P Ay k) = ,
T(As5 A, k) SSRy /(T — (m~+1)k—p)

where SS Ry is the sum of squared residuals under the restricted model of no structural breaks,
SSR,, is the sum of squared residuals under the unrestricted model in which the break dates
are given by 11, -+, T, T —(m+ 1)k —p is the degrees of freedom in the unrestricted model
(there are m + 1 regimes during which the k-dimensional coefficient of z; changes, along with
p coefficients corresponding to the regime-independent exogenous variables x;), and km is the

number of restrictions.

Under the null hypothesis, there are no structural breaks, so to consider all potential break

points, our test statistic takes the form

SupFT(m;k): sup FT()‘la"'v)\mmk)‘
(Al,---,Am)EAE
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If the test statistic is large, then it means that there is evidence supporting the structural break
model under at least one set of structural break points over the model with no breaks, and

therefore we can reject the null of no breaks.

7.1.1 Computation of the Test Statistic

For any (A1, -+, Am) € Ag, our formulation of F(A1,---, A\, k) is given in terms of the sum of
squared residuals under the restricted and unrestricted models.
The fact that the null reduces to a set of linear restrictions allows us to use only estimators from

the unrestricted model to compute F(Ay,--+, A, k).

We first consider the unrestricted model. The estimator of 5 and § from the unrestricted model

~ N\ —1
B\ (xX'x Xx'Z X'y
5| \zZx 7'z zZv |’

and by the FWL Theorem, we have

are given by

— (X'MzX) "' X'M;Y = B+ (X'M,X) "' X'M;U

=

Z’MXZ) MY =5+ (Z’MXZ) AT

S
Il
~

Note that the estimator of ¢ is found as the OLS estimator in the transformed model

MxY = MxZ5§+ MxU.

In contrast, the estimator of § in the restricted model solves the restricted minimization problem

. 1
min -
SeR(m+1)E 2

subject to R =0.

(MxY — (Mx2)5) (MxY — (Mx 2)5)

The Lagrangian for this problem is
1 N _ ,
£=3 (MxY = (Mx2)3) (MxY —(MxZ)5) - - R9,

where p is a km-dimensional vector of Lagrangian multipliers. The restricted estimator § of &

satisfies the first order condition

Z'Mx (MxY —(MxZ)5) = R
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and the constraint R = 0. We can now see that
6=0—(Z'MxZ)"'R'p.
Premultiplying the f.o.c. by R (Z’MXZ>_1 yields
R (Z’MXZY1 Z'MxY —Ré = (R (Z/MXZY1 R’) 1,

_ _\—1
where R (Z’ MxZ ) is nonsingular because R is of full rank.

Therefore,

Using the formula above, we can now derive a closed form expression for SSRy— SSR,:
—  ~\/ — o~ —  A\/ — A
SSRy— SSR,, = (MXY—MXZ(S) (MXY— MXZ-(S) -~ (MXY— MXZ-(S) (MXY —MXZ-(S)
=37 Mx 25~ §'2'Mx 26" —2Y'Mx Z - (5 -9)
. _ -1 77t
—§'R' [R (2'Mx2) R’] RS.

The test statistic can now be expressed entirely in terms of estimators derived from the unre-

stricted model as:

(SSRy—SSRm)/km

FrQa,-,Am ) = SSRy, /(T — (m+1)k —p)

§'R {R (Z’MXZ) - R’} - RS

B <T—(m+1)k—p). e

N km
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7.1.2 Assumptions

To derive the asymptotic distribution of the sup F test statistic above, we need only retain

assumptions (5) to (7) above.

Specifically, we assume the following; note that we retain the definiton of w; = (z}, 2;)" we made

above.

(1)

Uniform Convergence of Sample Covariances

We assume that there exists a positive definite matrix @ € R¥** such that
1 I

— Z waw, B (r—5)Q

t=|Ts|+1

uniformly on the set of all (r,s) € [0,1]? such that s < r, and that

l
§ /
t=i

is nonsingular for any ¢ <[ such that i —{ > k+p.
Note that this both strengthens assumption (7) above and includes assumption (2) and
(4) above as a special case. In addition, this assumption precludes trending regressors.

We allow @ to be decomposed as

. Qx Qz’z
Q - sz Qz 7

where the dimensions of the submatrices are conformable with x;, z;.

Uncorrelated Errors
We assume that the error process {u; }1ez is a Martingale Difference Sequence (MDS) with

respect to the filtration
F=A{FR|telZ}
on Z where
Fi =0 ({ws}sez U {us}s<t)
for each t € Z, such that

sup Elu |*T¢ < 400
tez
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for some ¢ > 0.
Furthermore, by the definition of an MDS E [u;] = 0, and we assume that E [u? | F;_1] = o
for any t € Z.

An FCLT for Martingale Difference Sequences

Let the stochastic process {v;}iez be defined as
Ut = Wil

for any t € Z. As we showed in the previous chapter, the preceding assumption implies
that {v;}ez is an MDS with respect to the filtration F such that

T
1
T Z(u? — oY) ww, B 0.
t=1
Furthermore, assumption (1) implies that
1T
o2 T Zwtwé N a2Q,
t=1

so we have

Therefore, as in the previous chapter, it makes sense to assume that {v;}1cz follows some
sort of FCLT result. Specifically, define the stochastic processes {S7(r)},¢jo,1) and with

continuous paths as

for any r € [0,1]. Letting St be the random function in C?**[0, 1] corresponding to { S (r) brefo,1)>

we assume that
d 3 +k
St — oQ2 - WPTH,

where Q% is the Cholesky factor of Q.
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It follows that, letting {A7(r)},cp0,1) and {Br(r)}r¢[,1) be defined as

[Tr]
1 1
Ar(r) = 7\@ Z Tyt + 7T(T"”— | Tr)) (wI_TT‘J-i-l 'ULTrj—i-l)
t=1
[Tr]

1 1
Br(r) = ﬁ t; Zpug + ﬁ(TT —[Tr]) (ZLTTJH 'ULTrj-l-l)

for any r € [0,1], the FCLT results

1

Ar 5 oQ2 WP

1
Br % -0z -wk*

1 1
hold by the continuous mapping theorem, where @7 and @7 are the Cholesky factors of
Qz and Q..
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7.1.3 The Asymptotic Distribution of the Test Statistic

In this section we derive the asymptotic distribution of the sup F test statistic defined above.
To this end, we show that Fpr(Aq,---, \p; k) converges to some distribution that is a function of
(M, "+, Am) uniformly in A., and as such that the supremum statistic converges to the supre-

mum of those distributions over A..
First fix some (A1, , A ) € Ac. We will investigate the asymptotic properties of F'(A1,- -+, A k).
For the sake of completeness, we reiterate the definition of Fp(Aq,--+, A k):

_ (SSRy—SSRy,)/km
"~ SSRm/(T—(m+1)k—p)

FT()\la"' 7)‘mak)

Asymptotic Properties of the Unrestricted Model

We have already derived the least squares estimators B and § of B and ¢ under the unrestricted

model as

B=B+(X'M;X)"" X' MU
A~ — N\ —1 _—
=0+ (2'Mx2)  Z'MxU.

Denoting 4 = (/',0') and v = (8',6)’,

where we defined W earlier.
Define D = diag(A1, A2 — Aq,---,1—A\p,) € R™* ™, Since

1 T / 1 T / : 1 T /
T D=1 Tty T 2t=1Tt2 T D p=Tt1 Lt
o 1 Ty / 1 T / .
lW’W — T Dt=1 2t T 2t=1%t% 0
T . . . . ’
1 T ! 1 T /
T Zt:TWL+1 tht O e T Zt:T’m"'l tht

by assumption (1)

Qaz )\1 'sz (1*>\m) 'Qa:z

lW/W LN A Qe AL-Q @) — Qu (L{’nD) ® Qu- — Q’
T : . .. : (DLm)®sz D®Qz
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where t,, is the m-dimensional vector comprised of 1s, and Q is positive definite.

Furthermore,
ﬁ i weug Ap(1)
R ﬁzﬁl zug | Br(\1)
T : : ’
ﬁZtT:TmH ZtUt BT(l) _BT()\m)

so by assumption (3),

0Q3 - WP(1)

1, cQ2 W) 1 Z.wr(
—TWUi : ! :J(Q:%.Wp(l)): (UQ B ( )>

1
0QZ (Wh(1) = Wk(\y))
as T'— oco. By the continuous mapping theorem and Slutsky’s theorem, we now have

1

VG- =(30)

WU i> Q—l (UQ% 'Wp(l))
B*

or that

By implication, 4 —~ = 0,(1), that is, 4 is consistent for ~.

The scaled sum of squared residuals SSR,, is decomposed as

1 — 0\ ESN

- (v =w4) (v -w4)
1/ ree

=7 (W(7—7)+U) (W(7—7)+U)

_All—/—> 4 _u<1—/> 1
v=9) (TWW (Y= +200 =N FWU ) +7:UU.

1
TSSRm =

—~

We saw above that ~W'W is O,(1) and +W'U and 4 — are o,(1). In addition, because

{u? —02}4¢7 is an MDS with respect to F, it is an uncorrelated sequence, which means that

1 2
E‘TU’U—UZ
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Since SuptezE]ut|4 < 400 by assumption, we can conclude that

2

1
@TWU—H -0

as T'— oo and thus that

Therefore,
LSSR, 2o
T )

and likewise,

1
T—(m+1)k—p

SSR,, & o2,

where the left hand side is the denominator of F'(Ar,--+, Am; k).
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Decomposing the Difference of Sum of Squared Residuals

To investigate the asymptotic properties of
Ff=SSRy—SSR,,,

we introduce a convenient decomposition of the sum of squared residuals.

i) The Unrestricted Model
As usual, we start with the sum of squared residuals under the unrestricted model. Note
that SSR,,, can be written as

SRy = (V- X5 ZS)' (v -x5-20)
m—+1 Tj

=2 XY m-wup-zd)”

J=1t=Tj_1+1

where 3]- is the part of § estimating d;. Defining
7
DY(G.g)= > (y—aif—250))?

t=T;_141

for 1 < j <m+1, which is the sum of squared residuals under the unrestricted model

computed using only the data from the jth regime, we can write

m+1
SSRy =Y DY(j.j).
j=1

It remains to be seen ho to compute each DY (3, 7).

Define Xy, -+, Xim+1, Y1,--+,Yim+1 and Uy, -+ ,Up41 as

/
Ty 41 YT _1+1 UT; ;41

ij , j , and sz

for 1 <j<m+1. Then,

Z, - 0 Shova Z X,

! T / /
o - m+1 Zt:Tm—i—l 2Ly L1 Xm+1
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so that

X'X X! 7
X'X X'Z Z1 X AVAL
7'X 7'z : :
Zp1Xmi1 O

m

and
XY

X'y ZY
Zv | :

/
Zm+1Ym+1

X/

ZI

m

m+1Zm+1

O

+1Z4m+1

By definition, the least squares estimators B and 4 of 0 and ¢ satisfy

B
X'X Xz\| & | (XY
77X 7'7 |\ 2y
so for any 1 <j <m+1, we have

(4&»44)(

uo,'” W

) = 7Y},

5 = (2;2;) 712} (V; = X,8).

or

For any 1 <j5<m+1,
Y}' :Xj,B—f—Zj(Sj-i-Uj

where

g
I

o1
under the null hypothesis. Since

B=B+(X'M;X) X' MU,
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it follows that

5= (2,2;)7 2} (Y; - X;3)
=0+ (Z;2)) " Z;X;(8 - B) + (25 2;) "' Z;U]

and thus
T
t=Tj71+1

= (Y- X;6-25,) (v - X;6 - 25,
:(Xj(ﬁ—B)JrZ}(éj—S) ) ( J(B=B)+ 2,5 —5)+U)
= (1,1, — 2325271 2)) X, (8= B) + (Iny 1, — 225271 2)) Uj’2

= | My, (U; = X; (X' Mz X)X MZU)\ |
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ii) The Restricted Model

We now decompose SSRy so that each piece has a similar representation as DY (7, 5).
Define Xl,j’ Zl,ja }/1’]', and Ul,j as

(xt U
Xij=1| 1|, Zig=|: |, Y;=]|": and Uy ;=

=~

@) z

/ /
Ry Ty yr; Uty

for 1 <j<m+1. Thatis, Xy ;, Z1,, Y1, and Uy ; collect the observations of the respective

variables up to regime j.

Recalling that B and & are the least squares estimators of A and ¢ under the restricted

model,
5 =5
for any 1 < j <m+1 due to the restriction RS = 0, and the sum of squared residuals under
the restricted model is given by
T ~ ~ ~ ~\/ ~ ~
SSR() = Z(yt —a:;ﬂ - 2251)2 = (Y —Xﬁ — Z51> (Y - XB - Z51> .
t=1

We now derive an expression for SSRy.

By definition, 5 and & are solutions to the minimization problem

. o - m+1 T ;
S (Y - Xxp - 26) (Y—Xﬁ—za):i > (-8 —29))

min 5
+1)k
BERP SER(MH) J=1t=T; 141

—_

subject to ;=01 for any 1 <j <m+1.

Substituting the constraints into the objective function, our goal reduces to solving the

minimization problem

(Y -XB-26) (Y -XB—Z6).

T

. 1

Beﬂg%nen@k 52(‘% — i - Zé(sl)Q -
oL t=1

Therefore,

It follows that

B=(X'MzX)"'X'MzY =+ (X' MzX) 1 X' MU
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and
b =(22)"' 7' (Y - XB),
and because
Y=XpB+27Z6+U
under the null hypothesis, we have
=0+ (Z'2)'ZX(B-B)+(2'2)"1 Z'U.
Substituting this into the formula for SSRy, we have

SSRO:(Y—XB—Z&) (Y XG— ZS)
= (X(8-B)+2(51 - 51>+U) (X(B=B)+2(61-31)+V)
:‘(IT—Z(Z’Z)*IZ’) +(IT 2(2 1Z)U‘

- ‘MZ (U= X (X' Mz X) ™' X MU ]2.

Analogously, define
2
DR(1,5) = ‘MZL]. (0n —Xl,j(X’MZX)*X’MZU)‘

for any 1 < j <m+1. Then, SSRy = D®(1,m +1), so that
m

$SRy =3 (DR(1,j+1)= DF(1,5)) + D(1,1).
j=1
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Therefore, we can see that

Fj =SSRy —SSRy,
m m+1
=3 (DR(1,j+1) - DR(1,5)) + DR, = 3 DY (.5)
j J=1

Il
i

M

(DF(1,j+1) = DR(1,5) = DV(j+1,5+1)) + D*(1,1) - DY (1,1).

<.
Il
—

Defining
Fj;=DR(1,j+1)-D"(1,5) - DY (j+1,j+1)
and
Fjo=D"(1,1)—-DY(1,1)

for 1 < j <m, we will now study the asymptotic properties of Fr. j and Fj*m.
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The Convergence Properties of F7.; for 1 <j<m

For this part, fix 1 < j <m, and define
Vi =(X'MzX) ' X'MzU and Vp=(X'M;X)'X'M,U.
Noting that

Ut j1Urj1 = U1 UL+ U Ui
X1 g X = X1 X0+ X0 X0
21 j1Z1501 = 21 j21j+ Z5 1 Zia
Xi 1121501 =X1,;215+ X1 Zj0
X1 41U = X1 ;U015 + X5 Ujn

! _ ! . ! .
21 i1 U1 =21 ;U1 + Z5 1 Uja,

and defining

T}
!
Sj = Zl,jULj = Zztut
t=1

Tj
_ L /
Hj =2y ;7= Zztzt
t=1
T;
_ ! B /
Kj=2y;X15= Zztl‘t
t=1
Tj
— v/ L /
Lij=X1;X1;=) a7}
t=1
T;
/
Mj=X{ ;U= sy,

t=1

we can see that

Ff;=D"(1,j+1)-D"(1,j) - DY(j+1,j+1)
2 2 2
:‘MZLM (Ul,j+1—X1,j+1VT)‘ —’le,j (UU_XLJ'VT)‘ —’sz (Uj_Xj(WT)’

= (Urj41— X1,j+1Vr) Mz, ;. (U i1 — X1j41Vr) — (Urj — X1,;Ve) Mz, , (Ur; — X1,;Vr)
—(Ujs1 = X1 V) Mz, (Ujy1 — Xj 1 V)

7y / 1yt ) R )
= ULj-‘rlMZl,j+1 U17j+1 -2 VTXl,j+1MZ1,j+1U17]+1 + VTXl,j+1MZ1,j+1X17J+1VT
! /! ! !/ ! /
- Ul,jMZI,j Ul,j + 2 N VTXLjMZLj Ulv] - VTXL]MZLJX]-»]VT

! ! 7/ / ( 7/ ! [ /
- Uj+1MZj+1Uj+1 +2- VTXj+1MZj+1 Ujy1— VTXj+1MZj+1Xj+1VT
! ! !/ / ! /
=U1 11U j —2- VX j U j + Ve Xy 0 X jm Ve
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— UL UL 42 VAX| Uy — VX)X Ve

o UJI'HUJ/'H +2- VfXJ/'HUjH - VII‘XJ/'HXHIVT

- S}-ﬁ-lHj_—i-llSj-i-l +2- VYI“K],‘-i-lHj_-i-llSj-‘rl - VCZ,“K]/'—&—lHj_-&-llKj—HVT

+ S H S —2- Vi K H S+ Vi K H KV

+ (S = 5) (Hjr — Hy) ™ (Sjur = Sj) =2 Vi (Kja — Kj) (Hjn — Hy) ™ (11— ;)
+ Vi (Kjp1 — Kj) (Hjza — Hy) ™ (Kjp1 — Kj) Vp

=2 (Ve = Vi) (Mj1 = M)+ Vi (Ljsa — L) Ve = Vi (L1 — L) Vi
- S§'+1Hj_+115j+1 +2- VT/KJ/'+1HJ'_+1151'+1 - VT/KJI‘+1HJ‘_+11KJ'+1VT
+ S8 H S —2- VI KH S+ Vi K H KV
+(Sjr1—8) (Hypr — Hy) " (Sj1 = S)) = 2- Vi (K — K;) (Hjoa — Hy) ™' (S0 — ;)

+ Vi (K1 — K;) (Hjpr — Hy) " (K1 — K;) V.

There are a total of 12 terms in the above expression; we study each in detail.
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For T'>d, T'A; is an integer, so by assumption (3),

Ry 1 (x. 1 Tl
VT Lilu, ., = ZU:S(/\)
3J 3 T
(\}TSJ) VI \Zi; VT i
L oQz- WPtk (y)),

and by assumption (1), we have

Ty iy oy
L K3\ 1 (Sliwal Siet) LZJW 20
- T T t

%Kj %Hj T Zti1zt$; Zt;1zt2'£
and

LLi—L;) A(Kj-K;) 1 Tl

+1 +1

O oo SRS wiwy B A1 = Aj) - Q.

7(Kj1—Kj)  7(Hjp— Hj) t=[Th; ) +1
Furthermore,

\FVT_( XMZX> \/TX’MZU

-1

1 (1 T 1L N\ (1 '
/ ! / /

thl thl Tt:l Tt:l

1 & (1 r 1 1z

72.%'{&15— Ziﬁt%) (ZZ#ZQ) <Zztut>

VT 5 r= r= VT =

b (@0 0u@'Qm) (QF (1) - QuQ: ¥ WHY) ) = 2°

as T — oo by assumptions (1) and (3), where

Q:c - sz Q;l sz

is nonsingular because @ is positive definite.

Similarly,

_ 1 -1
ﬁVT—< X’MZX> ——=X'MzU

I
L — |
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Since
1 Dim =AM+ M=)+ +(1=Ap) =1
and

(1 @ Qe @) B = 0- Q@ 2 (WH(M) + (W (M) = WH(A)) 4+ (WH(1) ~WF(A,)
=0 szQz_%,Wk(l)u

the weak limit above can be expressed as
o d -1 —1 13 -3k .
VIVe %0 (Qr' = QuaQ'Qu) Q2 -WP(1) = QuaQz - WH(1) ) = A

Thus, VT Vr and VT ‘_/T converge weakly to the same limit.

We can then write F7 as

' [TAj+1]
Fjj=2-NT (V= Vr) (Ar(\gi1) — Ar(Ay) + (\FVT) (1 > 3:th) (vTvr)

T t=|TA;|+1

1 [T'Aj+1] .
_(\/TVT> (T Z a:txé) (\/TVT>

t= LT)\jJ+1

[TAj41]

1
—BT(/\j+1)/ (T Z ZtZ,é) BT()\j—H)

t=1

, [TA;) [TA;) -1 |TA;) !
—_ (\/TVT) . ( Z xtzt) ( Z tht) 2- BT ( Z xtzt) (\/TVT)
1 [TAj+1] -1
+ (Br(Aj+1) — Br())) (T > thzlf) (Br(Aj+1) — Br(A)))
t=|TA;|+1

1 [TAj+1] 1 [TAj+1] -t
—-2. (\/TVT) (T Z mtzé) (T Z th]i) (BT()\j+1) —BT()\]'))

t=|TA;]+1 t=|TX\;]+1

1 Tl LY Tl ! )
+(\/TVT> (T Z astzé) (T Z ztz{f) (T Z xtzé) (\/TVT)

t=|TA;|+1 t=|TA;|+1 t=|TA;|+1
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which converges in distribution to

Ff ==X W) W) + A7 Qe Q1! {%Qé WEN 1) = A -szA*}
+ oA WO TR () — A7 Qe Qs {%Qé WEO) - A -QMA*}
+0% (N —A) 7 (Wk()‘jJrl) - Wk(/\j))/ (Wk()‘jJrl) - Wk()\j))
-2 47QuQ: " (002 (W) - WHOY))
+ (N1 = A) - AV Q1. Q7 Qe A7
= = AL W) WE (A1) + 0207 W) WE(Y)
+02 (Agan =) (W) = W) (W () = R ())

02

= N O =) [ (N = A5) - W) W) + A (N — Ag) - RO WR ()
J J J J

gy (WG = W O)) (WF ) = WHOy))

2
g
= T A G T ) = 2 Ay RO W O) T RO TR ()
Jj+1 ]( J+1 j)

- i "AJ"W"”(&'H) —/\j+1'Wk(>\j)‘2'
Aj+1Aj (Ajr1 = Aj)
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The Convergence Properties of F7

Now we turn to the asymptotic properties of the term
Ffo=D"(1,1)— DY(1,1).
In this case, since
Yiin=Y1, Xi1=X1, Z11=21, and Uy ="U,
we can see that
. 2 N
Ffo=|Mz,, (U1 = X0, Vi)| = Mz, (U1 - X3 Vr))|

— / —
= (U1 = X1Vp) My, (Ur = X1Vi) = (Ur = X4V ) My, (Ur = X1 Vr)
= (Vo = V) XMz, X1 (Vp = V) + 2+ (Uy — X1 V) Mz, X1 (Ve — V)

~ VIV -] [I{ngl - @X;zl) <;Z{Zl>l <;X{Zl)/] (VT (Vi V)]

+9. {1U1 - (;Xl) (ﬁVT) /le {\/T(VT*VT)]

VT

<V (i) i (i) (i) (i)

T T T T
+2-‘\/1TU1— <;X1) (VIVr) |- VT (V= V).
Since
1, 1, Lo, N1, N\ » .
sXxi-(pxiz) (722) (7X2) Q- Q02
and
1 1 2 1, 14 2
‘ﬁU1—<TX1) (VTvr) §2-TU1U1+2-(T;xtxt)~’\/TVT ,
where

1 1 & 2
2 ZUIUL +2- (T;x;xt) AVIVE[ B on - (02 4+ 10 (Qu) 147P),

it follows that all the terms aside from \/T(VT — VT) are Op(1). Since \/T(VT - VT) = 0p(1),

we can see that

FI*“,O = op(1).
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The Weak Limit of Fpr(Ay, -+, A k)

We have seen that
* d *
for any 1 < j <m and that I}, = 0,(1) under the null. Therefore,

- i (DF(1,j+1) = DF(1,5) = DY(j +1,5+1)) + D*(1,1) = DY (1,1)

Il
=

Ms

Fri+Fry
1

J
2
Y
g Ajr1Aj(Aj1 = Aj)

Ms

J=1

under Hy. Putting this together with the asymptotic properties of SSR,,, we can see that, under
HO7
iy F;
km SSRp, /(T —(m+1)k—p)
o ‘/\j'Wk()‘jJrl)_/\j—s-l‘Wk()‘j)

k‘m st Ajr1Aj(Aja1 = Ag)

FT()\la"' 7/\m7k):

2
d ‘
-

For any 1 < j < m, define

k ko |
‘)\j'W Aj41) = Ajrr- W ()\j)‘
Ajr1Aj(Aj1 = Aj)

Fy=

Note that

A WEOG) = A WROG) = (Wk(Aj+1) - Wk(/\j)) + (A5 = A1) - WE )
~ N0, (A2 (r = A) + yr = 202N ) - I
= N[0, Ajr1Aj(Ajrr = Aj) - Ii]

since Wk (\j11) —WF();) and W¥()\;) are independent Gaussian random vectors with mean zero

and covariance matrix (Ajy1— ;) - I and A; - I,. Therefore,
_ / _
e CRLUA(CYTEYED VIRRL 1 IO V)) WOVIEPVIOVIREED VOIS /5 Il CVER O VIR BEP VIR el 1))

is a chi squared random variable with & degrees of freedom.
As such, the weak limit Z;"Zl % of k- Fp(A1,-++,Am; k) is the sum of m dependent chi squared

variables with k degrees of freedom, each divided by the number of breaks m.
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The Weak Limit of the Supremum Statistic

Now we are in a position to derive the limit of the test statistic under the null. For any
(M, ,Am) € Az, we saw that each Fp(\i, -, \m;k) can be expressed as a continuous func-
tion of Vi, Vi, A, By and the mapping
1 L]
/
T — WeWy,
T ,:Z P

=1

all of which converge uniformly in [0,1]. This indicates that

sup Fr(m;k) = sup  Fr(Ai,---,Am; k)
()\1,"',)\m)€Ag
k k(|
a4 1 & ’/\j'W (Nj+1) = Ajp- W (/\j)‘
su —
Cammen. | Fm o Ajr12j(Aj1 = Ag)

under Hj.

We only provide a heuristic reasoning for the consistency of the above test statistic.

If the alternative is true, that is, if there truly are m breaks in the model, then at the true break
fractions A1,- -+, Am, the sum of squared residuals SS Ry subject to the restriction that there are
no breaks will be much larger than SSR,,. Therefore, the supremum of the F' statistics over the
collection A, will also be much greater than 0, provided that the true fractions are contained in

A.. This means that the sup F statistic will then be large and thus more likely to reject the null.
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7.1.4 Double Maximum Tests

So far, we have studied the asymptotic distribution of the sup F test statistic under the null,
where the alternative is that there are m breaks. However, we may wish not to specify the
number of breaks under the alternative. In this case, we can choose a large enough M € N4 to

serve as the maximum possible number of breaks and test the null hypothesis
Hy: There are no breaks
against the alternative
Hy : There are at most M breaks
using the double maximum statistic
Dmax Fp(M,aqy, - ,ap; k) = | Inax, am- (sup Fr(m;k))

= max a,,- ( sup Fr(A,--- 7)\m;k)> ;

1<m=<M (A1 Am) €A
where ay,---,aps > 0 are exogenous weights assigned to each possible number of breaks. If
a1 =---=ap; = 1, then we call the above statistic the uniform double maximum test statistic.

Under Hp, the asymptotic distribution of the test statistic follows directly from the above deriva-

tion; since

k k
d 1 & ’AJ'W (A1) = Ajr1-WH(A)
sup Fr(Ai,-- , Ams k) — sup —_— E
(A1 Am)EA (A1 Am)ede | B Aj1Aj(Aj+1 = Aj)

‘ 2

for any 1 < m < M under the null of no breaks, and because the maximum over a finite set is a
continuous function, by the continuous mapping theorem

k k 2
13 g Q) = Ay WEOY)|

d
Dmax Fr(M,aq, -+ ,ap; k) = max  ap, - sup —
’ ’ 1<m<M " o aens | Fm Ajr1Ai (Aj1 = A)

under Hj.
Heuristically, the consistency of the test follows because, if the true model has 1 <m < M breaks,
then the sup F statistic corresponding to the alternative of m breaks will be large, and as such

the maximum of the sup F statistics corresponding to each possible number of breaks will also

be large, making it likely that the null will be rejected.
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7.2 Sequentially Testing for Breaks

In the previous section, we studied testing the null of no breaks against the alternative of m
breaks, or at most M breaks. Here we study how to test sequentially for m breaks against m + 1
breaks for m > 0. To test for no breaks against the alternative of a single break, we can simply

use the test devised above, so we focus on the case where m > 1.

The intuition behind the test is to test for a break in each of the m + 1 regimes under the null
hypothesis, or the assumption that there are m breaks. Taking the maximum difference in sum
of squared residuals from putting an additional break in each of the m + 1 regimes now becomes
our test statistic, since if the maximum is large, then it means that a huge reduction in SSR can

be achieved by placing an additional break in between two extant breaks.

Formally, the test statistic given the hypotheses
Hy: There are m breaks v.s. Hjp: There are m+1 breaks

is given by

FT(m+1 ‘ m) = ﬁ (SSR(Tlv 7Tm)_1§%1£+1Aé%£’nSSR(T17'” aT]_la LT)\J,CZ}, 7Tm)>

1 ~ N N ~ ~ ~
= glﬁrjné%-i-llejl\ﬁn (SSR(T17 7Tm) _SSR<T17 71}—17771}7"' 7Tm)) )

where

A=

Nia= {1 T
J J—

€1 -}

>

for some 1 > 0, so that the additional break 7= |TA| is not chosen too close to some existing
break, 62 is a consistent estimator of the error variance o2, and Tl, e ,Tm are the break dates

estimated via least squares.

To derive the asymptotic distribution of the above test statistic, we assume that the difference

between the estimated break dates and the true break dates do not diverge, that is,

for any 1 < j < m under Hy. This simply states that the estimated break fractions converge to
the true break fractions at rate 7'
We assume the above in addition to assumptions (1) to (3) above, and, for simplicity, that the

model is one of a pure structural break.
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7.2.1 The Asymptotic Distribution of the Test Statistic

The basic idea of the proof is the same as that of the test for no breaks against m breaks, that
is, to decompose the sum of squared residuals into the sum of SSRs in each regime.

The pure structural break model assumption above implies that the model is given by
yt:zéé?Jrut ifﬂo,1+1§t§T]Q

for the true parameter 60 = (6¥,--- 8% under the null hypothesis Hy.

We again proceed in steps.

The SSR under m breaks

Letting Tl,--- ,Tm be the break dates estimated via least squares, the estimated coefficients 5

are given by
R _N-1 -
b=(2z) zv
and the estimator of each Sj by

0j = (Z;2;)" ' Z}Y;
~ -1

T} 1;
/
= E 22y E 2tYt,
tZTj,1+1 tZTj,1+1

where

Z = dia‘g(Zlv' o )Zm-i-l)

is the diagonal partition of Z according to the breaks 77,---,T},, and ¥ = (Y, --- Yy ) s a

similar partition for Y.

The sum of squared residuals under m breaks is then given by

SSR(T1, - T) = (v~ 25) (v - 23)
=Y'M,Y.

Because S\j EN )\2 for any 1 < j <m, we can assume that, under large T,

5\]‘—)\9}<%

with large probability for every 1 < j < m, so that each 5\j lies between )\2_1 and )\2 1 (the
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distance between each true break fraction is larger than ¢).

Letting Z° be the diagonal partition of Z according to the true break points TV, ---, T | we have

'y Lmo
Y =2%° 40,
and as such

SSR(Ty, -+, Tyn) —U'MzU =Y'M;Y —U'MzU
=8YZ2"M,Z°° +2-6V 2" MU
=" (20~ 2) M5 (2° - 2) 8 +2-8" (2°~ 2) MU

Note that, for large T,

1 ~0 1P 1m+1 2 0 2
|7 (22 < S5 (g o)

with large probability. For any 6 > 0, because Zf’] —T]Q =0p(1) for any 1 < j <m,

T~ 17| = 0p(1)

m—+1
j=1
and there exists a C' > 0 such that, for large T,
m—+1
7 0
Pl |G-T)]>C
j=1
is small for large T'. Additionally, by assumption
M = supE|z[* < +oc.

teZ

Then, we can see that

(s > &) < (Rt > )
T1I£ta§XT “t c) o 7' C

T ~2

cs 1 4
Szgy-ﬁﬂzt\
t—

C?\ 1
<|M —=|=
_( 52)T,

and as such

1 o 2 m—+1 . 0 1 9 )
v HT(Z _Z)H >0 <P Z‘TJ'_TJ">C +P<T<1?t%XT|Zt‘>>C>

=1
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m+1 . 02 1
<P M |f-10|>C +<M~52>T

j=1
is small for large T'. Thus, we can conclude that
2
> 5> 0

p e (|72

This holds for any é > 0, so

L 20 P,
H - (2°-2)| %o
We saw previously that
! U=0,(1)
vT P

SO
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The SSR with an aditional break

Choose any 1 <i<m and . € A;;. Denote 7 = [T\, ].

Because :\j 2 )\9» for any 1 < j < m, we can assume that, under large T,

‘S\j —)\?‘ <en

with large probability for any 1 < j <m. Since
Nic1+ (5\@ - 5\2‘71) <A <A — (5\@ - 5\i—1> 7,

this means that

A=y = (A=A n+ Ao =AY,

>en—en=0,

so that A ; < A\, with large probability for large T'. Similarly, A, < A\? with large probability for
large T'.

Letting
Z* =diag(Zy,  Z{_1, ZA 25 +Zmt1)
be the diagonal partition of Z under the break points Tl, e ,Ti,l,T,Ti, e ,Tm and
Vo= (VY LYY Y
a similar partition of Y according to the above break points, we can see that
Zj:Z; and Y]:Y]*

forany 1<j<i—1andi+1<j<m, while
ZA Y
Zi=|"2] and Y;=|_2|.
Zi v
The sum of squared residuals under the above break points is given by

SSR(Ty, -, Ti1,7, Ty, T) = Y M3.Y.

Letting Z% be the partition of Z under the “true” break points T, 12 |, 7,10, T?  and

y+mo

417



defining

50* — 5OA 7

where 6% = &Y, we have
Y = 20*60* + U
and as such

SSR(Ty,-- , Ty_1,7, T}, Tyn) = U' MU = 6% 2% M, 2% 6% + 2.6 2% M. U

— 50 (ZO* —Z*>/MZ* (ZO* —Z*) §50% 1 9. 50+ (ZO* —Z*)/MZ*U.

Since the squared norm of the difference Z% — Z* is, as before, a sum of

m
=1

A 0
elements, *Tl (ZO* — Z*) = Op(l) and

SSR(Ty,-- Ty 1,7, T}, Ti) —U' M. U = 0,(1).
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Decomposing the Difference of Sum of Squared Residuals
Define

Fr = U’MZU— U’MZ*U.
We have

U'MU =Y UjZ;(Z;Z;)" Z;U;,
j=1
where

uTj71+l
U; = :
’LLTj
for 1 < j <m, and likewise,
i—1 m
UMzU=) UMzUj+ Y UjMzUj
j=1 j=i+1
where
Ti_1+1 Ur+1
Ur Uy
Seeing as how

U, = UA
Ur )’
we have

Fj =UMzU; —UXMzyUx —U;"Mz: U}
= UlU; — U Z0(Z,2;) " ZlU; —USUA + UX 74 (23 25)

ZAUR"
— U U+ U 25 (27 27) 7 2707

= —UIZ(Z/2)) " ZlUi+ U 24 (28 Z1) " ZJUA
+UN 222 2

=— (ST(S\i> - ST(j\i—l))/ (MT(j\i) - MT(S\i—l)>71 (ST(
+ (ST()\T) —Sr(\

i) _ST(Ai—l))
H))/ (MT()‘T) - MT(S\H))

(ST()\T) —ST(S\z‘A))
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Define

for any A € [0,1].
Note that
[$2(0) = 50| < —=| i~ 70 (mae [2al).
' R AN E s

For any 6 >0 and ¢ > 0, because T; — T? = O,(1), there exists a C' > 0 such that, for large T,

p(|fi-10|>0) <.

Additionally, by assumption
M =supE|z|* < +oo.

teZ

Then, we can see that

Grimsist)<E (o)

Z : IE|Zt|

and as such

for large T'. Thus, we can conclude that

P (|sr(h) = Sr(\))

>6)<§
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for large T' that depends only on § and ¢, so by definition

TIEEOP (‘ST(S\@) — ST(/\?)

> 6) =0.
This holds for any § > 0, so

(%) = 5r(A)| 5 0

It follows then that

Sr(A) = Sr(him1) = (S7(3) = S () + (S () = S2(\-1) ) + (Sr (i

d
4 oQt- (Wk(AO) WHOLL))
by assumption (3). Similar arguments establish that
1

Sr(Ar) = Sr(him1) 5 0Q% - (WHO) = WHAL))

and

Similarly,

| (i) = Mz ()

0
— max |z

¢ (1<t<T| d > ’
and by the same line of reasoning as above, we have

“MT(;\i) — Mp(X))

‘&0.

It follows then that,

Mr(A) = Mr(Ai1) = (Mr(A) = Mr(\)) + (Mr(A) = Mr(A_)) + (
SO0 =A@

by assumption (1), which tells us that
(MT(/A\')—MT(S\- 1))71 LA
1 11— .
YOS
Similar arguments allow us to establish that

(Mr(\) = Mr(A,)) 5 m@—l
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Ai—

D) =St )

D)= Mr(X )



and

% -1 p 1 -1
Therefore, F7: converges in distribution to
2 2
[ -, \W‘f —WRO 1>| RO =R
A\, Ar— A0 a A0 ’
which is identically distirbuted to
2
) ]Wk (A0 — ] ‘Wk (A — A0 ‘ ‘Wk(Ag—AQ,I)—Wk(AT—AZ?,l)]
F*(Ar) =0 M-\, Ar =0 B A=Y,

Noting that

and, defining

A=Ay
SR\ Y
that
1 _1
WHEO: = Ay ~ =2 - WH ()
A=,
and
1 k(10 k —1 k p
T (FOP =X =W A2 ~ (L= p) 72 (W) = W ()

the weak limit can be rewritten as

W) W[ W[ )
F*(AT) NU2 1 + Wk(l)
— r
? /
:M(lg—u) {”'(Wk(l)_wk(“)) (W) =W () 4+ (1= ) - WH () WH(pr) = (1= )W 1Y W (1)
0'2 )
= i (V)W) = 2 W )+ a2 W' WD)
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L [Wre — )|
0 p(1—p)
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The Weak Limit of the Difference of SSRs

We have seen above that
[SSR(Ty, - 1) = SSR(Ty, - Ti1,7, Ty Ton) | = [U' Mz, U = U'M5.U] = 0,(1),
and that
Fp=U'MzU-UMz.U %S F*(),).

Therefore,

FT,?,'()\T) :SSR(Tlv )Tm)_SSR(T].) af_’iflv'rvjllia'” 7Tm) £>‘F”k()\ﬂ')

This holds uniformly for any A, € A;,, so

sup |Fr.(A)—F*(\)] 3 o.
)\GAZ‘,”

as T'— oo. Given any outcome, for any 7' € N, because A;, is a compact set and Fr; and F*

have finitely many discontinuities,

sup Fri(A)— sup F*(A)| < sup [Fri(A) —F*(A)],
AEA, AEA; . XEA;,

which implies that

sup Fr;(A)— sup F*(\) 40

/\EA»L‘,77 )\eAi,n
as well.
Because
< PO
Aj = A

for any 1 < j <m, we can see that
P(Aiy #AD,) =0

as T'— oo, where

A=A,

0
Ay = {)‘ €[0,1] | NN,

E[n,lfn]}-

For any outcome w € €, F* is a continuous function on the compact set [0,1] due to the fact
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that the Wiener process has continuous paths. If A;, = A?’n, then

sup F*(A\) = sup F*()\),

;M

which tells us that, for any § > 0,

{

The latter goes to 0 as T'— o0, so that

sup F*(A\)— sup F*(\)
AEA; AeA?,

> 5) <P(Aiy #AL,)-

>6):0.

sup F*(A\) 2 sup F*(\).

i,m

sup F*(\)— sup F*())
AEA; )\6/\?,77

lim P (
T—o0

This holds for any ¢ > 0, so

By implication,

sup Fri(A) % sup F*(\).
AEA; AeA?,

Since

)2

) \W’“(u)—u-W’“(l)
sup F*(A\)~o0°- sup

AEA? n<p<l-n p(1—p)

i,m

)

we finally have
K NE
PR ]W (1) —p- W (1)\
sup Fr;(A) — o sup

ACA; n<p<l-n (1 —p)

Finally, we can see that

Fr(m+1|m)= max sup [SSR(Tl,--~,Tm)—SSR(Tl,m,Ti_l,T,Ti,m,Tm)}

1<i<m+lrep,
2
W () — - WE(1)|
max sup

L<Sism+l <<ty p(l—p)

)

where the right hand side is the maximum of m + 1 independent supremums over chi-squared

random variables with & degrees of freedom.
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